金属-空气电池组的充电控制

本发明涉及一种管理至少包括一个电池(10.11.12)的金属-空气电池组充电的方法。电池包括负电极(1)、第一空气正电极(2)和第二释氧正电极(3)。对于每个电池而言，在充电电流循环施加于电池的负电极(1)与第二释氧正电极(3)之间过程中，将负电极(1)电位的绝对值与临界阈值(50)相比较并相对于第一空气正电极(2)来确定负电极(1)的电位。当负电极(1)电位(301)的绝对值达到阈值时，则根据施加到电池的电流与充电电流之间的差来转移过量的充电电流。
1. 一种管理金属-空气电池组充电的方法，所述金属-空气电池组包括至少一个电池 (10, 11, 12)。电池至少包括负电极 (1)、第一空气正电极 (2) 以及第二释氧正电极 (3)，所述方法包括，对于各个电池而言，在将电流施加于电池而导致充电时，充电电流在负电极 (1) 与第二释氧正电极 (3) 之间流动的过程中：

- 将负电极 (1) 电位 (301) 的绝对值与临界阈值 (50) 作比较，相对于第一空气正电极 (2) 来确定负电极 (1) 的电位；
- 当负电极 (1) 电位 (301) 的绝对值达到阈值时，转移过量充电电流，所述过量充电电流是施加于电池的电流与充电电流之间差值的函数。

2. 根据权利要求 1 所述的方法，其特征在于，将电池的过量充电电流转移至相邻电池或者转移至充电器 (5)。

3. 根据前述权利要求中任一项所述的方法，其特征在于，对于各个电池而言，所述临界阈值 (50) 在充电开始时根据负电极的电位而设置。

4. 根据前述权利要求中任一项所述的方法，其特征在于，所述临界阈值 (50) 可以在固定时间间隔内重新估计。

5. 根据前述权利要求中任一项所述的方法，其特征在于，设置包括可变阻抗部件 (81) 的模拟电路 (80)，用于通过改变所述部件 (81) 的阻抗来实施过量充电电流的转移。

6. 根据权利要求 5 所述的方法，其特征在于，所述部件 (81) 的阻抗至少根据表示在负电极的电位与所述阈值之间差值的量而变化，以便转移由所述部件 (81) 输出的所述过量充电电流。

7. 根据前述权利要求任一所述的方法，其特征在于，所述负电极 (1) 的电位的测量包括负电极 (1) 与第一空气电极 (2) 之间的稳压滤波。

8. 适用于金属-空气电池组的电池 (10, 11, 12) 的充电管理器 (7)，所述金属-空气电池组包括至少一个电池，所述电池至少包括负电极 (1)、第一空气正电极 (2) 以及第二释氧正电极 (3)，充电管理器 (7) 包括适用于各个电池的电路 (80)，所述电路 (80) 设计为，在将电流施加于电池而导致充电时，充电电流在负电极 (1) 与第二释氧正电极 (3) 之间流动的过程中：

- 当负电极 (1) 电位 (301) 的绝对值达到阈值时，转移过量充电电流，所述过量充电电流是施加于电池的电流与充电电流之间差值的函数。

9. 根据权利要求 8 所述的充电管理器 (7)，其特征在于，所述模拟电路 (80) 通过与所述相邻电池或者充电器 (5) 的各个连接件，将过量充电电流转移至相邻电池或者转移至充电器 (5)。

10. 根据权利要求 8 或 9 所述的充电管理器，其特征在于，适用于转移过量充电电流的模拟电路 (80) 包括可变阻抗部件 (81)，通过改变所述部件 (81) 的阻抗来实施过量充电电流的转移。

11. 根据权利要求 10 所述的充电管理器，其特征在于，所述可变阻抗部件 (81) 是功率晶体管 (81)。

12. 根据权利要求 11 的充电管理器，其特征在于，所述功率晶体管是达林顿晶体管 (81)。
13. 根据权利要求9至12所述的充电管理器，进一步包括适用于测量负电极(1)与第一空气正电极(2)之间电位差的电路(40)。

