(54) 发明名称
包括叠置的电子部件的电子组件

(57) 摘要
本发明涉及一种包括叠置的电子部件的电子组件。一种电子组件，包括：第一电子部件，所述第一电子部件包括具有前侧和背侧的第一衬底以及安装在所述第一衬底的所述前侧上的至少一个电子组件；第二电子部件，所述第二电子部件包括具有前侧和背侧的第二衬底以及安装在所述第二衬底的所述前侧上的至少一个电子组件；并且其中，所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧。

![电路图](image)
1. 一种电子组件，包括：

第一电子部件，所述第一电子部件包括具有前侧和背侧的第一衬底以及安装在所述第一衬底的所述前侧上的至少一个电子器件；

第二电子部件，所述第二电子部件包括具有前侧和背侧的第二衬底以及安装在所述第二衬底的所述前侧上的至少一个电子器件；并且

其中，所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧。

2. 根据权利要求 1 所述的电子组件，其中，所述第一衬底的所述背侧直接附着到所述第二衬底的所述背侧。

3. 根据权利要求 1-2 所述的电子组件，其中，所述一个电子器件是在所述第一衬底的所述前侧或所述第二衬底的所述前侧上的有源电子器件。

4. 根据权利要求 1-3 所述的电子组件，其中，所述一个电子器件是在所述第一衬底的所述前侧或所述第二衬底的所述前侧上的无源电子器件。

5. 根据权利要求 1-4 所述的电子组件，其中，所述第一衬底和所述第二衬底中的至少一个衬底是硅衬底。

6. 根据权利要求 1-4 所述的电子组件，其中，所述第一衬底和所述第二衬底中的至少一个衬底是玻璃衬底。

7. 根据权利要求 1-6 所述的电子组件，还包括第三电子部件，所述第三电子部件包括具有前侧和背侧的第三衬底以及安装在所述第三衬底的所述前侧上的至少一个电子器件，其中，所述第三衬底的所述背侧直接附接到所述第一衬底的所述背侧。

8. 根据权利要求 1-7 所述的电子组件，其中，所述第一衬底、所述第二衬底和所述第三衬底中的至少一个衬底是由与所述第一衬底、所述第二衬底和所述第三衬底中的其余衬底不同的材料制成的。

9. 根据权利要求 1-8 所述的电子组件，其中，所述第一电子部件和所述第二电子部件中的至少一个电子部件是管芯。

10. 一种电子封装，包括：

第一电子部件，所述第一电子部件包括具有前侧和背侧的第一衬底以及安装在所述第一衬底的所述前侧上的至少一个电子器件；

第二电子部件，所述第二电子部件包括具有前侧和背侧的第二衬底以及安装在所述第二衬底的所述前侧上的至少一个电子器件，其中，所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧；以及

