(19) SU (11) 1134582 A

4(51) C 08 L 61/10

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

BCECCHOMAS

13 COMMITTE 13

TO RECOGNISH 13

SHEMBOTERA

(21) 3484250/23-05

(22) 17.06.82

(46) 15.01.85. Бюл. № 2

(72) К.Р.Кийслер, П.Г.Кристьянсон, Т.-М.Ф.Сюльд, Т.К.Капс,

М.А.Рийстом, Ю.Х.Рокк,

Т.О.Матвере и Ю.Э.Правон

(71) Таллинский политехнический институт и Деревообрабатывающий комбинат "Вийснурк"

(53) 678.632(088.8)

(56) 1. Авторское свидетельство СССР № 575218, кл. В 27 К 3/34, С 08 L 61/14, опублик. 1977.

2. Патент США № 3832251, кл. 156-60, опублик. 1974 (прототип).

(54)(57) ПРОПИТОЧНЫЙ СОСТАВ ДЛЯ ТЕРМОХИМИЧЕСКОГО МОДИФИЦИРОВАНИЯ ДРЕВЕСИНЫ, содержащий продукт взаимодействия производных фенола с формальдегидом, этиловый спирт и воду, о тл и ч а ю щ и й с я тем, что,
с целью повышения стабильности состава, конечной температуры сушки пропитанных им древесных заготовок
до 90°С и эластичности древесины,
состав в качестве продукта взаимодействия содержит продукт взаимодействия сланцевых водорастворимых сум-

марных фенолов с содержанием гидроксильных групп 12,0-13,3 мэкв/г с гексаметилентетрамином и дополнительно содержит сланцевые водорастворимые суммарные фенолы, продукт взаимодействия сланцевых водорастворимых суммарных фенолов с содержанием гидроксильных групп 12,0-13,3 мэкв/г с мочевиной, гексаметилентетрамин, мочевину и этиленгликоль при следующем соотношении компонентов, мас.ч.:

Сланцевые водораство-100 римые суммарные фенолы Продукт взаимодействия сланцевых водорастворимых суммарных фенолов с содержанием гидроксильных групп 12,0-13,3 мэкв/г с гексаметилентетрамином 38-210 Продукт взаимодействия сланцевых водорастворимых суммарных фенолов с содержанием гидроксильных групп 12,0-13,3 мэкв/г 52-400 с мочевиной Гексаметилентетрамин 28-40 33 - 70Мочевина ' 8-23 Этиленгликоль Этиловый спирт 35-600 285-1085 Вода

Изобретение относится к термохимическому модифицированию древесины, используемой для изготовления канта и нижней пластины лыжи, а также других изделий, где требуется улучшение физико-механических свойств и атмосферостойкости древесины.

Для пропитки древесины применяют низкомолекулярные продукты поликон-денсации фенола и формальдегида, а также разнообразные смеси, содержащие фенол, дигидроксибензол, меламины или мочевину.

Известен пропиточный состав, содержащий фенолоспирт и мочевино-фор- 15 мальдегидную смолу [1].

Однако отверждение этих составов требует высокой температуры, приводящей к короблению и растрескиванию модифицированной древесины. Кроме 20 того, для этих составов характерна неравномерная пропитка древесины и присутствие свободного формальдегида как в пропиточной смеси, так и в модифицированном материале. 25

Наиболее близким по технической сущности и достигаемому эффекту к изобретению является пропиточный состав для термохимического модифицирования древесины, содержащий продукт30 взаимодействия производных фенола с формальдегидом, этиловый спирт и воду [2].

Однако низкая стабильность пропиточного состава препятствует повыше— 35 нию температуры сушки пропитанной древесины выше 50°С и изготовлению состава с содержанием сухого вещества выше 30% (50%-ное содержание сухого вещества достигается только при изготовлении состава в небольших количествах). Кроме того, хрупкость модифицированной указанным составом древесины затрудняет ее механическую обработку при изготовлении канта 45 и нижней пластины лыжи.

Цель изобретения — повышение стабильности состава, конечной температуры сушки пропитанных или древесных заготовок до 90°C и эластичности древесины.

