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DIRECT-BONDED LED ARRAYS AND APPLICATIONS

RELATED APPLICATIONS
[0001] This patent application claims the benefit of priority to U.S.
Provisional Patent Application No. 62/472,363 to Tao et al., entitled “Direct
Bonded LED Arrays and Applications,” filed March 16, 2017 and incorporated

by reference herein, in its entirety.

BACKGROUND

[0002] MicroLEDs, also known as micro-LEDs, YLEDs, and “mLEDs” as
used herein, are gaining significant attraction as an emerging flat panel display
technology. But as of yet, mLED displays have not been mass-produced or
commercialized widely. The mLED displays are arrays of microscopic LEDs
forming individual pixel elements. Compared to the widespread LCD
technology, mLED displays provide greater contrast and faster response times,
while using less energy.

[0003] Along with organic light-emitting diodes (OLEDs), in which a film of
organic compound is stimulated to emit electroluminescence, mLEDs can be
used in small low-energy devices such as smart phones and smart watches,
where battery power is at a premium.

[0004] Both mLEDs and OLEDs require less energy than conventional LCD
systems. Unlike OLEDs, however, the mLED technology utilizes conventional
[lI-V inorganic semiconductor materials (GaN, InGaN, etc.) for use as self-
emissive LEDs for lighting and display, which can offer higher overall brightness
(e.g., 30x over OLEDs) and higher contrast than OLED products, with higher
efficiency in lux per watt (lux/W) light output. The mLED technology can also

provide a longer working life for the product that is hosting the mLED
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technology. Versions of this mLED array technology may be ideal for
automotive, virtual reality, and augmented reality displays.

SUMMARY

[0005] Direct-bonded LED arrays and applications are provided. An
example process fabricates a LED structure that includes coplanar electrical
contacts for p-type and n-type semiconductors of the LED structure on a flat
bonding interface surface of the LED structure. The coplanar electrical contacts
of the flat bonding interface surface are direct-bonded to electrical contacts of
a driver circuit for the LED structure. In a wafer-level process, micro-LED
structures are fabricated on a first wafer, including coplanar electrical contacts
for p-type and n-type semiconductors of the LED structures on the flat bonding
interface surfaces of the wafer. At least the coplanar electrical contacts of the
flat bonding interface are direct-bonded to electrical contacts of CMOS driver
circuits on a second wafer. The process provides a transparent and flexible
micro-LED array display, with each micro-LED structure having an illumination
area approximately the size of a pixel or a smallest controllable element of an
image represented on a high-resolution video display.

[0006] This summary is not intended to identify key or essential features of
the claimed subject matter, nor is it intended to be used as an aid in limiting the

scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Certain embodiments of the disclosure will hereafter be described
with reference to the accompanying drawings, wherein like reference numerals
denote like elements. It should be understood, however, that the accompanying
figures illustrate the various implementations described herein and are not
meant to limit the scope of various technologies described herein.

[0008] Fig. 1 is a diagram of an example conventional nitride light emitting
diode (LED).
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[0009] Fig. 2 is a diagram of an example LED structure suitable for direct-
bonding of electrical contacts enabling wafer level, chip array-level, and
individual chip-level construction of direct-bonded micro-LED structures.
[0010] Fig. 3 is a diagram of the example LED structure of Fig. 2, in a direct-
bonding operation with driver circuitry.

[0011] Fig. 4 is a diagram of an example process of fabricating the LED
structure of Fig. 2.

[0012] Fig. 5 is a diagram of a first stage of fabricating an example LED
array display.

[0013] Fig. 6 is a diagram of a second stage of fabricating the example LED
array display.

[0014] Fig. 7 is a diagram of a third stage of fabricating the example LED
array display.

[0015] Fig. 8 is a diagram of a fourth stage of fabricating the example LED
array display.

[0016] Fig. 9 is a diagram of a fifth stage of fabricating the example LED
array display.

[0017] Fig. 10 is a diagram of a completed LED array display and optional
components.