封装层，所述电子组件嵌入到填充层内，以便形成所述电子封装。

11. 根据权利要求 10 所述的电子封装，其中，所述电子组件的一部分从所述封装层暴露。

12. 根据权利要求 10 所述的电子封装，其中，所述电子组件完全嵌入到所述封装层内。

13. 根据权利要求 10-12 所述的电子封装，其中，所述封装层是球栅阵阵列合体。

14. 根据权利要求 10-12 所述的电子封装，其中，所述封装层是嵌入式晶圆级球栅阵列。

15. 根据权利要求 14 所述的电子封装，其中所述封装层包括多个嵌入式晶圆级球栅阵列。
16. 根据权利要求 10-12 所述的电子封装，还包括附接到所述封装层的第三电子部件。
17. 根据权利要求 16 所述的电子封装，其中，所述第三电子部件是附接到所述封装层的表面安装型电子器件。
18. 根据权利要求 16 所述的电子封装，其中，所述第三电子部件引线键合到所述封装层。
19. 根据权利要求 16 所述的电子封装，其中，使用倒装芯片电子凸块将所述第三电子部件附接到所述封装层。
20. 一种电子系统，包括:
 第一电子封装，所述第一电子封装包括 (i) 第一电子部件，所述第一电子部件包括具有前侧和背侧的第一衬底以及安装在所述第一衬底的所述前侧上的至少一个电子器件；
 (ii) 第二电子部件，所述第二电子部件包括具有前侧和背侧的第二衬底以及安装在所述第二衬底的所述前侧上的至少一个电子器件，其中，所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧，以便形成电子组件；以及 (iii) 第一封装层，所述电子组件嵌入到第一填充层内，以便形成第一电子封装；以及
 第二电子封装，所述第二电子封装包括至少一个电子部件，所述第二电子组件叠置到所述第一电子封装上或安装在所述第一电子封装下方。
21. 根据权利要求 20 所述的电子系统，其中，所述第二电子组件包括第二封装层，所述第二电子组件嵌入到第二填充层内，以便形成叠置到所述第一电子封装上或安装在所述第一电子封装下方的第二电子封装，并且其中，所述第二电子组件包括 (i) 第三电子部件，所述第三电子部件包括具有前侧和背侧的第三衬底以及安装在所述第三衬底的所述前侧上的至少一个电子器件；
 (ii) 第四电子部件，所述第四电子部件包括具有前侧和背侧的第四衬底以及安装在所述第四衬底的所述前侧上的至少一个电子器件，其中，所述第四衬底的所述背侧直接附接到所述第三衬底的所述背侧，以便形成所述第二电子组件；以及
 (iii) 第二封装层，所述第二电子组件嵌入到所述第二填充层内，以便形成叠置到所述第一电子封装上或安装在所述第一电子封装下方的第二电子封装。
22. 一种形成电子组件的方法，包括:
 提供第一电子部件，所述第一电子部件包括具有前侧和背侧的第一衬底以及安装在所述第一衬底的所述前侧上的至少一个电子器件；
 提供第二电子部件，所述第二电子部件包括具有前侧和背侧的第二衬底以及安装在所述第二衬底的所述前侧上的至少一个电子器件；以及
 将所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧以便形成电子组件。
23. 根据权利要求 22 所述的方法，其中，将所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧以便形成电子组件；将所述第一衬底的所述背侧直接附到所述第二衬底的所述背侧。
24. 根据权利要求 22-23 所述的方法，还包括:
 提供第三电子部件，所述第三电子部件包括具有前侧和背侧的第二衬底以及安装在所述第三衬底的所述前侧上的至少一个电子器件；以及
 将所述第三衬底的所述背侧直接附接到所述第一衬底的所述背侧，以便形成所述电子组件。
25. 根据权利要求 22-24 所述的方法，其中，提供第一电子部件包括提供第一管芯。
包括叠置的电子部件的电子组件

技术领域
[0001] 概括地说，本文所描述的实施例涉及电子组件，并且更具体地说明，涉及包括叠置的电子部件的电子组件。

背景技术
[0002] 移动产品（例如，移动电话、智能手表、平板电脑等）在可用空间上极具受限，因为典型地对芯片以及封装面积和高度（除了物理和电气参数之外）有严格的限制。因此，减小系统板（例如，印刷电路板 PCB）上电子部件（例如，封装芯片或分立器件、集成无源器件（IPD）、表面安装型器件（SMD）等）的尺寸极其重要。
[0003] 通常，电子芯片、集成电路（IC）或集成无源器件（IPD）仅仅在其相应衬底的一个面（例如，前侧）上具有其功能元件或功能器件。一个例外是其中衬底的背侧用作共用接地（即，电气管理）的情况。另一个例外是其中衬底的背侧用作散热器（即，热管理）的情况。
[0004] 图 1示出了示例性现有技术电子部件 1。如本文中所使用的，电子部件包括（除了其它器件之外）集成电路（IC）或集成无源器件（IPD）。图 2示出了另一个示例性现有技术电子部件 2，其包括穿硅过孔或穿衬底过孔（TSV）3。在图 2 中所示出的示例性现有技术电子部件 2 中，芯片或硅内插件的背侧可以用于将 TSV 3 连接到再分布层（RDL）4 和指定的 I/O 焊盘。例如，I/O 焊盘可以通过各种已知制造技术（例如，倒装芯片（FC）、微倒装芯片（μ-FC）焊盘或 Cu 支柱等）来形成。
[0005] 常规电子部件中相应衬底的单面利用导致在系统板（例如，PCB）上消耗大量空间。另外，常规电子部件典型地需要大量高度，使常规电子部件更难以装配在移动产品的外壳内部，尤其当需要将几个芯片、多个 IPD 或多个 SMD 中的一个组装和/或叠置在另一个的顶部上时。

