(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 June 2011 (30.06.2011)

(10) International Publication Number
WO 2011/077102 A1

(51) International Patent Classification:
C07K 16/18 (2006.01) C07K 14/47 (2006.01)

(21) International Application Number:
PCT/GB2010/002334

(22) International Filing Date:
23 December 2010 (23.12.2010)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:

(71) Applicant (for all designated States except US): THE UNIVERSITY COURT OF THE UNIVERSITY OF EDINBURGH (GB/GB); Old College South Bridge, Edinburgh EH8 9YL (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SCHMIDT, Christoph [DE/GB]; School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JF (GB). BARLOW, Paul, N. [GB/GB]; School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JF (GB). RICHARDS, Anna [GB/GB]; Queens Medical Research Institute, 47 Little France Crescent, Centre for Inflammation Research, Edinburgh EH16 4TJ (GB).

(74) Agent: CHAPMAN, Paul; Marks & Clerk LLP, Aurora, 120 Bothwell Street, Glasgow G2 7JS (GB).

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
— with sequence listing part of description (Rule 5.2(a))

(54) Title: RECOMBINANT FACTOR H AND VARIANTS AND CONJUGATES THEREOF

(57) Abstract: The present invention relates to recombinant factor H and variants and conjugates thereof and methods of their production, as well as uses and methods of treatment involving said materials.
Recombinant Factor H and variants and conjugates thereof

Field of the Invention

The present invention relates to recombinant factor H and variants and conjugates thereof and methods of their production, as well as uses and methods of treatment involving said materials.

Background of the Invention

An increasing body of evidence suggests that the complement system regulatory glycoprotein, factor H (FH), if produced in sufficient quantities and endowed with appropriate pharmacokinetic and pharmacodynamic properties, would serve as a new biotherapeutic agent. This agent could prevent development of age-related macular degeneration (AMD) in genetically susceptible individuals and facilitate treatment in those with AMD and two life-threatening kidney conditions known as atypical haemolytic uraemic syndrome (aHUS) and dense deposit disease (DDD). More speculatively, this agent could have beneficial effects in the treatment or prevention of numerous other diseases in which inadequate complement regulation contributes to aetiology or symptoms.

However current attempts to produce FH through over-expression of a gene in recombinant cells have failed to yield the quantities that would be required for therapy, while purification from human plasma of sufficient quantities of the appropriate variants of FH has logistical and technical difficulties and carries health risks. There are urgent unmet clinical and commercial needs for multiple-gram quantities of biotherapeutic-grade recombinant versions of FH with minimal immunogenicity, an extended half-life and maximal efficacy.

Since these reviews were published numerous further published findings have broadened the scope of potential targets for FH-based therapies. Two recent examples establish an association between the FH gene (*CFH*) polymorphism (Y402H) and susceptibility to cardiovascular disease

Data for the likely efficacy of FH in treatment is already very strong, and has precipitated numerous disclosures, patent applications and company start-ups. US2007/0020647 discusses the expression of human CFH in a variety of eukaryotic and prokaryotic protein-overproduction vectors and in mammalian cell lines, but only explicitly exemplifies expression in the human lung carcinoma cell line A549. The quantities of recombinant protein obtained from this cell line are not disclosed, but based on precedent and in the absence of any evidence to the contrary the amounts are expected to be inadequate for therapeutic purposes. WO2007/038995 describes the use of human factor H to treat aHUS. The patent application mentions the use of recombinant FH without providing significant details about the methods of production of recombinant FH, but is focused on purification of FH from human plasma.

Thus although the above two documents disclose the idea of using recombinant FH therapeutically, neither document actually teaches the large-scale production of recombinant FH that is absolutely essential for its therapeutic application; as shown herein, this is not a straightforward task.

Successful manufacture of larger amounts (greater than 10 mg) of pure recombinant full-length FH with preserved functional activities has not previously been reported in the scientific or patent literature. Indeed, in the limited data supporting the patents discussed above, the authors demonstrated capability of producing only minute quantities (less than about 1 mg) of recombinant FH and did not provide evidence that they had purified or characterised this material. Furthermore,

Ormsby, R. J. et al., Expression of human factor H in the methylotrophic yeast Pichia Pastoris. Molecular Immunology Vol 35, p.353, 1998 Abstract 92. This paper uses a Pichia pastoris production system to express a FIVE (5) complement control protein (CCP) fragment of Factor H, not the full length TWENTY (20) CCP Factor H protein, which is the subject of present patent application.

Ripoche, J. et al., The complete amino acid sequence of human complement Factor H. Biochemical Journal, Vol 249: 593-602, 1988. This paper describes the full length human factor H nucleotide sequence (and hence the amino acid sequence) and was obtained by sequencing three overlapping cDNA clones spanning the Factor H gene. However, it does not describe how to clone the gene such that it is possible to express functional human Factor H protein.

EP1336618 describes using full length or fragments of porcine Factor H as a soluble complement regulator, for use as a therapeutic. It is suggested that porcine factor H could be purified from pig plasma or as exemplified in this patent, made recombinantly using Baculovirus. However, no quantification of the amount of full length porcine factor H from a standard fermentation nor any functional data for the full length protein (rather than only fragments) is shown. However, there is no disclosure or teaching of how to express functional human Factor H.

The use of porcine Factor H naturally carries the risk of infection with cross-species zoonotic infections. Moreover, there is not complete DNA sequence or amino acid homology between human factor H and porcine factor H (62% homology Hegasy G.A. et al., Pig complement regulator factor H: molecular cloning and functional characterization. Immunogenetics. 2003 Oct;55(7):462-71). It is therefore very likely autoantibodies to porcine Factor H would be made, which would again limit therapeutic usage.

WO 2008/135237 describes use of a therapeutic which combines a short consensus repeat (SCR) of Factor H with a pathogen recognition binding molecule \(\text{e.g.} \) an antibody. It specifically mentions use of fragments/peptide chains of less than 100 amino acids \((<2 \text{ SCR}s) \). It does not suggest use of a full
length Factor H molecule with a pathogen recognition binding molecule. Also, its focus is for the use of treating infections or for cancer, not renal or ophthalmological diseases.

Currently, FH-replacement clinical therapy is achieved by means of infusing donated pooled plasma, of which FH is only one of many protein components. It is not possible clinically to routinely obtain plasma containing only the FH Y402 allotype (which is protective against AMD); when purified in bulk from pooled plasma, FH is heterogeneous in terms of both its heterotypic and glycoform variations and hence this material is ill-suited for therapy; antibody-affinity based purification methods generally yield only small amounts (a few mg at most) of material that can be enriched only for a single variant at a specific site of variation (e.g. for Y402) but will be heterogeneous with respect to other polymorphic sites (e.g. V62I). Any use of plasma-purified human proteins would in any case may carry unacceptable risks, of infection with both unknown viral and prion proteins, and of sensitisation to contaminating plasma components, when used on the repetitive basis proposed for AMD, aHUS and DDD therapies.

It is therefore amongst the objectives of the present invention to obviate and/or mitigate at least one of the aforementioned obstacles to therapeutic use of FH.

Summary of the Invention

The invention is based on work carried out by the present inventors towards providing high-yield production of versions of FH tailored for animal and human trials and therapeutic applications, which is based on the use of codon-optimised chemically synthesised genes that are transfected into, for example and preferably, *Pichia pastoris* followed by expression in a fermentor and purification using a sequence of chromatographic procedures.

In a first aspect there is provided a process for making recombinant mammalian FH, said process comprising the steps of:

- expressing in a chosen host organism a codon-optimised nucleic acid sequence which encodes said mammalian FH or variants thereof and which nucleic acid sequence has been codon optimised for expression in a chosen host organism and inserted into an appropriately designed vector; in order to obtain said mammalian FH or variants thereof.

Conveniently, the codon-optimised nucleic acid sequence can initially be chemically synthesised rather than cloned and mutagenised in order to generate the necessary codon optimisation. In accordance with the present invention it is possible to produce large quantities of recombinant mammalian FH and its variants hitherto not possible using the previously described
techniques. Typically the methods of the present invention may produce protein yields of at least 0.5 mg of recombinant FH (or its variants) per liter of culture medium, such as at least 1 mg, 5 mg, 10 mg, 50 mg, 100 mg, 200 mg or 500 mg per litre of culture medium. It will therefore be appreciated that it is possible following the methods of the present invention, when using industrial-scale fermentors, to produce hundreds of milligrams or grams even kilogram-quantities of recombinant FH and variants thereof, which was simply not possible using conventionally cloned recombinantly expressed FH.

