741 A1 |0 O O OO 0 0O

uw

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T OO0 O

International Bureau

(43) International Publication Date
6 August 2009 (06.08.2009)

(10) International Publication Number

WO 2009/095741 Al

(51) International Patent Classification:
GOG6F 11/36 (2006.01)

(21) International Application Number:
PCT/IB2008/001327

(22) International Filing Date: 1 February 2008 (01.02.2008)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): THE
MATHWORKS, INC [US/US]; 3 Apple Hill Drive,
Natick, Massachusetts 01760-2098 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MUNIER, Patrick
[FR/FR]; 100 C Allée Saint-Exupery, F-38330 Montbon-
not Saint Martin (FR). YIN, Haibin [FR/FR]; Le Pial-
lon, F-38220 Notre Dame de Mesage (FR). PREVE, Cyril
[FR/FR]; 8 Grand Rue, F-38610 Gieres (FR).

(74) Agent: COLE, Tony; Harrity & Harrity, LLLP, 11350 Ran-
dom Hills Road Suite 600, Fairfax, Virginia 22030 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: SELECTIVE CODE INSTRUMENTATION FOR SOFTWARE VERIFICATION

RECEIVE SOFTWARE CODE
TO BE VERIFIED.

A4
RECEIVE USER INPUT PARAMETERS FOR
STATIC VERIFICATION ANALYSIS.

L

3
[PERFORM STATIC ANALYSIS TO GENERATE

INITIAL CODE CLASSIFICATIONS.

v

‘ OUTPUT INITIAL VERIFICATION RESULTS.

!

[INSTRUMENT "ORANGE” CODE

CLASSIFICATIONS FOR
DYNAMIC TESTING.

]«,305

310 \ /

]

RECEIVE USER INPUT
PARAMETERS FOR DYNAMIC
VERIFICATION ANALYSIS.

325

!

PERFORM DYNAMIC ANALYSIS.

¥

OUTPUT ADDITIONAL VERIFICATION [\~335
RESULTS.

o330

\

FIG. 3

(57) Abstract: A software testing tool may selectively modify (instrument) portions of a software project for dynamic verification
@\ analysis based on the results a static verification analysis. In one implementation, the tool may perform a static verification analysis
2 (315) of the computer code and selectively instrument portions of the computer code for dynamic verification analysis, the selected
&\ portion of the computer code including a portion of the computer code that was determined by the static verification analysis to
& include an unproven error condition. The tool may further execute the computer code to perform a dynamic verification analysis of
the selectively instrumented portion of the computer code and store output information describing potential errors identified by the

dynamic verification analysis.

10

15

20

25

WO 2009/095741 PCT/IB2008/001327

SELECTIVE CODE INSTRUMENTATION FOR
SOFTWARE VERIFICATION

BACKGROUND

[0001] Software products can potentially be very large and complex. Software testing is the
process used to assess the quality of developed computer software. Quality may be judged based
on a number of metrics, such as correctness, completeness, reliability, number of bugs found,
efficiency, compatibility, etc.

[0002] The amount of testing required for a particular software project frequently depends on
the target for the deployed software. A developer of game software intended for personal
computers, for example, may devote relatively little resources into formal testing of the software.
In contrast, the developer of a mission critical application in the healthcare, automotive, or utility
industry may require a much more rigorous level of software testing.

[0003] One technique for testing software is based on the concept of static verification of the
software code. In general, static code verification is an analysis performed without executing the
software. Static verification of software code can prove, for example, which operations are free
of run-time errors such as numeric overflows, divisions by zero, buffer overflows, or pointer
issues, and identify where run-time errors will or might occur.

[0004] In one existing system, static verification is used to classify the code into categories.
The categories may include code determined to be good or safe or correct, code determined to
have errors, code determined not to be accessible (e.g., “dead code” or “deactivated code”) and
code for which a determination could not be made (e.g., “don’t know”). Code classified as
“don’t know” represents code that the static verification system could not conclusively determine
as including an error. A déveloper faced with “don’t know” code may be required to rﬁanually

review the code for errors. Manual review of code can be highly labor intensive.

10

15

20

WO 2009/095741 PCT/IB2008/001327

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The accompanying drawings, which are incorporated in and constitute a part of this
specification, illustrate one or more implementations described herein and, together with the
description, explain these implementations. In the drawings:

[0006] Fig. 1 is an exemplary diagram of a system in which concepts described herein may
be implemented;

[0007] Fig. 2 is a diagram of an exemplary device corresponding to one of the workstations
or servers shown in Fig. 1;

[0008] Fig. 3 is a flow chart illustrating exemplary operations that may be performed by the
verification tool shown in Fig. 1;

[0009] Fig. 4 is a diagram illustrating an exemplary graphical interface in which static
verification results may be presented to a user;

[0010] Figs. SA and 5B are diagrams illustrating exemplary code before and after
instrumentation;

[0011] Fig. 6 is a diagram illustrating an exemplary graphical interface in which dynamic
verification results may be presented to a user; and

[0012] Fig. 7 is a diagram conceptually illustrating components of a verification tool in an
exemplary implementation in which a verification tool is implemented using a client-server

model.