附图说明
[0006] 图 1示出了示例性现有技术电子组件。
[0007] 图 2示出了另一个示例性现有技术电子组件，其包含穿硅过孔或穿衬底过孔（TSV）。
[0008] 图 3示出了示例性电子组件。
[0009] 图 4示出了另一个示例性电子组件。
[0010] 图 5A-B示出了包括图 3 中所示出的电子组件的示例性电子封装。
[0011] 图 6A-D示出了其它示例性电子封装以及用于制造包括图 3 中所示出的电子组件的电子封装的工艺流程。
[0012] 图 7示出了包括图 3 中所示出的电子组件的示例性电子系统。
[0013] 图 8示出了叠置电子部件以便形成电子组件的方法的流程图。
[0014] 图 9示出了包括本文中所描述的电子组件和/或电子封装的电子设备的框图。
具体实施方式
[0015] 下面的描述和附图充分地示出了具体实施例，以便使得本领域技术人员能够实施它们。其它实施例可以合并为结构的、逻辑的、电气的、工艺的和其它的改变。一些实施例的部分或特征可以包括在其它实施例的部分或特征中，或者替代其它实施例的部分或特征。技术方案中所阐述的实施例包括那些技术方案的所有可用的等效形式。
[0016] 如在本申请中所使用的方位术语（诸如“水平”）是相对于平行于晶圆或衬底的常规平面或表面的平面来定义的，而不管晶圆或衬底的方位如何。术语“垂直”指垂直于如以上所定义的水平的方向。介词（诸如“在…上”、“侧”（如在“侧壁”中）、“高于”、“低于”、“在…上方”，以及“在…之下”）是相对于在晶圆或衬底的顶部表面上的常规平面或表面来定义，而不管晶圆或衬底的方位如何。
[0017] 本文中所描述的电子组件包括在将管芯嵌入到层合体（或一些其它类型的封装层）中之前，将两个或更多个电子部件（例如，管芯）背对背附接。将两个或更多个电子部件的背对背附接可以用于优化针对包括电子部件的电子组件的封装选项。另外，两个或更多个电子部件的背对背附接预先利用每一个相应的电子部件的背部上的“被浪费的面积”。因此，与其使用衬底的一面的常规电子组件相比，每一电子组件面积的功能器件或电路的数量可以加倍。
[0018] 另外，可以节省系统板上的有价值面积。和 / 或与传统叠置技术（例如，封装上封装（PoP））相比，包括本文中所描述电子组件的电子封装的高度可以减小。本文中介词的电子组件还可以允许使不同功能管芯更紧密地放在一起，从而减少形成电子组件（以及包括电子组件的电子组件）的电子组件之间的寄生效应。
[0019] 另外，可以节省系统板上的有价值面积，和 / 或与传统叠置技术（例如，封装上封装（PoP））相比，包括本文中所描述电子组件的电子封装的高度可以减小。本文中介词的电子组件还可以允许使不同功能管芯更紧密地放在一起，从而减少形成电子组件（以及包括电子组件的电子组件）的电子组件之间的寄生效应。
[0020] 本文中所描述的电子组件可以包括在背对背安装的电子部件中的每一电子部件的前侧上的功能器件。因此，功能器件实际上安装在电子组件的前侧和背侧上。
[0021] 本文中所描述的电子组件可以包括在背对背安装的电子部件中的每一电子部件的前侧上的功能器件。因此，功能器件实际上安装在电子组件的前侧和背侧上。功能器件的例子包括但不限于晶体管、二极管和根据 CMOS、双极、BiCMOS、模拟 / 混合信号、RF、功率半导体 DRAM、SRAM 或 NVM 存储技术的电子电路元件。另外，可选无源器件可以安装在本文中所描述的电子组件中的每一个电子组件的前侧和背侧上。在 FEOL 或 BEOL 处理期间，示例性可选无源器件包括但不限于电阻器、电容器（MOS 电容器、MIM 电容器、金属间电容器）以及电感器（线圈）。
[0022] 如上所讨论的，功能器件安装在电子组件的前侧和背侧上的一个潜在益处在于相对大数目目的功能器件可以包括在电子封装内的给定面积和 / 或体积中。将功能器件安装在电子组件的前侧和背侧上的另一个潜在益处在于这种电子组件可以更容易允许在电子封装中包括不同代技术（例如，20nm、40nm、65nm 等的 CMOS）的混合。另外，功能器件安装在电子组件的前侧和背侧上可以更容易地允许在包括电子组件的电子封装中包括不同制造技术（例如，CMOS 逻辑、DRAM、NVM 存储器，双极、模拟 / 混合信号、RF、功率半导体技术等以及各种无源器件）的混合。
[0023] 将功能器件安装在电子组件的前侧和背侧上还可以改进形成电子组件的各种电子部件的可制造性。各种电子部件的经改进的可制造性的一个可能的原因在于指定的最佳制造条件可以用于制造形成电子组件的单独的电子部件（例如，管芯）。图 3 示出了示例性电子组件 10。电子组件 10 包括第一电子部件 11，第一电子部件 11 包括第二电子部件 12，第二电子部件 12 包括第三电子部件 13。
件 11 包括具有前侧 13 和背侧 14 的第一衬底 12 以及安装在第一衬底 12 的前侧 13 上的至少一个电子器件 15。