Эта цель достигается тем, что пропиточный состав для термохимического модифицирования древесины, содержащей продукт взаимодействия производ- 55 ных фенола с формальдегидом, этиловый спирт и воду, в качестве продукта взаимодействия содержит продукт взаи-

модействия сланцевых водорастворимых суммарных фенолов с содержанием гидроксильных групп 12,0-13,3 мэкв/г с гексаметилентетрамином и дополнительно содержит сланцевые водорастворимые суммарные фенолы, продукт взаимодействия сланцевых водорастворимых суммарных фенолов с содержанием гидроксильных групп 12,0-13,3 мэкв/г с мочевиной, гексаметилентетрамин, мочевику и этиленгликоль при следующем соотношении компонентов, мас.ч.:

Сланцевые водорастворимые 100 суммарные фенолы Продукт взаимодействия сланцевых водорастворимых суммарных фенолов с содержанием гидроксильных групп 12,0-13,3 мэкв/г с гексаметилентетрамином 38 - 210Продукт взаимодействия сланцевых водорастворимых суммарных фенолов с содержанием гидроксильных групп 12,0-52-400 13,3 мэкв/г с мочевиной Гексаметилентетрамин 28-40° Мочевина 33-70 8-23 Этиленгликоль Этиловый спирт 35-600 Вода 285-1085

Необходимая активность в условиях отверждения достигается использованием в качестве фенольного компонента высокореактивных сланцевых водорастворимых суммарных фенолов с содержанием гидроксильных групп 12,0—13,3 мэкв/г. Под термином сланцевые водорастворимые суммарные фенолы следует понимать продукт, получаемым при термической переработке горючих сланцев, имеющих месторождение в Эстонской ССР.

Состав сланцевых водорастворимых суммарных фенолов, мас. %:

Одноатомные фенолы	8,6-10,4
Резорцин	1,6-2,3
2- и 4-Метилрезор-	
цины	2,6-3,1
5-Метилрезорцин	28,0-30,3
2,4-Диметилрезорцин	0,7-0,8
4,6-Диметилрезорцин	1,1-1,5
2,5-Диметилрезорцин	5,8-6,4
5-Этилрезорцин	10,2-10,7
2-Этил-5-метилре-	
зорцин	1,7-1,8

4,5-Лиметилрезорцин	5,7-7,5	
5-Этинилрезорцин	1,3-1,7	
2-Метил-5-этилрезор-		
цин	1,9-2,0	
2,4,5-Триметилрезор-		9
цин	2,1-3,0	
5-Пропилрезорцин	1,9-2,7	
4-Метил-5-этилрезор-	• .	
цин	1,1-1,5	
Другие алкилрезор-		10
цины	18,4-22,6	
в том числе:	•	
Четыре основных ком-		
понента	50-55	
5-замещенные алкил-		1.5
резорцины	60-68	
Содержание гидроксиль-	-	

12,0-

13,3 мэкв/г

Особенностью сланцевых водорастворимых суммарных фенолов является их более высокая реакционная способность по сравнению с резорцином. Причиной этого является присутствие 5-замещенных алкипрезорцинов в сос-

ных групп

таве указанных сланцевых суммарных фенолов.

В пропиточном составе вместо этиленгликоля возможно использование его гомологов или глицерина.

Синтез пропиточного состава проводят следующим образом.

В реактор, снабженный мешалкой, термометром, холодильником и охлаждающе-нагревающей рубашкой вводят из резервуаромерников 10 мас.ч. сланцевых водорастворимых суммарных фенолов, 33-70 мас.ч. мочевины, 28-40 мас.ч. гексаметилентетрамина, 52-400 мас.ч. комплекса сланцевых водорастворимых суммарных фенолов с мочевиной и 38-210 мас.ч. комплекса сланцевых фенолов с гексаметилентетрамином, добавляют 8-23 мас.ч. этиленгликоля, 35-600 мас.ч. этилового спирта и 285-1085 мас.ч. воды. Состав перемешивают при 30-35°C до гомогенизации. Соотношение компонентов в пропиточном составе приведено в табл. 1.

