(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/028724 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

20 February 2014 (20.02.2014) WIPO I PCT

International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
GO6F 12/08 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. L HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
PCT/US2013/055119 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
15 August 2013 (15.08.2013) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

Filing Language: English ZW.
Publication Language: English (84) Designated States (uniess otherwise indicated, for every
Priority Data: kind of regional protection available): ARIPO (BW, GH,
13/588,622 17 August 2012 (17.08.2012) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Applicant: ADVANCED MICRO DEVICES, INC. TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
[US/US]; One AMD Place, Sunnyvale, California 94088 EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Inventors: MCCAULEY, Donald W.; 102 Edgewater Eli/}, D?[?PII\/I(IIS FI:IEBJ’SgFiFgG,}g)I’ CM, GA, GN, GQ, GW,

Cove, Lakeway, Texas 78734 (US). THOMPSON, Steph- i i P e ’
en P.; 1039 Princeton Drive, Longmont, Colorado 80503 Published:

(US).

Agent: DAVIDSON, Ryan; Davidson Shechan LLP, 1501
West Avenue, Suite B, Austin, Texas 78701 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(34

20147028724 AT I 01000 10010 TP O 0

Title: DATA CACHE PREFETCH HINTS

100

12 PRR-FETCHFR |
138

L1 PRA.FETCHER |
140 i

MAIN MEMORY

g

1.2 CACTIT
124

CPLEORE

| LiDCACHE
L1 CACHE
i2s cpu

Figure 1

(57) Abstract: The present disclosure provides a method and apparatus for using prefetch hints. One embodiment of the method in -
cludes bypassing, at a first prefetcher (150) associated with a first cache (120), issuing requests to prefetch data from a number of
memory addresses in a sequence of memory addresses determined by the first prefetcher. The number is indicated in a request re -

o ceived from a second prefetcher (140) associated with a second cache (125). This embodiment of the method also includes issuing,

W

from the first prefetcher, a request to prefetch data from a memory address subsequent to the bypassed memory addresses.

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

DATA CACHE PREFETCH HINTS

BACKGROUND
[0001] This application relates generally to processor-based systems, and, more particularly, to providing hints

during data cache prefetching in processor-based systems.

[0002] Many processing devices utilize caches to reduce the average time required to access information stored in
a memory. A cache is a smaller and faster memory that stores copies of instructions or data that are expected to be
used relatively frequently. For example, central processing units (CPUs) are generally associated with a cache or a
hierarchy of cache memory elements. Other processors, such as graphics processing units or accelerated processing
units, can also implement cache systems. Instructions or data that are expected to be used by the CPU are moved
from (relatively large and slow) main memory into the cache. When the CPU needs to read or write a location in the
main memory, it first checks to see whether a copy of the desired memory location is included in the cache memory.
If this location is included in the cache (a cache hit), then the CPU can perform the read or write operation on the
copy in the cache memory location. If this location is not included in the cache (a cache miss), then the CPU needs
to access the information stored in the main memory and, in some cases, the information can be copied from the
main memory and added to the cache. Proper configuration and operation of the cache can reduce the average

latency of memory accesses to a value below the main memory latency and close to the cache access latency.

[0003] A prefetcher can be used to populate the lines in the cache before the information in these lines has been
requested from the cache. The prefetcher can monitor memory requests associated with applications running in the
CPU and use the monitored requests to determine or predict that the CPU is likely to access a particular sequence of
memory addresses in the main memory. For example, the prefetcher may detect sequential memory accesses by the
CPU by monitoring a miss address buffer that stores addresses of previous cache misses. The prefetcher then
fetches the information from locations in the main memory in a sequence (and direction) determined by the
sequential memory accesses in the miss address buffer and stores this information in the cache so that the
information is available before it is requested by the CPU. Prefetchers can keep track of multiple streams and

independently prefetch data for the different streams.

SUMMARY OF EMBODIMENTS
[0004] The disclosed subject matter is directed to addressing the effects of one or more of the problems set forth
above. The following presents a simplified summary of the disclosed subject matter in order to provide a basic
understanding of some aspects of the disclosed subject matter. This summary is not an exhaustive overview of the
disclosed subject matter. It is not intended to identify key or critical elements of the disclosed subject matter or to
delineate the scope of the disclosed subject matter. Its sole purpose is to present some concepts in a simplified form

as a prelude to the more detailed description that is discussed later.

[0005] In one embodiment, a method is provided for data cache prefetch hinting. One exemplary embodiment of
the method includes bypassing, at a first prefetcher associated with a first cache, issuing requests to prefetch data
from a number of memory addresses in a sequence of memory addresses determined by the first prefetcher. The

number is indicated in a request received from a second prefetcher associated with a second cache. This

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

embodiment of the method also includes issuing, from the first prefetcher, a request to prefetch data from a memory

address subsequent to the bypassed memory addresses.

[0006] In another embodiment, an apparatus is provided for data cache prefetch hinting. One exemplary
embodiment of the apparatus includes a first prefetcher configurable to bypass issuing requests to prefetch data from
a number of memory addresses in a sequence of memory addresses determined by the first prefetcher. The number
is indicated in a request received from a second prefetcher associated with a second cache. The exemplary
embodiment of the first prefetcher is configurable to issue a request to prefetch data from a memory address

subsequent to the bypassed memory addresses.

[0007] In yet another embodiment, a processor-based system is provided for data cache prefetch hinting. One
exemplary embodiment of the processor-based system includes a memory, a first cache associated with the memory,
a first prefetcher for prefetching data into the first cache, a second cache associated with the first cache, and a
second prefetcher for prefetching data into the second cache. The first prefetcher is configurable to bypass issuing
requests to prefetch data from a number of memory addresses in a sequence of memory addresses determined by the
first prefetcher. The number is indicated in a request received from the second prefetcher. The first prefetcher is
configurable to issue a request to prefetch data from a memory address subsequent to the bypassed memory

addresses.