[0025] 电子组件 10 还包括第二电子部件 21。第二电子部件 21 包括具有前侧 23 和背侧 24 的第二衬底 22 以及安装在第二衬底 22 的前侧 23 上的至少一个电子器件 25。

[0026] 第一衬底 12 的背侧 14 直接附接到第二衬底 22 的背侧 24。在一些形式中，第一衬底 12 的背侧 14 直接附着（例如，通过胶合、直接硅对硅键合、阴离子键合等）到第二衬底 22 的背侧 24。

[0027] 应当注意的是，第一衬底 12 的背侧 14 可以以现在已知或将要发现的任何方式直接附接到第二衬底 22 的背侧 24。其中第一衬底 12 的背侧 14 直接附接到第二衬底 22 的背侧 24 的方式将部分取决于电子组件中所使用的电子部件 11, 21 的类型（除了其它因素之外）。

[0028] 在电子组件 10 的一些示例性形式中，第一衬底 12 和第二衬底 22 中的至少一个衬底是硅衬底。在电子组件 10 的其它示例性形式中，第一衬底 12 和第二衬底 22 中的至少一个衬底是玻璃衬底。第一衬底 12 和第二衬底 22 的其它示例性材料包括但不限于硅、玻璃、绝缘体上硅（SOI）、碳化硅（SiC）、砷化镓、有机衬底和层合体等。应当注意的是，第一衬底 12 和第二衬底 22 可以是相同材料或不同材料。

[0029] 如在以上部分中所讨论的，将第一衬底 12 的背侧 14 直接附接到第二衬底 22 的背侧 24 可以容许电子组件 10 内在地使由电子组件 10 占据的给定面积的电子部件的密度加倍。潜在地使给定面积的电子部件的密度加倍可以允许电子组件 10 创建包括电子组件 10 的更小、更快和更强大的电子封装。

[0030] 另外，可以在电子组件 10 中加以利用的单独的电子部件（例如，逻辑管芯、存储器、RF、模拟-混合信号管芯、无源器件、集成电路（IC）组件、光学数据传输的部件等）可以借助经优化处理技术（例如，高级 CMOS、BICMOS、双极、RF、模拟/混合信号、DRAM-存储器技术、SRAM-存储器技术或非易失性（NVM）的存储器技术、传感器技术等）来制造。单独的电子部件还可以针对是电子组件 10 的部分的每一个电子部件使用经优化的衬底（例如，标准的或高欧姆的 Si 衬底、GaAs、III/V 衬底、II/VI 衬底、电介质衬底等）。

[0031] 图 4 显示了电子组件 10 的另一个示例性形式。如在图 4 中所示的，电子组件 10 还可以包括第三电子部件 31。第三电子部件 31 包括具有前侧 33 和背侧 34 的第三衬底 32 以及安装在第三衬底 32 前侧 33 上的至少一个电子器件 35。在图 4 中所示的电子组件 10 的示例性形式中，第三衬底 32 的背侧 34 可以直接附接到第一衬底 12 的背侧 14。

[0032] 在图 4 中所示的电子组件 10 的其它示例性形式中，第三衬底 32 的背侧 34 可以直接附接到第二衬底 22 的背侧 24。另外，尽管图 4 仅仅示出第二电子部件和第三电子部件 21, 31，但是取决于电子组件 10 的整体配置，另外的电子部件可以直接附接到第一衬底 12 的背侧 14 或直接附接到第二衬底 22 的背侧 24。

[0033] 如在以上部分中所讨论的，第一电子部件、第二电子部件和第三电子部件 11, 21, 31 中的每一个电子部件可以由相同衬底材料或不同衬底材料（例如，标准 Si、高欧姆 Si、电介质衬底、GaAs、III/V 或 II/VI 衬底等）来制造。另外，电子部件 11, 21, 31 中的一些电子部件或全部电子部件可以为不同尺寸。

[0034] 图 5A–B 显示了包括图 3 中所示出的电子组件 10 的示例性电子封装 50。电子封
装 50 还包括封装层 56。将电子组件 10 嵌入到封装层 56 内，以便形成电子封装 50。应当注意的是，现在已知或将来发现的任何技术可以用于将管芯嵌入到层合封装中并且形成电子组件 10 与封装层 56 之间的电气连接。