[0018] Fig. 11 is a block diagram of an example process of making a direct-
bonded LED structure.
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DESCRIPTION
[0019] This disclosure describes example direct-bonded light emitting diode
(LED) arrays and applications. New processes for forming actively driven
mLED (microLED) structures and display cells are described, including example
processes of array-bonding IlI-V compound semiconductor mLEDs to silicon
driver chips to form actively driven mLED display cells. Some of these

processes may be used to mass-produce mLED array displays.

Example Processes and Structures
[0020] Fig. 1 shows an example of a conventional epilayer structure 50 of
a light emitting diode (LED) over a sapphire substrate 100, illustrating and
comparing some LED components used in example structures and processes
described herein. The example conventional LED structure 50 may produce
green or blue light, for example. Semiconductor materials are layered on a
carrier, such as a sapphire substrate 100. The large mismatches in lattice
constants and thermal expansion coefficients between GaN and sapphire 100
would cause high crystalline defect densities in the GaN films, which leads to
degradation of device performance; hence a lattice and CTE matched buffer
material 101 is deposited on sapphire 100 to grow GaN. Optoelectronic devices
like the conventional LED structure 50 utilize semiconductor doping, for
example, a small amount of silicon or germanium is added to gallium nitride
(GaN) to make the GaN a conductor for electrons (n-type) n-GaN 102, and a
small amount of magnesium is added to the gallium nitride (GaN) to make the
GaN into a conductor for holes (electron holes) (p-type) p-GaN 104. Between
the layer of n-GaN 102 and the layer of p-GaN 104 is sandwiched an ultrathin
layer of a light-producing quantum well or multiple quantum well (MQW)
material, that has a smaller band gap (and slightly less conductivity) than either
the n-GaN 102 and the p-GaN 104, such as indium gallium nitride InGaN, a
semiconductor material made of a mix of gallium nitride (GaN) and indium

nitride (InN). InGaN is a ternary group lll/group V direct band gap
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semiconductor. The example InGaN/GaN or InGaN MQW layer 106 provides
guantum confinement, or discrete energy subbands, in which the carriers can
have only discrete energy values, providing better performance in optical
devices. Conventional LED structures 50 may have many variations in the
number or layers used, and the materials used for each layer. In Fig. 1, the
layers, and especially the MQW layer 106, are not shown to relative scale.
[0021] The example conventional LED structure 50 is characterized by an
n contact 108 and a p contact 110 at different vertical levels on different surfaces
of the conventional LED structure 50. The difference in vertical heights between
p contact 110 and n contact 108 is conventionally compensated for by wire bond
or solder connections. Or, an example conventional structure 50 may have an
n contact 108 that is not exposed (not shown).

[0022] Figs. 2-3 show an example LED structure 200 and process overview,
for direct-bonding LED components containing lll-V semiconductor elements to
driver circuitry, for making mLED array displays. The example LED structure
200 provides an ultra-flat bonding interface 202, made flat by chemical-
mechanical polishing (CMP) for example, with both n contact 108 and p contact
110 surrounded by an insulator 204, such as a silicon oxide, and exposed on
the ultra-flat bonding interface 202 with respective coplanar conductive
footprints 206 & 208 on the ultra-flat bonding interface 202.

[0023] The n contact 108 and p contact 110 may be made of a metal, or
combination of alloyed metals, or laminated metals that enhance direct bonding.
Besides metal composition, the ultra-flat bonding interface 202 itself also
facilitates direct bonding between the n and p contacts 108 & 110 and respective
conductive surfaces being bonded to. The ultra-flat bonding interface 202
fabricated by damascene methods, for example, is also ultra-clean, and flat
within a few tens of nanometers, such as less than 1/4 the wavelength of an
ilumination source of monochromatic green light at the 546.1 nm or helium-

neon red laser light at 632.8 nm. In some embodiments the roughness of the
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flat polished surface 202 is less than 5% of the wavelength of an illumination
source and preferably less than 10 nm.