омпоненты		Состав, мас	.ч., по прямер	· MBM	
	1 Сухого веще- ства 60 мас.Х	2 Сухого веще- ства 45 мас.Х	3 Сухого веще- ства 30 мас.Х	4 Сухого веще- ства 15 мас.Х	5
ламцевые водораствориные Уннарные фенолы	100	100	100	100	100
вина	70	43	40	33	34
ексаметилентетрамин	40	33	30	28	30
онплекс сланцевых водораст-				: -	
мочевиной фенолов	400	116	88	52	13
омплекс сланцевых водораство Имах суючарных фенолов с гек					
етилентетрамином	210	71	66	38	14
тилентинколь, его гомологи			•		
ли глицерия	15	23	19	. 8	12
тиловый спирт	35	180	320	600	. 2060
ода	500	285	350	1085	3965

35

Улучшение показателей пропиточного состава (не содержит свободного формальдегида, имеет высокую стабильность и высокое содержание сухого
вещества) достигается, в основном,
за счет того, что состав является
равновесной системой, содержащей
молекулярные комплексы сланцевых
водорастворимых суммарных фенолов
с мочевиной и гексаметилентетрамином
в водно-спиртовом растворе.

Преимуществом состава является увеличение содержания сухого вещества в пропиточном составе до 60 мас. 7. Это достигается тем, что входящая в равновесный раствор смесь молекулярных комплексов сохраняет гомогенность и при небольшом количестве растворителя, т.е. водно-спиртового раствора (смесь этилового спирта с этиленгликолем, его гомологом или глицерином в воде), при этом состав не содержит свободного формальдегила.

При этом нецелесообразно использование состава с содержанием сухого вещества ниже 15 мас. 7, так как состав не имеет модифицирующего эффекта. Вследствие же резкого повышения вязкости выше 60 мас. 7 эффект модификации не повышается.

Увеличение конечной температуры сушки заготовок из пропитанной древесины до 90°С обусловлено стабильность предлагаемого пропиточного состава.

Повышение эластичности модифицированной древесины достигается тем, что в условиях сушки и прессования пропитанной древесины происходит 40 реакция поликонденсации гексаметилентетрамина со сланцевыми водорастворимыми суммарными фенолами и мочевиной, в результате которой выделяется аммак, оказывающий совместно с высоко-45 кипящим спиртом пластифицирующее действие на древесину.

Технологичность полученного состава сохраняется в течение 20 дней при 20-25°C.

Характеристика свойств пропиточного состава представлена в табл. 2. Таблица 2

Показатели Извест- Предлагае - ный про-мый пропи-питоч-точный сос-

тав [2]

5 Содержание свободного формальдегида, мас.% 1,5-2 Не содержит Содержание сухо-

20 го вещества, мас. % 5-50 15-60 Срок хранения пропиточного состава при 20-25°C, дни 10-12 18-20

Температура сушки заготовск д из пропитанной древесины, °C 20-50 20-90

Термохимическое модифицирование древесины предназначенным составом можно производить в открытой ванне или методом вакуума-давления в автоклаве.

Модифицированная древесина подвергается сушке при 50-90°С, обеспечивающей предварительную поликонденсацию использованного состава. Процесс поликонденсации проводят при 100-180°С под давлением 0,2-6,0 МПа. Физико-механические показатели модифицированной древесины приведены в табл. 3.

физико-механические показатели модифицированной древесины	Натуральная береза	Известный пропиточный состав [2]	Предлагаемь	Предлагаемый пропиточный состав по примерам	состав по прим	эрам
		Сухого веще- ства 30 мас.%	-	2	3	7
Сжатие вдоль волокон, МПа	82,4	133,5	171,5	167,0	145,8	138,6
Статический изгиб, МПа	112	120,0	206,6	217,6	170,0	163,2
Скалывание вдоль волокон, МІа	7.6	11,0	19,7	15,7	13,5	12,4
Ударный изгиб, Дж/см³	0.4	4,5	4,5	2,0	0,8	8,9
Формоизменяемость, %	10,6	7,5	3,0	3,3	4,5	8.
Плотность, г/см³	0,68	0,75	96*0	98*0	0,80	0,73

увеличение содержания сухого вещества в пропиточном составе, а также увеличение конечной температуры сушки заготовок из пропитанной древесины позволяет соответственно повысить производительность процессов модифицирования и сушки древеси-

Улучшение санитарно-гигиенических условий модифицирования достигается тем, что предлагаемый пропиточный состав не модержит свободного формальдегида:

Составитель И.Гинэбург
Редактор Т.Колб Техред М.Надь Корректор Е.Сирохман
Заказ 10027/23 Тираж 475 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5
Филиал ППП "Патент", г.Ужгород, ул.Проектная, 4