【0035】在图 5A-B 中所示出的电子封装 50 的示例性形式中，电子组件 10 完全嵌入到封装层 56 内。尽管预期了其中电子组件 10 中只有一部分嵌入到封装层 56 内的电子封装 50 的其它形式。

【0036】在图 5A 中所示出的电子封装 50 的示例性形式中，封装层 56 是环状列层合体。应当注意的是，电子组件 10 可以嵌入到其它类型的封装层（例如，嵌入式晶圆级联合列阵、PCB 层合体等）中。另外，封装层 56 可以是不同类型的封装层的组合，并且可以包括多个不同类型的封装层。

【0037】通过使用在相应封装中提供的布线和通孔（例如，层合封装中的互连导线和通孔，嵌入式晶圆级封装中的再分布层，RDL 导线和贯穿过孔，TVM 等），如在图 5A-图 6 中所示在的电子组件 10 中背对背地附接的不同电路部件的功能器件与电路之间实现电气连接是可能的。另外，通过使用相应封装的现有互连和过孔，避免如图 2 中所示出的现有技术的穿硅过孔（TSV）的相对昂贵的使用和制造是可能的。

【0038】图 5A-B 示出了包括附接到封装层 56 的第三电子部件 51 的示例性电子封装 50。应当注意的是，虽然图 5A-B 示出了第三电子部件 51 附接到封装层 56 的顶部，但是也预期了其中第三电子部件 51 附接到封装层 56 的底部的其它形式。另外，电子部件可以附接到封装层 56 的顶部和底部。

【0039】附接到封装层 56 的第三电子部件 51 的类型将部分取决于电子封装 50 的整体配置。例如，图 5A 中的第三电子部件 51 可以是附接到封装层 56 的表面安装型器件，而在图 5B 中，第三电子部件 51 可以是蚊装芯片键合到封装层 56 的管芯。

【0040】图 6A-D 示出了其它示例性电子封装 60 以及用于各种电子封装 50 的潜在封装工艺（即，组装）流程。

【0041】图 6A 示出了示例性电子封装 60 组装工艺的开始。工艺包括：(i) 将电子组件 10（其中 Cu 焊盘或 Cu 柱 / 支柱已经到位）放置在载体或胶塞上；(ii) 对电子组件 10 进行包覆制样，以便构造重构晶圆 / 面板；(iii) 从重构晶圆 / 面板去除载体或胶带；(iv) 对重构晶圆的表面积中的贯穿过孔（TVM）62 进行部分钻孔或蚀刻；(v) 对 TVM 62 进行金属填充；(vi) 随后形成（单级或多级）RDL 层 61，其向 TVM 62 和第二（‘底部’）电子部件的 Cu 焊盘或 Cu 柱提供电气连接（即，RDL 互连），并且为焊锡球或凸块提供 I/O 焊盘。

【0042】图 6B 示出了图 6A 中所示出的电子封装 60 组装工艺的延续。工艺还包括 (i) 对模具 63 进行研磨以暴露铜柱 64 和 TVM 62。

【0043】应当注意的是，在电子封装 60 组装工艺这一点上，工艺可以以各种各样的方式继续。其中示例性电子封装 60 组装工艺继续的方式将部分取决于电子封装 60 的所期望的配置和功能。

【0044】图 6C 示出了用以继续图 6A-B 中所示出的电子封装 60 组装工艺的一种示例性方式。工艺还可以包括：(i) 在现有电子封装 60 的顶侧上制造 RDL66；和 (ii) 在 RDL 66 上形成模具 67；以及 (iii) 将焊锡球或焊料凸块施加在在电子封装 60 的底侧处的 RDL layer 61 中提供的 I/O 焊盘上。
图 6D 显示了继续图 6A-B 中所示出的电子封装 60 组装工艺的另一个示例性方式。工艺还可包括：(i) 在电子封装 60 的顶侧上形成多级顶侧 RDL68A, 68B 以及 (ii) 可选地将 SMD 69（或相同类型的芯片）组装到最外面的 RDL68B 上。

图 7 显示了包括与图 3 中所示出的电子组件 10 相类似的电子组件 10A, 10B 中的两个电子组件的示例性电子系统 70。应当注意的是，可以将任何数目个电子组件中的一个叠置到另一个的顶部上，以便形成电子系统 70。

