5/041061 A1 | IV Y O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

AT O O

(10) International Publication Number

WO 2005/041061 A1l

6 May 2005 (06.05.2005)
(51) International Patent Classification’: GO6F 17/30
(21) International Application Number:
PCT/EP2004/052194

(22) International Filing Date:
15 September 2004 (15.09.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/689,091 20 October 2003 (20.10.2003) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth, Hampshire PO6 3AU (GB).

(72) Inventor; and
(75) Inventor/Applicant (for US only): CHANG, Yuan-Chi

[/US]; 385 1st Avenue, Apt. 7G, New York, New York

10010 (US).
(74) Agent: BURT, Roger, James; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester,
Hampshire SO21 2J (GB).
(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR PROVIDING AUTONOMOUS PERSISTENT STORAGE SYSTEMS

[400 f402
‘ Automatic
Declaration
Interface " ﬁﬁ?tg 4
4 Self-Configurable Self-Optimized Catalog
—»i Parsistence Starage
r404 Mapping
406 44 7
Interface]
Search] Index o
—*>1 Module » Creation
™, s
403 408 416 h
.
gpcess
istory -
410
L—» Cache
~
K 412 J

& (57) Abstract: Systems, methods and services for generating autonomous persistent storage systems that are self-configurable and
& self-managing, based on user-submitted entity definitions. For example, systems and methods are provided for automatically creating
and updating persistent storage structures based on entity definitions, automatically populating persistent storage space with instance
data of defined entities, automatically generating and adapting methods for accessing instance data in persistent storage, searching
instance data and automatically optimizing search methods for instance data, and automatically creating and managing a cache of

frequently accessed instance data.

WO 2005/041061 A1 I} 08000 0000 OO0 0

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Fortwo-letter codes and other abbreviations, refer to the "Guid-
GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— with international search report

WO 2005/041061 PCT/EP2004/052194

Description

SYSTEMS AND METHODS FOR PROVIDING AUTONOMOUS

[001]

[002]

[003]

PERSISTENT STORAGE SYSTEMS
Technical Field

The present invention broadly relates to systems and methods for generating
autonomous persistent storage systems that are self-configurable and self-managing.
For example, the invention relates to systems and methods for providing autonomous
creation, management, maintenance, and optimization of electronic catalogs for imple-
mentation with database systems and other information systems.

Background Art

Typically, enterprise software systems such as Human Resource management (HR),
Enterprise Resource Planning (ERP), Customer Relationship Management (CRM),
Product Lifecycle Management (PL.M), and Electronic Commerce (EC), include
business management software, such as catalog functions, for managing a database.
These enterprise software systems are typically installed and used at companies in
many different industries, each of which having unique requirements. These het-
erogeneous requirements for enterprise systems creates a dilemma from a product de-
velopment viewpoint, since it would be too bulky and complex to design business
management software to accommodate all the various requirements for enterprise
systems. On the other hand, a product should have a degree of flexibility to cover a
minimal set of common requirements. In the end, a balance is made between the actual
features that are shipped with the product releases and the anticipated industry/
company-specific customization. One rule of thumb is that for large enterprise
software, the cost to customize is three to five times larger than the cost to license a
product. This high customization expense has prevented small and medium-sized
business from aggressively adopting modern business management software.

The catalog function is one of the software components of an enterprise application
that is most commonly customized to meet different needs. For example, with
comierce applications in the retail industry, a media chain store may sell CDs and
video, wherein the most important catalog data content includes singers, song lists,
directors, producers, etc. In contrast, an office supply company may sells pens, pencils,
folders, and other common office supplied, wherein the common catalog content con-
centrates on color, material and manufacturer, for example. The access and storage of
information regarding singers, song lists, color and material is quite different. It is thus
conceivably difficult to design a catalog to efficiently handle content related to CDs,
video, pens, pencils, folders, as well as the millions of other products in retail and other

WO 2005/041061 PCT/EP2004/052194

[004]

[005]
[006]

[007]

[008]

[009]

[010]

industries.

One reason for the constant struggle between catalog uniformity and product het-
erogeneity is due to the rigidity of traditional product catalog design. This is evidenced
from a number of publications on electronic catalog as well as from the present
inventor’s experience with electronic commerce server development. The variations of
schema design described, for example, in the article by S. Danish, “Building database-
driven electronic catalogs,” SIGMOD Record, Vol. 27, No. 4, December 1998, and in
A. Jhingran, “Anatomy of a real E-commerce system,” ACM SIGMOD Proceedings,
May 2000) are common choices. But, these techniques and other conventional systems
do not adapt well to product heterogeneity.

Disclosure of Invention

The present invention provides a method as claimed in claim 1.

Exemplary embodiments of the present invention include systems and methods for
generating autonomous persistent storage systems that are self-configurable and self-
managing. Exemplary embodiments of the present invention include systems and
methods for providing autonomous creation, management, maintenance, and op-
timization of persistent storage structures, such as directories of objects or electronic
catalogs, for implementation with database systems and other information systems.

For example, exemplary embodiments of the invention include systems, methods,
and services for automatically creating persistent storage structures and various
persisted data management functions, based on user-submitted entity definitions. The
entity definition may comprise, for example, a declaration of an object, one or more
properties of the object, and a data type for each property. In other exemplary em-
bodiments of the invention, the persistent storage structure may be, e.g., a database
table or a file directory.

Exemplary systems and methods according to the invention provide mechanisms
for automating the catalog lifecycle providing full adaptability to, e.g., heterogeneous
product catalog needs, while eliminating the need for human developers to design
persistent storage schemes and write software programs for access.

These and other exemplary embodiments, aspects, features, and advantages of the
present invention will become apparent from the following detailed description of
exemplary embodiments, which is to be read in connection with the accompanying
drawings.

Brief Description of the Drawings

FIG. 1 is a schematic diagram illustrating an operating system that can be used for
implementing autonomous persistent storage systems and methods according to
exemplary embodiments of the present invention.