The above process may further comprise purifying said proteins from the cell and/or culture medium in which the cell is grown. Purification may typically involve the use of chromatographic methodologies, such as fast-protein liquid chromatographic or high-performance (pressure) liquid chromatographic techniques known in the art. For example, the nucleic-acid sequence may be designed to encode a secretion-signal sequence of amino-acid residues fused to the N-terminus of FH so that FH is secreted into the media (whereupon said signal-sequence peptide is cleaved off) and thereby it is separated from intracellular P. pastoris proteins at the outset. In a subsequent purification step, crude material may, for example, be loaded onto an affinity chromatography column, such as a heparin-sepharose column equilibrated in phosphate-buffered saline (PBS), and eluted by application of a gradient, over multiple column volumes, to PBS substituted with high salt (e.g. 1 M NaCl); in a further step, FH-containing fractions from the previous step may be loaded onto, for example, an ion-exchange resin-containing column, such as a GEHealthcare-supplied MonoQ column that has been equilibrated in 20 mM glycine buffer (typically pH 9.5, 150 mM NaCl), and then eluted with a gradient, over many column volumes, with the equilibration buffer at the same pH but substituted with high salt (e.g. 1 M NaCl).

The preferred choice of host organism is Pichia pastoris on the grounds that no re-folding of the expressed protein is required, the protein may be secreted into the media and therefore easily accessible, and specific glycoconjugates or non-natural amino acid residues may be incorporated into the recombinant product; but other prokaryotic (e.g. Escherichia coli) and eukaryotic (e.g. Saccharomyces cerevisiae) host organisms may also be envisaged.

The mammalian FH referred to may be human FH or FH from another primate or other mammalian FH, such as that from mouse, rat, hamster, rabbit, dog, horse, cow, pig, sheep, camel, cat, guinea pig, or the like.

The deoxyribonucleic nucleic acid (DNA) sequence may comprise unique restriction endonuclease sites at the 5’ and 3’ ends of the nucleic acid, to facilitate cloning into an appropriately restricted expression vector. Preferred restriction sites are PstI, BamHI, NotI and XbaI, although others may easily be envisaged by the skilled addressee.
The nucleic acid sequence encoding FH may relate to one of a number of wild-type sequences (known in the art as polymorphic variants) or may be a mutant sequence. The sequence may comprise one or more single-nucleotide polymorphisms known in the art. US 2007/0020647, for example, describes many polymorphisms that have hitherto been identified in the human CFH (the contents of which are hereby incorporated by way of reference) and more such polymorphic variants may be discovered in the future; one or more of these may readily be incorporated into the codon-optimised nucleic acid sequence. Preferred single-nucleotide polymorphisms that may be incorporated, individually or in combination, into the codon-optimised nucleic acid sequence could code for the following variations in the protein sequence: Ile62 (rather than Val), Tyr402 (rather than His), Glu936 (rather than Asp) and/or Arg1210 (rather than Cys) (all numbers refer to the sequence of the encoded protein prior to cleavage of the signal sequence (Swiss-Prot: P08603.4)). Such single-nucleotide polymorphisms and haplotypes have been reported to be associated with a lower-than-average risk of developing AMD (Hageman GS et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 2005 102:7227-32; Klein RJ et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005 308:385-9; Edwards AO et al. Complement factor H polymorphism and age-related macular degeneration. Science 2005 308:421-4; Haines JL et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 2005 308:419-21; Hageman GS et al. Extended haplotypes in the complement factor H (CFH) and CFH-related (CFHR) family of genes protect against age-related macular degeneration: characterization, ethnic distribution and evolutionary implications. Ann Med 2006 38:592-604). Alternatively or additionally, mutant sequences may be designed to specifically alter the FH polypeptide sequence, for example to include one or more natural (encoded) or non-naturally encoded variant amino acids as described in more detail herein below.

The conjugate refers to a molecule that consists of a polypeptide corresponding to FH or a variant of FH to which is covalently attached, normally via one or more amino-acid residue side-chains, to a chemical moiety or moieties intended to improve the biotherapeutic properties of said molecule. The attached moieties could include: natural polymers such as glycosaminoglycans and their derivatives or polysialic acids, dextran (-1,6 polyglucose), dextran (-1,4 polyglucose), hyaluronic acid, and chitosans; unnatural polymers such as any of a large family of linear or branched polyethylene glycols, polyether polyols, A/-(2-hydroxypropyl) methacrylamide copolymers, poly(vinylpyrrloidone), poly(ethyleneimine), or linear polyamidoamines; or pseudosynthetic polymers, such as poly(L-lysine), poly(glutamic acid), poly(malic acid) and poly(aspartamides) (see for example The dawning era of polymer therapeutics. Duncan R. Nature Reviews Drug Discovery 2003 2:347-360).

Rather than conventional gene cloning and expression, the present invention is based on an initial chemical synthesis of the codon-optimised DNA molecules encoding said FH (and variants

In this manner, the codon-optimised nucleic acid is synthesised *de novo* prior to cloning into a suitable expression vector. Conventional site-directed mutagenesis techniques known in the art to carry out codon optimisation of the FH gene would be unfeasibly time-consuming, if not impossible due to the high risk of introducing additional mutational variations during the requisite repeated rounds of site-directed mutagenesis. However, site-directed mutagenesis may be used following cloning of the synthetic codon-optimised *CFH*, in order to accomplish one or a combination of site-specific mutations in the product.

Codon optimisation is carried out in order to enhance the expression levels of the mammalian FH and its variants in the desired host organism, such as *P. pastoris*. Said optimisation involves one or more of the following: adapting codon bias to match that of the chosen host organism; avoiding regions of high (>80%) or low (<30%) GC content; minimising any potential internal TATA boxes, chimeric sites and ribosome-entry sites; minimising AT-rich or GC-rich stretches of sequence, avoiding repeat sequence and RNA secondary structures, minimising any (cryptic) splice-donor and/or splice-acceptor sites; and ensuring any desired restriction endonuclease sites are only found at the extreme 5′ and 3′ ends of the nucleic acid to facilitate cloning. Preferably all of the above considerations are taken into account when optimising the nucleic acid sequence. The skilled addressee is able to make such modifications to the original FH sequence based on prior knowledge in the art in relation to the codon bias of the chosen host and other teachings (e.g. Codon bias and heterologous protein expression. Gustafsson C, Govindarajan S, Minshull J. *Trends Biotechnol* 2004 22:346-53). Certain companies such as Geneart (Regensburg, Germany), GeneScript (Piscataway, New Jersey, USA) and DNA2.0 (Menlo Park, California, USA) provide a service for optimising and synthesising nucleic acid sequences that are tailored for expression in a specified host organism.

In a preferred embodiment, the DNA sequence encoding mammalian FH is a *CFH* sequence which has been optimised for expression in the host, *P. pastoris*. A *P. pastoris* codon-optimised human *CFH* sequence (encoding for Y at position 402, I at position 62 and E at position 936) is compared to the wild-type cDNA sequence in Figure 1. It will be appreciated that this codon-optimised sequence may be varied in order to still further optimise the sequence for overproduction in *P. pastoris*. Moreover, the sequence may be easily varied in order to allow for expression of various allotypes. Moreover, certain nucleotide bases may be changed in order to specifically alter the amino-acid residue sequence of the FH protein. For instance, certain amino-acid residues may be replaced with, for example, alternative amino-acid residues that may be rare or non-naturally occurring amino-acid residues, so as to allow for the generation of recombinant FH proteins with one or even a combination of modifications leading to: altered glycosylation patterns; reduced immunogenicity; enhanced plasma
half-life; and/or site-specific conjugation with moieties designed to improve pharmacokinetic and/or pharmacodynamic properties. It will be appreciated that all such modifications can be carried out whilst taking account of any codon optimisation considerations.

Thus, in a further aspect, the present invention provides a nucleic acid sequence capable of expressing a FH polypeptide or variant thereof, the nucleic acid sequence being codon optimised for expression in a host organism, such as *P. pastoris*. There is also provided a mammalian FH polypeptide or variant thereof, obtained from a nucleic acid sequence according to the present invention.

Preferably the sequence is codon optimised for expression by *P. pastoris*, in which case the nucleic acid sequence may be the codon-optimised human sequence shown in Figure 1 or any of the sequences represented in Figure 5, or be substantially similar to them. By substantially similar is understood that the sequence is greater than 70%, 75%, 80%, 85%, 90%, 95% or even 99% identical to the sequence shown in Figures 1 or 5.

