FLAMELESS ELECTRONIC ATOMIZING CIGARETTE

Inventor: Lik Hon, Hong Kong (CN)

Correspondence Address:
PERKINS COIE LLP
POST OFFICE BOX 1208
SEATTLE, WA 98111-1208 (US)

Appl. No.: 10/547,244
PCT Filed: Mar. 8, 2004
PCT No.: PCT/CN04/00182

Abstract

The invention relates to a non-smokable electronic spray cigarette which only comprises nicotine without harmful tar. The cigarette includes a smoke mouth integer comprised with a shell, a cell, a high frequency ionizer, nicotine solution storage and its container, control circuit, a display screen, a human contact sensor, a piezoelectric supersonic atomizer, a high temperature vaporization nozzle and attachments, an electro-thermal vaporization nozzle installed in the air suction end of the shell goes through an electric control pump or a valve with a measuring chamber and a liquid storage container which contains nicotine solution and is connected to the electric control pump or a valve with a one-way flow valve, the control circuit plate has four export ends individually connected with the high frequency ionizer, electric heater, pump or valve and the display screen, a human resistance sensor and an airflow sensor are connected to the input end of the control circuit. The advantages of the present invention are smoking without tar, reducing the cancerogenic risk, the user still feel smoking and experiencing the excitement, the cigarette is no need to be lit and is no fire danger.
FIG. 1
FIG. 2
FLAMELESS ELECTRONIC ATOMIZING CIGARETTE

TECHNICAL FIELD

[0001] The invention relates to a non-smokable electronic spray cigarette which contains only nicotine without tar.

BACKGROUND ART

[0002] Despite it is commonly known that “smoking is harmful to your health”, the number of smokers worldwide is up to 1 billion, and the number is increasing every year. On Mar. 3, 2003, the World Health Organization (WHO) concluded a global framework Convention on Tobacco Control. According to the statistical data from WHO, about 4.9 million people die of diseases caused by smoking each year. Although smoking may cause serious respiratory diseases and cancer, it remains extremely difficult for smokers to quit smoking completely.

[0003] The active ingredient in a cigarette is nicotine. During smoking, nicotine, along with a lot of tar aerosol droplets produced in the cigarette burning, enters smoker’s alveolus and is rapidly absorbed. After being absorbed into the blood of a smoker, nicotine then produces its effect on the receptors of the smoker’s central nervous system, which makes him/her relax and enjoy an inebriety similar to that produced by an exhilarant.

[0004] Nicotine is a kind of alkaloid with low molecular weight, a small dose of nicotine is essentially harmless to human body and its half-life in blood is quite short. The major harmful substance in tobacco is tar, and the tar in tobacco is composed of thousands of ingredients, tens of which are carcinogenic substances. At present, it has been proven that passive smoking can be more harmful on non-smokers.

[0005] Some cigarette substitutes that contain only nicotine without tar have been proposed, and many of them, such as “nicotine patch”, “nicotine mouthwash”, “spray agent packaged in high pressure gas tank with propellant”, “nicotine chewing gum”, “nicotine drink” etc., are made of pure nicotine. Although these cigarette substitutes are free from tar, their major disadvantage is that an effective peak concentration can not be reached in the blood of a smoker due to slow absorption of nicotine and thus it can not make a smoker get real fun, in addition, these cigarette substitutes can not satisfy habitual smoking actions of a smoker, for example, inhaling action or sucking action, and thus are not likely to be widely accepted as effective substitutes for quitting smoking or cigarette substitutes.

SUMMARY OF THE INVENTION

[0006] An objective of the present invention is to provide a non-smokable electronic spray cigarette that functions as substitutes for quitting smoking and cigarette substitutes, overcomes the above-mentioned disadvantages and provides a humanized cigarette that looks like a normal cigarette. The non-smokable electronic spray cigarette, which is an integrated assembly resembling a cigarette holder, includes a shell, a cell, a high frequency generator, nicotine solution and its container, a control circuit, a display screen, an airflow sensor, a body sensitive sensor, a piezoelectric ultrasonic atomizer, a high temperature vaporization nozzle and accessories, wherein an electro-thermal vaporization nozzle arranged within an air suction end of the shell is connected with a liquid storage container which contains nicotine solution and has an one-way valve for liquid injection, via an electronic pump or a valve connected with a metering cavity; an ultrasonic piezoelectric element attached on the outside of the vaporization nozzle is connected to the high frequency generator in the control circuit board; four outputs of the control circuit are connected to the high frequency generator, an electric heater, the pump or valve, and the display screen respectively; a body sensitive resistance sensor and an airflow sensor are connected to the inputs of the control circuit; the front end of the shell also includes a cell and a red LED. The control circuit provides starting current to the electric heater and the pump within the vaporization nozzle, so as to pump the nicotine solution in the solution storage container into the vaporization nozzle. Under the high temperature and the high frequency oscillation wave in the vaporization nozzle, the liquid is rapidly vaporized, ejected out and then condensed to form a puff of smoke. The control circuit is activated by the resistance sensor and the airflow sensor connected to the control circuit. A liquid crystal display screen is also provided to indicate the operating conditions and the times of initiation numerically or graphically. The cell which provides power to the pump, the high frequency generator and the electric heater via the control circuit can be a disposable battery or a rechargeable battery.