DETAILED DESCRIPTION

[0013] The following detailed description refers to the accompanying drawings. The same

reference numbers in different drawings may identify the same or similar elements. Also, the

10

15

20

WO 2009/095741 PCT/IB2008/001327

following detailed description does not limit the invention.
OVERVIEW
[0014] Implementations described herein relate to an automated software testing tool in
which the results of a static verification analysis technique are used to select portions of the code
for additional analysis. The selected portions may include the code determined by the static
verification analysis to have an unknown or unproven error condition. These selected portions
may be modified (instrumented) for dynamic analysis and then executed in conjunction with
input test values to perform a dynamic verification analysis of the code. The results of the
dynamic analysis can provide additional verification information about the code that was
determined to be unproven by the static verification testing.
| DEFINITIONS
[0015] “Static verification analysis,” “static verification testing,” or “static analysis
techniques,” as the phrases are used herein, generally refer to an analysis of computer code that
is performed without executing the code. For example, static code analysis may examine code
using abstract interpretation techniques to verify all possible execution paths of a program.
[0016] “Dynamic verification analysis,” “dynamic testing,” or “dynamic analysis
techniques,” as the phrases are used herein, refer to verification of software performed by or
during the execution of the software. Dynamic verification may involve, for example, executing
the software with a set of test input values.
SYSTEM DESCRIPTION
[0017] Fig. 1 is an exemplary diagram of a system 100 in which concepts described herein
may be implemented. The system may include one or more personal computers or workstations

110, one or more servers 120, and a network 130. Consistent with aspects described herein,

10

15

20

WO 2009/095741 PCT/IB2008/001327

software verification tool 105 may be executed by one or more of servers 120 and workstations
110 to assist in software verification.

[0018] Workstations 110 may include computing devices, such as desktop or laptop
computers, that may be used for general computing tasks. In general, users of workstations 110
may be software developers. The users may use verification tool 105 to assist in verifying their
developed software code. In some implementations, as shown in Fig. 1, verification tool 105
may include client-side components and server-side compohents. The client-side components
may be executed at the user’s workstation 110 while the server-side components may execute at
one or more of servers 120. In an alternative implementation, and possibly under certain
restrictions on use such as the size of the code to be verified, verification tool 105 may execute
exclusively at the user’s workstation 110.

[0019] In some implementations, workstations 110 may execute a technical computing
environment (TCE) that presents a user with an interface that enables efficient analysis and
generation of technical applications. For example, the TCE may provide a numerical and/or
symbolic computing environment that allows for matrix manipulation, plotting of functions and
data, implementation of algorithms, creation of user interfaces, and/or interfacing with programs
in other languages. The TCE may be textual and/or graphical.

[0020] Servers 120 may each include a device, such as a computer or another type of
computation or communication device, a thread or process running on one of these devices,
and/or an object executable by one of these devices. Server device 120 may generally provide
services to other devices (e.g., workstations 110) connected to network 130. In one embodiment,

one or more of server devices 120 may include server components of software verification tool

105.

10

15

20

WO 2009/095741 PCT/IB2008/001327

[0021] Fig. 2 is a diagram of an exemplary device 200 corresponding to one of workstations
110 or servers 120. As illustrated, device 200 may include a bus 210, a processing unit 220, a
main memory 230, a read-only memory (ROM) 240, a storage device 250, an input device 260,
an output device 270, and/or a communication interface 280. Bus 210 may include a path that
permits communication among the components of workstation 110.

[0022] Processing unit 220 may include a processor, microprocessor, or other types of
processing logic that may interpret and execute instructions. Main memory 230 may include a
random access memory (RAM) or another type of dynamic storage device that may store
information and instructions for execution by processing unit 220. ROM 240 may include a
ROM device or another type of static storage device that may store static information and/or
instructions for use by processing unit 220. Storage device 250 may include a magnetic and/or
optical recording medium and its corresponding drive.

[0023] Input device 260 may include a mechanism that permits an operator to input
information to workstation 110, such as a keyboard, a mouse, a pen, a microphone, a touch-
sensitive display, voice recognition and/or biometric mechanisms, etc. Output device 270 may
include a mechanism that outputs information to the operator, including a display, a printer, a
speaker, etc. Communication interface 280 may include any transceiver-like mechanism that
enables workstation 110 to communicate with other devices and/or systems. For example,
communication interface 280 may include mechanisms for communicating with another device
or system via a network.

[0024] As will be described in detail below, workstation 110 may perform certain operations
in response to processing unit 220 executing software instructions contained in a computer-

readable medium, such as main memory 230. A computer-readable medium may be defined as a