WO 2005/041061 PCT/EP2004/052194

[011]

[012]

[013]

[014]

[015]

[016]

[017]

[018]

[019]

[020]

[021]

FIG. 2 is an exemplary diagram illustrating functional relationships among entities
that may access and interact with an autonomous persistent storage system according
to an exemplary embodiment of the present invention.

FIG. 3 is an exemplary diagram illustrating an entity-property declaration that may
be used for generating an autonomous catalog system according to an exemplary
embodiment of the invention.

FIG. 4 is a schematic diagram of an autonomous electronic catalog system for a
database according to an exemplary embodiment of the invention, which illustrates an
exemplary embodiment of an autonomous persistent storage system according to the
invention.

FIG. 5 is a flow diagram illustrating a method for parsing a new entity declaration
into name and data type structures for use in generating an autonomous catalog system,
according to an exemplary embodiment of the invention.

FIG. 6 is a flow diagram illustrating a method for automatically creating a persistent
storage structure in the form of a database table according to an exemplary
embodiment of the invention.

FIG. 7 is a flow diagram illustrating a method for automatically generating a
software class that provides methods for accessing, searching and deleting entity
instances, according to an exemplary embodiment of the invention.

FIG. 8 is a flow diagram illustrating a method for automatically populating instance
data into a database table, according to an exemplary embodiment of the invention.

FIG. 9 is a flow diagram illustrating a method for automatically creating an index
for object instance data based on access history, according to an exemplary
embodiment of the invention.

FIG. 10 is a flow diagram illustrating a method for implementing a cache to
optimize instance access performance, according to an exemplary embodiment of the
invention.

Best Mode for Carrying Out the Invention

Exemplary embodiments of the present invention include systems and methods for
generating autonomous persistent storage systems, which are self-configurable, self-
managing and self-optimizable. For example, exemplary embodiments of the present
invention include systems and methods for providing autonomous creation,
management, maintenance, and optimization of persistent storage structures, such as
directortes of objects or electronic catalogs, for implementation with database systems
and other information systems.

In general, exemplary embodiments of the invention include methods for auto-
matically generating persistent storage structures, e.g., electronic catalogs, using an

WO 2005/041061 PCT/EP2004/052194

[022]

[023]

[024]

[025]

entity description of an entity and associated properties to be stored in a catalog,
persistent storage of entity instances that comply with the entity description, as well as
methods for automatically, configuring and managing the persistent storage and syn-
thesizing an interface for accessing persisted entity instances.

It is to be understood that the term "database” as used herein is to be broadly
construed to include any persistent storage system, such as, for example, relational
databases (e.g., IBM DB2 and Oracle 9), file systems (e.g., NTFS), disk management
systems (e.g., RAID), etc. For illustrative purposes, exemplary embodiments of the
present invention are described with reference to relational database systems, but those
of ordinary skill in the art can readily envision other types of persistent storage systems
and methods that can be used in lieu of relational databases.

- Furthermore, the term “catalog” or “electronic catalog” as used herein should be
broadly construed to refer to any directory of entities characterized by properties, For
example, a “catalog” may be structured as a database table. It is to be further
understood that the term “entity” as used herein is to be broadly construed as referring
to any “thing” or “object” that is to be persistently stored. Further, the term “property”
as used herein is intended to broadly refer to attributes of an entity. By way of
example, an entity named “soda” may be defined having properties (attributes) such as
name, flavor, size, manufacturer, nutrition fact, UPC (Universal Product Code), etc.
The term “instance” as used herein broadly refers to a physical materialization of an
entity. Using the “soda” entity as an example, an instance of “soda” can be, e.g., Diet
Coke, manufactured by the Coca Cola Company.

It is to be appreciated that exemplary embodiments of the present invention as
described herein can be used to implement, for example, catalog functions in
commerce servers, human resource management, enterprise resource planning,
procurement systems, supply chain systems, customer relationship management,
product lifecycle management, as well as other enterprise software applications. For
purposes of illustration and description, exemplary embodiments of the invention will
be described herein based on a Java (Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries or both) im-
plementation and relational database, although nothing herein shall be construed as
limiting the scope of the invention with regard to, e.g., the programming language or
persistent storage system.

It is to be understood that the exemplary systems and methods described herein may
be implemented in various forms of hardware, software, firmware, special purpose
processors, or a combination thereof. In particular, the present invention can be im-
plemented as an application comprising program instructions that are tangibly
embodied on one or more program storage devices (e.g., hard disk, magnetic floppy

WO 2005/041061 PCT/EP2004/052194

disk, RAM, ROM, CD ROM, etc.) and executable by any device or machine
comprising suitable architecture.

[026] It is to be further understood that, because some of the constituent system
components and process steps depicted in the accompanying Figures are preferably im-
plemented in software, the connections between system modules (or the logic flow of
method steps) may differ depending upon the manner in which the present invention is
programmed. Given the teachings herein, one of ordinary skill in the related art will be
able to contemplate these and similar implementations or configurations of the present
invention.

[027] For example, FIG. 1 is a schematic diagram illustrating an operating system that can
be used for implementing an autonomous persistent storage system (e.g., autonomous
catalog system) according to an exemplary embodiment of the present invention. The
system (10) comprises a user interface (100), CPU (central processing unit) (102), a
cache/RAM memory (104) and persistent storage memory (106). The user interface
(100), which comprises a display and keyboard, enables a user to interface with an
autonomous catalog system which executes in the CPU (102). It is to be understood
that the autonomous catalog system may interface with other applications or services
using suitable APIs and protocols for computer networking communications, for
example. An autonomous catalog system according to an exemplary embodiment of
the present invention executes in the CPU (102) and uses the main memory (104) to
temporarily store its executable code and data. Furthermore, the disk (106) is used for
storing programs and data that require persistence. It is to be understood that the
system (10) depicted in Fig. 1 is merely one exemplary embodiment of an operating
environment in which autonomous catalog systems and methods according to the
present invention can be implemented and executed, and that other suitable operating
environments for use with the present invention are can be readily envisioned by one
of ordinary skill in the art.