[0007] The present invention also provides a simple non-smokable electronic spray cigarette. The cigarette includes an electro-thermal vaporization nozzle. The vaporization nozzle is connected to an electro-thermal drive pump with a metering cavity, and Fisher connected to a solution storage container that is filled with nicotine solution and made of tear-resistant silicon gel. Alternatively, the pump with a metering cavity can be replaced by a meter and an electromagnetic valve or an electro-thermal valve. With the provision of compression air or a super elastic member on the solution storage container, the stored liquid flows out automatically. The super elastic member made of nickel-titanium memory alloy is preferably used. It includes a control circuits which provides operating current to the electric heater and the pump or the valve. The control circuit is activated by the resistance sensor connected with the control circuit. The supply power connected with the control circuit is a rechargeable battery.

[0008] The advantages of the present invention include smoking without tar, significantly reducing the cancerogenic risk. Furthermore, users still feel as if they are smoking and experiencing the same excitement, and the cigarette has no need to be lit and has no fire risk.

[0009] With slight modification of the solution storage container, the device and connection structure according to the present invention can be filled with conventional drug for pulmonary administration apparatus.

DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a structural diagram of the device in the first example in accordance with the present invention.

[0011] FIG. 2 is a block diagram of the circuit structure in accordance with the present invention.
FIG. 3 is a schematic diagram of the structure of the high temperature vaporization nozzle and the electric-thermal element in accordance with the present invention.

FIG. 4 is a schematic diagram of the valve made of memory alloy in accordance with the present invention.

FIG. 5 is a schematic diagram of the peristaltic pump made of memory alloy in accordance with the present invention.

FIG. 6 is a schematic diagram of the peristaltic pump in accordance with the present invention.

FIG. 7 is a structural diagram of the electronic cigarette in the second example in accordance with the present invention.

FIG. 8 is a structural diagram of the electronic cigarette of pressure type in the third example in accordance with the present invention.

FIG. 9 is a structural diagram of the simplified electronic cigarette of pressure type in the fourth example in accordance with the present invention.

FIG. 10 is a structural diagram of the metering cavity in the fourth example in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The high frequency generator of a control circuit board 8 is composed of a capacitance connecting three point type oscillator, an inductance connecting three point type oscillator, or a transformer-type oscillating circuit, which has the frequency of 35 kHz to 3.3 MHz. The circuit includes a automatic frequency fine-adjusting circuit resonating with a piezoelectric element 20. A nicotine solution storage container 13 is made of silicon rubber, alternatively, other polymers that can be protected against the penetration of nicotine can be used. An one-way valve for liquid injection 12 is sealed by a ball or cone member under the pressure of a spring. An airflow sensor 18 can be comprised of an array of integrated thermal sensitive resistors in the shape of film. The electrode of a resistance or capacitance sensor 19, which is sensitive to touches of human body, is composed of an upper metal film and a lower metal film and located at the end of the cigarette holder. The changes of the resistance or capacitance parameters due to human touch are inputted into the control circuit to perform the operation of a body sensitive switch. The electric controlled pump 11, driven by a motor or a linear motor, drives a retarder that has a large speed ratio, via a shaft coupling, to revolve at a low speed but with large torque. The pump can be a peristaltic pump, a plunger pump, an eccentric pump or a screw pump. Alternatively, the liquid pump can use piezoelectric pump, a super magnetostriective pump, a thermal expansion drive pump, a thermal contraction drive pump, a thermal bubble pump. The electric control pump or valve may be thermal contractible. The valve is formed on a silicon rubber tube by nickel-titanium memory alloy or copper-based memory alloy under the force of electro-thermal contractions. The electro-thermal vaporization nozzle 17 is made of high-temperature-resistant materials with low thermal conductivity. The nozzle 17 is a tubule, with the internal diameter of 0.05-2 mm and the effective working length of 3-20 mm. An electric heating element is provided within the nozzle, and the shapes of the electric heating element and the cavity of the nozzle are designed to facilitate vaporization and ejection of liquid. The vaporization nozzle 17 may be made of conventional ceramics, or be made of aluminum silicate ceramics, titanium oxide, zirconium dioxide, yttrium oxide ceramics, molten silicon, silicon dioxide, molten aluminum oxide. The vaporization nozzle 17 may be in the shape of straight tube or spiral, and may also be made from polytetrafluoroethylene, carbon fiber, glass fiber or other materials with similar properties. The electric heating element arranged within the vaporization nozzle 17 may be made of wires of nickel chromium alloy, iron chromium aluminum alloy, stainless steel, gold, platinum, tungsten molybdenum alloy, etc., and may be in the shape of straight line, single spiral, double spiral, cluster or spiral cluster, wherein the straight line and cluster are preferred. The heating function of the electric heating element may be achieved by applying a heating coating on the inner wall of the tube, and the coating may be made from electro-thermal ceramic materials, semiconductor materials, corrosion-resistant metal films, such as gold, nickel, chromium, platinum and molybdenum. The method for coating can include a coat sintering process, a chemical deposition sintering process and an ion spraying process. The materials mentioned above can be provided within the inner wall of vaporization nozzle in any of the processes mentioned above. The nozzle with high resistance, made of metal, can have no electric heating element being attached, and can be directly applied with heating current. Alternatively, the materials mentioned above can be arranged outside of the nozzle in any of the ways mentioned above, and an appropriate response time can also be achieved in the power supply mode of short-term preheating. Nicotine solution used in the atomization process comprises nicotine, propylene glycol, glycerol, organic acids, anti-oxidation agents, essence, water and alcohol, in which the nicotine content is 0.1%-6%, propylene glycol content 80%-90%, organic acids 0.2%-20%, the rest is glycerol, essence, anti-oxidation agents, water and alcohol.