WO 2009/095741 PCT/IB2008/001327

physicél or logical memory device. The software instructions may be read into main memory
230 from another computer-readable medium, such as storage device 250, or from another
device via communication interface 280. The software instructions contained in main memory
230 may cause processing unit 220 to perform processes that will be described later.
Alternatively, hardwiréd circuitry may be used in place of or in combination with software
instructions to implement processes described herein. Thus, implementations described herein
are not limited to any specific combination of hardware circuitry and software.
[0025] Although Fig. 2 shows exemplary components of device 200, in other
implementations device 200 may contain fewer, different, or additional components than
depicted in Fig. 2. In still other implementations, one or more components of device 200 may
perform one or more tasks performed by one or more other componénts of device 200.
SOFTWARE VERIFICATION TOOL
[0026] As previously mentioned, verification tool 105 may be used to measure the quality of
developed computer software. Verification tool 105 may perform both static and dynamic
software verification. The dynamic software verification may be selectively implemented so that
only portions of the code determined to be unproven by the static verification will be
instrumented for dynamic analysis.
[0027] In one implementation, verification tool 105 may be used in the context of a technical
computing environment. A “technical computing environment,” as the term is used herein, is to
be broadly interpreted to include any hardware and/or software based logic that provides a
computing environment that allows users to perform tasks related to disciplines, such as, but not
limited to, mathematics, science, engineering, medicine, business, etc., more efficiently than if

the tasks were performed in another type of computing environment, such as an environment that

10

15

20

WO 2009/095741 PCT/IB2008/001327

required the user to develop code in a conventional programming language, such as C++, C,
Ada, Java, Javascript, Perl, Ruby, Fortran, Pascal, etc. A technical computing environment may
additionally provide mathematical functions and/or graphical tools or blocks (e.g., for creating
plots, surfaces, images, volumetric representations, etc.). A technical computing environment,
however, is not limited to performing disciplines discussed above, and may be used to perform
computations relating to fields of endeavor not typically associated with mathematics, science or
business. Verification tool 105 may operate as a component in a technical computing
environment to verify code created with the technical computing environment. For example, the
technical computing environment may give the user an option to create graphical models. The
technical computing environment may then compile the created graphical model for execution on
a target system. Verification tool 105 may be used to verify the code that embodies the graphical
model. Alternatively, verification tool 105 may be used to verify generated code or the graphical
model itself.

[0028] More generally, although verification tool 105 may be used in the context of a
technical computing environment, verification tool 105 may be used with any software
development project. For example, verification tool 105 may analyze code written in
conventional programming language, such as C++, C and Ada, etc., and which is produced
manually by a developer with or without the use of a technical computing environment.

[0029] Fig. 3 is a flow chart illustrating exemplary operations that may be performed by
verification tool 105.

[0030] Verification tool 105 may initially receive the software code that is to be verified
(block 305). For example, a user at one of workstations 110 may use verification tool 105 to

select one or more files that contain the software code that is to be verified. The software code

10

15

20

WO 2009/095741 PCT/IB2008/001327

may be textual source code, or code describing a graphical model created using a technical
computing environment, or an intermediate representation of the textual and/or graphical source
code.

[0031] The user may additionally provide verification tool 105 with input parameters for the
software verification (block 310). The input parameters may relate to, for example, options or
parameters applicable to a static verification analysis performed by verification tool 105. These
static verification options may include, for example, the names of the files or procedures that are
to be analyzed, the specific static verification algorithms to use, and/or the options relating to the
static verification algorithms that are to be used.

[0032] Verification tool 105 may perform a static verification analyéis to generate initial
classifications for the code (block 315). As previously mentioned, static verification analysis
may involve analysis of the software code without execution of the code. For example, the static
verification may involve analysis of the code to construct a model of the code (i.e., an abstract
representation of the code). The model can be used for matching commonly occurring error
patterns to the code. The model may also be used to perform some kind of data-flow analysis of
the code to infer the possible values that variables might have at certain points in the program.
Data-flow analysis can be used for vulnerability checking. Static verification analysis may be
used to prove which operations are free of run-time errors or to find possible errors. Errors that
may be found include: overflows and underflows; divisions by zero and other arithmetic errors;
out-of-bounds array access; illegally dereferenced pointers; read-only access to non-initialized
data; dangerous type conversions; dead code; access to null pointers; dynamic errors related to
object programming and inheritance; errors related to exception handling; and non-initialized

class members in the C++ language.

10

15

20

WO 2009/095741 PCT/IB2008/001327

[0033] As a result of the static analysis, verification tool 105 may classify the code into
classifications that relate to possible errors in the code. Verification tool 105 may output the
verification results from the static analysis (block 320). For example, the results may be saved to
a file, shown to a user on a display, stored in a database, etc.

[0034] In one implementation, the classification may include classifying each possible
failure point in the source code into classes that define: (1) code that has no errors, code that
might have errors (unknown or unproven conditions), (2) code that definitely has errors, or (3)
code that cannot be reached. The classifications may be presented to the user in a number of
possible ways, such as by changing the appearance of the code (e.g., font type, font size, font
color, etc.) based on its classification. In one particular implementation, the code may be
presented using color codes. For example, the code may be shown to the user as GREEN code
(code that has no errors), RED (code that definitely has errors), GRAY (code that cannot be
reached), or ORANGE (unknown or unproven error conditions). This color-identifier
assignment is for illustration purposes only, and in alternative embodiments, other colors or other
visual or non-visual schemes for identifying different types of verified code may be used, as
determined by one of skill in the art.

[0035] Fig. 4 is a diagram illustrating an exemplary graphical interface 400 in which
verification results may be presented to a user, such as the initial verification results (Fig. 3,
block 320). Graphical interface 400 may be presented to a user, for example, by verification tool
105 on a display of one of workstations 110.