The present invention also relates to vectors which include a codon-optimised FH-encoding DNA sequence of the present invention, host cells which are genetically engineered with said recombinant vectors, and the production and purification of the encoded FH and FH-like polypeptides by recombinant techniques, and the conjugated products of said polypeptides.

Recombinant constructs may be introduced into host cells using well-known techniques such as infection, transduction, transfection, transvection, electroporation and transformation. The vector may be, for example, a phage, plasmid, viral or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides of interest may be contained within a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in the form of a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged *in vitro* using an appropriate packaging cell line and then transduced into host cells.

Preferred, are vectors comprising c/s-acting control regions to the polynucleotide of interest. Appropriate trans-acting factors may be supplied by the host, supplied by a complementing vector or supplied by the vector itself upon introduction into the host.

In certain preferred embodiments in this regard, the vectors provide for specific expression and
may be inducible and/or cell type-specific. Suitable vectors include those inducible by environmental factors that are easy to manipulate, such as temperature and nutrient additives.

Expression vectors useful in the present invention include chromosomal-, episomal- and virus-derived vectors, for example vectors derived from bacterial plasmids, bacteriophages, yeast episomes, yeast chromosomal elements, viruses such as baculoviruses, papova viruses, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as cosmids and phagemids.

The DNA insert should be operatively linked to an appropriate promoter. Known bacterial promoters suitable for use in the present invention include the E. coli lacI and lacZ promoters, the T3 and T7 promoters, the gpt promoter, the phage lambda PR and PL promoters and the tac and trp promoter. Suitable eukaryotic promoters include the cytomegalovirus immediate early promoter, the herpes simplex virus thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral long terminal repeats (LTRs), such as those of the Rous sarcoma virus and metallothionein promoters, such as the mouse metallothionein-I promoter. Promoters specific to P. pastoris include alcohol oxidase 1 (AOX1), AOX2 (both methanol inducible), CUP1 (copper inducible), GAP (glycerol inducible, constitutively active on various carbon sources), FLD1 (formaldehyde dehydrogenase) PEX8 and YPT1 (moderate promoter, constitutively active on various carbon sources), DAS1 (dihydroxyacetone synthase), ADH1 (alcohol dehydrogenase) and PGK1 (3-phosphoglycerate kinase). Other suitable promoters will be known to the skilled artisan, see for example Cereghino and Cregg, 1999, Current Opinion in Biotechnology, 10, p422-427.

The expression constructs will further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome-binding site for translation. The coding portion of the mature transcripts expressed by the constructs will include a translation-initiating AUG at the beginning and a termination codon appropriately positioned at the end of the nucleic acid sequence to be translated. It is facile, using synthetic genes, to optimise all of these features of the insert to maximise gene-expression levels and recombinant-protein yields.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include e.g. dihydrofolate reductase or neomycin or zeocin resistance for eukaryotic cell culture and e.g. tetracycline or ampicillin-resistance genes for culturing in E. coli and other bacteria.
Representative examples of appropriate hosts include bacterial cells, such as *E. coli*, *Streptomyces* and *Salmonella typhimurium* cells; fungal cells, such as yeast cells like *P. pastoris*, *Kluyveromyces lactis* and *Saccharomyces cerevisiae*; insect cells such as *Drosophila melanogaster S2* and *Spodoptera frugiperda* 9 cells; animal cells such as Chinese hamster ovary, COS and Bowes melanoma cells; and plant cells. Appropriate culture media and conditions for the above-described host cells are known in the art. Most preferably the host organism is the methylotrophic yeast *P. pastoris*. Strains of *P. pastoris* that have been metabolically engineered so that they attach mammalian or human-like N-glycans may be preferred, see Wildt and Gerngross, 2005, Nature Reviews, 3, p119-128, Li et al, 2006, Nature Biotechnology, 24, p210-215, Cereghino, et al, 2002, Current Opinion in Biotechnology, 13, p329-332.

As indicated, introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Davis LGG *et al.*, Basic Methods in Molecular Biology, (2nd Ed., McGraw-Hill, 1995).

As indicated, transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are c/s-acting elements of DNA, usually from about 10 to about 300 bp that act to increase transcriptional activity of a promoter in a given host cell-type. Examples of enhancers include the SV40 enhancer, which is located on the late side of the replication origin at bp 100 to 270, the cytomegalovirus early-promoter enhancer, the polycloma enhancer on the late side of the replication origin, and adenovirus enhancers.

For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. The signals may be endogenous to the polypeptide or
they may be heterologous. Examples of such sequences that may be used in *P. pastoris* include the native human or mouse (or other mammalian) FH-secretion signals and the yeast alpha-mating factor.

The polypeptide of interest may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. Thus, for instance, a region of additional amino-acid residues, particularly charged amino-acid residues, may be added to the N terminus of the polypeptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be fused to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. Additions of peptide moieties to polypeptides in order to engender secretion or excretion, to improve stability and to facilitate purification, amongst others, are familiar and routine techniques in the art.

The FH protein can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulphate or ethanol precipitation, acid extraction, anion-exchange or cation-exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, reverse-phase chromatography, size-exclusion chromatography and lectin chromatography. Most preferably, heparin-affinity is followed by ion-exchange chromatography.

It will be recognised in the art that the amino-acid residue sequence of aFH polypeptide may be selectively varied without having a significantly detrimental effect on the structural integrity or functional properties of the protein. If such differences in sequence are contemplated, it should be remembered that there are regions of the protein that are critical to its biological activity. There will also be residues that are critical to the folding of the protein or for stabilisation of its folded structure. Some residues serve as glycosylation sites, recognised by enzymes that covalently attach glycans to, for example, Asn side-chains. In general, it may be possible to safely replace residues that contribute directly or indirectly to structure or function by other residues that are chemically similar (this is known as a conservative substitution). In the cases of amino-acid residues that contribute neither to structural integrity nor to functional sites, it may be possible to safely replace such a residue with an amino-acid residue of a different chemical nature (a non-conservative replacement).

Thus, the invention further includes variations of the FH polypeptide which variants show substantially FH-like biological activity. Variants might include conservative substitutions (for example, substituting one hydrophilic residue for another, or one hydrophobic residue for another), but would be unlikely to include replacements of strongly hydrophilic residues for strongly hydrophobic ones (or vice versa). Variants might include conservative substitutions within N-glycosylation sites that result in loss of such sites. Variants may also include deletions of one or more of the 20 protein domains within the
FHI molecule. For example, deletion of one or a combination of domains [such as 2, 3, 4, 5, 6, 7, 8, 9, 10 or Udomains] between and including domains 8 and 18 would be unlikely to have a detrimental effect on the functionally critical individual binding sites located in domains 1-4, 6-7 (or 6-8) and 19-20. Variants could also include deletions of one or a combination of domains from the region of FH between and including domains 5-18 since this would preserve C3b-binding sites (1-4, and 19-20) and one (in 19-20) of two cell surface-recognition sites within FH (see e.g. A new map of glycosaminoglycan and C3b-binding sites on factor H. Schmidt CQ, Herbert AP, Kavanagh D, Gandy C, Fenton CJ, Blaum BS, Lyon M, Uhrin D, Barlow PN. J Immunol, 2008, 181:2610-9) and might enhance functional activity by optimising the spatial positioning, or flexibility of the connection, between these binding sites. Variants might also include hybrids, in which, for example one or more deleted domains from the domains 8-18, or 5-18, regions of FH are replaced with one or more similar domains derived from other proteins, for example from complement receptor type I or type II; alternatively they might be replaced by one or more dissimilar domains derived from a wide range of other proteins such as proteins of the extracellular matrix or the clotting or complement cascades.

Typically seen as conservative substitutions are the replacements, one for another, amongst the aliphatic amino-acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gin; exchange of the basic residues Lys and Arg; and replacements amongst the aromatic residues Phe and Tyr. Non-conservative substitutions could include substitutions with both naturally encoded amino-acid residues and a non-naturally encoded (unnatural) amino-acid residue. The unnatural amino-acid residue could be one that serves as a site-specific attachment sites for conjugation with chemical moieties (such as polyethylene glycols (PEGs) and other polymers), or with biochemical groups (such as glycans) that enhance the therapeutic efficacy of FH.

As indicated in detail above, further guidance concerning which aminoacid changes are likely to be phenotypically silent (i.e. are not likely to have a significant deleterious effect on a function) can be found in Bowie, et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990).