图 7 中所示出的示例性电子系统 70 包括第一电子封装 50A。第一电子封装 50A 包括：(i) 第一电子部件 11A, 第一电子部件 11A 包括具有前侧 13A 和背侧 14A 的第一衬底 12A 以及安装在第一衬底 12A 的前侧 13A 上的至少一个电子器件 15A。第一电子封装 50A 还包括第二电子部件 21A, 第二电子部件 21A 包括具有前侧 23A 和背侧 24A 的第二衬底 22A 以及安装在第二衬底 22A 的前侧 23A 上的至少一个电子器件 25A。

第一衬底 12A 的背侧 14A 直接附接到第二衬底 24B 的背侧 24A, 以便形成电子组件 10A。第一电子封装 50A 还包括第一封装层 56A。电子组件 10A 嵌入到第一封装层 56A 内，以便形成第一电子封装 50A。

示例性电子系统 70 还包括第二电子封装 50B, 第二电子封装 50B 包括至少一个电子部件。第二电子封装 50B 置叠至第一电子封装 50A 上（或以其它形式安置在第一电子封装 50A 下方）。

第四衬底 22B 的背侧 24B 直接附接到第三衬底 12B 的背侧 14B, 以便形成第二电子组件 10B。第二电子封装 50B 还包括第二封装层 56B。第二电子组件 10B 嵌入到第二封装层 56B 内，以便形成第二电子封装 50B。

应当注意的是，取决于电子系统 70 的整体配置，第一封装层 56A 和第二封装层 56B 可以是不同类型的封装层或相同类型的封装层。另外，第一封装层 56A 和第二封装层 56B 可以是以上所描述的或将来发现的任何类型的封装层。

第三衬底 32 的背侧 34 可以直接附接到第二衬底 22 的背侧 24，以便形成电子组件 10。

图 9 是并入了本文中所描述的至少一个电子组件 10、电子封装 50、60 和 / 或电子系统 70 的电子装置 900 的框图。电子装置 900 而是电子装置的一个例子，在所述电子装置中可以使用本文中所描述的电子组件 10、电子封装 50、60 和 / 或电子系统 70 的形式。电子装置 900 的例子包括但不限于个人电脑、平板电脑、移动电话、游戏设备、MP3 或其它数字音乐播放器等。在此例子中，电子设备 900 包括数据处理系统，所述数据处理系统包括用以耦合电子装置 900 的各种部件的系统总线 902。系统总线 902 在电子装置 900 的各种部件之间提供通信链路，并且可以实现为单个总线、实现为总线的组合或以任何其它合适的方式来实现。

如本文中所描述的电子组件 910 可以耦合到系统总线 902。电子组件 910 可以包括任何电路或电路的组合。在一个实施例中，电子组件 910 包括处理器 912，处理器 912 可以是任何类型。如本文中所使用的，“处理器”意指任何类型的计算电路，诸如但不限于微处理器、微控制器、复杂指令集计算 (CISC) 微处理器、精简指令集计算 (RISC) 微处理器、超长指令字 (VLIW) 微处理器、图形处理器、数字信号处理器 (DSP)、多核处理器或任何其它类型的处理器或电路。

可以包括在电子组件 910 中的其它类型的电路是定制电路、专用集成电路 (ASIC) 等，诸如例如，供在无线设备（像移动电话、平板电脑、膝上型电脑、双向无线电设备以及类似的电子系统）中使用的一个或多个电路（诸如通信电路 914）。IC 可以执行任何其它类型的功能。

电子装置 900 还可以包括外部存储器 920，外部存储器 920 继而可以包括适合于特定应用的一个或多个存储器元件，诸如以随机存取存储器 (RAM) 形式的主存储器 922、一个或多个硬盘驱动器 924 和 / 或处理可移动介质 926（诸如光盘 (CD)、闪速存储器卡、数字视频光盘 (DVD) 等）的一个或多个驱动器。

电子装置 900 还可以包括显示设备 916、一个或多个扬声器 918 和键盘和 / 或控制器 930，键盘和 / 或控制器 930 可以包括鼠标、轨迹球、触摸屏、语音识别设备或允许系统用户将信息输入到电子装置 900 中和从电子装置 900 接收信息的任何其它设备。

为了更好地示出本文中所公开的方法和装置，在这里提供了实施例的非限制性列表：

例子 1 包括一种电子组件，包括：第一电子部件，所述第一电子部件包括具有前侧和背侧的第一衬底以及安装在所述衬底的所述前侧上的至少一个电子组件；第二电子部件，所述第二电子部件包括具有前侧和背侧的第二衬底以及安装在所述衬底的所述前侧上的至少一个电子组件，并且其中，所述衬底的所述前侧直接附接到所述衬底的所述背侧。