[0036] Graphical interface 400 may include an entities list section 405 and an indicator list
section 410. Indicator list section 410 may include a number of columns (numbered 411-415 in

Fig. 4), where each column provides information about the corresponding entity shown in

10

15

20

WO 2009/095741 PCT/IB2008/001327

section 410.

[0037] Entities list section 405 may display the names of the files and underlying functions
that have been analyzed. Each file and function may be visually distinguished based on its error
classification. In one implementation, as mentioned above, the text of each file may be color
coded (e.g., RED, ORANGE, GREEN, or GRAY) to indicate its error classification. In this
example, however, the “color” codes are shown using underlined, italic, and bold fonts, in which
RED code is shown in italic, GREEN code is shown underlined, and ORANGE code is shown in
bold.

[0038] Each file and underlying function may be colorized according to the most critical
error found. For example, the file “polyspace_main.c,” labeled as file 430, is GREEN, indicating
no errors were found. The file “example.c,” labeled as file 431, is red, indicating errors were
found. In this example, the user has chosen to drill-down into “example.c” by selecting the “+”
icon, which shows the functions 432 contained in “example.c”. Functions 432 may be similarly
color-coded. For example, the function “close_to_zero” is shown as GREEN code, the function
“pointer_arithmetic” is shown as RED code, and the function “recursion” is shown as orange
code.

[0039] For each file or function, indicator list section 410 may include a column 411 that
displays the software reliability of that code, where 100% indicates complete reliability of the
code for the code category and 0% means no reliability. Column 412 may indicate the number
of RED code segments, column 413 may indicate the number of GRAY segments, column 414
may indicate the number of ORANGE segments, and column 415 may indicate the number of
GREEN segments.

[0040] As shown in Fig. 4, the results of a static verification analysis can be concisely

-10-

10

15

20

WO 2009/095741 PCT/IB2008/001327

presented to a user in a format in which the user can quickly gauge which code merits further
attention.

[0041] In practice, ORANGE (unproven) code tends to be particularly troubling for
developers. Because ORANGE code represents an unknown error state, ORANGE code may
need to be manually verified by the software developer. For a large project, even if only five or
ten percent of the code is classified as ORANGE, the manual effort required to review such code
can be extensive.

[0042] Consistent with embodiments described herein, verification tool 105 may i
automatically instrument ORANGE code for further dynamic verification analysis. The dynamic
verification analysis can provide further clarification on whether code initially classiﬁed as
ORANGE code needs to be manually reviewed. “Instrumenting code,” as the phrase is used
herein, may generally refer to modifying the code to embed test or verification statements in the
code. These statements may be used to monitor or catch conditions that result in errors or other
problems or properties of the code. Referring back to Fig. 3, verification tool 105 may
instrument the ORANGE code for dynamic testing (block 322).

[0043] Figs. 5A and 5B are diagrams illustrating exemplary code before and after
instrumentation. As shown in Fig. 5A, a section of code 500 may include two statements, a
GREEN statement 501 and an ORANGE statement 502. Fig. SB shows code 500 after an
exemplary automated code instrumentation procedure. Here, the ORANGE statement 502 is
instrumented, while GREEN statement 501 has not been modified. Selective instrumentation of
the code in this manner (e.g., only instrumenting ORANGE statements) may reduce the time
required to test the code.

[0044] As shown in Fig. 5B, modified statement 502 may include an initial “if” statement

-11-

10

15

20

WO 2009/095741 PCT/IB2008/001327

510 that tests whether the denominator (i.e., the variable “K”) in Fig. 5A is equal or close to
zero. Ifit is not, the original statement is executed at statement 511. If the denominator is equal
or close to zero however, various error or warning messages may be raised. In this example, the
warning messages may vary based on flags that define the environment in which the code is
executing. Whether an error is generated may depend on the values of the input test cases. That
is, an error will be generated only when the input test cases cause the variable K to be zero when
statement 502 is executed.

[0045] Referring back to Fig. 3, the user may additionally provide verification tool 105 with
input parameters for dynamic verification of the software (block 325). The input parameters
may relate to, for example, options or parameters applicable to a dynamic verification analysis
performed by verification tool 105.

[0046] A particular type of input parameter may define ranges or values used for “test cases”
for the software. The test cases may be applicable to software that receives external values
during execution. For example, the software may be designed to act on input received from
users, external sensors, or external applications or computing devices. The variables needed to
describe the external stimuli may be used to define the test cases. The user may define a range
that is to be covered for each variable to define all of the test cases. For example, considered a
software system in which two integer variables, X and Y, represent all of the external inputs
received by the system. The designer may decide that a satisfactory test can be obtained when X
is constrained to the range of zero to five and Y is constrained to the range of zero to two.
Further, the designer may decide that 10 dynamic tests should be played. The complete set of
(X,Y) test cases for this example system would be [(0,0), (0,1), (0,2), (1, 0), (1,1), (1,2), (2,0) ...

(5, 2)]. Of these, verification tool 105 may randomly select 10 of these pairs of values, which

-12-

10

15

20

WO 2009/095741 PCT/IB2008/001327

may be used as the set of test cases that are used to test the software.