[0008] In a further embodiment, computer readable media including instructions that when executed can configure
a manufacturing process used to manufacture a semiconductor device that includes an integrated circuit including a
first prefetcher configurable to bypass issuing requests to prefetch data from a number of memory addresses in a
sequence of memory addresses determined by the first prefetcher. The number is indicated in a request received
from a second prefetcher associated with a second cache. The first prefetcher is configurable to issue a request to

prefetch data from a memory address subsequent to the bypassed memory addresses.

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The disclosed subject matter may be understood by reference to the following description taken in

conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:

[0010] Figure 1 conceptually illustrates a first exemplary embodiment of a semiconductor device that may be

formed in or on a semiconductor wafer;

[0011] Figure 2 conceptually illustrates one exemplary embodiment of a prefetcher such as the L1 prefetcher or

the L2 prefetcher shown in Figure 1;

[0012] Figure 3 conceptually illustrates one exemplary embodiment of a method for allocating a prefetch stream

and identifying a look-ahead window using prefetch flags;

[0013] Figure 4 conceptually illustrates a first exemplary embodiment of a prefetch stream that includes a

sequence of addresses that can be flagged and prefetched;

[0014] Figure 5 conceptually illustrates one exemplary embodiment of an address sequence associated with a

prefetch stream;

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

[0015] Figure 6 conceptually illustrates one exemplary embodiment of a prefetch stream entry;

[0016] Figure 7 conceptually illustrates one exemplary embodiment of a method for allocating a prefetch stream

and identifying a look-ahead window using prefetch flags;

[0017] Figure 8A conceptually illustrates one exemplary embodiment of an address sequence associated with a

prefetch stream; and

[0018] Figure 8B conceptually illustrates another exemplary embodiment of the address sequence associated with

the prefetch stream of Figure 8A.

[0019] While the disclosed subject matter may be modified and may take alternative forms, specific embodiments
thereof have been shown by way of example in the drawings and are herein described in detail. It should be
understood, however, that the description herein of specific embodiments is not intended to limit the disclosed
subject matter to the particular forms disclosed, but on the contrary, the intention is to cover all modifications,

equivalents, and alternatives falling within the scope of the appended claims.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

[0020] Ilustrative embodiments are described below. In the interest of clarity, not all features of an actual
implementation are described in this specification. It will of course be appreciated that in the development of any
such actual embodiment, numerous implementation-specific decisions should be made to achieve the developers’
specific goals, such as compliance with system-related and business-related constraints, which will vary from one
implementation to another. Moreover, it will be appreciated that such a development effort might be complex and
time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the
benefit of this disclosure. The description and drawings merely illustrate the principles of the claimed subject
matter. It should thus be appreciated that those skilled in the art may be able to devise various arrangements that,
although not explicitly described or shown herein, embody the principles described herein and may be included
within the scope of the claimed subject matter. Furthermore, all examples recited herein are principally intended to
be for pedagogical purposes to aid the reader in understanding the principles of the claimed subject matter and the
concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to

such specifically recited examples and conditions.

[0021] The disclosed subject matter is described with reference to the attached figures. Various structures,
systems and devices are schematically depicted in the drawings for purposes of explanation only and so as to not
obscure the present invention with details that are well known to those skilled in the art. Nevertheless, the attached
drawings are included to describe and explain illustrative examples of the disclosed subject matter. The words and
phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of
those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, i.e., a
definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is
intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is

intended to have a special meaning, i.e., a meaning other than that understood by skilled artisans, such a special

-3-

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

definition is expressly set forth in the specification in a definitional manner that directly and unequivocally provides
the special definition for the term or phrase. Additionally, the term, "or," as used herein, refers to a non-exclusive
“or,” unless otherwise indicated (e.g., “or else” or “or in the alternative™). Also, the various embodiments described
herein are not necessarily mutually exclusive, as some embodiments can be combined with one or more other

embodiments to form new embodiments.

[0022] Memory caches can prefetch cache lines that are expected to be requested from the cache by processor
cores. For example, when two requests from a processor core miss consecutive addresses in a cache, a prefetcher
may predict that the processor core is going to request additional addresses in the pattern indicated by the misses.
The prefetcher may therefore prefetch cache lines from memory or another cache so that these lines are available in
the cache if the processor core requests them. In a hierarchical cache system, a processor core may request cache
lines from a lower level cache (such as an L1 data or instruction cache), the lower level cache may request cache
lines from a higher level cache (such as an L2 cache), and the higher level cache may request lines from a main

memory or an even higher level cache (such as an L3 cache).

[0023] Higher-level caches typically have higher latencies relative to lower level caches, i.e., it takes more time
for the higher level cache to retrieve information from the next higher memory or cache level. Caches that have
higher latencies typically issue more prefetch requests in response to a miss, e.g., they have a higher prefetch
distance. For example, an L1 data cache may have as many as three prefetch requests outstanding and an L2 cache
may have as many as 12 prefetch requests outstanding. Conventional L1 caches and L2 caches are unaware of each
other's outstanding prefetch requests. Consequently, the higher level cache may request the same line twice (e.g.,
once in response to a demand request from the lower-level cache and once in response to a prefetch request from the
higher-level prefetcher) resulting in duplicated effort that unnecessarily consumes power, time, and other system

resources. Issuing duplicate requests also costs the prefetcher the opportunity to prefetch another cache line.

[0024] Embodiments of the prefetchers described herein may be configured to address the aforementioned
difficulties in the conventional practice by storing information indicating the number of outstanding prefetch
requests for a lower level cache prefetch stream. In one embodiment, the prefetch request information, which may
be referred to as a prefetch hint, may be attached to a stream entry. The prefetch hint can be forwarded to the higher
level cache in response to the lower level prefetcher issuing a demand request to the higher level cache. The
prefetcher for the higher level cache can use the prefetch hint and the address of the demand request to skip over
addresses corresponding to the prefetch requests that are outstanding at the lower level prefetcher and train the
higher-level prefetch stream to issue requests for subsequent addresses. The prefetcher for the higher level cache
may then issue prefetch requests in response to demand or prefetch requests that miss the lower level cache. For
example, the lower-level cache may use the first miss to allocate the prefetch stream and the second miss to train the
prefetch stream. The first (and subsequent) request from the lower-level prefetcher to the higher-level cache
includes the prefetch hint information. Assuming that the higher-level cache does not have the requested
information, the higher level cache uses the first miss to allocate a prefetch stream, the second miss to train the

prefetch stream, and the first prefetch request (with hints) to select the address of its next prefetch request.