[0024] Fig. 3 shows an example direct-bonding process 300 between the
example LED structure 200 of Fig. 2, and a driver circuit 302 on a chip 304, to
form LED circuitry, such as thin-film transistor (TFT) drivers. The example
direct-bonding process 300 can be performed at the level of individual chips, or
at a chip array level, or at wafer level. For subsequent lift-off and thinning, wafer
level direct-bonding may be the best approach.

[0025] In an implementation, the mLED ultra-flat bonding interface 202 can
be bonded to the respective ultra-flat bonding interface 306 of a silicon-based
driver integrated circuit (IC) 304, for example. The ultra-flat bonding interface
306 may have a contacting surface that is topped with a flat silicon oxide layer
and copper (Cu) pads to facilitate direct-bonding, for example direct-bonding
via a ZiBond® brand process or a DBI® brand process, to form LED circuitry
(Xperi Corporation, San Jose, CA). In an implementation, the sapphire
substrate 100 may then be laser-lifted off. If desirable, both top and bottom
sides can be thinned further to make the entire stack flexible.

[0026] Fig. 4 shows stages of example structure fabrication, illustrating an
example process flow for making an LED structure 200 suitable for direct-
bonding with a silicon driver ICs 304, for example.

[0027] In a first stage 400 of the example process flow, an example wafer,
such as a sapphire substrate 100, is built up with beginning epitaxial layers of
n-GaN 102, InGaN MQW 106, and p-GaN 104.

[0028] In a second stage 402 of the example process flow, the top epitaxial
layers are patterned and etched to expose the n-GaN layer 102 at specific
locations 404. Although the single exposed location 404 is shown at the edge
at the die, there may be more than one location. For example, one or more
through-vias may expose the n-GaN layer 102. The patterning resist can be

left on.
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[0029] In a third 406 stage of the example process flow, an insulator or
dielectric, such as a silicon oxide layer 204 is deposited to cover both the
exposed p-GaN 104 and the exposed n-GaN 102, at least at the location of the
contacting pads.

[0030] In a fourth stage 408 of the example process flow, the silicon oxide
layer 204 is patterned and etched over the p-GaN 104 and n-GaN 102 layers to
make cavities 410 through the silicon oxide 204 for conductive metals to
become the electrodes of the LED structure 200. In an implementation, the total
thickness of the p-GaN 104 layer and the MQW 106 layer is approximately 2pm,
making the structure at this stage suitable for one-step etching and metallization
(MQW layer 106 not shown to scale). One or more of such cavities 410 can be
formed to form one or more electrodes contacting the n-GaN 102 layer and the
p-GaN 104 layer.

[0031] In an alternative implementation, the example process deposits a flat
silicon oxide layer 204 as in the third stage 406 above, then bonds this oxide
surface directly with the driving chip(s) 304 using a ZiBond® brand direct-
bonding process, or other direct bonding technique. Then, through-silicon-vias
(TSVs) are drilled to create the electrical connectivity from the n contact 108
and the p contact 110 to the driver chip 304.

[0032] In a fifth stage 412 of the example process flow, the cavities 410 can
be metalized with a conductive material 414. In an implementation, barrier and
seed layer coatings 416 may be applied and formed, then cavities filled with the
conductor 414, followed by annealing, and chemical-mechanical planarization
(CMP). In an implementation, a low melting temperature metal, such as indium,
may be coated in the cavities.

[0033] In a sixth stage 418 of the example process, a top surface of the
example LED structure 200 is plasma-activated 420 for the direct-bonding
operation. Plasma-activation 420 may be optional for some types of direct-
bonding techniques, while in others, the plasma-activation step 420 enhances

the bond strength between two metal surfaces, for example, during contact
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bonding. Plasma-activation 420 may also be applied to the opposing surfaces
to be bonded on the driver chip(s) 304.

[0034] In various implementations, the example process flow depicted in
Fig. 4 may include picking and transferring many small LED chips with high
throughput, and direct-bonding at very fine pitch, for example at a pitch of less
than 1 mm (even smaller pitch for making micro-projectors), and at a 0.05 mm
spacing, and in various implementations all the way down to a 12 um pitch with
6um bump. The pixel array optics achieve high parallelity of the LED dies 200
to the Si dies 304. Post-processing, such as thinning and laser lift-offs, can be
accomplished because the direct-bonding applied results in the flat topography
and strong bonding interfaces achieved.