[0047] Other techniques for specifying test cases may be used. For example, instead of
having test cases automatically generated based on a range of variable values entered by the user,
the user may specify specific test cases to be used, such as by manually entering the specific test
cases. Additionally, in some implementations, test cases generated by multiple different sources
may be combined or imported for use in the final set of test cases. This can potentially provide
the advantage of improving the structural coverage and over all quality of the dynamic testing.
[0048] Verification tool 105 may next perform the dynamic verification analysis (block 330).
The dynamic verification analysis may be performed by compiling the code and then executing it
multiple times, with each execution using a different test case from the set of defined test cases.
[0049] As a result of the dynamic analysis, verification tool 105 may output additional
verification results that provide additional verification information about the code that has been
instrumented for dynamic verification analysis (block 335). The additional verification
information can be used to reduce the number of “false positives” (i.e., uncertain output
conditions) generated by the initial static verification analysis.

[0050] Fig. 6 is a diagram illustrating an exemplary graphical interface 600 in which the
additional verification results may be presented to a user. Graphical interface 600 may be
presented to a user, for example, by verification tool 105 on a display of a workstation 110.
[0051] Graphical interface 600 may include a variable list section 605, a test summary
section 610, and an error log section 615. Variable list section 605 may contain information
about each of the variables used to define the test cases. As shown, variable list section 605 may
include a variable name field 620, a variable type field 625, and a variable values field 630.

Each item in variable name field 620 may be the name of an input variable of the software, or an

-13-

10

15

20

WO 2009/095741 PCT/IB2008/001327

output parameter of an external function that is stubbed by verification tool 105. Variable type
field 625 may list the type of each variable. For example, the variable returned from the function
“random_float” is a variable of type “float32.” Variable values field 630 may list the range of
values, such as the minimum and maximum value that was assigned to the variable.

[0052] Test summary section 610 may provide summary information or configuration
information relating to the dynamic verification analysis. As shown in Fig. 6, the summary
information may include a configuration section 640 and a results section 645. In the
configuration section 640, the user may enter configuration information relating to the dynamic
analysis. For example, the user may enter the number of tests to be executed, the number of
loops to run before determining that a loop is an infinite loop, and the timeout period associated
with each test. Results section 645 may display results relating to the dynamic verification
analysis. In one implementation, the results may be dynamically updated as the dynamic
verification analysis executes. The displayed results may include, for example, the number of
completed tests, the number of tests in which no run-time error was detected in instrumented
code sections, and the number of test in which run-time errors were detected in instrumented
code sections.

[0053] Error log section 615 may provide a detailed list of all of the errors that occurred
during the dynamic verification analysis. For example, as shown in Fig. 6, for each error, error
log section 615 may display the name of the file in which the error occurred, the liﬁe number and
column of the error, a description of the error, and the number of test cases in which the error
occurred.

[0054] Through graphical interface 600, a user may monitor and/or control the dynamic

verification analysis performed on selected code. Based on the dynamic verification results, the

-14-

10

15

20

WO 2009/095741 PCT/IB2008/001327

user can increase their confidence in the reliability of the code. As the tests performed may not
be exhaustive, they may not definitively prove that the code is run-time error free. But a set of
performed tests without any run-time errors may increase the user's confidence in the code’s
reliability.

[0055] In one implementation, based on the results of the dynamic verification analysis,
verification tool 105 may provide results of the dynamic verification analysis in conjunction with
or together with the color codes generated by the static verification analysis. For example, one
or more additional categories may also be created. For example, a “DYNAMIC
VERIFICATION GREEN” category may be created, which may be associated with a different
color, such as a shade of green different than the green used to present the static verification
analysis GREEN code. In this manner, the user can easily distinguish between the GREEN code
generated by the static verification analysis and the “GREEN” code generated by the dynamic
verification analysis. The categories for the dynamic verification and static verification may be
presented using an interface similar to that shown in Fig. 4.

[0056] Fig. 7 is a diagram conceptually illustrating components of verification tool 105 in an
exemplary implementation in which verification tool 105 is implemented using a client-server
model.

[0057] As shown in Fig. 7, verification tool 105 may include components 710 that execute
on a server, such as one or more of servers 120, and components 715 that execute on a client,
such as one of workstations 110. More particularly, server components 710 may include static
code verification component 711 and results 712. Client components 715 may include source
code 720, result viewer component 721, potential bug list 722, test case generator component

723, test cases 724, dynamic instrumentation component 725, instrumented code 726, executable

-15-

10

15

20

WO 2009/095741 PCT/IB2008/001327

component 727, and potential bug list 728. Client components 715 may be associated with, for
example, one of workstations 110.

[0058] In operation, a user may load or otherwise generate source code 720. The source
code may be transmitted to server 120 via a network, such as network 130. Server 120 may
function as a static code verification component for a number of users, such as for all of the
software developers for a particular company.

[0059] Static code verification component 711 may analyze the source code using static
verification analysis techniques, such as using the techniques discussed previously with respect
to block 315 (Fig. 3). The initial verification results may be stored as results 712. Results 712
may be transmitted back to client 110 for viewing and/or analysis.