[028] Referring now to Fig. 2, an exemplary diagram illustrates functional relationships
among entities that may access and interact with an autonomous persistent storage
system according to an exemplary embodiment of the present invention. Fig. 2 depicts
an abstract view of a catalog (214) comprising a directory of entity instances. The
instances may or may not belong to the same entity. In accordance with one exemplary
embodiment of the invention, an autonomous catalog system supports various access
methods including, for example, store (208), retrieve (210), search (212) and remove
(216). The store (208) method is used to insert new instances into the catalog (214).
The retrieve (210) method is used to obtain a specified instance from the catalog (214)
by identifiers. The search (212) method is used to find instances whose property values
match specified conditions. The remove (216) method can be optionally implemented

WO 2005/041061 PCT/EP2004/052194

[029]

[030]

[031]

[032]

to delete specified instances from the catalog (214) by identifiers. The various methods
store (208), retrieve (210), search (212) and/or remove (216) may be used various
entities, including, for example, human operators (200), computer hardware (202),
computer software (204), web services (206), etc., depending on the implementation or
purpose of the catalog (214) in a larger enterprise software.

Referring now to FIG. 3, an exemplary diagram illustrates an entity description
(e.g., entity-property declaration), which may be used for generating an autonomous
catalog system, according to an exemplary embodiment of the invention. In the il-
lustrative embodiment of Fig. 3, an entity-property declaration (30) comprises an entity
(300) having a unique name (302) for identification. The entity (300) comprises a
plurality of properties (304-1, 304-2, ..., 304-N). Each property (304-1, 304-2, ...,
304-N) is identified by a corresponding property name (306-1, 306-2, ... 306-N) and is
assigned a corresponding data type (307-1, 307-2, ..., 307-N). The data type field is
used for estimating the amount of storage space for the property value. The data types
may include, for example, integer, floating point, character strings, byte arrays and
other data types known by those of ordinary skill in the art. In one exemplary
embodiment of the present invention, new data types can be defined as needed,
depending on the application.

It is to be appreciated that in one exemplary embodiment of the invention, the
entity-property declaration (30) can be generated using application-dependent methods
that are compatible with the programming models of the enterprise software that
implements an autonomous catalog system according to the invention. In other
exemplary embodiments, the entity-property declaration (30) can be generated using
application-independent languages, such as XML, for example, or other suitable
extensible languages. It is to be understood that Fig. 3 is merely one illustrative
embodiment of an entity description including information that is preferable for im-
plementing an autonomous catalog according to an embodiment of the invention, and
that additional information may be used for generating an entity-property declaration
depending on the application.

Fig. 4 depicts a high-level schematic diagram of an autonomous catalog system
according to an exemplary embodiment of the present invention. It is to be understood
that Fig. 4 is merely one exemplary embodiment of an autonomous persistent storage
system in the form of an electronic catalog system for a relational database. However,
as noted above, one of ordinary skill in the art can readily envision other autonomous
persistent storage systems that can be implemented in accordance with the teachings of
the present invention.

Referring now to Fig. 4, the autonomous catalog system (40) comprises a
declaration interface (400) and automatic setup utility (402), which process an entity

WO 2005/041061 PCT/EP2004/052194

[033]

[034]

[035]

description to generate an autonomous (self-configurable, self-managed, self-
optimized) electronic catalog (403). More specifically, in one exemplary embodiment,
self-configuration of the autonomous catalog (403) begins with the declaration
interface (400) receiving an entity definition and then interpreting and parsing the
entity definition to form logical associations. For example, the declaration interface
(400) can parse an entity definition to determine the structure and properties of the data
and generate a hierarchically structured tree as depicted in FIG. 3, for example. The
declaration interface (400) passes the parsing results (logical associations) to the
automatic setup utility (402), which commences a configuration process to generate the
autonomous catalog (403) having a plurality of modules.

For example, the autonomous catalog (403) comprises an interface module (404)
having access programs that are synthesized to enable access to persisted entities. For
example, the interface module (404) comprises methods to get and set property values,
as well as searchby property values of persisted entities. A persistence module (406)
and storage mapping module (414) function jointly to provide a reliable utility for
storing catalog entity instances in database tables (418). A search module (408)
provides a method for searching catalog entity instances in the database tables (418).
An index creation module (416) provides a method for indexing one or more catalog
entity instances, and can be invoked by the search module (408) to improve search
performance. An access history module (410) provides a mechanism for controlling the
index creation module (416) to create indexes for frequently searched properties. A
cache module (412) provides a mechanism for storing recently accessed instances in
database tables (418).

In one exemplary embodiment, the system (40) of Fig. 4 comprises modules (400),
(402) and (403) comprising modules (404), (406), (414), (408) and (418). In another
exemplary embodiment, modules (410), (412), and (416), for example, can be im-
plemented to enbance access and retrieval performance.

It is appreciated that an autonomous persistent storage system, such as depicted in
Fig. 4, can be employed for various applications. For instance, such system can be im-
plemented as a component of an enterprise application for providing database
management. In addition, an autonomous persistent storage system can be im-
plemented with web/application servers for building e-commerce applications. In
addition, an autonomous persistent storage system may be implemented as a service
that is accessible on a remote server, wherein a consumer can pay service fees to a
service provider based on some fee structure or service level agreement for providing,
e.g., secured database management. Those of ordinary skill in the art can readily
envision other applications for an autonomous persistent storage system according to

the invention.

WO 2005/041061 PCT/EP2004/052194

[036]

[037]

[038]

[039]

[040]

Details regarding exemplary modes of operation, functions and architectures of the
autonomous catalog system (40) modules will now be described in further detail with
reference to the exemplary embodiments depicted in Figs. 5-10, for example. In
addition, for illustrative purposes, the exemplary systems and methods depicted in
Figs. 5-10 will be described with reference to an exemplary entity-property declaration
for a declared entity Soda, having properties Brand, Size, and UPC. In addition, it is
assumed that the property Brand has a “string” data type, the property Size has an
“integer” data type and the property UPC has a “string” data type.