Also of interest are substitutions that prevent aggregation or minimise proteolysis. Aggregation of proteins not only results in a loss of activity but can also be problematic when preparing pharmaceutical formulations, because aggregates can be immunogenic (see, e.g. Pinckard et al., Clin Exp Immunol, 1967, 2:331-340; Robbins et al., Diabetes, 1987, 36:838-845; Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems, 1993, 10:307-377). Aggregation may be minimised by changing surface residues, for example removing hydrophobic patches (by substituting hydrophobic residues with polar ones) or by changing the electrostatics at the surface by charge-reversal (e.g. by substituting Asp for Arg or Glu for Lys) or deletion (e.g. substituting Ser for Asp). Proteolysis results in a loss of the
target protein thus lowering yield and also makes purification more difficult. Proteolysis may be reduced by recognition of proteolytic sites via computational prediction or empirical means and conservative substitutions therein.

Possible modifications of particular relevance to mammalian FH include mutating one or more Asn residues to Gin residues in order to minimise glycosylation of the FH protein. Alternatively one or even two Asn residues of the FH protein may be replaced by any of a large number of unnatural amino-acid residues, such as p-(propargoxy)-phenylalamine (pPpa) residues (Expanding the genetic repertoire of the methylotrophic yeast *Pichia pastoris*. Young TS, Ahmad I, Brock A, Schultz PG. *Biochemistry* 2009 48:2643-53). Such an unnatural residue could be further modified by PEGylation or sialylation techniques known in the art.

Thus, in a further aspect, the present invention provides a recombinantly expressed variant of mammalian, especially human, FH obtained from a codon-optimised nucleic acid wherein the variation comprises one or more amino-acid residue substitutions designed to modulate one or more biological properties of said FH variant as compared to a native FH.

It will be understood that said amino acid substitution(s) do not relate to polymorphic changes to the FH protein, as known in the art. Said substitution(s) may result in modulation of, for example, immunogenicity and/or a physiological property of said FH variant as compared to a native FH. Exemplar modifications include substituting one or more Asn residues for another amino acid residue, such as Gin, or a non-naturally occurring amino acid residue, such as pPpa, in order to vary the glycosylation state of said FH variant and/or allow further modification of said FH variant using chemistry known in the art in order to allow the variant to be specifically modified at said substituted sites by a molecule such as PEG or polysialyl chains.

Thus, the target FH-like polypeptide may be: (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue and such substituted amino acid residue may or may not be one encoded by the genetic code; or (ii) one in which one or more of the amino acid residues is conjugated with another molecule or includes a substituent group; or (iii) one in which the mature polypeptide may be covalently linked to another compound or compounds, such as a compound to increase the half-life of the polypeptide (for example, PEG or polysialic acid); or (iv) one in which additional amino acid residues are fused to the mature polypeptide, such as an IgG Fc fusion-region peptide or leader or secretion-signal sequence or a sequence which is employed for purification of the mature polypeptide or a pro-protein sequence; or (v) one with an altered (compared to the native glycoforms of FH) pattern of attached glycans due to substitutions within glycosylation sites or introduction of new glycosylation sites (or unnatural amino acids suitable for chemical conjugation with glycans) or employment of strains of *P. pastoris* with engineered glycosylation pathways; or (vi) domain-deletion or hybrid variants in which domains have been
removed from the central portion of FH and may or may not have been substituted with homologous or other domains from other proteins. Such fragments, derivatives, conjugates and analogues are deemed to be within the scope of those skilled in the art from the teachings herein.

The recombinantly expressed mammalian FH polypeptides and variants of the present invention may find a variety of applications. For example the polypeptides/variants may be used therapeutically to treat or prevent age-related macular degeneration (AMD) or to prevent or slow the progression of this disease, in genetically susceptible individuals and facilitate treatment in those with AMD, as well as in the treatment/prevention of two life-threatening kidney conditions known as atypical haemolytic uraemic syndrome (aHUS) and dense deposit disease (DDD). The recombinantly expressed mammalian FH of the present invention could have beneficial effects in the treatment or prevention of numerous other diseases or pathologies in which inadequate complement regulation contributes to aetiology or symptoms, for example Alzheimer’s disease, ischemia, pre-eclampsia, early pregnancy loss, sepsis, multiple sclerosis, system lupus erythematosus and transplant rejection. See for example, Ischaemia-Reperfusion Injury: (Shah KG et al, J Surg Res. 2010 163 1:110-117; Yang J et al, Ann Surg. 2009 249 2:310-317; Zhang F et al, Regul Pept. 2009 8 52(1-3):82-87, Organ Transplantation: Atkinson C, et al, J Immunol. 2010 185 11:7007-7013., Early Pregnancy Loss: Lynch AM, et al, Obstet Gynecol. 2001 1 117 1:75-83 and Pre-eclampsia Qing X et al, Kidney Int. 2010 Oct 13. [Epub ahead of print].

The recombinant FH polypeptides and variants in accordance with the present invention may also find application in research and also in kits and the like.

Particularly preferred FH molecules and variants according to the present invention are described in detail below.

Detailed Description

The present invention will now be further described by way of example and with reference to the figures which show:

Figure 1 shows DNA sequence (Swiss-Prot: P08603.4) of native human FH; Sequence of *P. pastoris* codon-optimised human FH of the present invention; and an alignment of the wild-type (cDNA-derived) and codon-optimised FH gene sequences.

Figure 2 shows western-dot-blot results from non-codon optimised FH gene expression.

Figure 3 shows production and characterisation of recombinant complement factor H:
A - Elution from an anion-exchange column (MonoQ) (A^{280} in milli-absorbance units on left-hand y-axis) with a salt gradient (20 mM glycine buffer, pH 9.5, 0.12 - 1 M NaCl; conductivity on right-hand y-axis).

B - Fractions eluted from the MonoQ column (see Fig. 3A) were subjected to SDS-PAGE and protein bands were visualised with Coomassie blue. Lanes 1-8 (reducing conditions/-i.e. no disulfides present) correspond to elution volumes 23-30. No significant "clipping" of the polypeptide chain is evident. Lane 9 contains molecular weight markers (MW) as indicated on the right-hand side. Lanes 3', 4' and 5' correspond to lanes 3, 4 and 5 but were run under non-reducing conditions; the faster migration of bands in lanes 3', 4', and 5' (compared to lanes 3, 4 and 5) is typical for proteins that contain disulfide bonds.

C - Two antibodies that recognise epitopes within the C-terminal CCP modules (domains) of FH, were used in western blots. Plasma FH (left lane) and recombinant rFH (middle lane) were detected with (i) MAb-SC47686_L20/3or (ii) Mab-Abnova-0167. MW = molecular weight markers - see right-hand side of gel (ii).

D - The abilities of FH (lanes 1-5) and rFH (lanes 7-11) to act as cofactors for factor I-catalysed cleavage of C3b to iC3b were assessed by visualising the 43-kDa and 68-kDa proteolytic fragments of the α'-chain using SDS-PAGE followed by Coomassie blue staining. Incubation times were 0 to 30 minutes, as indicated. Both versions of FH have similar activities in this semi-quantitative assay such that the α'-chain of C3b is completely processed within five minutes. MW = molecular weight markers of (from top) 250, 150, 100, 75, 50, 37, 25 and 20 kDa.

E - For comparison with Fig. 3D, the cofactor activity of soluble complement receptor type 1 (sCR1), at the same concentration was followed over the same time intervals. Note that (in agreement with literature) sCR1, but (from Fig. 3D) neither rFH nor plasma-purified FH, promoted the further degradation of the α'-chain to C3dg and a 30-kDa fragment. MW, as in Fig. 3D.

F - Surface plasmon resonance was used to monitor formation of the C3bBb (convertase) complex as factor D and factor B were flowed together over C3b that was amine-coupled to a CM5 (Biacore) sensor chip. The subsequent decline in response reflects decay of the complex as Bb is released from the chip surface. The rate of decay is accelerated by initiating (in this case 210 s into the natural decay process) a flow of reference FH or rFH. At similar concentrations (0.5 μM), rFH is a more effective decay accelerator in this assay than plasma-purified FH. The control proteins, BSA and FH modules 19-20, have no effect on decay.

G - (i) and (ii) - Use of SPR to measure affinity of (i) rFH and (ii) plasma-purified FH for C3b coupled to aCM5 sensor chip (Biacore). Duplicate sensorgrams are shown for a concentration series (5.4 μM, 1.0 μM, 0.5 μM, 0.1 μM) flowed over 1540 response units of immobilised C3b.

