发明名称

一种建筑物的裂缝填补装置

摘要

本发明公开了一种建筑物的裂缝填补装置，其特征是：包括吸板，所述吸板内部设有开口，吸板设在有开口四角，其外侧还设有真空吸接口，所述吸板侧边还设有活动开合的进气口。与现有技术相比，本发明结构设计巧妙，补缝精确，具有广阔的市场前景。
1. 一种建筑物的裂缝填补装置，其特征是：包括吸板（8），所述吸板（8）内部设有开口（22），吸盘（10）设在有开口（22）四周，其外侧连通有真空泵接口（15），真空泵接口（15）接口处设有控制进气大小的调节阀，所述吸盘（10）侧边还设有活动开合的进气口（6）；调节片（5）通过紧固螺母（19）倾斜安装在吸板（8）上面，其一端下方设有弹簧（4），单螺母（2）安装在弹簧（4）上方用来调整其上下移动，另一端至紧固螺母（19）位置开有腰孔，通心丝杆（12）穿在腰孔上，其下方连通有旋转头（20），上方连通有修补材料进管（14），伸缩杆（7）连接在紧固螺母（19）与通心丝杆（12）之间，所述旋转头（20）下方设有喷嘴（21）。

2. 根据权利要求1所述的建筑物的裂缝填补装置，其特征是，所述喷嘴（21）数量为3个，其口径大小不同，喷嘴（21）以紧固螺母（19）为定点，并通过伸缩杆（7）的调节在腰孔内移动实现开合（22）内自由定位。

3. 根据权利要求1所述的建筑物的裂缝填补装置，其特征是，所述吸盘（10）设在吸板（8）底部，开口（22）上部边缘安装有可拉起固定的伸缩推杆（18）。

4. 根据权利要求1所述的建筑物的裂缝填补装置，其特征是，所述吸板（8）底部四边安装有可翻转的万向轮（9），万向轮（9）侧边设有将翻转之后的万向轮（9）固定住的卡销（1）。

5. 根据权利要求1所述的建筑物的裂缝填补装置，其特征是，所述弹簧（4）侧边的调节片（5）上还安装有将单螺母（2）锁紧的固定螺丝（3）。

6. 根据权利要求1所述的建筑物的裂缝填补装置，其特征是，所述通心丝杆（12）还连通有备用修补材料进料管（17）。
说明书

一种建筑物的裂缝填补装置

技术领域
[0001] 本发明属于建筑工程技术领域，具体涉及一种建筑物的裂缝填补装置及其施工方法。

背景技术
[0002] 建筑裂缝是建筑物常见的工程质量问题，目前多建筑物裂缝对板、梁、柱上面贯通裂缝直接重新砖造，对是构造裂缝，比如池子，楼板上面层裂缝可以用砂浆修补，或者用素水泥浆修补。
[0003] 如图1所示，专利号为ZL200810083747.8，申请日2008年12月31日，申请号为2003769803U的实用新型专利中公开了一种轨道交通隧道墙体裂缝修补装置，包括填浆管，其特征在于：所述填浆管一端固定有注浆管；所述注浆管上连接有快速接头；所述注浆管通过设置在支撑墙上的注浆孔插入到裂缝墙中；所述裂缝墙中部设置有注浆孔，下部设置有注浆管，所述注浆管一端固定有注浆嘴。此装置体积过大，不易操作，同时需要连接电源，受场地影响很大。
[0004] 又如图2所示，专利号为ZL201320845537.9，申请日2013年12月20日，申请号为CN203684723U的实用新型专利中公开了一种混凝土裂缝修补装置，其特征在于：包括预埋管、活塞及推杆，活塞设在储浆筒内，推杆连接活塞，推杆为表面有螺纹的丝杆状结构；储浆筒后端固定有顶盖，顶盖中心设有用于推杆通过的孔；孔的内壁设有与推杆相匹配的螺纹；储浆筒前端设有连通注浆嘴，连接头内设有向外凸出的出浆嘴，出浆嘴连通储浆筒内部，连接头通过设在其内壁的螺纹连接注浆嘴，注浆嘴与出浆嘴对接，注浆嘴前端为尖嘴。
[0005] 上述装置是目前建筑中最广泛使用的裂缝修补方法，其施工比较粗放，由于出浆口与裂缝面位置不稳定，注浆过程中装置的位置受到注浆喷射的反作用力影响，导致其注浆不均匀，有的裂缝部分被浆液填满，有的部分则无浆液填充，使整个的修补质量不过关。