Fig. 5 is a flow diagram illustrating a method for parsing a new entity definition
into name and data type structures for use in generating an autonomous catalog system
according to an exemplary embodiment of the invention. For example, Fig. 5 illustrates
a system and method for implementing the declaration interface module (400) (Fig. 4)
according to an exemplary embodiment of the invention.

Referring now to Fig. 5, initially, a new entity declaration (500) is received for
processing. As noted above, the entity declaration (500) may be described using an ap-
plication-dependent language or application-independent language. The entity
declaration (500) is parsed to determine the “name” of the declared entity (502), and
the parsed entity name (504) is stored for subsequent access in downstream processing.
In the above example, the entity name Soda will be stored. Further, the declaration is
parsed to obtain the property names (506) of the declared entity. For each property
name, the declaration is further parsed to obtain the corresponding data type, and the
parsed property names and corresponding data types (510) are stored for subsequent
access in downstream processing. In the above example, the entity properties Brand,
Size, and UPC (and corresponding data types) will be parsed and stored.

Fig. 6 is a flow diagram illustrating a method for creating persistent storage
structure according to an exemplary embodiment of the invention. For example, FIG. 6
illustrates a system and method for implementing the persistence (406) and storage
mapping (414) modules (Fig. 4) for creating a database table for a relational database
according to exemplary embodiments of the invention. For purposes of discussion,
with no loss of generality, it is assumed that the persistent storage is a relational
database that accepts SQL (Structured Query Language) queries/requests.

Referring now to Fig. 6, initially, a database connection is opened (600). A SQL
statement for creating a new database table is automatically generated using, for
example, the parsed entity name (504) and the entity property names and associated
data types (510). More specifically, a create table SQL statement is generated by
defining a new database table with the entity name (602). In one exemplary
embodiment using SQL and a relational database, and using the entity name Soda in
the above example, a create table SQL statement begins with “CREATE TABLE

WO 2005/041061 PCT/EP2004/052194

[041]

[042]

[043]

[044]

[045]

[046]

[047]

[048]
[049]
[050]
[051]

SODA”. In other exemplary embodiments of the invention, the entity name (504) can
be transformed or altered to comply with certain requirements of the database
management system, as is understood by those of ordinary skill in the art (a detailed
discussion of which is beyond the scope of the present invention).

Then, generation of the create table statement continues by defining a new column
for the database table for each property name and corresponding data type (604). More
specifically, a table column is created for each property based on its data type and the
property names are used as column names. For example, since the entity Soda
comprises the properties Brand, Size and UPC, the create table SQL statement is
further expanded as follows:

“(BRAND CHARACTER (10) NOT NULL, SIZE BIGINT NOT NULL, UPC
CHARACTER (10) NOT NULL)”.

In the exemplary SQL statement, the Brand column has enough space for ten
characters. The Size column can store an integer. The UPC column also has enough
space for ten characters. Finally, the exemplary SQL statement is appended with
database user space clause. The complete table creation statement is as follows:

“CREATE TABLE SODA (BRAND CHARACTER (10) NOT NULL, SIZE
BIGINT NOT NULL, UPC CHARACTER (10) NOT NULL) IN "USERSPACE";”

Once the table creation statement is generated, the statement is issued to the
database to create a table (606) having a structure as defined in the statement. In the
above example, it is assumed that a database table SODA is created.

FIG. 7 is a flow diagram illustrating a method for automatically generating a
software class that provides methods for accessing, searching and deleting entity
instances, according to an exemplary embodiment of the invention. For example, FIG.
7 illustrates a system and method for implementing the interface module (404) (Fig. 4)
for the autonomous catalog (403) according to an exemplary embodiment of the
invention. For purposes of discussion, without loss of generality, it is assumed that the
Java programming language is employed for the autonomous catalog system of Fig. 4.

Referring now to Fig. 7, initially, a new software (Java) class is created (700),
which is named after the stored entity name (504) (i.e., Soda using the above example).
One or more members of the new class will then be declared with the names and data
types of entity properties (510). More specifically, for each property, a new field is
created with the property name and associated data type (702). By way of example,
using the above Soda example, an exemplary Java skeleton of the class is as follows:

public class Soda {

public String Brand;

public int Size;

public String UPC,;

WO 2005/041061 PCT/EP2004/052194

[052]
[053]

[054]
[055]
[056]
[057]
[058]
[059]
[060]
[061]
[062]
[063]
[064]
[065]
[066]
[067]
[068]
[069]
[070]
[071]
[072]
[073]
[074]
[075]
[076]
[077]
[078]
[079]

10

}
Next, for each field (property), a pair of get() and put() methods are created (706).

In addition, a searchBy() method is created for each property (708). Further,
adeleteSelf() method will be created (704) so that the class can destroy its own
instance. By way of example using the above Soda example, the exemplary Java
skeleton of the class is expanded as follows:

public class Soda {

public String Brand;

public int Size;

public String UPC;

public String getBrand() {

return Brand; }

public int getSize() {

return Size; }

public String getUPC() {

return UPC; }

public void setBrand(String brand) {

Brand = brand; }

public void setSize(int size) {

Size = size; }

public void setUPC(String uPC) {

UPC =uPC; }

public Soda [] searchByBrand(String brand) {

return null; }

public Soda [] searchBySize(int size) {

return null; }

public Soda [] searchByUPC(String uPC) {

return null; }

public void deleteSelf() {

}

}
Further, a populate() method is created to insert property values into the SODA

table (712). The exemplary embodiment of Fig. 8 illustrate an implementation of the
populate() method. In addition, the deleteSelf() method is populated with a storage
delete command (710), e.g., an SQL statement to delete the row representing the
instance from the SODA table (710). A procedure to generate the SQL update is
similar to FIG. 8 and thus will not be repeated here. For completeness, an exemplary
deleteSelf() statement is illustrated for reference:

WO 2005/041061 PCT/EP2004/052194
11

[080] “DELETE FROM SODA WHERE BRAND = this.Brand AND SIZE = this.Size
AND UPC = this.UPC”

[081] The exemplary Java class skeleton, which has the populate() and deleteSelf()
method populated, is as follows:

[082] public class Soda {

[083] public String Brand;
[084] public int Size;

[085] public String UPC,;

[086] public String getBrand() {
[087] return Brand; }

[088] public int getSize() {
[089] return Size; }

[090] public String getUPC() {
[091] return UPC; }

[092] public void setBrand(String brand) {

[093] Brand = brand; }

[094] public void setSize(int size) {

[095] Size = size; }

[096] public void setUPC(String uPC) {

[097] UPC =uPC; }

[098] public Soda [] searchByBrand(String brand) {

[099] return null; }

[100] public Soda [] searchBySize(int size) {

[101] return null; }

[102] public Soda [] searchByUPC(String uPC) {

[103] return null; }

[104] public void deleteSelf() {

[105] execute the SQL statement “DELETE FROM SODA WHERE BRAND =
this.Brand AND SIZE = this.Size AND UPC = this.UPC”;

[106] }

[107] public void populate() {

[108] execute the SQL statement “INSERT INTO SODA (BRAND, SIZE, UPC)
VALUES (this.Brand, this.Size, this.UPC)”;

[109] }

[110] }

[111] Further, a populate() method is created to insert property values into the SODA
table (712). The exemplary embodiment of Fig. 8 illustrate an implementation of the
populate() method. In addition, the deleteSelf() method is populated with a storage

WO 2005/041061

[112]

[113]

[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]

[138]
[139]
[140]

[141]

12

delete command (710), e.g., an SQL statement to delete the row representing the
instance from the SODA table (710). A procedure to generate the SQL update is
similar to FIG. 8 and thus will not be repeated here. For completeness, an exemplary
deleteSelf() statement is illustrated for reference:
“DELETE FROM SODA WHERE BRAND = this.Brand AND SIZE = this.Size
AND UPC = this.UPC”

The exemplary Java class skeleton, which has the populate() and deleteSelf()

method populated, is as follows:

public class Soda {

public String Brand;

public int Size;

public String UPC;

public String getBrand() {

return Brand; }

public int getSize() {

return Size; }

public String getUPC() {

return UPC; }

public void setBrand(String brand) {
Brand = brand; }

public void setSize(int size) {

Size = size; }

public void setUPC(String uPC) {

UPC =uPC; }

public Soda [] searchByBrand(String brand) {
return null; }

public Soda [] searchBySize(int size) {
return null; }

public Soda [] searchByUPC(String uPC) {
return null; }

public void deleteSelf() {

execute the SQL statement “DELETE FROM SODA WHERE BRAND =

this.Brand AND SIZE = this.Size AND UPC = this.UPC”;

}
public void populate() {

execute the SQL statement “INSERT INTO SODA (BRAND, SIZE, UPC)

VALUES (this.Brand, this.Size, this.UPC)”;

}

PCT/EP2004/052194

WO 2005/041061 PCT/EP2004/052194

[142]
[143]

[144]
~ [145]

[146]
[147]
[148]
[149]
[150]

[151]

[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]

[163] .

[164]
[165]
[166]
[167]
[168]
[169]

13

}

Furthermore, the searchBy() methods for the properties are populated with database
query and retrieval statements (714). More specifically, by way of example, the
searchBy() method looks for matches of Soda instances with specified conditions. For
instance, the query searchByBrand(“Diet Coke”) requests all Soda instances whose
Brand property is “Diet Coke”. In one exemplary embodiment, the result that is
returned comprises an array of Soda classes with the property values populated:

public Soda [] searchByBrand(String brand) {

execute the SQL statement “SELECT * FROM SODA WHERE BRAND =
“brand” ”;

For each instance match, instantiate a new Soda object;

Set properties of the new Soda object with return values from the SQL statement;

Return all the instantiated Soda objects as an array;

}

In another exemplary embodiment, the searchBy() method syntax can be extended
using additional operators for fuzzy matching and number comparisons, for example,
as is readily understood by those of ordinary skill in the art.

The exemplary Java class skeleton, which has all the methods populated, is as
follows:

public class Soda {

public String Brand;

public int Size;

public String UPC;

public String getBrand() {

return Brand; }

public int getSize() {

return Size; }

public String getUPC() {

return UPC; }

public void setBrand(String brand) {

Brand = brand; }

public void setSize(int size) {

Size = size; }

public void setUPC(String uPC) {

UPC =uPC,; }

public Soda [] searchByBrand(String brand) {

execute the SQL statement “SELECT * FROM SODA WHERE BRAND =
“brand” ”’;

WO 2005/041061 PCT/EP2004/052194

[170]
[171]
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]

[188]
[189]
[190]

[191]

[192]
[193]

[194]

14

For each instance match, instantiate a new Soda object;

Set properties of the new Soda object with return values from the SQL statement;

Return all the instantiated Soda objects as an array;

}

public Soda [] searchBySize(int size) {

execute the SQL statement “SELECT * FROM SODA WHERE SIZE = size”;

For each instance match, instantiate a new Soda object;

Set properties of the new Soda object with return values from the SQL statement;

Return all the instantiated Soda objects as an array;

) ,

public Soda [] searchByUPC(String uPC) {

execute the SQL statement “SELECT * FROM SODA WHERE UPC = “uPC” ”;

For each instance match, instantiate a new Soda object;

Set properties of the new Soda object with return values from the SQL statement;

Return all the instantiated Soda objects as an array;

}

public void deleteSelf() { ‘

execute the SQL statement “DELETE FROM SODA WHERE BRAND =
this.Brand AND SIZE = this.Size AND UPC = this.UPC™;

}

public void populate() {

execute the SQL statement “INSERT INTO SODA (BRAND, SIZE, UPC)
VALUES (this.Brand, this.Size, this.UPC)”;

}

}

In the above exemplary embodiment, the newly generated Soda class, which
accesses the newly created Soda table, can now be called by other applications, for
example, to populate, search and/or delete instances of Soda. Although the above
exemplary systems and methods describe an autonomous method for creating a catalog
for Sodas, those of ordinary skill in the art will readily appreciated that syntheses and
creation of new classes and tables for additional declared entities can be performed
using the same procedures.