[0025] Figure 1 conceptually illustrates a first exemplary embodiment of a semiconductor device 100 that may be
formed in or on a semiconductor wafer (or die). The semiconductor device 100 may be formed in or on the

semiconductor wafer using well known processes such as deposition, growth, photolithography, etching, planarising,

-4-

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

polishing, annealing, and the like. In the illustrated embodiment, the device 100 includes a central processing unit
(CPU) 105 that is configured to access instructions or data that are stored in the main memory 110. In the illustrated
embodiment, the CPU 105 includes at least one CPU core 115 that is used to execute the instructions or manipulate
the data. The CPU 105 also implements a hierarchical (or multilevel) cache system that is used to speed access to
the instructions or data by storing selected instructions or data in the caches. However, persons of ordinary skill in
the art having benefit of the present disclosure should appreciate that alternative embodiments of the device 100 may
implement different configurations of the CPU 105, such as configurations that use external caches. Moreover, the
techniques described in the present application may be applied to other processors such as graphical processing units

(GPUgs), accelerated processing units (APUs), and the like.

[0026] The illustrated cache system includes a level 2 (L2) cache 120 for storing copies of instructions or data that
are stored in the main memory 110. In the illustrated embodiment, the L2 cache 120 is 16-way associative to the
main memory 110 so that each line in the main memory 110 can potentially be copied to and from 16 particular lines
(which are conventionally referred to as "ways") in the L2 cache 120. However, persons of ordinary skill in the art
having benefit of the present disclosure should appreciate that alternative embodiments of the main memory 110 or
the L2 cache 120 can be implemented using any associativity. Relative to the main memory 110, the L2 cache 120
may be implemented using smaller and faster memory elements. The L2 cache 120 may also be deployed logically
or physically closer to the CPU core 115 (relative to the main memory 110) so that information may be exchanged

between the CPU core 115 and the L2 cache 120 more rapidly or with less latency.

[0027] The illustrated cache system also includes an L1 cache 125 for storing copies of instructions or data that are
stored in the main memory 110 or the L2 cache 120. Relative to the L2 cache 120, the L1 cache 125 may be
implemented using smaller and faster memory elements so that information stored in the lines of the L1 cache 125
can be retrieved quickly by the CPU 105. The L1 cache 125 may also be deployed logically or physically closer to
the CPU core 115 (relative to the main memory 110 and the L2 cache 120) so that information may be exchanged
between the CPU core 115 and the L1 cache 125 more rapidly or with less latency (relative to communication with
the main memory 110 and the L2 cache 120). Persons of ordinary skill in the art having benefit of the present
disclosure should appreciate that the L1 cache 125 and the L2 cache 120 represent one exemplary embodiment of a
multi-level hierarchical cache memory system. Alternative embodiments may use different multilevel caches
including elements such as LO caches, L1 caches, L2 caches, L3 caches, and the like. In some embodiments, higher-
level caches may be inclusive of one or more lower-level caches so that lines in the lower-level caches are also
stored in the inclusive higher-level cache(s). Caches are typically implemented in static random access memory
(SRAM), but may also be implemented in other types of memory such as dynamic random access memory

(DRAM).

[0028] In the illustrated embodiment, the L1 cache 125 is separated into level 1 (L1) caches for storing instructions
and data, which are referred to as the L1-I cache 130 and the L1-D cache 135. Separating or partitioning the L1
cache 125 into an L1-I cache 130 for storing instructions and an L1-D cache 135 for storing data may allow these
caches to be deployed closer to the entities that are likely to request instructions or data, respectively. Consequently,
this arrangement may reduce contention, wire delays, and generally decrease latency associated with instructions
and data. In one embodiment, a replacement policy dictates that the lines in the L1-I cache 130 are replaced with

instructions from the L2 cache 120 and the lines in the L1-D cache 135 are replaced with data from the L2 cache

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

120. However, persons of ordinary skill in the art should appreciate that an alternative embodiment of the L1 cache

125 may not be partitioned into separate instruction-only and data-only caches 130, 135.

[0029] The CPU 105 also includes an L1 prefetcher 140 that can be used to populate lines in one or more of the L1
caches 125, 130, 135. In one embodiment, the L1 prefetcher 140 may be configured to prefetch lines into the data
cache 135 and in that case it may be referred to as an L1 data cache prefetcher 140. The L1 prefetcher 140 is
depicted in the illustrated embodiment as a separate logical element within the CPU 105. However, persons of
ordinary skill in the art having benefit of the present disclosure should appreciate that the L1 prefetcher 140 may
alternatively be implemented as a part of other logical elements. For example, the L1 prefetcher 140 may be
implemented as a part of the logic of the L1-D cache 135. In one embodiment, the L1 prefetcher 140 can monitor
memory requests associated with applications running in the CPU core 115. For example, the L1 prefetcher 140 can
monitor memory requests that result in cache hits or misses, which may be recorded in a L1 miss address buffer 145.
The L1 prefetcher 140 may determine or predict that the CPU core 115 is likely to access a particular sequence of
memory addresses in the main memory 110. For example, the L1 prefetcher 140 may detect two or more sequential
memory accesses by the CPU core 115. The direction of the sequence can be determined based on the temporal
sequence of the sequential memory accesses and the CPU core 115 can use this direction to predict future memory
accesses by extrapolating based upon the current or previous sequential memory accesses. The L1 prefetcher 140
can then fetch the information in the predicted locations from the L2 cache 120 or the main memory 110 and store
this information in an appropriate cache so that the information is available before it is requested by the CPU core

115.