[0035] Figs. 5-9 show an example process for creating a thin, transparent,
and flexible mLED array display 500, in which a wafer 502 with the LED
structures 200 made by the process of Fig. 4 are now bonded to (for example)
a CMOS driver chip wafer 504 to make the transparent and flexible array display
500.

[0036] In Fig. 5, in an implementation, after the flat and activated surface
on the LED device wafer 502 is formed, the CMOS wafer 504 is planarized with
CMP or other means of obtaining an ultra-flat surface, and plasma-activated
420.

[0037] In Fig. 6, the two wafers 502 & 504 are bonded. For example, the
first wafer 502 with the LED structures 200 and with coplanar bonding surfaces
of the n contacts 108 and p contacts 110, and the second wafer 504 with CMOS
driver chips 304, are brought together for direct-bonding between metallic
conductors and in an implementation, between nonmetallic dielectric surfaces
602 also. Exposed silicon oxide of the first wafer 502 in contact with exposed
silicon oxide of the second wafer 504 bonds first through oxide bonding, as with
a ZiBond® brand direct-bonding process. The metal contact pads of the
respective wafers 502 & 504 form a metal-to-metal bond during higher-than-

room-temperature annealing, as with a DBI® brand direct-bonding process.
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The bonding interface 604 may be annealed at approximately 100-200 °C to
form a strong direct bond interface, such as the ZiBond® or DBI® brand direct-
bond interface.

[0038] An optical reflective coating, such as distributed Bragg reflector
(DBR) 606 (not shown to relative scale), can be deposited to increase light
output of the package by choosing different types and thickness of the dielectric
lavers on top of wafer 502 at the interface (606) between the first wafer 502 and
the second wafer 504, Alternatively, the DBR 606 could also be formed on top
of the second wafer 504 prior to bonding. In this orientation of a DBR 6086, light
can escape from the sapphire side of the device. If DBRs 606 are formed on
the first wafer 502, then the thin dielectrics need to be deposited at the end of
the second stage 402 or the third stage 406 of the process shown in Fig. 4. The
DBR 606 is a structure formed from multiple layers of alternating materials with
varying refractive index, or by periodic variation of some characteristic, for
example, thickness of the dielectrics, resulting in periodic variation in the
effective refractive index. These thin layers of dielectric coatings may be the
combination of silicon oxide, magnesium fluoride, tantalum pentoxide, zinc
sulfide, and titanium dioxide, for example. A silicon oxide SiOx layer on a top
surface of the compound wafer 502 can also serve as the last of the coatings
which is then bonded directly with direct bonding techniques, such as a ZiBond®
or a DBI® process, to wafer 504.

[0039] in another embodiment, DBR may be formed at between sapphire
and n-GaN. In this orientation, the light will be reflected towards CMOS wafer
504. However, less amount of light will escape as CMOS chip would be
ohstructing the escape route.

[0040] In Fig. 7, the thin-film transistor (TFT) backplane can be thinned 702,
which can be facilitated by a ZiBond® brand direct-bonding process. Then the
non-transistor parts 704 of the thinned backplane can also be etched away. In
this embodiment, the location of one or more n-contacts 108 and p-contacts 110

can be designed such that they may be exposed from the backside after etching
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of the backplane; and hence can be contacted for power delivery from the back
side.

[0041] In Fig. 8, the thinned and etched transistor surface may be coated
with a polyimide (PI) layer 802 or any other dielectric material for protection.
[0042] In Fig. 9, a laser-lift-off of the sapphire substrate layer 100 may be
performed, and this exposed side of the wafer 502 then coated with a flexible
organic substrate 902.

[0043] In another embodiment, the process to etch and backfill by the
transistor backplane by Pl may be skipped before a laser-lift-off of the sapphire
substrate layer 100. In this embodiment, one or more through- electrodes may
be needed in the backplane for power delivery to the electrodes.