FIG. 8 is a flow diagram illustrating a method for populating instance data into a
database table, according to an exemplary embodiment of the invention. For example,
Fig. 8 illustrates a system and method for implementing step (712) (Fig. 7). Continuing
by way of example with the Soda example, it is assumed in Fig. 8 that the Soda
database table has been created and that a new instance having catalog content is
processed to populate such catalog content into the Soda table.

WO 2005/041061 PCT/EP2004/052194

[195]

[196]

[197]

[198]
[199]

[200]

[201]

[202]

[203]

[204]

15

Referring to Fig. 8, initially, a database connection is open (800). Then, creation of
an SQL insert statement begins with “INSERT INTO” (802). A new entity instance
declaration for Soda is received (804) and parsed to obtain the entity name (806). By
way of example, the new entity instance for Soda may have the following properties
and value: Brand = “Diet Coke”, Size = 12 oz, and UPC= 129100. In the table insert
statement, the database table is named with the entity name (808). The instance
declaration is parsed to obtain the names and values for each property (810). The
parsed property names and values are then used to generate the remainder of the insert
statement (812). Using the above exemplary Soda instance, an exemplary SQL insert
statement is as follows:

“INSERT INTO SODA (BRAND, SIZE, UPC) VALUES (‘Diet Coke’, 12,
‘129100%);”

Alternatively, if the new instance has only Brand and Size information, the SQL
insert statement can be altered to include column names as follows:

“INSERT INTO SODA (BRAND, SIZE) VALUES (‘Diet Coke’, 12);”

The insert statement is then issued to the database and the SQL operation “commit”
is invoked to write the instance data to persistent memory (814).

FIG. 9 is a flow diagram illustrating a method for automatically creating an index
for object instance data based on access history, according to an exemplary
embodiment of the invention. For example, FIG. 9 illustrates a system and method for
implementing the access history (410) and index creation (416) modules (Fig. 4).

Referring to now to Fig. 9, when a searchByFieldName() method is invoked for a
given database table (900), a matched field counter for the requested field (property)
name is incremented by one (902). In one exemplary embodiment, each field (table
column) has a counter. If the counter number exceeds a preset threshold (affirmative
determination in 904), an index will be created for the table field (property) (906). By
way of the above Soda example for a relational database, a command for creating an
index for the UPC column of the table Soda can be as follows:

“CREATE INDEX I_UPC ON SODA (UPC ASC) PCTFREE 10 MINPCTUSED
10;”

On the other hand, if the count does not exceed the predefined threshold (negative
determination in 904), no index will be created. It is to be appreciated that the
exemplary systems and methods described in Fig. 9 can be implemented to enhance
access performance for an autonomous persistent storage system according to the
invention.

FIG. 10 is a flow diagram illustrating a method for implementing a cache to
optimize instance access performance, according to an exemplary embodiment of the
invention. For example, FIG. 10 illustrates a system and method for implementing the

WO 2005/041061 PCT/EP2004/052194

[205]

[206]

[207]

16

cache module (412) (Fig. 4). Initially, when a request for an entity object is received
(1000), a cache memory will be searched for the requested object (1002). If the object
is cached (affirmative determination in 1004), the object is retrieved from the cache
(1006) and returned (1012). If the object is not cached (negative determination in
1002), a new entity object is instantiated (1008) by reading the object from the
persisted memory to RAM, for example. The instantiated entity object is cached (1010)
and returned (1012).

It is to be appreciated that the exemplary systems and methods described herein in
accordance with the present invention may be efficiently and effectively implemented
for providing persistent data management in a variety of enterprise applications such as
human resource management (HR), enterprise resource management (ERP), customer
relationship management (CRM), electronic commerce (EC), etc. Indeed, although
such enterprise applications can implement a wide range of different catalog structures
for various purposes, the present invention provides mechanisms for abstracting and
automating catalog functions in the whole lifecycle, thereby enabling automatic and
dynamic adaptation to product heterogeneity and, thus, minimizing the total cost of
ownership.

For example, in one exemplary embodiment, the present invention provides
mechanisms for automatically and dynamically creating new database tables and new
access classes to adapt to product heterogeneity, without requiring manual cus-
tomization. For example, an autonomous catalog system according to an embodiment
of the invention can start with as few as two tables and grow automatically according
to the needs of catalog users. An autonomous catalog system supports the basic
definition of catalog, which is a directory of things characterized by their properties.
By leaving the definition of a “thing” and its “properties” to catalog users, an
autonomous catalog system according to the present invention provides the flexibility
to supportvirtually all catalog requirements regardless of the industry domain.

In addition, an antonomous catalog system according to an embodiment of the
invention enables an application developer to focus on the core functionality of an
enterprise application, without having to know details of the schema design and
performance optimization for the catalog system to be implemented with the enterprise
application.

WO 2005/041061

[001]

[002]
[003]
[004]
[005]
[006]

[007]
[008]

[009]

[010]

[011]

[012]

[013]

[014]

[015]

PCT/EP2004/052194
17

Claims

A method for generating a persistent storage system, the method comprising the
steps of: receiving as input an entity definition; automatically generating a
persistent storage structure for a persistent storage medium using the entity
definition; and automatically generating an interface for accessing the persistent
storage medium.

The method of claim 1, wherein the entity definition comprises a declaration of
an object, one or more properties of the object, and a data type for each property.
The method of claim 1, wherein the persistent storage structure comprises a
database table.

The method of claim 1, wherein the persistent storage structure comprises a file
directory.

The method of claim 1, wherein the persistent storage medium comprises a hard
disk, a readable/writeable CD or a floppy disk.