[0030] The CPU 105 may also include an L2 prefetcher 150 that can be used to populate lines in the L2 cache 120.
The L2 prefetcher 150 is depicted in the illustrated embodiment as a separate logical element within the CPU 105.
However, persons of ordinary skill in the art having benefit of the present disclosure should appreciate that the L2
prefetcher 150 may alternatively be implemented as a part of other logical elements. For example, the L2 prefetcher
150 may be implemented as a part of the logic of the L2 cache 120. In one embodiment, the L2 prefetcher 150 can
monitor memory requests associated with applications running in the CPU core 115. For example, the L2 prefetcher
150 can monitor memory requests that result in cache hits or misses, which may be recorded in an L2 miss address
buffer 155. The L2 prefetcher 150 may determine or predict that the CPU core 115 or the L1 prefetcher 140 is likely
to access a particular sequence of memory addresses in the main memory 110. For example, the L2 prefetcher 150
may detect two or more sequential memory accesses by the CPU core 115, the caches 125, 130, 135, or the L1
prefetcher 140. The direction of the sequence can be determined based on the temporal sequence of the sequential
memory accesses and the L2 prefetcher 150 can use this direction to predict future memory accesses by
extrapolating based upon the current or previous sequential memory accesses. The L2 prefetcher 150 can then fetch
the information in the predicted locations from the main memory 110 and store this information in an appropriate
cache so that the information is available before it is requested by the CPU core 115, the caches 125, 130, 135, or
the L1 prefetcher 140.

[0031] Figure 2 conceptually illustrates one exemplary embodiment of a prefetcher 200 such as the L1 prefetcher
140 or the L2 prefetcher 150 shown in Figure 1. In the illustrated embodiment, the prefetcher 200 receives signals
indicating particular events related to memory access requests such as hits or misses associated with a load

instruction, hits or misses associated with a store instruction, and the like. Miss address buffer (MAB) events, such

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

as hit or miss events for loads or stores, may be received or accessed by an event selector block 205, which is used
to select events that are to be passed to other stages of the prefetcher 200. For example, the highest priority event
may be stored in the registers 210 until they are passed to one or more stream engines 215 and a stream allocation
unit 220, e.g., during a subsequent clock cycle. The priority of events can be determined using a hierarchy such as
giving the highest priority to load misses and then assigning successively lower priorities to store misses, load hits,
and store hits. However, persons of ordinary skill in the art having benefit of the present disclosure should

appreciate that alternative hierarchies can be used to establish the priorities of the events.

[0032] In the illustrated embodiment, the prefetcher 200 includes one or more stream engines 215 that can be used
to manage separate prefetch streams. The stream engines 215 may provide a signal to the stream allocation unit 220
to indicate that the current event either hit or missed the stream managed by the stream engine 215. If none of the
existing streams indicates a hit for the MAB miss event, then the stream allocation unit 220 can allocate a new
stream to a different stream engine 215 using the current event information. When a stream is first allocated, the
stream engine 215 sets a page address and an offset value to the current event cache line address. The stream engine
215 can then monitor further MAB events to detect events at addresses adjacent to the current event cache line
address in either direction. For example, if the current event cache line address is set to A, then the stream engine
215 looks for events at addresses in relation to the current event cache line address, e.g., addresses A+1 or A-1. If
the stream engine 215 sees one of the addresses, it defines a stream in the appropriate direction (positive for A+1
and negative for A-1) and trains a new prefetch stream. In one embodiment, the stream engine 215 maintains a set
of prefetch flags that indicate potential prefetches for the current stream address, as discussed herein. The prefetch

flags may be set when the new prefetch stream is trained.

[0033] The prefetcher 200 may also include a request arbiter 225 that is used to arbitrate prefetch requests from the
stream engines 215. In one embodiment, the request arbiter 225 is a rotating priority arbiter. However, persons of
ordinary skill in the art having benefit of the present disclosure should appreciate that other types of request arbiter
225 may alternatively be implemented in the prefetcher 200. Requests can be transferred from the request arbiter
225 to a register 230 so that the request information can be provided to a prefetch request interface 235, e.g., during
a subsequent clock cycle. The prefetch request interface 235 can provide feedback to the request arbiter 225, which

can be used to select or arbitrate between pending requests from the stream engines 215.

[0034] In the illustrated embodiment, the stream engines 215 may also maintain stream entries that include
information that identifies a state of the prefetch stream associated with the stream engine 215. In one embodiment,
the stream entries may be stored in a database of entries. However, persons of ordinary skill in the art having benefit
of the present disclosure should appreciate that the stream entries may be stored in any register, memory, or cache
location. As discussed herein, each stream entry may include addressing information such as a page address or a
line offset for the stream entry, one or more prefetch flags associated with addresses that may be prefetched, or other
addressing information. The stream entry may also include "hint" information that indicates the number of pending

prefetch requests associated with the stream entry.

[0035] Figure 3 conceptually illustrates one exemplary embodiment of a method 300 for allocating a prefetch
stream and identifying a look-ahead window using prefetch flags. Embodiments of the method 300 may be
implemented in the L1 data cache prefetcher 140 depicted in Figure 1. However, persons of ordinary skill in the art

having benefit of the present disclosure should appreciate that alternative embodiments of the method 300 may be

-7-

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

implemented in any prefetcher that is capable of requesting lines from another cache that also implements
prefetching. In the illustrated embodiment, a first cache miss is detected (at 305), e.g., using information about
MARB events from a miss address buffer, and a stream is allocated to a prefetcher stream engine. The prefetcher
stream engine waits until it detects (at 310) a second miss that is in sequence (in the positive or negative direction)
with the first cache miss. Although detection of cache misses to sequential addresses is used to trigger creation of a
prefetch stream in the illustrated embodiment, persons of ordinary skill in the art should appreciate that alternative
embodiments may use different cache miss patterns to trigger creation of a prefetch stream. For example, the
prefetch stream may be allocated in response to detecting cache misses to addresses separated by a predetermined

stride value or some other pattern.