例子 2 包括例子 1 的电子组件，其中，所述衬底的所述背侧直接附接到所述衬底的的所述背侧。

例子 3 包括例子 1–2 中的任意一个例子的电子组件，其中，所述一个电子器件是在所述衬底的所述前侧或所述衬底的所述前侧上的有源电子器件。

例子 4 包括例子 1–3 中的任意一个例子的电子组件，其中，所述一个电子器件是在所述衬底的所述前侧或所述衬底的所述前侧上的无源电子器件。
【0065】例5包括例如1~4中的任意一个例子的电子组件，其中，所述第一衬底和所述第二衬底中的至少一个是硅衬底。
【0066】例6包括例如1~5中的任意一个例子的电子组件，其中，所述第一衬底和所述第二衬底中的至少一个是玻璃衬底。
【0067】例7包括例如1~6中的任意一个例子的电子组件，还包括第三电子部件，所述第三电子部件包括具有前侧和背侧的第三衬底以及安装在所述第三衬底的所述前侧上的至少一个电子器件，其中，所述第三衬底的所述背侧直接附接到所述第一衬底的所述背侧。
【0068】例8包括例如1~7中的任意一个例子的电子组件，其中，所述第一衬底、所述第二衬底和所述第三衬底中的至少一个衬底是由与所述第一衬底、所述第二衬底和所述第三衬底中的其余衬底不同的材料制造的。
【0069】例9包括例如1~8中的任意一个例子的电子组件，其中，所述第一电子部件和所述第二电子部件中的至少一个电子部件是管芯。
【0070】例10包括一种电子封装，包括：第一电子部件，所述第一电子部件包括具有前侧和背侧的第一衬底以及安装在所述第一衬底的所述前侧上的至少一个电子器件；第二电子部件，所述第二电子部件包括具有前侧和背侧的第二衬底以及安装在所述第二衬底的所述前侧上的至少一个电子器件，其中，所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧，以便形成电子组件；以及封装层，所述电子组件嵌入到所述填充层内，以便形成所述电子封装。
【0071】例11包括例如10的电子封装，其中，所述电子组件的一部分从所述封装层暴露。
【0072】例12包括例如10~11中的任意一个例子的电子封装，其中，所述电子组件完全嵌入到所述封装层内。
【0073】例13包括例如10~12中的任意一个例子的电子封装，其中，所述封装层是球栅阵列层合体。
【0074】例14包括例如10~13中的任意一个例子的电子封装，其中，所述封装层是嵌入式晶圆级球栅阵列。
【0075】例15包括例如10~14中的任意一个例子的电子封装，其中，所述封装层包括多个嵌入式晶圆级球栅阵列。
【0076】例16包括例如10~15中的任意一个例子的电子封装，还包括附接到所述封装层的第三电子部件。
【0077】例17包括例如10~16中的任意一个例子的电子封装，其中，所述第三电子部件是附接到所述封装层的表面安装型电子器件。
【0078】例18包括例如10~17的电子封装，其中，所述第三电子部件引线键合到所述封装层。
【0079】例19包括例如10~18中的任意一个例子的电子封装，其中，使用倒装芯片电子凸块将所述第三电子部件附接到所述封装层。
【0080】例20包括一种电子系统，包括第一电子封装以及第二电子封装，所述第一电子封装包括：(i) 第一电子部件，所述第一电子部件包括具有前侧和背侧的第一衬底以及安装在所述第一衬底的所述前侧上的至少一个电子器件；(ii) 第二电子部件，所述第二电子
部件包括具有前侧和背侧的第二衬底以及安装在所述第二衬底的所述前侧上的至少一个电子器件，其中，所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧，以便形成电子组件；以及（iii）第一封装层，所述电子组件嵌入到所述第一填充层内，以便形成第一电子封装，所述第二电子封装包括至少一个电子部件，所述第二电子组件叠置到所述第一电子封装上或安置在所述第一电子封装下方。

【0081】例 21 包括例子 20 的电子系统，其中，所述第二电子组件包括第二封装层，所述第二电子组件嵌入到第二填充层内，以便形成叠置到所述第一电子封装上或安置在所述第一电子封装下方的第二电子封装。