EXAMPLE 1

The Structural Diagram of the Device in Accordance with the Present Invention is Shown in FIG. 1

[0021] The fundamental principle of the device is that, when a smoker puts the cigarette holder on his/her mouth, the resistance sensor 19 activates the control circuit board 8. The control circuit board 8 then outputs two driving voltages respectively, one used to supply power to the electric heating element of the vaporization nozzle 17 and the other used to activate the micro pump 11 (shown in FIG. 6). The stored solution is then pumped to the nozzle 17 by the solution storage container 13. On the electric heating element of the nozzle 17, the nicotine solution is then vaporized into high temperature vapor which is subsequently ejected from the opening end. In the air, the vapor ejected out is then expanded and condensed into micro aerosol droplets. The effect of the ultrasonic piezoelectric element 20 mounted on the nozzle is that, firstly, the large liquid droplets in the unstable thermal airflow under high pressure will be in sufficient contact with the electric heating element, and thereby be vaporized; secondly, the liquid droplets in the nozzle 17 is directly fragmented and atomized; thirdly,
possible bumping occurred when the liquid is above a boiling point will be avoided. The effect of integrated atomization will allow the aerosol droplets with diameters of 0.2-3 um to enter into the alveolus easily and be absorbed. The airflow sensor 18 is sensitive to the diluted air which enters through air inlet 16 when a “suction” action takes place. The sensed signals are transmitted to the control circuit, and the control circuit then stop to supply power to the micro pump and the electric heater after a certain time delay. The relay relationship between the time delays of the micro pump and electric heater is as follows: after the electric heater is activated, the micro pump is activated after a time delay of 0.1-0.5 seconds; the electric heater is then turned off after a time delay of 0.2-0.5 seconds when the control circuit of the micro pump is turned off, so as to guarantee a complete vaporization of the liquid after quantitative liquid injection without any leftovers. The nicotine solution container may be designed to be different sizes as required. The nicotine solution may be refilled once a day, or once a couple of days. The liquid crystal display screen can show operating state parameters, such as cell capacity, smoking times per day, average using cycle and warnings for over smoking. A red LED 3 blinks for each smoking action, and a sawtooth wave signal that lasts for 1.2 seconds is given by the control circuit for blinking signals, which provides a gradual change of luminance to imitate the ignition and combustion process of a conventional cigarette. The charger 1, charging jack 2, spring 4, shell 6, threads 7, switch 9, passage tube 14 and baffle plate 15 are shown in FIG. 1. The silicon gel tube 601, pinch roller 602, worm 603 and motor 604 are shown in FIG. 6.

[0022] The design of the present invention will not exclude the possibility of integrating the control circuit and the ultrasonic micro pump on one single chip by using a Micro Electronic Mechanical System (MEMS).

EXAMPLE 2

The Simplified Electronic Cigarette

[0023] FIG. 7 is a structural diagram of the simplified device in accordance with the present invention, in which the ultrasonic atomization high frequency generator and the piezoelectric ceramic element 20 are omitted. To achieve a desirable atomization effect, tiny heating wires are used in combination with the nozzle (see FIG. 3), so that the maximum diameters of one or more vaporization cavities formed between the heating wire and the inner wall of the nozzle range from 0.02 mm to 0.6 mm. The function of the airflow sensor 18 omitted is replaced by the manner that the initial signal of the resistance or capacitance sensor 119 is delayed a certain time via the control circuit and acts as the ending signal. The electronic cigarette is configured as follows: the vaporization nozzle 117, the thermal drive pump 111 (see FIG. 5) made of nickel titanium memory alloy wire, and the liquid storage container 113 connected to the thermal drive pump constitute a liquid transmission system, two outputs of the control circuit board 108 are respectively connected to the electric heater and the pump or valve, and a body sensitive resistance sensor 119 is connected to the input of the control circuit; the cell 105 and red LED 103 are provided in the front end within the shell, and constitute an integrity resembling a cigarette holder, a pipe or a pen. The thermal drive pump is an electro-thermal shrinkable peristaltic pump, made of wires of nickel titanium memory alloy or copper based alloy, with gel tube which is pressed at three points respectively during the process of electro-thermal contraction to form a pressure cavity for pumping out liquid. The change of volume of the cavity within the thermal drive pump determines the quantity of the solution to be atomized each time. Upon contacting with user’s mouth, the resistance sensor 119 activates the control circuit 108, the control circuit 108 then provides operating current to the thermal drive pump and the electric heater, and the output of the control circuit is turned off after the delay of 2 seconds for reactivation at the next smoking action. Alternatively, a thermal expansion drive pump or a thermal bubble pump is also applicable. The thermal expansion drive pump forms a pressure cavity for pumping out liquid by allowing a micro hydrogen container with an embedded electric heating element to block the liquid inlet and open the liquid outlet at the time of thermal expansion. The charging jack 102, LED 103, cell 105, switch 109, liquid-refilling valve 112 and air hole 116 are shown in FIG. 7.

[0024] The electrode lead wire 401, heating wire 402, thread 403, base 404 and nozzle 405 are shown in FIG. 3. The support 501, extension spring 502, pumping-out pressure plate 503, silicon gel tube 504, stop pressure plate 505, supporting spring 506, memory alloy wire 507, electrode A 508, electrode B 509 and electrode C 510 are shown in FIG. 5.