[0036] In the illustrated embodiment, the stream engine can use the addresses of the first and second cache misses
to determine (at 315) the sequence direction. Prefetch flags may be assigned (at 320) to a selected number of
addresses in the prefetch stream. The addresses that are assigned flags follow the sequence or pattern established by
the first and second cache misses. For example, flags can be assigned (at 320) to a selected number of addresses
(e.g., nine addresses) that follow the address of the second miss in the direction established for the prefetch stream.
A selected number of the flags can then be set (at 325) to indicate that the prefetcher should fetch information from
these addresses in subsequent clock cycles. For example, flags of a subset of the addresses (e.g., four of the nine

flagged addresses) can be set so that these addresses may be fetched from the memory into the caches.

[0037] The prefetcher may then determine (at 330) a hint that may be used to indicate the number of pending
prefetch requests. In one embodiment, the hint may be determined (at 330) by counting the number of set prefetch
flags after the prefetcher has issued a request for information indicated by another set prefetch flag earlier in the
sequence of flags. The hint information may be appended to a stream entry or stored so that the hint information can

be provided to another prefetcher, as discussed herein.

[0038] Figure 4 conceptually illustrates a first exemplary embodiment of a prefetch stream that includes an address
sequence 400 of addresses that can be flagged and prefetched. The address sequences 400(1-4) illustrate the same
set of addresses at successive time intervals or clock cycles. In the illustrated embodiment, the address sequences
400(1-4) are depicted at successive clock cycles. However, persons of ordinary skill in the art having benefit of the
present disclosure should appreciate that the address sequences 400(1-4) may not be strictly sequential and in some
cases may be separated by other events, time intervals, clock cycles, and the like. In the illustrated embodiment, a
prefetch stream engine has assigned flags to nine addresses ahead of a base address indicated by the arrow 405. The
stream engine has also set flags of four of the addresses ahead of the base address 405, as indicated by the filled-in
flags, to indicate that the information in these addresses of the memory should be fetched into the cache. The four
set prefetch flags indicate that there are four pending requests associated with this prefetch stream. Persons of
ordinary skill in the art having benefit of the present disclosure should appreciate that the number of assigned flags
or the number of flags in the subset of the assigned flags that are set are matters of design choice and may be varied

to satisty different design considerations.

[0039] The flags may be set in response to cache misses that are outside the look-ahead window of prefetch flags.
In the illustrated embodiment, the prefetch stream is allocated and addresses of the prefetch window are flagged in
response to successive cache misses 410(1-2). The flagged addresses begin at the base address 405 and the
addresses are defined relative to the cache misses 410(1-2) or the base address 405. In the illustrated embodiment,

-8-

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

the base address 405 is offset from the cache miss 410(2) by a selected address offset value of 1. For example,
depending on the direction of the sequence, the flag addresses may be defined relative to the first cache miss address
410(1) as (A£2, A+3, A+4, A £5, ...) if the address of the first cache miss 410(1) is defined as A and the relative
addresses in the prefetch window are defined as (£2, £3, +4, £5, ...). Persons of ordinary skill in the art having
benefit of the present disclosure should appreciate that the address offset value is a matter of design choice and may

be varied to satisty different design considerations.

[0040] The address sequence 400(1) has a set flag at the address ahead of the base address 405. The prefetcher
may therefore fetch the data at this address into the cache. Once the data has been fetched, the base address 405
may be advanced to the next address and the address that was just fetched becomes part of the history of the stream
and the flag at this address becomes a history flag that is indicated by the striped flag symbol and the address
sequence 400(2). Following the fetch, three of the prefetch flags remain set and so there are three pending prefetch
requests for this prefetch stream. An additional flag may be assigned to the address following the last address in the
sequence in the direction of the established sequence so that the number of flags ahead of the base address 405
remains the same. In the illustrated embodiment, the prefetcher continues to fetch the addresses that have set flags
and advance the base address 405 until all of the addresses that have set flags have been fetched. As the address
corresponding to each set flag is fetched, the flag associated with this address is changed into a history flag as shown
in the address sequences 400(3-4). An additional flag may be assigned to the next sequential address to maintain the
number of flags ahead of the base address 405. History flags may also be dropped to maintain a set number of
history flags trailing the base address 405.

[0041] Figure 5 conceptually illustrates one exemplary embodiment of an address sequence 500 associated with a
prefetch stream. In the illustrated embodiment, a prefetch stream engine has assigned flags to nine addresses ahead
of a base address indicated by the arrow 505. As discussed herein, the base address 505 and the direction of the
address sequence may be determined based upon misses to addresses 510. The stream engine has also set flags of
four of the addresses ahead of the base address 505, as indicated by the filled-in flags, to indicate that the
information in these addresses of the memory should be fetched into the cache. The four set prefetch flags indicate

that there are four pending requests associated with this prefetch stream.

[0042] In the illustrated embodiment, the prefetch stream engine issues a prefetch request 515 for the cache line
indicated by the address associated with the first set flag. In response to issuing the prefetch request 515, a counter
520 may be used to count the number of pending prefetch requests associated with the prefetch stream. For
example, following the prefetch request 515, the address sequence 500 includes set flags for three pending prefetch
requests and so the counter 520 may count the three pending prefetch requests. The value determined by the counter
may then be stored as a hint 525. In the illustrated embodiment, the hint 525 is represented by two bits [4:3], which
is sufficient to store information indicating that there may be 0-3 pending prefetch requests. However, persons of
ordinary skill in the art having benefit of the present disclosure should appreciate that alternative embodiments may
include different numbers of bits in the hint 525 to represent different numbers of potential pending prefetch

requests.