G - (iii) and (iv) - Plots of response units versus (iii) rFH or (iv) plasma-purified FH concentrations for the two different flow cells with either 1540 RUs (lower curve in each plot) or 3030 RUs (upper curve in each plot) of C3b. The dashed vertical line indicates the K_{D} fitted in each case to both plots simultaneously, and yielding 1.4 μM for rFH and 2.9 μM for plasma-purified FH.
H - The candidate recombinant FH (peaks a and c correspond to double-charged and single-charged species, respectively) and an internal standard (IgG^+ peaks b and d correspond to double-charged and single-charged species, respectively) were analysed on a MALDI-ToF mass spectrometer.

I - Dynamic light scattering was performed on rFH in PBS at a concentration of 1 mg/ml.

J - Sheep erythrocytes were incubated in physiological buffer, with 1.5 µM FH modules 6-8 (negative control), 0.4 µM plasma-purified FH or 0.4 mM rFH prior to exposure (for 20 minutes at 37 °C) to human serum that had been depleted of FH. The reaction was quenched and A_{412} was measured. The results shown were the average (plus or minus standard deviation) of four experiments.

Figure 4(a) shows a schematic representation of human factor H (FH) showing certain SNP's and the eight N-linked glycans. 4(b) shows schematic representations of vector (plasmid) maps designed such that various FH molecules and variants can be prepared in accordance with the present invention. All except vector 4 (based on pPICZa-B) are based on pPIC3.5K. Vector numbers 1-3 and 11 incorporate DNA for the human secretion signal peptide (hum. signal pept.) while vector numbers 7, 9 and 10 incorporate the mouse equivalent. The other four vectors incorporate DNA for the yeast alpha-factor peptide with (vector number 4) or without (vectors 5, 6 and 8) EA dipeptides. The encoded variants of FH (sequences in Figure 5) are indicated - the protective (prot.) and at-risk haplotypes are detailed in the text; "all-Q" and "amino H-Q" or "two amino H-Q" refer to substitutions of Asn residues for Gin and one or two pPA residues (for example), respectively, as described in the text; "delta 10-15" indicates removal of FH domains 10-15 as described in the text; K/R indicates substitution of lysines and arginines with glutamines as described in the text.

Figure 5 is a summary of DNA sequences encoding (a) human and (b) mouse FH variants that have been inserted into vector numbers 1-11.

Figure 6 illustrates the expression of two recombinant variants of FH. The sample of "all-Q" mutant of rhFH (left-hand gel) migrates as a single band during SDS-PAGE under reducing (R) and non-reducing (NR) conditions (stained by Coomassie blue). Endo H_{f} (77 kDa) treatment causes no change in migration rate. This is consistent with the "all-Q" mutant having no N-glycosylation sites and being glycan-free. For comparison (middle gel), rhFH (prior to purification) migrates as a fuzzy band until it is Endo H_{f} treated (right-hand gel). The sample of "delta10-15" rFH was eluted from an anion-exchange column and six peak fractions collected and run on SDS-PAGE under reducing (R) or (for four fractions) non-reducing (NR) conditions (right-hand gel), then stained with Coomassie blue. MW = molecular weight markers as indicated to left and right of the gels.

Figure 7 is a schematic summary of a route to therapeutic versions of FH.

Example 1 - Attempted expression of non-codon-optimised DNA encoding FH
Human FH-encoding DNA was amplified from cDNA, and inserted into the yeast expression vector pPICZalphaB, and KM71 H P. pastoris cells were duly transformed. Cell colonies grew on high antibiotic-containing plates, consistent with the presence of multiple copies of the gene in the transformed cells. We failed, however, to detect (on SDS-PAGE, stained with Coomassie Blue) any evidence of FH expression in mini-scale cultures. Nor was any detectable recombinant FH produced in shaker-flask cultures. We next checked to see if protein expression by transformed cells could be detected under ideal expression conditions (as may be achieved in a one-litre fermentor in which oxygen and nutrient levels are maintained at near-optimal levels) and by using more sensitive detection methods (Western-dot-blot, see Figure 2); notwithstanding these steps and even with the additional use of a larger-scale (three-litre) fermentation, no recombinant FH product could be detected.

In further attempts to find evidence for the expression of even small amounts of recombinant FH, a portion of the supernatant was concentrated (for Western-dot-blot) while the remainder was diluted (to reduce salt concentration) and loaded onto a HiTrap (GE Healthcare) heparin-affinity chromatography column at pH 6. A sample from a one-step elution (expected to wash all of the protein off in a small volume) with 1 M NaCl (in the equilibration buffer used for the HiTrap heparin column) was also assayed in a Western-dot-blot.

Detection was attempted using a standard Western-blotting technique with both a commercial polyclonal anti-FH antibody and secondary antibody coupled to horseradish peroxidase. With the exception of the positive controls (consisting of the primary anti-FH antibody, the secondary antibody, and human plasma-derived FH purchased from Complement Technology, Texas) no positive signal was detectable (see Figure 2).

Thus, we demonstrated that provision of multiple-milligram, let alone multiple-gram, quantities of recombinant FH from wt FH-encoding DNA, despite the use of a heterologous expression system that is known to be particularly suitable for extracellular proteins containing disulfides and that has been used for expression of shorter segments of FH, is far from a straightforward matter.

Example 2 - Development, purification and characterisation of codon-optimised human factor H

Codon optimisation aimed at human FH expression in P. pastoris was carried out by consultation between the inventors and Geneart (Regensburg, Germany) using their proprietary techniques and GeneOptimizer® software.
The nucleic acid sequence of a codon-optimised form of human FH, for expression in *P. pastoris*, is significantly different (it has 76% sequence identity) to the native DNA sequence (see Figure 1).

The codon-optimised DNA sequence was synthesised by Geneart and then cloned into an Invitrogen-purchased *P. pastoris*-based expression vector, pPICZ alpha B-vector, which had been restricted using appropriate restriction enzymes.

The vector was transformed into *E. coli* in order to amplify the DNA, yielding several 10s of pg of plasmid DNA. This was purified, linearised (to enhance homologous recombination) and then transformed (using electroporation) into *P. pastoris* strain, KM71H. Selection of *P. pastoris* clones containing the expression plasmid was achieved by streaking transformed yeast onto rich-media plates containing a range of concentrations of an antibiotic marker. Colonies that grew on high antibiotic-containing plates were screened for protein expression.

After filtration to remove cells, the supernatant from the fermentor was diluted one-in-five with distilled water and applied to a self-poured XK-Heparin column (Heparin FastFlow resin - from GE Healthcare). Elution was accomplished with a linear gradient, over six column volumes, from 20 mM potassium phosphate buffer (pH 6.0) to the same buffer substituted with 1 M NaCl. Fractions containing protein were pooled and the glycans were removed by incubating the sample with Endoglycosidase H-mannose binding protein fusion protein (Endo H₁, New England Biolabs) at 37°C. Protein was then applied to a Concanavalin A (GE Healthcare) column and then to mannose-binding-resin (New England Biolabs) to remove *P. pastoris*-derived glycans and the Endo H₁. As an alternative to Endo H₁, an exoglycosydase may be utilised so as to retain more of the glycans on the recombinant product, which might enhance solubility.

The sample was further purified on a self-poured Poros-Heparin chromatography column and eluted, over 20 column volumes, with a linear gradient from PBS to PBS plus 1 M NaCl. The final purification step involved anion exchange on a MonoQ column. The protein was eluted by a gradient, over 20 column volumes, from 20 mM glycine buffer (pH 9.5) to the same buffer supplemented with 1 M NaCl.

Exemplary results of such a purification, followed by extensive biophysical and functional characterisation and validation, are shown in Figure 3. The yield of protein from this procedure, that had not been optimised, was about 1.5 - 2.5 mg of protein from one litre.

Example 3 - Further development of human and mouse FH variants using codon-optimised DNA; elaboration to enhance therapeutic efficacy.
In a first step, a set of 11 plasmid vectors (vector numbers 1 through 11) was designed by the inventors (Figure 4) in order to further exemplify the utility and versatility of expression of a synthetic codon-optimised gene in *P. pastoris*. This set of vectors was designed so as to allow "cutting and pasting" of DNA encoding FH between vectors so as to maximise the number of secretion pathways that could be easily explored for each of the targeted FH variants. The aim was to produce mouse FH in addition to human FH, since mouse FH is needed for trials in mice.