EXAMPLE 3

The Electronic Cigarette Made of a Ni—Ti Memory Alloy

[0025] FIG. 8 is a structural diagram of the electronic cigarette. The electro-thermal vaporization nozzle 217 of the device is connected to the liquid storage container 213 via a pneumatic valve 220, the super elastic element 210 is connected to the pressure plate 211 which is connected to the liquid storage container 213 by pressure, the pneumatic valve is composed of a pneumatic film 214, a magnetic steel ring 218, a steel valve needle 220 and a reset spring 221. The super elastic element 210, which is made of Ni—Ti memory alloy, is used to apply a constant pressure on the liquid storage container via the pressure plate 211. When the pneumatic valve opens, the liquid with nicotine enters the vaporization nozzle from the liquid storage container via the pneumatic valve and is vaporized and condensed subsequently to form a puff of smoke at high temperature. Upon contacting with user’s mouth, the resistance sensor activates the control circuit to supply power to the electric heater. When the user performs suction action, the Nd—Fe—B permanent magnetic alloy ring attracts the valve needle to move in response to the pneumatic film being subjected to negative pressure. Liquid is supplied when the valve needle opens, and after the pneumatic valve is reset, power supply to the electric heater is turned off after the delay of 0.5 seconds by the control circuit. The LED 203, charging jack 202, cell 205, control circuit 208, switch 209, refilling valve 212, baffle plate 215, air hole 216 and resistance sensor 219 are shown in FIG. 8.

EXAMPLE 4

The Electronic Spray Cigarette Utilizing the Pressure of a Container

[0026] In the device (see FIG. 9), the electro-thermal vaporization nozzle 317, the electronic valve 311 connected
with the metering cavity 320, and the liquid storage container 313 form a liquid transmission passage. A gas vessel filled with high-pressure nitrogen is arranged around the periphery of the liquid storage container to exert pressure thereon to facilitate the transmission of the liquid. When a control signal is applied to the electronic valve, the electronic valve is activated, and the solution with nicotine enters the metering cavity from the liquid storage container under pressure and pushes a piston so as to allow a constant volume of liquid at the other side of the piston to enter the vaporization nozzle via the electronic valve and be vaporized and condensed to form aerosols. The metering cavity provided at the valve is a cylinder having a liquid inlet and a liquid outlet. Located within the cylinder are the piston micro holes and the reset spring connected onto the piston. The control circuit which is activated by the resistance sensor 319 controls the states of the electronic valve and the electric heater respectively. Due to slow infiltration of the micro hole of the piston in the metering cavity and the force of the reset spring, the piston returns to its original position within 5-8 seconds after each atomization process. The cell 305, pressure vessel 321, pressure chamber 322, seal threaded-opening 323, control circuit board 308 and air hole 316 are showed in FIG. 9.

[0027] The silicon gel tube 406, pressure-stopping plate 407, memory alloy wires 408, support 409, electrode lead wire 410 and pressure spring 411 are shown in FIG. 4. The inlet 701, piston 702, micro hole of the piston 703, metering cavity 704, reset spring 705 and outlet 706 are shown in FIG. 10.

[0028] The recipes of nicotine solution used for the electronic spray cigarette in accordance with the present invention are as follows:

[0029] 1. 6% nicotine, 85% propylene glycol, 2% glycerol, 2% essence, 1% organic acid and 1% anti-oxidation agent;

[0030] 2. 4% nicotine, 80% propylene glycol, 5% glycerol, 1% butyl valerate, 1% isopentyl hexanoate, 0-6% lauryl laurate, 0.4% benzyl benzotate, 0.5% methyl octyniccate, 0.2% ethyl heptylate, 0.3% hexyl hexanoate, 2% geranyl butyrate, 0.5% menthol, 0.5% citric acid and 4% tobacco essence;

[0031] 3. 2% nicotine, 90% propylene glycol, 2.5% citric acid, 1% essence and 4.5% tobacco essence;

[0032] 4. 0.1% nicotine, 80% propylene glycol, 5% glycerol, 8% alcohol, 2.9% water, 1% essence, 1% tobacco essence and 2% organic acid.

1. A non-smokable electronic spray cigarette, as an integrated assembly, comprising:

- a shell,
- a power supply for supplying power to the non-smokable electronic spray cigarette,
- a high frequency generator arranged on a control circuit board and used for generating a high frequency signal,
- a control circuit further comprising a plurality of inputs and outputs arranged on the control circuit board and used for controlling the operation of the non-smokable electronic spray cigarette,
- an airflow sensor,
- a body sensitive sensor,
- an atomizer for atomizing the nicotine solution,
- a high temperature vaporization nozzle, wherein the vaporization nozzle is arranged in an air suction end of the shell and is coupled to the nicotine solution storage container, the nicotine storage container further comprising a liquid injection valve wherein the liquid injection valve is coupled to an electronic pump or a valve connected with a metering cavity,
- the atomizer is coupled to the high frequency generator,
- the plurality of outputs of the control circuit are coupled to the high frequency generator, an electric heater, and the electronic pump or valve respectively,
- the body sensitive sensor and the airflow sensor are coupled to inputs of the control circuit.

2. The non-smokable electronic spray cigarette according to claim 1, wherein the body sensitive sensor is a resistance sensor or a capacitance sensor.

3. The non-smokable electronic spray cigarette according to claim 1, wherein the high frequency generator is a capacitance connecting three point type oscillator, an inductance connecting three point type oscillator, or a transformer-type oscillating circuit, with the frequency of 35 KHz to 3.3 MHz.

4. The non-smokable electronic spray cigarette according to claim 1, further comprising an automatic frequency fine-adjusting circuit in the control circuit, wherein the atomizer is a piezoelectric ultrasonic atomizer which comprises an ultrasonic piezoelectric element coupled to the outside of the vaporization nozzle, and wherein the automatic frequency fine-adjusting circuit resonates with the ultrasonic piezoelectric element.

5. The non-smokable electronic spray cigarette according to claim 1, wherein the nicotine solution storage container comprises one or more polymers which can be protected against the penetration of nicotine.