发明内容
[0006] 本发明针对以上缺点，立足于解决现有建筑物裂缝修补设备施工粗放，设备需要通电且不易携带，修补注浆不均匀导致质量不过关的问题。提出了一种建筑物的裂缝填补装置及其施工方法，该装置通过预先抽气处理，使装置紧贴裂缝面，在进行注浆，使浆液准确的，均匀的填满裂缝。
[0007] 为实现本发明的目的，本发明采用的技术方案是：
[0008] 一种建筑物的裂缝填补装置，其特征是：包括吸盘，所述吸盘内部设有开口，吸盘设在有开 口四周，其外侧连通有真空泵接口；所述吸盘侧边还设有活动开合的进气口；
[0009] 调节片通过紧固螺母倾斜安装在吸盘上面，其一端下方设有弹簧，单螺母安装在弹簧上方用来调整其上下移动；此处单螺母旋在丝杆上面，丝杆穿在弹簧内部并其连为一体，因为丝杆有一段长度，单螺母旋转时自身位置不动，这样与丝杆为一体的弹簧即被带动在调节片下方实现升降；另一端至紧固螺母位置开有螺孔，通心丝杆穿在螺孔上，其下方连接有旋转头，上方连通有修补材料进管，伸缩杆连接在紧固螺母与通心丝杆之间，所述旋转
头下方设有喷嘴。

[0010] 优先地，喷嘴数量为3个，其口径大小不同，可以随时旋转，确保一个被堵之后继续使用另外两个喷嘴，不影响施工，同时根据缝隙的大小，调整相应口径的喷嘴，确保施工更加精确，喷嘴以紧固螺母为定位，并通过伸缩杆的调节在腰孔内移动实现于开口内自由定位。

[0011] 优先地，吸盘设在吸板底部，开口上部边缘安装有可拉起固定的伸缩推杆，这样在路面施工时可以将吸板轻松拖动。

[0012] 优先地，吸板底部四边装设有可翻转的万向轮，万向轮侧边设有将翻转之后的万向轮固定住的卡销，在公路路面施工时，万向轮收起不影响施工。

[0013] 优先地，弹簧侧边的调节片上还安装有将单螺母锁紧的固定螺钉，这样在喷浆过程中，整个装置稳定注浆，不会晃动。

[0014] 优先地，通心丝杆还连通有备用修补材料进料管。此管道作为备用管道，或两种浆液混合使用，将此管道作为另一种浆液进料口。

[0015] 一种建筑中的裂缝填补装置施工方法，其特征是，包括以下步骤，

[0016] （1）将吸盘吸在目标裂缝面上，确保裂缝部分区域处于开口区域内部，通过连接真空泵接口对吸盘内部进行抽真空，使吸板固定牢牢吸附在裂缝面上，真空泵选择手动真空泵，真空泵接口处设有控制进气大小的调节阀；

[0017] （2）调整喷嘴位置，使其对准目标裂缝，通过旋转单螺母使弹簧与裂缝面压紧，这样通过紧密螺母为支点，另一端的喷嘴与目标裂缝贴合，这样在注浆同时，注浆的反作用力被另一端的弹簧抵消，使施工人员轻松移动喷嘴不费力；

[0018] （3）将修补材料进管连接修补材料，开始对裂缝注料，使修补材料通过喷嘴进入裂缝内，与同时控制喷嘴移动将开口内区域的裂缝修补完成，修补材料进管优先连接手动灌浆机；

[0019] （4）打开进气口对吸盘进气，使吸板脱离目标裂缝面；

[0020] （5）重复步骤（1）-（4），直到整条裂缝修补完成；

[0021] （6）将修补材料进管连接清水，通过对喷嘴输送清水将整个管路清洗干净，便于下次使用。

[0022] 与现有的技术相比，本发明的优点是：通过预先抽气处理，使装置紧贴裂缝面，在进行注浆，使浆液准确的，均勾的填满裂缝，整个施工过程质量可精确控，同时本发明不需要通电，施工过程中设备稳定，施工人员使用轻松，受场地影响较小，与现有技术相比，本发明结构设计巧妙，补缝精确，具有广阔市场前景。

附图说明

[0023] 现在接下来借助于实施例的附图来对本发明进行简短的描述。附图中；

[0024] 图1示出了本发明建筑物的裂缝填补装置的结构示意图；

[0025] 图2示出了调节片的结构示意图；

[0026] 图3示出了喷嘴部分的结构示意图；

[0027] 图4示出了本发明建筑物的裂缝填补装置底面的结构示意图；

[0028] 图5示出了本发明第一实施例施工结构示意图；
具体实施方式

实施例 1

一种建筑物的裂缝填补装置，包括吸板 8，所述吸板 8 内部设有开口 22，吸盘 10 设在有开口 22 四周，其外侧连通真空泵接口 15，真空泵接口 15 接口处设有控制进气大小的调节阀，所述吸盘 10 侧边设有活动开合的进气口 6，吸盘 10 设在吸板 8 底部开口 22 上部边缘安装有可拉起固定的伸缩推杆 18。

吸板 8 底部四边安装有可翻转的万向轮 9，万向轮 9 侧边设有将翻转之后的万向轮 9 固定住的卡销 1，伸缩推杆 18 可拉起通过万向轮 9 将整个装置移动。

调节片 5 通过紧固螺母 19 倾斜安装在吸板 8 上面，其一端下方设有弹簧 4，可调整弹簧 4 上下的单螺母 2 安装在弹簧 4 上方，弹簧 4 侧边的调节片 5 上还安装有将单螺母 2 锁紧的固定螺钉 3。