[0044] Fig. 10 shows operational access available on all sides of example
transparent and flexible mLED array displays 500 created with direct-bonding.
This versatility is due at least in part to the strong bonds possible with direct
bonding, such as DBI® and ZiBond® brand bonding processes, which result in
a final structure able to tolerate further processing on multiple sides of the
structure 500. For example, besides lifting off the transparent (e.g., sapphire)
substrate 100 to make a flexible display 500 bonded to a flexible organic
substrate 902, post grinding may be applied and further lift-off performed to
make the display thinner, more transparent, and more flexible.

[0045] The backside of the mLED array display 500 may be added onto with
backside build-up layers 1002 for further 3D integration to attach to memory,
printed circuit boards (PCBs), tactile and other sensors, and so forth.

[0046] One or more optical waveguides 1004 may be integrated on top of
the transparent substrate 902 to transmit optical signals from the LED elements,
and also lines for electrical signals may be added. In an implementation, the
one or more optical waveguides 1004 are attached to the example LED array
display 500 by a direct-bonding technique.

[0047] On the sides of the example mLED array display 500, an edge
emitting configuration 1006 may be added, and/or optical waveguides on the

10



WO 2018/169968 PCT/US2018/022199

sides, similar to the one or more optical waveguides 1004 on top. In this
embodiment, reflectors may be needed on both sides of the LED devices 200,
at layer 902, as well as at the direct-bond (e.g., ZiBond®) interface 604 / 606.
[0048] The structure of the example mLED array display 500 enables multi-
junction stacking of compound semiconductors, for solar cells and solar panels,
for example.

[0049] The sides of the example mLED array display 500 can also
accommodate cooling structures 1008.

[0050] After removing sapphire layer 100, as in Fig. 8, the surface may be
roughened and indium tin oxide (ITO) added to improve the electrical
conductivity of the LEDs.

[0051] The example steps just described and illustrated above provide
direct-bonded light emitting diode (LED) arrays 500, for example arrays of
mLEDs, wherein group IlI-V semiconductor elements are direct-bonded to LED
driver circuitry, in wafer-level processes, for example. The arrays 500, made
through a direct-bonding process, may be flexible, and possess an optically
transparent surface.

[0052] In general, the example compound semiconductor-based LED array
devices 500 are made with a flat surface composed of coplanar metal regions
and dielectric regions. The coplanar metal regions are electrically connected to
the active regions of the compound semiconductors of each LED element.
[0053] The above compound semiconductor-based LED array structures
500 may include bonds to a CMOS based device connected in a direct-bonding
manner. The metal regions and the dielectric regions of the compound
semiconductor-based LED array device 500 may be bonded directly to the
respective metal regions and dielectric regions of the CMOS based device.
Although described with respect to a wafer level process, the example process
of Figs. 5-9 can be used not only for wafer-to-wafer (W2W) processes, but also

die-to-die (D2D), or one or multiple dies-to-wafer (D2W) processes.

11
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[0054] The resulting example LED array structures 500 may also have other
characteristics and features:

[0055] The resulting LED array structures 500 may have an absence of
substrate where the group llI-V-based semiconductor light-emitting devices are
grown. Further, a surface of the microstructure of the group IlI-V
semiconductor-based light-emitting devices can be advantageously roughened
for improved light extraction.

[0056] The electrode shape for electrically connecting to the n-GaN 102 and
p-GaN 104 active regions via a direct-bonding process, such as a DBI® brand
direct-bonding process, can be specially designed, such as frame-traced dot
arrays for the electrode or contact 108 of the n-GaN 102 region, and a dot array
in a circular or square area for the electrode or contact 110 of the p-GaN 104

region.

Example Processes
[0057] Fig. 11 shows an example method 1100 of making a direct-bonded
LED structure. In the flow diagram, operations of the example method 1100 are
shown in individual blocks.
[0058] At block 1102, a LED structure is fabricated with electrical contacts
to p-type and n-type semiconductor elements coplanar on a first surface
comprising a flat bonding interface of the LED structure.
[0059] At block 1104, the first surface is direct-bonded to a second surface
comprising a flat bonding interface of a driver circuit for the LED structure.
[0060] The direct-bonding operation used in the example method 1100,
such as a ZiBond® or a DBI® brand direct-bonding process, may be applied in

a wafer level, single chip-level, or a chip array-level process.