6. The non-smokable electronic spray cigarette according to claim 1, wherein the polymers comprise silicon rubber.

7. The non-smokable electronic spray cigarette according to claim 1, wherein the liquid injection valve comprises an one-way valve for liquid injection and is sealed by a ball or cone member under the pressure of a spring.

8. The non-smokable electronic spray cigarette according to claim 1, wherein the airflow sensor is composed of an array of integrated thermal sensitive resistors in the shape of film.

9. The non-smokable electronic spray cigarette according to claim 1, wherein at least one output of the control circuit is connected to a display screen for indicating the operating state parameters of the non-smokable electronic spray cigarette numerically or graphically.
10. The non-smokable electronic spray cigarette according to claim 9, wherein the display screen is a liquid crystal display screen.

11. The non-smokable electronic spray cigarette according to claim 9, wherein the operating state parameters of the non-smoking electronic spray cigarette include cell capacity, smoking times per day, average cycle of use, the volume for nicotine solution, and oversmoking warnings.

12. The non-smokable electronic spray cigarette according to claim 1, further including a red LED arranged in the front end of the shell.

13. The non-smokable electronic spray cigarette according to claim 12, wherein the red LED blinks whenever a suction action takes place on the non-smokable electronic spray cigarette.

14. The non-smokable electronic spray cigarette according to claim 12, wherein the control circuit provides a sawtooth wave signal with the cycle of about 1.2 seconds to make the LED blink with gradual change of luminance.

15. The non-smokable electronic spray cigarette according to claim 1, wherein the shell has the shape of a cigarette holder, a pipe or a pen.

16. The non-smokable electronic spray cigarette according to claim 2, wherein the electrode of the resistance or capacitance sensor that forms the body sensitive sensor is composed of an upper metal film and a lower metal film arranged on the end of a cigarette holder.

17. The non-smokable electronic spray cigarette according to claim 1, further comprising a motor and a retarder, and wherein the electronic pump revolves at low speed but large torque as the motor or linear motor drives the retarder having a large speed ratio via a shaft coupling.

18. The non-smokable electronic spray cigarette according to claim 17, wherein the electronic pump is a peristaltic pump, a plunger pump, an eccentric pump or a screw pump.

19. The non-smokable electronic spray cigarette according to claim 17, wherein the electronic pump is a piezoelectric pump, a super magnetostriuctive pump, a thermal expansion drive pump, a thermal contraction drive pump, or a thermal bubble pump.

20. The non-smokable electronic spray cigarette according to claim 18, wherein the peristaltic pump includes a silicon gel tube, a pinch roller, a worm and a motor.

21. The non-smokable electronic spray cigarette according to claim 19, wherein the electronic pump or valve is a thermal contractible valve made of nickel-titanium memory alloy or copper-based memory alloy wires on the silicon gel tube which is pressed by the nickel-titanium memory alloy or copper-based memory alloy wires under the force of electro-thermal contractions.

22. The non-smokable electronic spray cigarette according to claim 1, wherein the vaporization nozzle is a tubule with an inner diameter of about 0.05-2 mm and an effective working length of about 3-20 mm, and comprises materials which are high temperature resistant and have low thermal conductivity, an electric heating element is provided within the vaporization nozzle, and the shapes of the electric heating element and the vaporization nozzle are designed to facilitate vaporization and ejection of liquid.

23. The non-smokable electronic spray cigarette according to claim 22, wherein the vaporization nozzle comprises conventional ceramics.

24. The non-smokable electronic spray cigarette according to claim 22, wherein the vaporization nozzle comprises aluminum silicate ceramic, titanium oxide, zirconium oxide, yttrium oxide ceramic, mollen silicon, silicon dioxide or molten aluminum oxide, in the shape of a straight tube or a spiral.

25. The non-smokable electronic spray cigarette according to claim 22, wherein the vaporization nozzle comprises polytetrafluoroethylene, carbon fiber, glass fiber.

26. The non-smokable electronic spray cigarette according to claim 22, wherein the electric heating element in the vaporization nozzle comprises wires of nickel chromium alloy, iron chromium aluminum alloy, stainless steel, gold, platinum or tungsten molybdenum alloy, and is in the shape of linear configuration, single spiral configuration, cluster configuration or cluster spiral configuration.

27. The non-smokable electronic spray cigarette according to claim 26, wherein the wires of nickel chromium alloy, iron chromium aluminum alloy, stainless steel, gold, platinum, tungsten molybdenum alloy are provided on the inner wall of the nozzle.

28. The non-smokable electronic spray cigarette according to claim 26, wherein the wires of nickel chromium alloy, iron chromium aluminum alloy, stainless steel, gold, platinum, tungsten molybdenum alloy are provided on the outer side of the nozzle, achieving appropriate response time from the power supply mode of a short-term preheat.

29. The non-smokable electronic spray cigarette according to claim 22, wherein the electric heating element comprises a coating applied on the inner wall of the nozzle, wherein the coating comprises electro-thermal ceramic materials, PTC ceramic semiconductor materials or corrosion resistant metal film.

30. The non-smokable electronic spray cigarette according to claim 28, wherein the corrosion resistant metal film comprises gold, nickel, chromium, platinum or molybdenum.

31. The non-smokable electronic spray cigarette according to claim 28, wherein the coating may be applied in a coat sintering process, a chemical deposition sintering process and an ion spraying process.

32. The non-smokable electronic spray cigarette according to claim 28, wherein the vaporization nozzle is a high temperature vaporization nozzle, and the application of the high temperature vaporization nozzle is achieved during heating.