[0043] Figure 6 conceptually illustrates one exemplary embodiment of a prefetch stream entry 600. In the
illustrated embodiment, the prefetch stream entry 600 may be created, maintained, or stored by a corresponding

stream engine in a prefetcher. The prefetch stream entry 600 includes information indicating a page address 605

-9-

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

corresponding to a page of data associated with the stream, a line offset 610 that indicates the current line offset
within the page associated with the stream, and prefetch flags 615 that can be set to indicate a request to prefetch
data from the associated line in the page. The stream entry 600 may also include a direction bit (DIR) that indicates
whether the stream corresponds to ascending or descending addresses. The stream entry 600 also includes prefetch
hint information 620 that includes information indicating the number of pending prefetch requests associated with
the corresponding prefetch stream. In one embodiment, the prefetch stream engine associated with the prefetch
stream can modify the values in the prefetch hints 620, e.g., in response to issuing a prefetch request. For example,
if the prefetch hint 620 initially has a value of 3 and issuing the prefetch request reduces the number of pending

prefetch requests to 2, the prefetch stream engine may modify the value of the prefetch hint 620 to have a value of 2.

[0044] Figure 7 conceptually illustrates one exemplary embodiment of a method 700 for allocating a prefetch
stream and identifying a look-ahead window using prefetch flags. Embodiments of the method 700 may be
implemented in the L2 data cache prefetcher 150 depicted in Figure 1. However, persons of ordinary skill in the art
having benefit of the present disclosure should appreciate that alternative embodiments of the method 700 may be
implemented in any prefetcher that is capable of receiving demand requests or prefetch requests from another cache
that also implements prefetching. In the illustrated embodiment, a first L2 cache miss is detected (at 705), e.g.,
using information about MAB events from a miss address buffer, and a stream is allocated to a prefetcher stream
engine. The prefetcher stream engine then waits until it detects (at 710) a second miss that is in sequence (in the
positive or negative direction) with the first cache miss. Although detection of cache misses to sequential addresses
is used to trigger creation of a prefetch stream in the illustrated embodiment, persons of ordinary skill in the art
should appreciate that alternative embodiments may use different cache miss patterns to trigger creation of a
prefetch stream. For example, the prefetch stream may be allocated in response to detecting cache misses to

addresses separated by a predetermined stride value or some other pattern.

[0045] In the illustrated embodiment, the stream engine can use the addresses of the first and second cache misses
to determine (at 715) the sequence direction. Prefetch flags may be assigned (at 720) to a selected number of
addresses in the prefetch stream. The addresses that are assigned flags follow the sequence or pattern established by
the first and second cache misses. For example, flags can be assigned (at 720) to a selected number of addresses
(e.g., 12 or more addresses) that follow the address of the second miss in the direction established for the prefetch
stream. The stream engine for the prefetch stream may then determine (at 725) whether prefetch hint information
has been received from an associated cache, e.g., with a demand request or prefetch request from the associated

cache.

[0046] A subset of the assigned flags may then be set based upon the received demand request or prefetch request.
In one embodiment, if no hint information has been received, then a selected number of the flags can be set (at 730)
beginning at a predetermined offset to indicate that the prefetcher should fetch information from the flagged
addresses in subsequent clock cycles. For example, flags of a subset of the addresses (e.g., 12 flagged addresses)
can be set (at 730) so that these addresses may be fetched from the memory into the cache. However, if the stream
engine determines (at 725) that hint information indicating a number of pending prefetch requests at the associated
cache has been received, the prefetch flags may be set (at 735) at an offset that differs from the predetermined offset.
In the illustrated embodiment, the prefetch flags may be set (at 735) for addresses beginning at an offset equal to the

predetermined offset plus the number of pending prefetch requests indicated by the hint information.

-10-

10

15

20

25

30

35

WO 2014/028724 PCT/US2013/055119

[0047] Setting (at 735) the address in this manner allows the prefetcher to bypass or skip over issuing requests for
lines that may already have been requested by the other associated cache. For example, an L2 cache can set (at 735)
flags associated with addresses in advance of the addresses associated with lines that either have been requested or
are pending in one or more prefetch streams associated with an L1 cache. Bypassing or skipping these addresses
reduces the number of redundant prefetch requests performed at the L2 level and increases the number of

opportunities available to prefetch information into the L2 cache.

[0048] Figure 8A conceptually illustrates one exemplary embodiment of an address sequence 800 associated with
a prefetch stream. In the illustrated embodiment, a prefetch stream engine has assigned flags to 12 or more
addresses ahead of a base address indicated by the arrow 805. As discussed herein, the base address 805 and the
direction of the address sequence may be determined based upon misses to the addresses 810. The stream engine
has also set flags of 12 addresses ahead of the base address 805, as indicated by the filled-in flags, to indicate that
the information in these addresses of the memory should be fetched into the cache. In the illustrated embodiment,
the flags have been set in response to receiving a prefetch request from an associated (e.g., lower-level) cache for a
line indicated by an address 810(3). The stream engine did not receive any hints from the lower-level prefetcher and
so the flags are set beginning at a predetermined offset of 1 from the address 810(3) indicated by the prefetch
request. However, as discussed herein, the predetermined offset is a matter of design choice and may be varied to

satisfy different design or operational considerations.

[0049] Figure 8B conceptually illustrates another exemplary embodiment of the address sequence 800 associated
with the prefetch stream. In the illustrated embodiment, a prefetch stream engine has assigned flags to 12 or more
addresses ahead of a base address indicated by the arrow 805. As discussed herein, the base address 805 and the
direction of the address sequence may be determined based upon misses to the addresses 810. The stream engine
has also set flags of addresses ahead of the base address 805, as indicated by the filled-in flags, to indicate that the
information at these addresses in the memory should be fetched into the cache. In the illustrated embodiment, the
flags have been set in response to receiving a prefetch request from an associated (e.g., lower-level) cache for a line
indicated by an address 810(3). The stream engine in the illustrated embodiment received a hint from the lower-
level prefetcher indicating 3 pending prefetch requests at the associated lower-level prefetcher. Consequently, the
stream engine sets flags beginning at a predetermined offset of 1 plus the number of pending prefetch requests (3)
from the address 810(3) indicated by the prefetch request. The higher-level prefetcher may therefore bypass or skip

over issuing prefetch requests for the bypassed or skipped addresses.