[0061] In the specification and appended claims: the terms “connect,”

L 13

‘connection,” “connected,” “in connection with,” and “connecting,” are used to

mean “in direct connection with” or “in connection with via one or more

12



WO 2018/169968 PCT/US2018/022199

TG 3T 3T

elements.” The terms “couple,” “coupling,” “coupled,” “coupled together,” and
“‘coupled with,” are used to mean “directly coupled together” or “coupled
together via one or more elements.”

[0062] While the present disclosure has been disclosed with respect to a
limited number of embodiments, those skilled in the art, having the benefit of
this disclosure, will appreciate numerous modifications and variations possible
given the description. It is intended that the appended claims cover such
modifications and variations as fall within the true spirit and scope of the

disclosure.
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CLAIMS

1. An apparatus, comprising:

a direct-bonded light emitting diode (LED) array; and

a flat bonding interface of at least one LED element in the direct-
bonded LED array, each flat bonding interface comprising at least first and
second coplanar conductive areas comprising electrical contacts of each LED

element.

2. The apparatus of claim 1, wherein each first coplanar
conductive area in each flat bonding interface comprises an electrical contact
to an n-type layer of a group IllI-V semiconductor of each LED element; and

wherein each second coplanar conductive area in each flat bonding
interface comprises an electrical contact to a p-type layer of a group IlI-V

semiconductor of each LED element.

3. The apparatus of claim 2, wherein the first coplanar
conductive area comprises multiple conductive contacts to the n-type layer, and
the second coplanar conductive area comprises multiple conductive contacts to

the p-type layer.

4. The apparatus of claim 2, where in the first coplanar
conductive area is electrically connected to the n-type layer at multiple
locations, and the second coplanar conductive area is electrically connected to

the p-type layer at multiple locations.
5. The apparatus of claim 2, further comprising a frame-traced

dot array electrode as the coplanar electrical contact to n-type layer of the group
I11-V semiconductors of each LED element; and

14
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a circular or square dot array electrode as the coplanar electrical

contact to p-type layer of the group IllI-V semiconductors of each LED element.

6. The apparatus of claim 1, further comprising at least a third
coplanar conductive area electrically isolated from the first conductive area and
the second conductive area, the third coplanar conductive area for thermal

dissipation, for connecting to an electrical ground, or for conducting a signal.

1. The apparatus of claim 1, wherein each LED in the direct-
bonded LED array comprises a micro-LED having an illumination area
approximately a size of a pixel of a high-resolution video display, or an
illumination area approximately a size of a smallest controllable element of an

image represented on the high-resolution video display.

8. The apparatus of claim 1, further comprising at least a direct
metal-to-metal contact bond between each first and second conductive area in
each flat bonding interface of each LED element, and respective conductive
contacts of driver circuitry for each LED element, the driver circuitry direct-
bonded to each flat bonding interface of each LED element.

9. The apparatus of claim 8, further comprising a direct
dielectric-to-dielectric contact bond between dielectric areas of each flat
bonding interface of each LED element and respective dielectric areas of each

flat bonding interface of each instance of the driver circuitry.
10. The apparatus of claim 9, wherein each direct dielectric-to-

dielectric contact bond comprises at least one plasma-activated surface of the

direct dielectric-to-dielectric contact bond.
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1. The apparatus of claim 1, further comprising a flexible
organic substrate of the direct-bonded LED array providing a flexible and
transparent direct-bonded LED array display.

12. The apparatus of claim 1, further comprising a distributed
Bragg reflector (DBR) located at a top of each LED element, at a bottom of each

LED element, or integrated in the flat bonding interface of each LED element.

13. The apparatus of claim 1, further comprising an optical
waveguide bonded to a top surface or a side surface of the direct-bonded LED

array.