In a second step, the 11 DNA inserts (see Figure 5 for sequence information) intended for codon optimisation were designed by the inventors based on (i) the desired amino acid residue sequences, (ii) the requirement for suitable endonuclease restriction sites, (iii) the incorporation of appropriate secretion signal sequences (peptides) at the N termini of the target proteins to promote secretion into the growth media, (iv) pursuit of the strategies summarised in Figure 7 aimed at amassing the information required to optimise a biotherapeutic product derived from FH.

In a third step, codon optimisation and gene synthesis to create construct numbers 1 through 11 (summarised in Figure 5) were carried out by Geneart (Regensburg, Germany) using their proprietary techniques and GeneOptimizer® software. Geneart were also contracted to incorporate the 11 constructs into inventor-supplied plasmids to generate vector numbers 1 through 11 (Figure 4).

In the production of recombinant human (rhFH) described in Example 2 we employed a pre-pro leader (signal) sequence to direct secretion of rhFH, thereby facilitating purification. In that work, the pro-region was separated from the target sequence by an endopeptidase (kex2 protease)-cleavage site followed by two Glu-Ala dipeptides introduced to enhance cleavage-site accessibility. Native sequence generation relied upon kex2 protease to remove the pro-region, followed by dipeptidyl aminopeptidase action of the ste13-gene product to perform Glu-Ala removal. Incomplete cleavage by ste13 sometimes resulted in potentially immunogenic N-terminal Glu-Ala pairs. To eliminate this possibility, codons encoding one or both of said Glu-Ala dipeptides were avoided during creation of vector number 1 and additionally construct 1 was designed to exploit the native secretion signal sequence of hFH and processing by yeast secretion-pathway enzymes. Hence, using vector number 1 the N-terminal expression artefact (NH$_2$-Glu-Ala) that was included in our initial recombinant hFH is absent, and the presence of a previously present cloning artefact (Ala-Gly) is circumvented; in addition, using vector number 1, rhFH is in effect mutated to yield the protective haplotype (I62, Y402) (creating 1Y-hFH).

Pichia pastoris normally introduces high mannose-type N-glycans at Asn-Xaa-Thr/Ser sequons resulting in heterogenous, potentially immunogenic, products. These glycans lack terminal sialic acids and are probably susceptible to rapid clearance via hepatic asialoglycoprotein receptors. On the other hand, glycosylation may assist folding and stability of the recombinant protein and in the original study
we removed *P. pastoris* N-glycans from rhFH enzymatically after expression and before purification or after the first purification step. Construct number 2 was designed so that Asn residues at N-glycosylation sites are replaced with Gin residues (Figure 5) (to create allQ-1Y-hFH). Thus vector number 2 allows assessment of the consequences of producing FH lacking eight normally occupied (out of nine potential) N-glycosylation sequons by mutating the relevant Asn residues to Gin residues. Thus using vector number 2 we produced, secreted (relying on the human-FH secretion signal sequence) and purified allQ-1Y-hFH corresponding to the protective haplotype but with no N-glycosylation sites (see Figure 6). We demonstrated that this material was glycan-free on the basis that no difference was observed in migration on SDS-PAGE before and after treatment with Endo H.

Construct 3 exploits the amber codon to allow replacement of a potentially N-glycosylated Asn residues in 1Y-hFH with an unnatural amino acid such as p-(propargoxy)phenylalanine (pPpa) (to create unN-1Y-hFH) (see Figure 5). Low long-term immunogenicity and enhanced half-life are essential properties in biotherapeutics suitable for supplementation of human FH function in patients. Attachment of poly(ethylene) glycols (PEGs) is a proven strategy in this respect (see e.g. PEGylation, successful approach to drug delivery. Veronese FM, Pasut G. *Drug Discov Today*. 2005; 10:1451-8). Alternatives to PEGylation include conjugation with biodegradable polysialic acid chains that may have advantages over PEGs where high and repeated doses are involved (see e.g. Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Gregoriadis G, Jain S, Papaioannou I, Laing P. *Int J Pharm* 2005 300:125-30). It will be understood that numerous other polymers could be conjugated to hFH to improve its biotherapeutic potential. Randomly placed PEGylation or polysialylation for example, on primary amines is straightforward but frequently results in a heterogenous product and steric interference with binding regions on the protein. Far more desirable is site-specific modification. We are able to exploit this desirable option thanks to our use of *P. pastoris* as our preferred expression system. Indeed, a very significant advantage of *P. pastoris* over a non-yeast eukaryotic expression system is the possibility of easily replacing one or possibly two relevant Asn residues with non-naturally encoded amino acid residues (this is possible with other eukaryotic expression systems but is less straightforward and would not be expected to produce protein in the required yields).

Thus by transfecting *P. pastoris* with vector number 3, along with a plasmid carrying the requisite tRNAs and aminoacyl tRNA transferase, we introduce the option of site-specific covalent modification with a chemically synthesised polymer that should mask the altered residue and eliminate a glycosylation site while potentially enhancing other biotherapeutic properties of the protein. It should be noted that these residues are not directly involved in binding to other proteins since they are normally N-glycosylated and they lie within modules of FH that we have previously shown not to be involved in C3b or GAG-binding. The system for incorporation of an unnatural amino acid used is the one developed by Schultz (Expanding the genetic repertoire of the methylotrophic meast *Pichia*
pastoris. Young TS, Ahmad I, Brock A, Schultz PG. Biochemistry 2009 48:2643-2653) for incorporation of pPpa that is suitable for side-chain modification using "click" chemistry. This utilises an orthogonal tRNA/tRNA and aminoacyl-tRNA synthetase pair developed in E. coli using directed evolution. This allows, in the first place, the biological and biophysical properties of unN-IY-hFH to be compared to those of IY-FH (after enzymatic deglycosylation) and allQ-IY-hFH. It will be understood that another unnatural amino acid could be incorporated instead of pPpa, which would provide alternative chemical routes to conjugation; for example, we could incorporate an unnatural amino acid with an azo-group or other reactive group. Many such possibilities are discussed in the above-cited paper by Young et al the contents of which are hereby incorporated in its entirety by reference. It will also be understood that other residues besides the Asn residues in N-glycosylation sites, for example the Ser or Thr residue that is found two residues after the Asn residue, could be replaced with unnatural amino acids.

Subsequently, click chemistry is utilised to PEGylate unN-IY-hFH creating our candidate therapeutic product, PEGylated-hFH (Figure 7); for comparison, we non-specifically PEGylate Lys residues within allQ-IY-hFH (to create PEGⁿ-hFH). The creation of these proteins is as follows. Azo-derivitised PEGs are available commercially and these react with the propargyl group of pPpa in a Cu(I)-catalysed azide-alkyne cycloaddition to give a high yield of the 1,2,3-triazole. It will be understood that it is possible to incorporate azo-amino acid residues instead of pPpa and then to use propargyl-PEG as a conjugate. It will also be understood that conjugations with other polymers would be equally feasible. In this way we create site-specifically PEGylated versions of FH. It is possible to explore different chain lengths, and the use of branched chains. For comparison with the products of site-specific conjugation, we use well-established protocols that randomly conjugate succinamide-ester activated PEGs to primary amines of the recombinant protein (see Peptide and protein PEGylation: a review of problems and solutions. Veronese FM. Biomaterials. 2001, 22:405-17 and references therein). Using homogenous preparations of activated PEGs at appropriate stochiometric ratios and by fractionating and characterising the products, one obtains well-defined positional isomers of mono/di-PEGylated protein. These operations are performed on IY-hFH creating PEGⁿ-IY-hFH. Thus it is possible to compare the relative merits of site-specific and random PEGylation. It will be understood that a similar approach may readily be extended to polysialylation instead of PEGylation.

With regard to comparisons of the various products - e.g. hFH, IY-hFH, allQ-IY-hFH, unN-IY-hFH, PEG-hFH and PEGⁿ-hFH - we explore their C3b- and GAG-binding properties and their bioactivities. Thus, pure and authenticated samples are tested for the following: (i) Ability to act as a cofactor for factor I-catalysed cleavage of C3b (see Figure 3D) (Enzymic assay of C3b receptor on intact cells and solubilised cells. Sim E, Sim RB. Biochem J. 1983, 210: 567-76); (ii) Ability to promote acceleration of decay of C3bBb assembled on a surface plasmon resonance (SPR) sensor chip (Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay. Harris CL, Pettigrew DM, Lea SM, Morgan BP. J Immunol. 2007

In construct number 4 two amber codons have been incorporated and the protein product is suitable for site-specific placement of a pair of conjugates. With this construct it will be possible to explore the feasibility of introducing a second PEGylation site although it is expected that there may be a decrease in yield that generally accompanies each unnatural amino acid-residue incorporation. In this example, we have chosen conjugation sites on adjacent modules (modules 12 and 13) in the middle of the protein. Not only could these sites by PEGylated without compromising binding sites lying elsewhere in the FH molecule, they could be used for attachment of fluorescent probes resulting in fluorescent versions of human FH with potential applications in fluorescent microscopy and histology as well as diagnostics. Alternatively these sites could be used for conjugation with paramagnetic moieties that can be exploited in electron paramagnetic resonance spectroscopy to provide distance measurements between probes and, by inference, structural information that will help to generate hypotheses and the design of protein engineering approaches aimed at optimising FH efficacy.