[0060] Client cbmponents 715 may particularly include result viewer 721. Result viewer
721 may present results 722 to the user. Result viewer 721 may, for example, contain a
graphical user interface, such as the one shown in Fig. 4, that uses color-codes to illustrate the
error status of different sections of code. Result viewer 721 may additionally output or store
results 712 as potential bug list 722.

[0061] Client components 715 may additionally include test case generator component 723
to generate test cases 724. Test case generator compohent 723 may, for example, present an
interface such as variable list section 605 of graphical interface 600 (Fig. 6). Through this
graphical interface, users may define, for instance, value ranges that are to be tested for each
input variable of the software. Based on this information, test case generator component 723
may generate test cases 724.

[0062] Client components 720 may additionally include dynamic instrumentation component

725 to instrument source code 720 based on results 712. As previously discussed, this

-16-

10

15

20

WO 2009/095741 PCT/IB2008/001327

instrumentation may be performed such that code segments that were determined by the static
verification analysis to have an unknown or unproven error condition (e.g., ORANGE code) may
be instrumented. Source code 720, after instrumentation by dynamic instrumentation component
725, is stored as instrumented code 726.
[0063] Instrumented code 726 may be compiled and run in conjunction with test cases 724 as
executable component 727 and may generate potential bug list 728 during the execution.
[0064] Although Fig. 7 illustrates an implementation of verification tool 105 using a client-
server model, in an alternative implementation, all or substantially all of the functionality of
verification tool 105 may be implemented on a single computer, such as a single workstation
110.

CONCLUSION
[0065] Techniques were described herein for testing code using both static and dynamic
verification analysis techniques. The dynamic verification analysis techniques may be
automatically applied to selected portions of the code. The selected portions of the code may
correspond to portions of the code that was determined to correspond to unproven sections of the
code.
[0066] The foregoing description of implementations provides illustratioﬁ and description,
but is not intended to be exhaustive or to limit the invention to the precise form disclosed.
Modifications and variations are possible in light of the above teachings or may be acquired from
practice of the invention.
[0067] For example, while a series of acts has been described with regard to Fig. 3, the order
of the acts may be modified in other implementations. Further, non-dependent acts may be

performed in parallel.

-17-

10

15

WO 2009/095741 PCT/IB2008/001327

[0068] Also, the term “user” has been used herein. The term “user” is intended to be broadly
interpreted to include a workstation or a user of a workstation.

[0069] It will be apparent that embodiments, as described herein, may be implemented in
many different forms of software, firmware, and hardware in the impleméntations illustrated in
the figures. The actual software code or specialized control hardware used to implement
embodiments described herein is not limiting of the invention. Thus, the operation and behavior
of the embodiments were described without reference to the specific software code--it being
understood that one would be able to design software and control hardware to implement the
embodiments based on the description herein.

[0070] Further, certain portions of the invention may be implemented as "logic" that
performs one or more functions. This logic may include hardware, such as an application
specific integrated circuit or a field programmable gate array, software, or a combination of
hardware and software.

[0071] No element, act, or instruction used in the present application should be construed as
critical or essential to the invention unless explicitly described as such. Also, as used herein, the
article "a" is intended to include one or more items. Where only one item is intended, the term
"one" or similar language is used. Further, the phrase "based on" is intended to mean "based, at

least in part, on" unless explicitly stated otherwise.

-18-

10

15

20

WO 2009/095741 PCT/IB2008/001327

WHAT IS CLAIMED IS:

1. A computing device-implemented method, comprising:

receiving computer code;

performing a static verification analysis of the computer code;

selectively instrumenting a portion of the computer code for dynémic verification
analysis, the selected portion of the computer code including a portion of the computer code that
has been determined by the static verification analysis to include an unproven error condition;

executing the computer code to perform a dynamic verification analysis of the selectively
instrumented portion of the computer code; and

storing output information describing potential errors identified by the dynamic

verification analysis.

2. The computing device-implemented method of claim 1, wherein the static
verification analysis detects one or more of errors relating to one or a combination of the
following: overflows and underflows; divisions by zero; out-of-bounds array access; illegally
dereferenced pointers; read-only access to non-initialized data; dangerous type conversions; dead

code; or access to null pointers.
3. The computing device-implemented method of claim 1, wherein the computer
code is classified, based on the static verification analysis, into classes that include code that has

an unproven error condition, code that has no errors, and code that is known to have errors.

4. The computing device-implemented method of claim 3, wherein the classes

-19-

10

15

20

WO 2009/095741 PCT/IB2008/001327

additionally include a class for unreachable code.

5. The computing device-implemented method of claim 3, further comprising:
presenting the output information using color codes to represent the classifications of the

computer code.

6. The computing device-implemented method of claim 1, further comprising:

generating test cases that define sets of values for variables used by the computer code;
and

performing the dynamic verification analysis using the test cases.

7. The computing device-implemented method of claim 6, where generating the test
cases includes automatically generating the test cases based on input parameters or manually

entering test cases.

8. The computing device-implemented method of claim 1, wherein the computer
code is code manually generated by a developer or automatically generated based on a model

created in a technical computing environment .