33. The non-smokable electronic spray cigarette according to claim 31, wherein the vaporization nozzle comprises a metal with high resistance, and the nozzle is directly provided with heating current without any electric heating wire being provided.
34. The non-smokable electronic spray cigarette according to claim 1, when a user smokes, the body sensitive sensor drives the control circuit to output two control signals, the first of the two control signals is used to supply power to the electric heating element of the high temperature vaporization nozzle and the second of the two control signals is to activate a micro pump such that the micro pump pumps the nicotine solution from the nicotine solution container to the high temperature vaporization nozzle, where the nicotine solution is then vaporized on the electric heating element of the high temperature vaporization nozzle and is subsequently ejected from an opening.

35. The non-smokable electronic spray cigarette according to claim 4, wherein the ultrasonic piezoelectric element is configured such that the large nicotine droplets in the unstable thermal airflow under high pressure are in sufficient contact with the electric heating element and thus vaporized, the nicotine droplets in the high temperature vaporization nozzle are directly fragmented and atomized, and the bumping of the nicotine droplets above their boiling point does is avoided.

36. The non-smokable electronic spray cigarette according to claim 4, wherein the airflow sensor is sensitive to diluted airflow from an air inlet when a user smokes, the sensed signal from the sensor is input to the control circuit and used to stop the supply power to the micro pump and the electric heating element after a certain delay.

37. The non-smokable electronic spray cigarette according to claim 19, wherein the thermal shrinkable drive pump is an electro-thermal shrinkable peristaltic pump, made of wires of nickel titanium memory alloy or copper based memory alloy, with gel tube which is pressed at three points respectively during the process of electro-thermal contraction to form a pressure cavity for pumping out liquid.

38. The non-smokable electronic spray cigarette according to claim 19, wherein the thermal expansion drive pump forms a pressure cavity for pumping out liquid by allowing a micro hydrogen container with an embedded electric heating element to block a liquid inlet and open a liquid outlet at the time of thermal expansion.

39. The non-smokable electronic spray cigarette according to claim 19, wherein the thermal bubble pump forms a pressure cavity for pumping out liquid by rapidly vaporizing liquid on a electric heating film.

40. The non-smokable electronic spray cigarette according to claim 1, wherein the metering cavity provided at the valve connected with the metering cavity is a cylinder configured with a liquid inlet and a liquid outlet, and the cylinder comprises a piston with micro holes and a reset spring connected to the piston.

41. The non-smokable electronic spray cigarette according to claim 1, wherein the power supply comprises a disposable battery.

42. The non-smokable electronic spray cigarette according to claim 1, wherein the power supply comprises a rechargeable battery.

43. The non-smokable electronic spray cigarette according to claim 34, wherein the control circuit and the ultrasonic micro pump are integrated on a single silicon chip by using micro-mechanical system concept.

44. The non-smokable electronic spray cigarette according to claim 34, wherein the micro pump is activated after the delay of about 0.1-0.5 seconds when the electric heater is activated, and the electric heater is closed after the delay of about 0.2-0.5 seconds when a micro pump control circuit is closed.

45. The non-smokable electronic spray cigarette according to claim 34, wherein the volume of the nicotine solution storage container is designed such that the nicotine solution is refilled once per day.

46. The non-smokable electronic spray cigarette according to claim 34, wherein the volume of the nicotine solution storage container is designed such that the nicotine solution is refilled once several days.

47. A non-smokable electronic spray cigarette, comprising:

- a shell,
- a power supply for supplying power to the non-smokable electronic spray cigarette,
- a nicotine solution storage container for storing nicotine solution and coupled to the thermal drive pump,
- a control circuit arranged on a control circuit board comprising a plurality of inputs and outputs, for controlling the non-smokable electronic spray cigarette,
- a body sensitive sensor, vaporization nozzle, an electric-heater and a thermal drive pump, and wherein the vaporization nozzle, together with a thermal drive pump and the nicotine solution storage container coupled to the thermal drive pump, form a liquid transmission mechanism,

- the plurality of outputs of the control circuit board are coupled to the electric heater, the thermal drive pump or the valve,
- the body sensitive sensor is coupled to inputs of the control circuit.

48. The non-smokable electronic spray cigarette according to claim 47, wherein the electric heater comprises fine heating wires and the heating wires are used together with the vaporization nozzle such that one or more apertures of vaporization cavity are formed between the heating wires and the inner wall of the vaporization nozzle.

49. The non-smokable electronic spray cigarette according to claim 48, wherein the maximum aperture of the vaporization cavity is about 0.02-0.6 mm.

50. The non-smokable electronic spray cigarette according to claim 47, wherein the thermal drive pump is a peristaltic pump comprising wires of nickel titanium memory alloy or copper based memory alloy, with an electro-thermal shrinkable gel tube.

51. The non-smokable electronic spray cigarette according to claim 50, wherein the peristaltic pump with the electro-thermal shrinkable gel tube presses respectively three points on a silicon gel tube during the process of electro-thermal contraction, to form a pressure cavity for pumping out liquid.

52. The non-smokable electronic spray cigarette according to claim 47, wherein the thermal drive pump is a thermal expansion drive pump.

53. The non-smokable electronic spray cigarette according to claim 47, wherein the thermal expansion drive pump
forms a pressure cavity for pumping out liquid by allowing the micro hydrogen container with an embedded heating element to block a liquid inlet and open a liquid outlet at the time of electro-thermal expansion.

54. The non-smokable electronic spray cigarette according to claim 47, wherein the thermal drive pump is a thermal bubble pump.

55. The non-smokable electronic spray cigarette according to claim 47, wherein the body sensitive sensor activates the control circuit upon contacting with user's mouth so that the control circuit then provides operating current to the thermal drive pump and the electric heater and the outputs of the control circuit is turned off after the delay of about 2 seconds, and the control circuit can be activated again when the next smoking action occurs.