Vectors 4 and 5 incorporate DNA encoding the yeast alpha-factor secretion signal peptide since it is potentially advantageous to explore secretion pathways other then the pathway that deals with the natural human FH secretion signal peptide. Vector 4 incorporates the codons for NH2-Glu-Ala, while vector 5 does not, thereby providing opportunities to examine the role of the Glu-Ala spacer in terms of efficiency of proteolytic processing of the secretion signal peptide.

Vector 6 (utilising the alpha-factor/no-EA strategy) incorporates a construct encoding an example of a FH deletion. This term refers to versions of FH that are missing one or more central domains (or modules) within the region that connects together the two main C3b and GAG-binding
sites proximal to the N and C termini. Such deletions represent an opportunity to create more compact version of hFH for research and therapeutic applications. In the current example (vector 6) modules 10-15 are deleted (for result, see Figure 6). It will be appreciated that given the modularity of the FH structure it is possible to delete any number or combinations of modules (or to truncate FH at either end to create FH truncations). It is also facile to replace any of these deleted domains with homologous or non-homologous domains from other proteins. Vector 11 has been designed for production of an example of a FH mutant that can readily be produced in useful amounts using our strategy. In this example, nine basic amino acid residues have been replaced with Gin (neutral) residues. The basic amino acids selected in this case form a striking electropositive patch on module 13 of human FH (The central portion of factor H (modules 10-15) is compact and contains a structurally deviant CCP module. Schmidt CQ, Herbert AP, Mertens HD, Guariento M, Soares DC, Uhrin D, Rowe AJ, Svergun DI, Barlow PN. J Mol Biol. 2009 Epub. Oct 14.) which seems unlikely to have evolved by chance and may have an as yet unrecognised binding role in the biological mechanism of action of FH. Thus we exploit our protein production strategy both to make therapeutic proteins and to make versions of FH for assay that shed light on structure-function relationships and hence on engineering of designer versions of FH with superior therapeutic efficacy.

The subset of vectors numbered 7 through 10 were designed for production of mouse FH (mFH) in P. pastoris using codon-optimised DNA. These protein products assist in the assessment of FH as a biotherapeutic in mouse-based models of disease. The natural mFH secretion signal sequence is exploited in vectors 7, 9 and 10 while vector 8 contains DNA for the yeast alpha-factor secretion signal (no Glu-Ala). Construct 7 encodes wild-type mFH and constructs 8 and 9 encode the mouse equivalents of the allQ- and unN- (i.e.amber) versions of human FH (i.e. as in the human versions, one or two of the N-glycosylation sites of mFH are re-engineered as sites of site-specific conjugation) (allQ-mFH and unN-mFH). PEGylated (or polysialylated proteins) are constructed as described for hFH. Construct 10 encodes a two-amber-codon version of mFH in which the remaining glycosylation sites (except those in modules 1-4 and 19-20) have been substituted, Asn to Gin.

To evaluate clinical potential of the protein products of vectors 1-11, we begin with the products of vectors 7-10 and test these in (i) the FH-knockout mouse (FH"-) that has uncontrolled plasma C3 activation and develops DDD (Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Pickering MC, Cook HT, Warren J, Bygrave AE, Moss J, Walport MJ, Botto M. Nat Genet 2002 31:424-8) and retinal abnormalities (Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Coffey PJ, Gias C, McDermott CJ, Lundh P, Pickering MC, Sethi C, Bird A, Fitzke FW, Maass A, Chen LL, Holder GE, Luthert PJ, Salt TE, Moss SE, Greenwood J. Proc Natl Acad Sci U S A. 2007 104:16651-6), and (ii) the FH transgenic mouse (CFH/-delta 16-20 (in which, effectively, the truncated FH consisting of modules 1-15 replaces full-length FH) that develops aHUS (Spontaneous hemolytic
uremic syndrome triggered by complement factor H lacking surface recognition domains. Pickering MC, de Jorge EG, Martinez-Barricarte R, Recalde S, Garcia-Layana A, Rose KL, Moss J, Walport MJ, Cook HT, de Cordoba SR, Botto M. J Exp Med 2007 204:1249-56. We select the best candidate(s) based on a range of considerations including yield of protein, bioassays and standard toxicology studies. For example, allQ-mFH, PEG-mFH and/or PEG*-mFH (likely to have low immunogenicity) will be injected i.v/i.p. into the FH** mouse. Levels of complement components C3, factor B and naturally expressed mouse FH (as well as the recombinant mFH) are measured by ELISA to titrate optimal doses of mFH needed to achieve maximal complement regulation in the serum and to assess mFH half-lives. With the dosing schedule optimised we evaluate the efficacy of mFH against DDD and retinal abnormalities. Survival, renal function (urinary albumin, serum urea) and retinal abnormalities (behavioural and electrophysiological studies) of the FH** mice over a period of eight months (kidney)/24 months (retina) will be assessed and compared to untreated FH** mice. Histological studies (light microscopy, immunofluorescence and fluorescent and electron microscopy) are used to assess differences in glomerular and retinal pathology in the two groups. Any generation of antibodies against mFH in these FH-deficient mice is assessed by ELISA-based assays. The utility of our product(s) in aHUS is determined in analogous experiments in the CFH**delta16-20 mouse.

We are continuing to improve the yields of hFH by further DNA manipulation and optimisation of fermentation technology, aiming to achieve production levels in the region of grams of protein per 10-litre fermentation. In the literature on P. pastoris, expression levels of 100-500 mg or more protein per litre have been reported. Numerous strategies available for the improvement of yield include: further enhancements of DNA sequence to decrease RNA secondary structure; elimination of potential proteolytic sites where possible; wider screening and selection for high copy-number transformants arising from multiple integration events; choice of culture conditions e.g. agitation, oxygen supply, pH, temperature, and addition of reagents (e.g. EDTA, amine salts, casamino acids) to minimise proteolysis; timing and rates of glycerol/methanol feeds (reviewed in for example Expression of recombinant proteins in Pichia pastoris. Li P, Anumanthan A, Gao XG, llangovan K, Suzara W, Di-zgiine N, Renugopalakrishnan V.Appl Biochem Biotechnol. 2007 142:105-24).
CLAIMS

1. A process for making recombinant mammalian FH, said process comprising the steps of:
 expressing in a chosen host organism a codon-optimised nucleic acid sequence which encodes said mammalian fH or variants thereof and which nucleic acid sequence has been codon optimised for expression in a chosen host organism and inserted into an appropriately designed vector; in order to obtain said mammalian fH or variants thereof.

2. The method according to claim 1 producing at least 0.5 mg of recombinant FH (or its variants) per liter of culture medium.

3. The method according to claims 1 or 2 further comprising purifying said proteins from the cells and/or culture medium in which the cells are grown.

4. The method according to claim 3, wherein purification involves the use of chromatographic methodologies, such as fast-protein liquid chromatographic or high-performance (pressure) liquid chromatographic techniques.

5. The method according to any proceeding claim, wherein the host organism is Pichia pastoris.

6. The method according to any proceeding claim wherein the mammalian FH referred to is human FH or FH from another primate or other mammalian FH, such as that from mouse, rat, hamster, rabbit, dog, horse, cow, pig, sheep, camel, cat, guinea pig.

7. The method according to any proceeding claim wherein one or more single-nucleotide polymorphisms are incorporated, into the codon-optimised nucleic acid sequence, including the following variations in the protein sequence: Ile62 (rather than Val), Tyr402 (rather than His), Glu936 (rather than Asp) and/or Arg1210 (rather than Cys).

8. The method according to any proceeding claims wherein the FH sequence includes one or more natural (encoded) or non-naturally encoded variant amino acids.