9. A computer-readable medium containing programming instructions for execution
by one or more processing devices, the computer readable medium comprising:
instructions to receive computer code;

instructions to perform a static verification analysis of the computer code;

220-

10

15

20

WO 2009/095741 PCT/IB2008/001327

instructions to classify, based on the static verification analysis, the computer code into
diagnostic categories that relate to reliability of the computer code;

instructions to instrument portions of the computer code for a dynamic verification
analysis, the instrumented portions corresponding to computer code that was categorized into
selected diagnostic categories;

instructions to perform the dynamic verification analysis on the computer code to identify
potential errors in the computer code; and

instructions to store output information describing the identified potential errors.

10. The computer-readable medium of claim 9, wherein the static verification
analysis detects one or more of errors relating to overflows and underflows; division by zero;
out-of-bounds array access; illegally dereferenced pointers; read-only access to non-initialized

data; dangerous type conversions; dead code; or access to null pointers.

11. The computer-readable medium of claim 9, wherein the instructions to instrument
portions of the computer code further include:
instructions to instrument portions of the computer code that were categorized into a

diagnostic category that includes code having an unproven error condition.
12. The computer-readable medium of claim 9, further comprising:

instructions to present the output information using color codes to represent the

diagnostic categories.

21-

10

15

20

WO 2009/095741 PCT/IB2008/001327

13. The computer-readable medium of claim 9, wherein the computer code represents

code generated based on a model created in a technical computing environment.

14. A computing device comprising:

a component to receive classifications for computer code that is based on potential error
conditions, identified via static verification analysis techniques, in the computer code;

a dynamic instrumentation component to selectively instrument portions of the computer
code for dynamic verification of the computer code, the portions of the computer code selected
for instrumentation being based on the classifications of the computer code;

a test case generator to generate test cases for input to the computer code; and

an execution component to execute the selectively instrumented computer code in

conjunction with the test cases to perform a dynamic verification analysis of the computer code.

15. The device of claim 14, where the dynamic instrumentation component
selectively instruments the portions of the computer code that is classified as having an unknown

error condition.
16. The device of claim 14, where the potential error conditions include code that has
an has an unproven error condition, code that has no errors, and code that is known to have

CITOrS.

17. The device of claim 14, where the computing device additionally presents output

information describing potential errors identified by the dynamic verification analysis.

22-

10

WO 2009/095741 PCT/IB2008/001327

18. The device of claim 17, where the output information uses color codes to

represent the classifications of the computer code.

19. The device of claim 14, wherein the computer code represents code generated

based on a model created in a technical computing environment.

23

PCT/IB2008/001327

WO 2009/095741

E

1001
NOILVOIdId3A
JHVYML40S

1/7

(01943
AHOMLIN

1001
NOILVOIJIE3aA
JHUVML40S

0clL

PCT/IB2008/001327

WO 2009/095741

2/7

82 Iz -
3OVAHILNI 39IA3a
NOLLYDINNWNOD 1NdLNO 30IA3Q LNdNI
0Lz
\ sSNng
52 o5 0ce 2
39IA3a NOY ANOWIN LINN
3OVHOLS NIV ONISSIDONd

¢ Old

PCT/IB2008/001327

3/7

WO 2009/095741

€ Old ('ONILSTL OINVNAQ
¥04 SNOILYOIHISSY1D
2ze ™M 3000 .IONVHO. INIFWNHLSNI
'SLINS3Y NOILYOIHIIA TVILINI LNdLNO
0ze™N
'S1INS3Y ﬁ
gee | NOILYOIJI¥3A TYNOILLIAAY LNdLNO
- g 'SNOILYOIISSY10 3000 TVILINI
) 1 g e~ FLVRENED OL SISATYNY DILVLS WeiORi3d
) F
'SISATYNY OINYNAQ WHO4¥3d a
0eE ™ L !
3 'SISATYNY NOILYOI4IY3A OILVLS
. \ oLe Y04 SHILINVYYd LNdNI ¥ISN IAIFOIY
'SISATYNY NOILYOI4I43A
5267\ OINVNAQ ¥O4 S¥ILINVHVd
1NdNI ¥3SN 3AI303Y _
, > 2 J 'a31d1¥3A 38 01
a S0€ 3000 IYYMLI0S FAIFOIY

PCT/IB2008/001327

WO 2009/095741

4/7

a104 -3d02 IONVHO

JIMv1l=33a0D d3y

A3INIMY3IANN —3d0D N33HO
AIA

1°[0) 4
AT AN 8 A
Sy « Liv
¥ ¥
|
0
[4 00}
[4 {00}
| 001 (1o0s~asenbs
Z 001 ()Jisjjieo"uoisinoas FH !
14 08 (Juoisinoal mm cey
€ 00} 0359 |
S 88 (onewyyue ssjurod FH
14 00l oo ayugur uou HH
€ 001 (Jo1aZ o1 asop
o
92 L6 o-ejdwexe [- LEV
0 5urewr soedsAod H —0¢¥
N % S3ILILNT

f/oov

PCT/IB2008/001327

WO 2009/095741

5/7

06 <

as 'oOld

(0¥=Z X9 AIQ)ILJYISSY
/% NOIIWDOIANI JOWNE NOILONAo¥d x/
NOIIONAo¥d JIIFSTHH
/+ 01 ‘'TOUSSEAN
ONINYYM ‘¥OWYH EWIL NNY INIHSd »/
ONIJXIOLO¥d QIdVy ATAIT#
} gs1m