The method of claim 1, wherein the method is implemented in a database system.
The method of claim 6, wherein the database system is a relational database.

The method of claim 1, wherein the step of automatically generating an interface
for accessing the persistent storage medium comprises automatically creating
methods for one of storing, retrieving, searching, and removing entity instance
data in the persistent storage medium.

The method of claim 1, further comprising the step of automatically generating
an index to persistent stored data.

The method of claim 1, wherein the step of automatically generating an index to
persistent stored data comprises generating an index to persistent stored data that
is frequently accessed as determined by a predefined indicator.

The method of claim 1, further comprising the step of automatically adapting the
persistent storage structure or the access interface for a new entity definition.
The method of claim 1, further comprising the step of automatically optimizing
the persistent storage system to improve search efficiency or storage scalability.
The method of claim 1, further comprising automatically creating a cache
memory for storing an entity instance that is accessed from the persistent storage
medium.

The method of claim 1, further comprising the steps of: receiving an entity
instance declaration; and automatically populating the persistent storage structure
with entity instance data.

A program storage device readable by a machine, tangibly embodying a program
of instructions executable by the machine to perform method steps for generating

WO 2005/041061

[016]

[017]

[018]

[019]

[020]

[021]

[022]

[023]

[024]

[025]

[026]

PCT/EP2004/052194
18

a persistent storage system, the method comprising the steps of: receiving as

input an entity definition; automatically generating a persistent storage structure
for a persistent storage medium using the entity definition; and automatically
generating an interface for accessing the persistent storage medinm.

The program storage device of claim 15, wherein the entity definition comprises
a declaration of an object, one or more properties of the object, and a data type
for each property.

The program storage device of claim 15, wherein the persistent storage structure
comprises a database table.

The program storage device of claim 15, wherein the persistent storage structure
comprises a file directory.

The program storage device of claim 15, wherein the instructions for auto-
matically generating an interface for accessing the persistent storage medium
comprise instructions for automatically creating methods for one of storing,
retrieving, searching, and removing entity instance data in the persistent storage
medium.

The program storage device of claim 15, further comprising instructions for auto-
matically generating an index to persistent stored data.

The program storage device of claim 20, wherein the instructions for auto-
matically generating an index to persistent stored data comprise instructions for
generating an index to persistent stored data that is frequently accessed as
determined by a predefined indicator.

The program storage device of claim 15, further comprising instructions for auto-
matically adapting the persistent storage structure or the access interface for a
new entity definition.

The program storage device of claim 15, further comprising instructions for auto-
matically optimizing the persistent storage system to improve search efficiency

or storage scalability.

The program storage device of claim 15, further comprising instructions for auto-
matically creating a cache memory for storing an entity instance that is accessed
from the persistent storage medium.

The program storage device of claim 15, further comprising instructions for
performing the steps of: receiving an entity instance declaration; and auto-
matically populating the persistent storage structure with entity instance data.

A persistent storage system, comprising: an interface for receiving and

processing an entity definition; and a utility module for automatically

configuring an autonomous persistent storage system in accordance with the
processed entity definition, wherein the autonomous persistent storage system is

WO 2005/041061 PCT/EP2004/052194

[027]
[028]
[029]

[030]

[031]

[032]

[033]

[034]

[035]

[036]

19

automatically configured to comprise: a module for automatically generating a
persistent storage structure for a persistent storage medium using the entity
definition; and an access interface for invoking access methods for accessing the
persistent storage medium.

A database system comprising the persistent storage system of claim 26.

An enterprise application comprising the persistent storage system of claim 26.
The system of claim 26, wherein the persistent storage structure comprises a
database table.

The system of claim 26, wherein the persistent storage structure comprises a file
directory.

The system of claim 26, wherein the access methods comprise methods for one
of storing, retrieving, searching, and removing entity instance data in the
persistent storage medium.

The system of claim 26, wherein the autonomous persistent storage system is an
electronic catalog system.

The system of claim 26, wherein the autonomous persistent storage system
further comprises an index creation module for automatically generating an
index to persistent stored data.

The system of claim 26, wherein the autonomous persistent storage system
further comprises a cache memory module for automatically storing an entity
instance that is accessed from the persistent storage medium.

The system of claim 26, wherein the autonomous persistent storage system
further comprises means for automatically populating a persistent storage
structure with entity instance data that is input to the system.

An e-service that implements the system of claim 26 for providing a data
management service based on a fee agreement or service level agreement.

WO 2005/041061 PCT/EP2004/052194

1/10

[Fig.]

(106
B
DISK’

r-104

10
r—102
CPU
RA
FIG. 1

TR
DISPLAY [
s =—]

PCT/EP2004/052194

WO 2005/041061

2/10

[Fig.]

(K|

_A LOL# 8ouejsy| ~
LG# 9ouesu|

| eoeoumsy |

L1# esue)su|
L

OL# @ourjsy|
,[Hr?;lﬂ
G# souejsu|
——]
e0le)su|

[c#eowmsu

L# oouejsu|
>

_

‘anowel (91.2)

emrrn—y..
yoress (z1.z)

Ill
ansLal (01.2)

iffnss———e—
a10)s (802)

SRIINETS
g9\

| aJemyos
Jeindwon

slempieH
Jeindwon

uBWNp

90¢

002

PCT/EP2004/052194

-

WO 2005/041061

3/10

[Fig.]

K|

adfy ejeq

:

N-L0€

a
WeN N# Auadoug

N-00¢

Nb0E~ o
*
L}

B!

adf; e1eq
108 ¢ Ayadouyg
S
owEN b0
wle . Z# Auedouy
odf} ejeq b~
=08 . .
L# Apedoud
sweN 4 1p0g

1-80¢

alweN

Anuzg

PCT/EP2004/052194

WO 2005/041061

410

[Fig. |

&6

(A4
_— ayoe) “A

134

uojeeln

80%

Biy Xapuj

1 "

90¢

_ snpoly [ig
yoseag

| -

Buiddepy _k\
abeio)g |

l_ sorpB)U| ~

Svg

_* aous)sisied

K Borejen pezjupdo-iies

ajqeinbyuon-jjeg

AN .

dme Blsju]

o_umcwoﬁm:,i __ uonelepaq
Nowk oob Vi

WO 2005/041061

5/10

[Fig.]