【0082】例 22 包括例子 20-21 中的任意一个例子的电子系统，其中，所述第二电子组件包括：(i) 第三电子部件，所述第三电子部件包括具有前侧和背侧的第三衬底以及安装在所述第三衬底的所述前侧上的至少一个电子器件；(ii) 第四电子部件，所述第四电子部件包括具有前侧和背侧的第四衬底以及安装在所述第四衬底的所述前侧上的至少一个电子器件，其中，所述第四衬底的所述背侧直接附接到所述第三衬底的所述背侧，以便形成所述第二电子组件；以及（iii）第二封装层，所述第二电子组件嵌入到所述第二填充层内，以便形成叠置到所述第一电子封装上或安置在所述第一电子封装下方的第二电子封装。

【0083】例 23 包括例子 20-22 中的任意一个例子的电子系统，其中，所述第一封装层和所述第二填充层是不同类型的封装层。

【0084】例 24 包括例子 20-23 的电子系统，其中，所述第一封装层和所述第二填充层中的至少一个封装层是球栅阵列层合体。

【0085】例 25 包括一种方法，包括：提供第一电子部件，所述第一电子部件包括具有前侧和背侧的第一衬底以及安装在所述第一衬底的所述前侧上的至少一个电子器件；提供第二电子部件，所述第二电子部件包括具有前侧和背侧的第二衬底以及安装在所述第二衬底的所述前侧上的至少一个电子器件，并且将所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧以便形成电子组件。

【0086】例 26 包括例子 25 的方法，其中，将所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧以便形成电子组件包括将所述第一衬底的所述背侧直接附接到所述第二衬底的所述背侧。

【0087】例 27 包括例子 25-26 中的任意一个例子的方法，还包括提供第三电子部件，所述第三电子部件包括具有前侧和背侧的第三衬底以及安装在所述第三衬底的所述前侧上的至少一个电子器件，并且将所述第三衬底的所述背侧直接附接到所述第一衬底的所述背侧，以便形成所述电子组件。

【0088】例 28 包括例子 25-27 的电子封装，其中，提供第一电子部件包括提供第一节芯。

【0089】本电子器件、焊料组分和相关方法的这些和其它的例子和特征将在详细描述中部分地阐述。

【0090】本概述旨在提供本主题的非限制性例子。其并不旨在提供排他性或穷尽性解释。包括详细描述以便提供关于所述方法的进一步信息。

【0091】以上详细描述包括附图的参考，所述附图形成详细描述的一部分。所述附图示出了（通过示例的方式）其中可以实施本发明的具体实施例。这些实施例在本文中也被称为“例子”。这些例子可以包括除了示出的或所描述的那些元件之外的元件。然而，本发
明人还预期了其中仅仅提供示出的或所描述的那些元件的例子。而且，本发明人还预期相对于特定例子（或其一个或多个方面）或相对于本文中示出的或所描述的其它例子（或其一个或多个方面）的使用了示出的或所描述的那些元件的任意组合或排列的例子（或其一个或多个方面）。

[0093] 以上描述旨在是示例性的，而非限制性的。例如，可以彼此结合地使用以上所描述的例子（或其一个或多个方面）。诸如本领域技术人员一旦审阅以上描述，就可以使用其它实施例。

[0094] 提供了本摘要是为了符合 37C.F.R. § 1.72(b)，以便容许读者快速弄清本技术公开内容的性质。提交本摘要是基于以下理解：将不用于解释或限制权利要求的范围和意义。

[0095] 同样，在以上具体实施方式中，可以将各个特征分组在一起，以概要本公开内容。这不应解释为旨在未要求保护的所公开的特征对任何权利要求是必不可少。相反，发明主体可以在于少于特定所公开的实施例的所有特征中。从而，下面的权利要求据此并入到具体实施方式中，其中每一项权利要求自己作为独立实施例，并且可以预期的是，这些实施例可以以各种组合或排列彼此结合。本发明的范围应当参考所附权利要求以及这些权利要求包含的等效形式的全部范围来确定。
图 1

图 2

图 3

标准CMOS工艺（+可选器件）或替代双极、BICMOS制造工艺

衬底A

可选胶合层

衬底A

标准CMOS工艺（+可选器件）或替代双极、BICMOS制造工艺
图 4
图 6C
图 6D
提供第一电子部件，第一电子部件包括具有前侧和背侧的第一衬底以及安装在第一衬底的前侧上的至少一个电子器件

提供第二电子部件，第二电子部件包括具有前侧和背侧的第二衬底以及安装在第二衬底的前侧上的至少一个电子器件

将第一衬底的背侧直接附接到第二衬底的背侧，以便形成电子组件

提供第三电子部件，第三电子部件包括具有前侧和背侧的第三衬底以及安装在第三衬底的前侧上的至少一个电子器件

将第三衬底的背侧直接附接到第一衬底的背侧，以便形成电子组件