14. The apparatus of clam 1, further comprising a
semiconductor element bonded to a top surface or a side surface of the direct-
bonded LED array.

15. A process, comprising:

fabricating a LED structure to include coplanar electrical contacts for
p-type and n-type semiconductors of the LED structure on a first bonding
surface of the LED structure; and

direct-bonding at least the coplanar electrical contacts of the first

bonding surface to electrical contacts of a driver circuit for the LED structure.

16. The process of claim 15, further comprising performing the
direct-bonding between a first wafer having an array of the LED structures and
a second wafer having a corresponding array of instances of the driver circuit.

17. The process of claim 16, wherein the first wafer comprises
an array of micro-LED structures, each micro-LED structure having an

illumination area approximately a size of a pixel of a high-resolution video
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display, or an illumination area approximately a size of a smallest controllable

element of an image represented on the high-resolution video display.

18. The process of claim 15, further comprising performing the
direct-bonding between a first single chip comprising the LED structure and a
second single chip comprising the driver circuit, or between a first chip array
comprising instances of the LED structure and a second chip array comprising

instances of the driver circuit.

19. A process, comprising:

providing a first wafer;

building semiconductor layers of LED structures on the first wafer;

patterning the first wafer with a resist and etching the wafer to
expose an n-type semiconductive layer of each LED structure;

depositing a silicon oxide layer to cover both a p-type
semiconductive layer and the exposed n-type semiconductive layer of each
LED structure;

patterning and etching the silicon oxide over the p-type
semiconductive layer and the n-type semiconductive layer of each LED
structure to form cavities in the silicon oxide down to the surfaces of the p-type
semiconductive layer and the n-type semiconductive layer of each LED
structure;

metalizing the cavities in the silicon oxide;

planarizing the silicon oxide and the metalized cavities to make a flat
bonding surface with coplanar contacts of the p-type semiconductive layer and
the n-type semiconductive layer of each LED structure;

plasma-activating a surface of the first wafer;

bonding the activated surface of the first wafer to the surface of the

second wafer; and
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annealing the bonded wafers to make a direct-bonded LED array

display.

20. The process of claim 19, wherein each LED structure of the
first wafer is direct-bonded to a CMOS based device of the second wafer,
wherein metal regions and dielectric regions of each LED structure on the
surface of the first wafer are direct-bonded to metal regions and dielectric

regions, respectively, of the CMOS based devices of the second wafer.

21. The process of claim 19, further comprising thinning a thin-
film transistor (TFT) backplane of the direct-bonded LED array display.

22. The process of claim 21, further comprising coating the

thinned backplane with a polyimide (Pl) layer for protection.

23. The process of claim 15, further comprising removing the
first wafer through a laser-lift-off and coating the remaining surface with a
flexible organic substrate, to make a transparent and flexible direct-bonded LED

array display.

24. A process, comprising:

forming semiconductor layers of LED structures on a first wafer,;

forming an exposed n-type semiconductive layer of each LED
structure;

forming an exposed p-type semiconductive layer of each LED
structure;

forming a planarized damascene layer with respective coplanar
conductive areas of the planarized damascene layer contacting the exposed n-
type semiconductive layer and the exposed p-type semiconductive layer of each

LED structure;
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plasma-activating a surface of the planarized damascene layer of
the first wafer;

bonding the plasma-activated surface of the first wafer to a surface
of a second wafer; and

annealing the bonded wafers to make a direct-bonded LED array

display.

25. An apparatus, comprising:

a direct-bonded light emitting diode (LED) array; and

a planarized interface of at least one LED element in the direct-
bonded LED array, each planarized interface comprising at least first and
second coplanar conductive areas comprising electrical contacts of each LED

element.

26. The apparatus of claim 25, further comprising a direct
dielectric-to-dielectric contact bond between dielectric areas of each planarized
interface of each LED element and respective dielectric areas of each

planarized interface of each instance of a driver circuitry.
27. The apparatus of claim 25, wherein each direct dielectric-to-

dielectric contact bond comprises at least one plasma-activated surface of the

direct dielectric-to-dielectric contact bond.
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