J
/ New Entity
. Declaration

502
[

Parse Declaration to
Get Entity Name

Entity Name

§06
\ e

Parse Deciaration to
- Get Property Names

508
[

Fchr\l Each IF;roper’ny Property Names
ame, Parse _
Declaration {o Get and Associated

Associated Data Type Data Types

FIG. 5

PCT/EP2004/052194

504

510
f

WO 2005/041061

PCT/EP2004/052194

6/10

[Fig.]

800
r

Open Database
Conmnection

504 602
e

Create a New
Database Table with
i ame

ntity N
510 604
4o

For Each Property,
Create a Nlew Column
with Property Name
and Associated
Data Type

Entity Name

| Property Names

and Associated
Data Types

Commit Database

FIG. 6

WO 2005/041061

710

[Fig.]

f504

Entity Name

f700

Creale a New Class
with Entity Name

PCT/EP2004/052194

510 : } fmz J [704
[For Each Proj erty, 7
Property Names Create a New Fleld with Create a deleteSelf()
and Associated Property Name and Method
Data Types Associated Data Type
. 706 708 1 710
| A Yy [
For Each Field, Create : opulate deleteSelf()
For Each Field, Create ?
a Pair of get() and ¥ h Storage Delete
put() Methods a searchBy() Method omngland

712
i

4
/

Create a populate()
Method to Insert
Proper_}y Values In

a .

Populate searchBy()
Methods with Storage
Search Commands

FIG. 7

WO 2005/041061 PCT/EP2004/052194

8/10

[Fig.]

Open Database
Connection

Crealte Table Insert
Statermnent

Vs ¥ [
Parse Declaration u
f

New
Instance
Deglaration

To Get Entity
Name

i

Name Table with
Entity Name

Parse Declaration
to Get F’roeerty
Names and Values

Set Column Names
and Column
Values

l kBM

Issue Insert
Statement to
Database and
Commit Insertion

FIG. 8

WO 2005/041061 PCT/EP2004/052194

9/10

[Fig.]

SearchByfie/dName()
Method s Invoked

Increment Field
Counter by One

908
L

Does Gount Exceed

Do Not C
Predefined Threshold ? o Not Create

Index For Frefd

Creale Index
For Field

FIG. 9

WO 2005/041061

10/10
[Fig.]
[1000
Receive Request for
Entity Object
/«1002
Seérch Cache for
Entity Object

PCT/EP2004/052194

1008
e

Instantiate the
Entity Object

1010
L

Retrieve the Entity Object
from Cache

1

Store the Entity Object
in the Cache

!

1012
[

to Requestor

Return the Entity Object

FIG. 10

INTERNATIONAL SEARCH REPORT

Intern al Application No

PCT/EP2004/052194

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F17/30

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIEL.DS SEARCHED

Minimum documentation searched (classification system foliowed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO—Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

X US 6 567 820 B1 (WALDO JAMES H ET AL) 1-36

20 May 2003 (2003-05-20)
4,5,9A,9B

A US 5 870 742 A (HIGH JR ROBERT HOWARD ET
AL) 9 February 1999 (1999-02-09)

abstract

column 2, 1ine 32 - Tine 63; figures

column 4, 1ine 10 - Tine 45

column 10, 1ine 29 - column 11, Tine 15
column 5, 1ine 65 — column 6, line 9
column 7, line 13 - column 9, line 2

13,24,34

iy

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

'A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date
*L" document which may throw doubts on priority claim(s) or

which is cited to establish the publication date of another
citation or other special reason (as specified)

0 document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undetrlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
m%rllts, such combination being obvious to a person skilled
in the art.

& document member of the same patent family

Date of the actual completion of the international search

5 January 2005

Date of mailing of the international search report

14/01/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Jaedicke, M

Form PCT/ISA/210 (second shest) (January 2004)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Intern

I Application No

PCT/EP2004/052194

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

DANISH S: "Building Database-driven
Electronic Catalogs”

ACM SIGMOD RECORD,

vol. 27, no. 4, December 1998 (1998-12),
pages 15-20, XP002245952

cited in the application

the whole document

BARTELS D ED - SU S Y W: "ODMG 93-the
emerging object database standard”

DATA ENGINEERING, 1996. PROCEEDINGS OF THE
TWELFTH INTERNATIONAL CONFERENCE ON NEW
ORLEANS, LA, USA 26 FEB.-1 MARCH 1996, LOS
ALAMITOS, CA, USA,IEEE COMPUT. SOC, US,
26 February 1996 (1996-02-26), pages
674-676, XP010158969

ISBN: 0-8186-7240-4

the whole document

US 5 295 256 A (BAPAT SUBODH)

15 March 1994 (1994-03-15)

abstract

GB 2 253 500 A (DATA GENERAL CORP)

9 September 1992 (1992-09-09)

abstract

1-36

Fom PCT/iSA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

B mation on patent family members

Intern:

| Application No

PCT/EP2004/052194

Patent document

Pubiication

Patent family

Publication

cited in search report date member(s) date

US 6567820 Bl 20-05-2003 US 6182083 Bl 30-01-2001
us 6032151 A 29-02-2000
AU 2878399 A 15-09-1999
CN 1298523 T 06-06-2001
EP 1057123 Al 06-12-2000
JP 2002505484 T 19-02-2002
Wo 9944157 Al 02-09-1999
us 6708171 Bl 16—-03-2004
us 6480863 B1 12-11-2002
us 6578044 B1 10-06-2003

US 5870742 A 09-02-1999 KR 210208 Bl 15-07-1999

US 5295256 A 15-03-1994 NONE

GB 2253500 A 09-09-1992 NONE

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