/¥ NITIO »/ (n-x) / x=12x

VS "'Old

/+x NIDIO »/

(n-x

7”205

1rlloom

PCT/IB2008/001327

WO 2009/095741

6/7

9 "'Old

Sv9

44 " [eban) dai| oLp0L | oodwexs

8¢ "89] UON) DIN LLIE6L o'g|dwexs
GJ_E# HOYYT 702/3NIT 3714 ;

901

T TS _
| g1e :pojey | _
| S)s9) JO # | 0¢ :(s99s) Jnoawiy _
| _ 1s9) Jad
| S89 :pejoslep sious I _
_ ou yum sisay jo ¢! | 001 :sdooj spuyul _

. I loysuonessy o # |
| 0001 :sisey I |
H pajs|dwod jo # | | 0001 s)seljo#
| ___ :synsay 1s9] .| L — — :uoneinbyuon 1se] -

> GLO

> 019

wmai]
xew uiw | ggleoy | jeop wopues :uonouny __
adoog _mEQx

Xew "uiw | gew wopuel }sd
o'urew aoedsAjod

A

r G09

0€97

SANTVA | IdAL—1-G29 JNVYN F1GVIIVA

H31S31 3d00 FONVHO JILVNOLNY

029 f/ 009

PCT/IB2008/001327

WO 2009/095741

7/7

9ZL

szl
_ 3000 T ,
1SI1ong Q3LIN3WNALSNI NOILVYLINIWNYLSNI
IVILNILOd INYNAQ Nl
0zL
% ax3 €zL
7\
c 5 3009 oLl
82, ¥olvyando | | |3ounos | NOLLVLS
Vel
1z2
\I\
1S ong <+«—| ¥3IMIIALINSTY |e—
~CVIINTLOd
4}
o
3
NOILYOIHIY3A ek L4y,
] .mv_n_ - - 3002 JIlvls | 43AY3S
Lz

TNTERNNﬂONALSEARCHREPORT

International application No

PCT/1B2008/001327

A. CLASSIFICATION OF SUBJECT MATTER -
INV. 606F11/56

According 1o international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentalion searched other than minimum documentation to the exlent thal such documents are included in the fields searched

Electronic data base consulled during the international search (name of dala base and, where practical, search lerms used) -+

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant 10 claim No.

X . ERKKINEN T., HOTE C.: "Automatic Flight 1-19

Code Generation with Integrated Static

Run-Time Error Checking and Code Analysis"

2006 AIAA MEETING PAPERS,

vol. 11, no. 19-20, 2006, pages 1-9,

XP007905828

us ;

the whole document

X C. DEL GROSSO G. ANTONIOL M. DI PENTA: 1
"An evolutionary testing approach to 6-

detect buffer overflow" 1

PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM 1

OF SOFTWARE RELIABILITY ENGINEERING

(ISSRE), 2004, pages 77-78, XP007905817

St Malo, Bretagne, France

the whole document

Further documents are listed in the continuation of Box C. D See patent family annex.

* Special calegories of ciled documents : . o) . -
T later document published after the internationat filing date
or priority date and not in conflict with the, application but

A document defining the general state of the an which is not
considered 1o be of particular relevance ’

E earlier document bul published on or after the international
filing date .

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or
olher means

“P* document published prior 10 the international filing date but
later than the priority date claimed

ciled to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered 10
involve an invenlive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious 10 a person skilled
in the art.

& document member of the same patent family

Date of the actual completion of the international search

13 October 2008

Date of mailing of the international search report

20/10/2008

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk ‘

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

-

Authorized officer

~ Salsa, Francesco

Form PCT/ASA/210 (second sheet) {(April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/1B2008/001327

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant 1o claim No.

A

DEUTSCH A. "Static verification of
dynamic propert1es"

WHITE PAPER, POLYSPACE TECHNOLOGIES

27 November 2003 (2003-11-27), XP007905827
the whole document

BRAT G ET AL: "Precise and Scalable
Static Program Analysis of NASA Flight
Software”

AEROSPACE, 2005 IEEE CONFERENCE BIG SKY,
MT, USA 05-12 MARCH 2005, PISCATAWAY, NJ,
USA,IEEE, PISCATAWAY, NJ, USA,

5 March 2005 (2005-03-05), pages 1-10,
XP031213684

ISBN: 978-0-7803-8870-3

the whole document

DING Z ET AL: "Practical Strategies to
Improve Test Efficiency”

TSINGHUA SCIENCE AND TECHNOLOGY, TSINGHUA
UNIVERSITY PRESS, BEIJING, CN,

vol. 12, 1 July 2007 (2007-07-01), pages
250-254, XP022933117

- ISSN: 1007 0214 [retrieved on 2007- 07 -01]

the whole document

BEIZER:

"SOFTWARE TESTING TECHNIQUES, 1990, pages
155-157, XP008097104

USA

the whole document

1-19

1-19

1-19

1-19

Form PCT/ISA/210 (continuation of second sheet) (April 200S)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report