9. The method according to any proceeding claims wherein the FH or variant is conjugated with a chemical moiety or chemical moieties intended to improve the biotherapeutic properties of said molecule, such as natural polymers including glycosaminoglycans and their derivatives or polysialic...
acids, dextran (-1,6 polyglucose), dextran (-1,4 polyglucose), hyaluronic acid, and chitosans; unnatural polymers such as any of a large family of linear or branched polyethylene glycols, polyether polyols, N-(2-hydroxypropyl) methacrylamide copolymers, poly(vinylpyrrolidone), poly(ethyleneimine), or linear polymidoamines; or pseudosynthetic polymers, such as poly(L-lysine), poly(glutamic acid), poly(malic acid) and poly(aspartamides).

10. The method according to any proceeding claim wherein the FH sequence is shown in Figure 1 or any of the sequences represented in Figure 5.

11. A nucleic acid sequence capable of expressing a FH polypeptide or variant thereof, the nucleic acid sequence being codon optimised for expression in a host organism, such as P. pastoris, in an amount greater than 0.5 mg/l of culture.

12. The sequence according to claim 11 in at least 70 or 80% identical to the sequence as shown in Figure 1 or any of the sequences represented in Figure 5.

13. A vector comprising the sequence according to claims 11 or 12.

14. A recombinantly expressed mammalian FH, especially human FH, expressed from the nucleic acid sequence of claims 11 or 12, or expressed by the vector of claim 13.

15. A recombinantly expressed variant of mammalian, especially human FH wherein the variation comprises one or more amino acid residue substitutions designed to modulate one or more biological properties of said FH variant as compared to a native FH.

16. The recombinantly expressed variant of mammalian, especially human FH according to claim 15, obtained from the nucleic acid sequence of claims 11 or 12, or expressed by the vector of claim 13, following introduction of said one or more amino acid substitutions.

17. The recombinant FH according to claim 16 wherein the FH-like polypeptide may be: (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue and such substituted amino acid residue may or may not be one encoded by the genetic code; or (ii) one in which one or more of the amino acid residues is conjugated with another molecule or includes a substituent group; or (iii) one in which the mature polypeptide may be covalently linked to another compound or compounds, such as a compound to increase the half-life of the polypeptide (for example, PEG or polysialic acid); or (iv) one in which additional amino acid residues are fused to the mature polypeptide, such as an IgG Fc fusion-region peptide or leader or secretion-
signal sequence or a sequence which is employed for purification of the mature polypeptide or a pro-
protein sequence; or (v) one with an altered (compared to the native glycoforms of FH) pattern of
attached glycans due to substitutions within glycosylation sites or introduction of new glycosylation
sites (or unnatural amino acids suitable for chemical conjugation with glycans) or employment of
strains of P. pastoris with engineered glycosylation pathways; or (vi) Domain-deletion or hybrid variants
in which domains have been removed from the central portion of FH and may or may not have been
substituted with homologous domains from other proteins.

18. The recombinantly expressed FH according to any of claims 14 - 17 for use in prophylaxis or
therapy.

19. The recombinantly expressed FH according to claim 18 for use in preventing or treating AMD,
ataypical haemolytic uremic syndrome (aHUS) or dense deposit disease (DDD

20. Use of a recombinantly expressed FH according to any of claims 14 - 17 for the manufacture
of a medicament for prophylaxis or therapy.
<table>
<thead>
<tr>
<th>Figure 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
</tr>
<tr>
<td>Codon-opt</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Figure 2: Trial for expression of recombinant human fH using DNA that was not optimised for codon usage

Legend to Figure 2: An attempted expression of recombinant fH in a three-litre fermentor trial was monitored using a standard immuno-blotting technique with a commercial polyclonal anti-fH antibody and secondary antibody coupled to horse radish peroxidase. A portion of the supernatant (after spinning out cells) was concentrated 20-fold while the remainder was diluted (to reduce salt concentration) and loaded onto a HiTrap (GE Healthcare) heparin column at 20 mM potassium phosphate, pH 6, and step eluted with 1 M NaCl in the same buffer. FH-ref is a reference sample of purchased from Comptech (Texas, USA).
Figure 3:

A

Fractions

B

Fractions

C

(i) FH rFH

(ii) FH rFH

kDa

250
150
100
75
50
37
25
20
15
10
Figure 3 cont.

D

minutes	0	2	5	15	30	MW	0	2	5	15	30	
FH												
C3bα												
C3bβ												

E

<table>
<thead>
<tr>
<th>minutes</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>15</th>
<th>30</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rFH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68 kDa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 kDa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3dg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 kDa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F

C3bBb formation | natural decay | analyte injection

Response vs Time (sec)

- BSA
- FH19-20
- FH
- rFH
Figure 3 cont.

\(G \)

(i) \(\text{Response} \) vs. \(\text{Time (sec)} \)

(ii) \(\text{Response} \) vs. \(\text{Time (sec)} \)

(iii) \(\text{Response} \) vs. \([\text{rFH}] (\mu M) \)

(iv) \(\text{Response} \) vs. \([\text{FH}] (\mu M) \)
Figure 3 cont.

Size Distribution by Volume

Volume (%)
Figure 3 cont.

![Bar chart showing the comparison of FH-depleted serum only, FH6-8, FH, and rFH with different concentrations. The chart indicates a significant difference (P < 0.0005) between FH and the other groups.](image-url)
Figure 4

(A) Schematic of human factor H (fH) showing SNPs and N-glycans

- C3b-binding module
- GAG-binding module
- GAG/C3b-binding module

(B) Set of vectors designed for production of human and mouse fH variants
<table>
<thead>
<tr>
<th>Figure 5B (Part two of two)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAA</td>
<td>CAA</td>
<td>CAA</td>
<td>N-Q</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construct no.</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAA</td>
<td>CAA</td>
<td>CAA</td>
<td>N-Q</td>
<td></td>
</tr>
</tbody>
</table>

Constructs 8, 9 and 10 are identical to 7 except where indicated by **bold, italic or underlining** in which case the replacement codon is indicated by a footnote or by letters in matching format (bold or italics).

*Resultant changes in amino acid residue sequence

*Entire underlined sequence replaced with the following sequence:
Figure 6: Polyacrylamide gel electrophoresis illustrating production of "all Q" and "delta10-15" mutants of rFH

<table>
<thead>
<tr>
<th>rFH "all-Q"</th>
<th>rFH</th>
<th>"delta10-15" rFH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Endo H (_{4}) treated</td>
<td>Endo H (_{4}) treated</td>
<td>Fractions from anion-exchange chromatography</td>
</tr>
<tr>
<td>KDa</td>
<td>MW</td>
<td>MW</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NR = non-reducing; R = reducing
Figure 7: A schematic summary of a route to therapeutic versions of FH

Initial Product

- **EA**
- **V62**
- **Y402**

Deletion Example

- **Y62**
- **Y402**

At-Risk Allotype

VH-hFH (Construct 5)

Protective Allotype

IIY-hFH (Construct 1)

Therapeutic Product Example

- **Y402**
- **N511Q**
- **N700Q**
- **N804Q**
- **N1077Q**
- **N893Q N864Q**
- **N1011Q**

Genetic Variants

- **K751Q, K753Q, K754Q, K769Q, R778Q, R786Q, R782Q, K784Q, R796Q**

Mutations Example

Del1015-IY-hFH (Construct 6)

UnN-IY-hFH (Construct 3)

Azo-Fluorescent Dyes

2unN-IY-hFH (Construct 4)
INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2007/002334

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K16/18

B. CLASSIFICATION

C07K

Minimum documentation searched (classification system followed by classification symbols)

C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, Sequence Search, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2008/135237 AI (UNIV INNSBRUCK [AT] ; STOEIBER HERIBERT [AT]) 13 November 2008 (2008-11-13) example 1</td>
<td>1-5, 11, 15-17</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or the other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed
- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search

13 May 2011

Date of mailing of the international search report

06/05/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Ury, Al ain
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>A</td>
<td>D’ANJOU MARC C ET AL: “A rational approach to improving productivity in recombinant Pichia pastoris fermentation”, BIOTECHNOLOGY AND BIOENGINEERING, vol. 72, no. 1, 5 January 2001 (2001-01-05), pages 1-11, XP0Q2636844, ISSN: 0006-3592</td>
<td>1-20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009258822 Al</td>
</tr>
<tr>
<td>Wo 2007038995</td>
<td>12-04-2007</td>
<td>AU 2006299293 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2627264 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1928483 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009508822 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080048034 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011046062 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009118163 Al</td>
</tr>
<tr>
<td>Wo 2008135237</td>
<td>13-11-2008</td>
<td>CA 2687395 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2152736 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2208737 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010526528 T</td>
</tr>
</tbody>
</table>