调节片 5 的另一端至紧固螺母 19 位置开有腰孔，通心丝杆 12 穿在腰孔上，其下方连通有旋转头 20，上方连通有修补材料进管 14，修补材料进管 14 接口处设有控制流量大小的调节阀 13，伸缩杆 7 连接在紧固螺母 19 与通心丝杆 12 之间，所述旋转头 20 上方设有喷嘴 21，另外，通心丝杆 12 连接有备用修补材料进料管 17，喷嘴 21 数量为 3 个，其口径大小不同，可以同时旋转，确保被堵之后继续使用另外两个喷嘴，不影响施工，同时根据缝隙的大小，调整相应口径的喷嘴，确保施工更加精确，喷嘴 21 以紧固螺母 19 为支点，并通过伸缩杆 7 的调节在腰孔内移动实现开口 22 内自由定位。

本实施例装置结构针对公路，桥梁路面施工（如图 6 所示）包括以下步骤，

1. 将吸盘 10 吸在目标裂缝面上，确保裂缝处于开口 22 区域内部，通过连接手动真空泵接口 15 对吸盘 10 内部进行抽真空，使吸盘 8 固定牢牢吸附在裂缝面上；
2. 调整喷嘴 21 位置，使其对准目标裂缝，通过旋转单螺母 2 使弹簧 4 与裂缝面压紧，通过紧固螺母 19 为支点，另一端的喷嘴 21 与目标裂缝贴合；
3. 将修补材料进管 14 连接手动灌浆机，开始对喷嘴 21 输料，使修补材料通过喷嘴 21 进入裂缝内，与此同时人工控制喷嘴 21 缓慢移动将开口 22 内区域的裂缝修补完成；
4. 打开进气口 6 对吸盘 10 进气，使吸盘 8 脱离目标裂缝面；
5. 重复上述步骤 (1)-(4)，直到整条裂缝修补完成；
6. 将修补材料进管 14 连接清水，通过对喷嘴 21 输送清水将整个管路清洗干净，便于下次使用。
实施例 2

一种建筑物的裂缝填补装置，包括吸板 8，所述吸板 8 内部设有开口 22，吸盘 10 设在有开口 22 四周，吸盘 10 同时设在吸板 8 底部，其外侧连通有真空泵接口 15，真空泵接口 15 接口处设有控制进气大小的调节阀，所述吸盘 10 侧边还设有活动开合的进气口 6。

调节片 5 通过紧固螺母 19 倾斜安装在吸板 8 上面，其一端下方设有弹簧 4，可调整弹簧 4 上下的单螺母 2 安装在弹簧 4 上方，弹簧 4 侧边的调节片 5 上还安装有与单螺母 2 锁紧的固定螺钉 3。

调节片 5 的另一端至紧固螺母 19 位置开有腰孔，通心丝杆 12 穿在腰孔上，其下方连通有旋转头 20，上方连通有修补材料进管 14，修补材料进管 14 接口处设有控制流量大小的调节阀 13，伸缩杆 7 连接在紧固螺母 19 与通心丝杆 12 之间，所述旋转头 20 上方设有喷嘴 21。

喷嘴 21 数量为 3 个，其口径大小不同，可以随时旋转，确保一个被堵之后继续使用另外两个喷嘴，不影响施工，同时根据缝隙的大小，调整相应口径的喷嘴，确保施工更加精确。喷嘴 21 以紧固螺母 19 为定点，并通过伸缩杆 7 的调节在腰孔内移动实现在开口 22 内自由定位。

实施例装置结构针对墙面，天花板施工（如图 5 所示）包括以下步骤，

（1）将吸盘 10 吸在目标裂缝面上，确保裂缝处于开口 22 区域内部，通过连接手动真空泵接口 15 对吸盘 10 内部进行抽真空，使吸板 8 固定牢牢吸附在裂缝面上；

（2）调整喷嘴 21 位置，使其对准目标裂缝，通过旋转单螺母 2 使弹簧 4 与裂缝面压紧，这样通过紧固螺母 19 为支点，另一端的喷嘴 21 与目标裂缝贴合；

（3）将修补材料进管 14 连接手动灌浆机，开始对喷嘴 21 输入料，使修补材料通过喷嘴 21 进入裂缝内，与此同时人工控制喷嘴 21 缓慢移动将开口 22 内区域的裂缝修补完成；

（4）打开进气口 6 对吸盘 10 进气，使吸板 8 脱离目标裂缝面；

（5）重复上述步骤（1）-（4），直到整条裂缝修补完成；

（6）将修补材料进管 14 连接清水，通过对喷嘴 21 输入清水将整个管路清洗干净，便于下次使用。
图 5