56. The non-smokable electronic spray cigarette according to claim 47, wherein the nicotine solution storage container comprises one or more polymers which can be protected against the penetration of nicotine.

57. The non-smokable electronic spray cigarette according to claim 47, wherein the one or more polymers comprise silicon rubber.

58. The non-smokable electronic spray cigarette according to claim 47, wherein the volume of the nicotine solution storage container is designed such that the nicotine solution is refilled once per day.

59. The non-smokable electronic spray cigarette according to claim 47, wherein the volume of the nicotine solution storage container is designed such that the nicotine solution is refilled once several days.

60. The non-smokable electronic spray cigarette according to claim 47, wherein the vaporization nozzle comprises conventional ceramics.

61. The non-smokable electronic spray cigarette according to claim 47, wherein the vaporization nozzle comprises aluminum silicate ceramic, titanium oxide, zirconium oxide, yttrium oxide ceramic, molten silicon, silicon dioxide or molten aluminum oxide, in the shape of a straight tube or a spiral.

62. The non-smokable electronic spray cigarette according to claim 47, wherein the vaporization nozzle comprises polytetrafluoroethylene, carbon fiber, glass fiber.

63. The non-smokable electronic spray cigarette according to claim 47, wherein the body sensitive sensor is a resistance sensor or a capacitance sensor.

64. The non-smokable electronic spray cigarette according to claim 47, further comprises a red LED in the front end of the shell.

65. The non-smokable electronic spray cigarette according to claim 47, wherein the shell comprises an integrity resembling a cigarette holder, a pipe or a pen.

66. The non-smokable electronic spray cigarette according to claim 47, wherein the power supply comprises a disposable battery.

67. The non-smokable electronic spray cigarette according to claim 47, wherein the power supply comprises a rechargeable battery.

68. A non-smokable electronic spray cigarette, includes a shell, a power supply for supplying power to the non-smokable electronic spray cigarette,

a nicotine solution storage container for storing nicotine solution,

a control circuit arranged on a control circuit board and used for controlling the non-smokable electronic spray cigarette,

a body sensitive sensor, a vaporization nozzle, and accessories, wherein

the vaporization nozzle is connected to the nicotine solution container via a pneumatic valve, and

a super elastic member is connected to a pressure plate which is connected to the nicotine solution container by pressure.

69. The non-smokable electronic spray cigarette according to claim 68, wherein the pneumatic valve comprises a pneumatic film, a magnetic alloy ring, a steel valve needle and a reset spring.

70. The non-smokable electronic spray cigarette according to claim 68, wherein the super elastic member comprises nickel titanium memory alloy, the super elastic member applies a constant pressure on the nicotine solution storage container via the pressure plate.

71. The non-smokable electronic spray cigarette according to claim 68, wherein the magnetic alloy ring comprises a neodymium-ferro-boron permanent magnetic alloy ring,

when a user smokes, the pneumatic valve film is subjected to negative pressure and drives the magnetic alloy ring so as to attract the valve needle to move and supply solution, and

after the pneumatic valve returns to its original position, the control circuit turns off power supply to the electric heater after the delay of 0.5 seconds.

72. The non-smokable electronic spray cigarette according to claim 68, wherein the nicotine solution storage container comprises one or more polymers which can be protected against the penetration of nicotine.

73. The non-smokable electronic spray cigarette according to claim 68, wherein the one or more polymers comprise silicon rubber.

74. The non-smokable electronic spray cigarette according to claim 68 wherein the volume of the nicotine solution storage container is designed such that the nicotine solution is refilled once per day.

75. The non-smokable electronic spray cigarette according to claim 68 wherein the volume of the nicotine solution storage container is designed such that the nicotine solution is refilled once several days.

76. The non-smokable electronic spray cigarette according to claim 68 wherein the vaporization nozzle comprises made of conventional ceramics.

77. The non-smokable electronic spray cigarette according to claim 68, wherein the vaporization nozzle comprises made of aluminum silicate ceramic, titanium oxide, zirconium oxide, yttrium oxide ceramic, molten silicon, silicon dioxide or molten aluminum oxide, in the shape of a straight tube or a spiral.

78. The non-smokable electronic spray cigarette according to claim 68, wherein the vaporization nozzle comprises polytetrafluoroethylene, carbon fiber, glass fiber or other materials with similar properties.

79. The non-smokable electronic spray cigarette according to claim 68, further comprises a red LED in the front end of the shell.
80. The non-smokable electronic spray cigarette according to claim 68, wherein the shell comprises an integrity resembling a cigarette holder, a pipe or a pen.

81. The non-smokable electronic spray cigarette according to claim 68, wherein the power supply comprises a disposable battery.

82. The non-smokable electronic spray cigarette according to claim 68, wherein the power supply comprises a rechargeable battery.

83. A non-smokable electronic spray cigarette, includes a shell, a power supply for supplying power to the non-smokable electronic spray cigarette, a nicotine solution container for storing the nicotine solution, a control circuit arranged on a control circuit board and used for controlling the non-smokable electronic spray cigarette, a body sensitive sensor, an electric heater, an electronic valve, a vaporization nozzle, and accessories, wherein the vaporization nozzle, the electronic valve connected with a metering cavity, and the nicotine solution storage container form a liquid transmission passage, a gas vessel filled with high pressure nitrogen is arranged around the periphery of the nicotine solution container.

84. The non-smokable electronic spray cigarette according to claim 83, wherein the body sensitive sensor activates the control circuit, and the control circuit controls the electronic valve and the electric heater respectively.