[0050] Embodiments of processor systems that can provide or utilize prefetch hints as described herein (such as
the processor system 100) can be fabricated in semiconductor fabrication facilities according to various processor
designs. In one embodiment, a processor design can be represented as code stored on a computer readable media.
Exemplary codes that may be used to define and/or represent the processor design may include HDL, Verilog, and
the like. The code may be written by engineers, synthesized by other processing devices, and used to generate an
intermediate representation of the processor design, e.g., netlists, GDSII data and the like. The intermediate
representation can be stored on computer readable media and used to configure and control a
manufacturing/fabrication process that is performed in a semiconductor fabrication facility. The semiconductor
fabrication facility may include processing tools for performing deposition, photolithography, etching,

polishing/planarizing, metrology, and other processes that are used to form transistors and other circuitry on

-11 -

10

15

20

25

30

WO 2014/028724 PCT/US2013/055119

semiconductor substrates. The processing tools can be configured and are operated using the intermediate

representation, e.g., through the use of mask works generated from GDSII data.

[0051] Portions of the disclosed subject matter and corresponding detailed description are presented in terms of
software, or algorithms and symbolic representations of operations on data bits within a computer memory. These
descriptions and representations are the ones by which those of ordinary skill in the art effectively convey the
substance of their work to others of ordinary skill in the art. An algorithm, as the term is used here, and as it is used
generally, is conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those
requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the
form of optical, electrical, or magnetic signals capable of being stored, transferred, combined, compared, and
otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these

signals as bits, values, elements, symbols, characters, terms, numbers, or the like.

[0052] It should be borne in mind, however, that all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically
stated otherwise, or as is apparent from the discussion, terms such as "processing" or "computing” or "calculating”
or "determining" or "displaying" or the like, refer to the action and processes of a computer system, or similar
electronic computing device, that manipulates and transforms data represented as physical, electronic quantities
within the computer system's registers and memories into other data similarly represented as physical quantities
within the computer system memories or registers or other such information storage, transmission or display

devices.

[0053] Note also that the software implemented aspects of the disclosed subject matter are typically encoded on
some form of program storage medium or implemented over some type of transmission medium. The program
storage medium may be magnetic (e.g., a tfloppy disk or a hard drive) or optical (e.g., a compact disk read only
memory, or “CD ROM?”), and may be read only or random access. Similarly, the transmission medium may be
twisted wire pairs, coaxial cable, optical fiber, or some other suitable transmission medium known to the art. The

disclosed subject matter is not limited by these aspects of any given implementation.

[0054] The particular embodiments disclosed above are illustrative only, as the disclosed subject matter may be
modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of
the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown,
other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above
may be altered or modified and all such variations are considered within the scope of the disclosed subject matter.

Accordingly, the protection sought herein is as set forth in the claims below.

-12-

10

15

20

25

30

35

40

WO 2014/028724 PCT/US2013/055119

CLAIMS
WHAT IS CLAIMED:
1. A method, comprising:
bypassing, at a first prefetcher (150) associated with a first cache (120), issuing requests to prefetch data
from a number of memory addresses in a sequence of memory addresses determined by the first prefetcher, wherein

the number is indicated in a request received from a second prefetcher (140) associated with a second cache (125),

and

issuing, from the first prefetcher, a request to prefetch data from a memory address subsequent to the
bypassed memory addresses.
2. The method of claim 1, comprising determining, at the first prefetcher, the sequence of memory addresses

for prefetching data into lines of the first cache in response to detecting at least one cache miss to at least one first

address, wherein the sequence of relative addresses is determined relative to said at least one first address.

3. The method of claim 1, wherein bypassing issuing requests to prefetch data from the number of memory
addresses comprises bypassing issuing requests to prefetch data from a number of memory addresses that is

determined by a number of outstanding prefetch requests at the second prefetcher.

4. The method of claim 3, comprising storing information indicating the number of outstanding prefetch

requests at the second prefetcher.

5. The method of claim 4, wherein storing the information indicating the number of outstanding prefetch
requests comprises counting a number of pending prefetch requests in response to the second prefetcher issuing a
prefetch request and appending a number of pending prefetch requests to a stream entry (600) associated with the

prefetch request issued by the second prefetcher.

6. The method of claim 1, wherein:

the sequence of memory addresses is indicated by a corresponding plurality of flags (615), wherein
bypassing issuing requests to prefetch data from the number of memory addresses comprises leaving a number of
the flags unset that corresponds to the bypassed number of memory addresses and setting at least one subsequent
flag to indicate a pending prefetch request for the corresponding memory address; and

issuing the request to prefetch data comprises issuing a request to prefetch data from the memory address

corresponding to said at least one subsequent flag that has been set.

7. An apparatus, comprising:

a first prefetcher (150) configurable to bypass issuing requests to prefetch data from a number of memory
addresses in a sequence of memory addresses determined by the first prefetcher, wherein the number is indicated in
a request received from a second prefetcher (140) associated with a second cache (125), and wherein the first
prefetcher is configurable to issue a request to prefetch data from a memory address subsequent to the bypassed

memory addresses.

-13-

10

15

20

25

30

35

40

WO 2014/028724 PCT/US2013/055119

8. The apparatus of claim 7, comprising a first cache (120) associated with the first prefetcher, and wherein
the first prefetcher is configurable to determine the sequence of memory addresses for prefetching data into lines of
the first cache in response to detecting at least one cache miss to at least one first address, wherein the sequence of

relative addresses is determined relative to said at least one first address.

9. The apparatus of claim 7, wherein the first prefetcher is configurable to bypass issuing requests to prefetch
data from a number of memory addresses that is determined by a number of outstanding prefetch requests at the

second prefetcher.

10. The apparatus of claim 9, comprising the second prefetcher, and wherein the second prefetcher is

configurable to store information indicating the number of outstanding prefetch requests at the second prefetcher.