85. The non-smokable electronic spray cigarette according to claim 83, wherein the metering valve comprises a cylinder configured with a liquid inlet and a liquid outlet, and a piston with micro holes and a reset spring connected to the piston are included in the cylinder.

86. The non-smokable electronic spray cigarette according to claim 83, wherein the nicotine solution enters the metering cavity from the nicotine solution storage container under pressure and pushes a piston, allowing a constant volume of liquid on the other side of the piston to pass through the electronic valve into the vaporization nozzle and be vaporized and condensed to form aerosols, due to slow infiltration of the micro holes of the piston in the metering cavity and the force of the reset spring, the piston returns to its original position within about 5-8 seconds after each atomization process.

87. The non-smokable electronic spray cigarette according to claim 83, wherein the nicotine solution storage container comprises one or more polymers which can be protected against the penetration of nicotine.

88. The non-smokable electronic spray cigarette according to claim 83, wherein the one or more polymers comprise silicon rubber.

89. The non-smokable electronic spray cigarette according to claim 83 wherein the volume of the nicotine solution storage container is designed such that the nicotine solution is refilled once per day.

90. The non-smokable electronic spray cigarette according to claim 83, wherein the volume of the nicotine solution storage container is designed such that the nicotine solution is refilled once several days.

91. The non-smokable electronic spray cigarette according to claim 83, wherein the vaporization nozzle comprises conventional ceramics.

92. The non-smokable electronic spray cigarette according to claim 83, wherein the vaporization nozzle comprises aluminum silicate ceramic, titanium oxide, zirconium oxide, yttrium oxide ceramic, molten silicon, silicon dioxide or molten aluminum oxide, in the shape of a straight tube or a spiral.

93. The non-smokable electronic spray cigarette according to claim 83, wherein the vaporization nozzle comprises polytetrafluoroethylene, carbon fiber, or glass fiber.

94. The non-smokable electronic spray cigarette according to claim 83, further comprising a red LED in the front end of the shell.

95. The non-smokable electronic spray cigarette according to claim 83, wherein the shell comprises an integrity resembling a cigarette holder, a pipe or a pen.

96. The non-smokable electronic spray cigarette according to claim 83, wherein the power supply comprises a disposable battery.

97. The non-smokable electronic spray cigarette according to claim 83, wherein the power supply comprises a rechargeable battery.

98. A non-smokable electronic spray cigarette according to any one of claims 1, 47, 68 and 83, wherein the non-smokable electronic spray cigarette can be filled with conventional drug, functioning as a pulmonary administration apparatus.

99. A nicotine solution used for the non-smokable electronic spray cigarette according to claim 1, wherein the nicotine solution used for the atomization comprises nicotine, propylene glycol, glycerol, organic acid, anti-oxidation agent, essence, water and alcohol.

100. The nicotine solution according to claim 99, wherein the nicotine content is about 0.1%-6%, propylene glycol content is about 80%-90%, organic acid content is about 0.2%-20%.

101. The nicotine solution according to claim 99, wherein the nicotine content is about 6%, propylene glycol content is about 85%, glycerol content is about 2%, essence content is about 2%, organic acid content is about 1% and anti-oxidation agent content is about 1%.

102. The nicotine solution according to claim 99, wherein the nicotine content is about 4%, propylene glycol content is about 80%, glycerol content is about 5%, butyl valerate content is about 1%, isopentyl hexanoate content is about 1%, lauryl laurate content is about 0.6%, benzyl benzoate content is about 0.4%, methyl octynate content is about 0.5%, ethyl heptylate content is about 0.2%, hexyl hexanoate content is about 0.3%, geranyl butyrate content is about 2%, menthol content is about 0.5%, citric acid content is about 0.5% and tobacco essence content is about 4%.

103. The nicotine solution according to claim 99, wherein the nicotine content is about 2%, propylene glycol content is about 80%, glycerol content is about 5%, butyl valerate content is about 1%, isopentyl hexanoate content is about 1%, lauryl laurate content is about 0.6%, benzyl benzoate content is about 0.4%, methyl octynate content is about 0.5%, ethyl heptylate content is about 0.2%, hexyl hexanoate content is about 0.3%, geranyl butyrate content is about 2%, menthol content is about 0.5%, citric acid content is about 0.5% and tobacco essence content is about 4%.
about 90%, citric acid content 2.5%, essence content is about 1% and tobacco essence content is about 4.5%.

104. The nicotine solution according to claim 99, wherein the nicotine content is about 0.1%, propylene glycol content is about 80%, glycerol content 5%, alcohol content is about 8%, water content is about 2.9%, essence content is about 1%, tobacco essence content is about 1% and organic acid content is about 2%.

105. The nicotine solution according to any of claim 99, wherein the diameter of the aerosol droplet after atomization of the nicotine solution is about 0.2-3 μm.

106. The nicotine solution according to any of claim 100, wherein the diameter of the aerosol droplet after atomization of the nicotine solution is about 0.2-3 μm.

107. The nicotine solution according to any of claim 101, wherein the diameter of the aerosol droplet after atomization of the nicotine solution is about 0.2-3 μm.

108. The nicotine solution according to any of claim 102, wherein the diameter of the aerosol droplet after atomization of the nicotine solution is about 0.2-3 μm.

109. The nicotine solution according to any of claim 103, wherein the diameter of the aerosol droplet after atomization of the nicotine solution is about 0.2-3 μm.

110. The nicotine solution according to any of claim 104, wherein the diameter of the aerosol droplet after atomization of the nicotine solution is about 0.2-3 μm.

* * * * *