11. The apparatus of claim 10, wherein the second prefetcher is configurable to count a number of pending
prefetch requests in response to issuing a prefetch request, and wherein the second prefetcher is configurable to
append a number of pending prefetch requests to a stream entry (600) associated with the prefetch request issued by

the second prefetcher.

12. The apparatus of claim 7, wherein:

the sequence of memory addresses is indicated by a corresponding plurality of flags (615), wherein the first
prefetcher is configurable to leave a number of the flags unset that corresponds to the bypassed number of memory
addresses, and wherein the first prefetcher is configurable to set at least one subsequent flag to indicate a pending
prefetch request for the corresponding memory address; and

the first prefetcher is configurable to issue a request to prefetch data from the memory address

corresponding to said at least one subsequent flag that has been set.

13. A processor-based system, comprising:

a first cache (120) associated with a memory (110);

a first prefetcher (150) for prefetching data into the first cache;

a second cache (125) associated with the first cache; and

a second prefetcher (140) for prefetching data into the second cache, wherein the first prefetcher is
configurable to bypass issuing requests to prefetch data from a number of memory addresses in a sequence of
memory addresses determined by the first prefetcher, wherein the number is indicated in a request received from the
second prefetcher, and wherein the first prefetcher is configurable to issue a request to prefetch data from a memory

address subsequent to the bypassed memory addresses.

14. The processor-based system of claim 13, wherein the second prefetcher is configurable to count a number
of pending prefetch requests in response to issuing a prefetch request, and wherein the second prefetcher is
configurable to append a number of pending prefetch requests to a stream entry (600) associated with the prefetch

request issued by the second prefetcher.

-14 -

WO 2014/028724 PCT/US2013/055119

15. The processor-based system of claim 14, wherein the second prefetcher is configurable to transmit
information indicating the number of pending prefetch requests to the first cache with prefetch requests transmitted

from the second prefetcher to the first cache.

-15-

PCT/US2013/055119

177

I dandy
TOT NdD 7T
AHOYD 11
S
AHOVD G171 07T
e HHOVD 71
Ol
;.! FHOVI 1Y
<5 1A N S Ot S R R
011
HUOD fdo T AUOWHIN NTVIAL
SFL <SS
WHAANH WHAANH
SSHUQaY SSHYaayY
SEIA 171 SSIW T
Ort (419
AAHOLAI- T34 1T WAHILTA- A 7T

WO 2014/028724

001

SUBSTITUTE SHEET (RULE 26)

WO 2014/028724 PCT/US2013/055119

217
LOAD STORE 200
HIT/MISS HIT/MISS /
I |
\EVENT SELECTOW
; 210
> 7
¥
‘i
$
i
!
i
|
STREAM y
%:\'{ Cf‘-w%% - STREAM
R ALLOCATION
215 - 220

REQUEST ARBITER

28

¥ 230

> _/

¥
PREFETCH REQUEST
INTERFACE

235

Figure 2

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/055119

WO 2014/028724

¢ INSLY

| SINIH
o HOLEAENG
ofs ANINUALAC

m ENSLANE]
o HOLHATN
i Oa-11 1ES //

377

sV
u\\x HOLHA-T0d
Gt D1 NDISEY

NOLLOEHIA

\\\ HINANOHES

Sig R ICRIGLS]

mmm»%

7 GHONANOES NI
S SSTNGNODES

Em\&

on |

SSIN |
HHOVI VIVA LT
LSHIA LOHLHG

}

Go¢

SUBSTITUTE SHEET (RULE 26)

b oangdig

Aldld]d|d dd d|d w]wlw

PCT/US2013/055119

f
{($)00V & —

Al g g A d g A

417

y Y
(£)oor x\\m .

0oy A f |

WO 2014/028724

{100 A \\% // // (D01

SOr (201P

SUBSTITUTE SHEET (RULE 26)

N N N

PCT/US2013/055119

WO 2014/028724

377

VERIFIE
\ON@ \\\ S19 \\GE \\ S0

fey] k! Faill 97T} {71661

o

VUSSR |] SSRLIUOISIOg | 19SIFQRUIT | ssauppyedey

009

¢ 208y

(O] INIH LSANOOY BoIHATEd

f

S MEINNOD

Jcs

516

A A | g

Y

TN
SO%

,,/Q,\SS

{2015

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/055119

[sAndig

SOVTAHDLEA

-THd NDISSY j

OCL

\m@

IEH 5071d 5534adV
INAENAND LY DMNILAVLS =%
SOVId Hodlddd dd LAS

NOLLOEYIAO
AOINENOHES

6/7

NIRRT LEG

SHA

. s
< HLIM GAATHOHY e SHA

~. o

-

SSHUAGY
LNHUEND LY ONILYVLS - oTL
SOV HOLHAH YA LHS

on| ﬁ - 7 GHONEOOES NE
ek \\ T SSINANODHES
~ O

WO 2014/028724

/OM\

[

SSIN GHOVO TT |

'
P 77| aswid 1oalad

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/055119

WO 2014/028724

717

G0R

V8 2anasig

m // /r (1018
/ (018

()08

Y

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/055119

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 20127084511 Al (DOOLEY MILES R [US] ET 1-15
AL) 5 April 2012 (2012-04-05)
paragraph [0035] - paragraph [0039];
figures 1-3

A FEI GAO ET AL: "Two-Tevel ata 1-15
prefetching",

COMPUTER DESIGN, 2007. ICCD 2007. 25TH
INTERNATIONAL CONFERENCE ON, IEEE,
PISCATAWAY, NJ, USA,

7 October 2007 (2007-10-07), pages
238-244, XP031308359,

ISBN: 978-1-4244-1257-0

Chapter 4 Two-level Prefetcher Design
A US 20127054448 Al (THOMPSON STEPHEN P [US] 1-15
ET AL) 1 March 2012 (2012-03-01)
paragraph [0029] - paragraph [0042];
figures 2-9

See patent family annex.

D Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 November 2013

Date of mailing of the international search report

09/12/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Toader, Elena Lidia

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2013/055119
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2012084511 Al 05-04-2012 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report
	Page 25 - wo-search-report