14. 根据权利要求13所述的充电管理器，其特征在于，所述电子测量电路(40)包括稳压滤波器(2001)。

15. 电池组，其包括至少一个电池(10,11,12)，所述电池至少包括负电极(1)、第一空气正电极(2)、第二释氧正电极(3)以及根据权利要求8至14中任一项所述的充电管理器(7)。
金属-空气电池组的充电控制

技术领域
[0001] 本发明涉及金属-空气电池组的充电控制领域。该电池组包括具有三个电极的金属-空气电池。

背景技术
[0002] 金属-空气电池组的电池利用基于金属的负电极，所述金属例如为锌、铁或锂，将其与空气电极相耦接。最常用的电解质是水碱性电解质。
[0003] 在这种电池组放电的过程中，氧气在正电极还原，金属在负电极氧化：
[0004] 负电极放电：$\text{M} \rightarrow \text{M}^\circ + \text{n}e^-$
[0005] 正电极放电：$4\text{OH}^- \rightarrow 2\text{H}_2\text{O} + \text{O}_2 + 4\text{e}^-$
[0006] 金属-空气系统的优点在于利用有限容量的正电极，因为在正电极所消耗的氧气无需储存在电极中且可从环境空气中采集所述氧气。因此，众所周知，金属-空气型电化学发生器具有高能量比，它可达到数百Wh/kg。
[0007] 例如，空气电极用于碱性燃料电池，所述空气电极远优于其它系统，因为电极具有非常有利的反应动力且不需要比如铂这样的贵金属。例如，金属-空气电池组还可用于助听器。
[0008] 空气电极是多孔固体结构，通常为碳颗粒的多孔固体结构，且与液体电解质相接触。在空气电极与液体电解质之间的界面被称为“三重接触”界面，其中同时存在电极的活性固体材料、气态电解质（即空气）以及液体电解质。例如，《电源期刊 (Journal of Power Sources)》195(2010) 第1271-1291页中，由Neburchilov V.等人编著的《关于锌-空气燃料电池空气阴极的综述 (A review on air cathodes for zinc-air fuel cells)》的文章中描述了有关锌-空气电池组的不同类型的空气电极。
[0009] 金属-空气电池组需要充电时，电流的方向是相反的。氧气在正电极产生且金属在负电极通过还原而再沉积：
[0010] 负电极再充电：$\text{M}^\circ + \text{n}e^- \rightarrow \text{M}$
[0011] 正电极再充电：$4\text{OH}^- \rightarrow 2\text{H}_2\text{O} + \text{O}_2 + 4\text{e}^-$
[0012] 金属-空气电池组在放电时的运行非常好，但是在充电时仍有较多问题尚未解决。
[0013] 把在再充电方向的空气电极用于通过氧气释放氧化反应，存在很多缺点。空气电极的多孔结构很脆弱。已观察到，将该结构用于通过液体电解质的氧化制氧时，通过的气体释放会使该结构机械性损坏。由于在电极中生成气体而产生的液压足以破坏构成空气电极的碳颗粒之间的键合。
[0014] 当将空气电极用于给金属-空气电池组充电或再充电时，空气电极的退化会大大缩短电池组的使用寿命。这是导致可再充电的金属-空气电池组的有限商业开发的主要原因之一。
[0015] 防止空气电极退化的一种方式是利用被称为第二“充电”电极的第二正电极，将其用于氧气释放反应。
于是，解除了空气电极与充充电极之间的耦合，而且只在充电阶段使用充电电极。空气电极在充电阶段保持惰性并且维持固定电位。Z. Starcherki 申请的美国专利 3,532,548 描述了锌-空气电池组的一个实例，所述锌-空气电池组的第二辅助电极用于充电阶段。在诸如锌-空气电池组这类金属-空气电池组的再充电过程中，在负电极也会出现一些问题。

在充电时，一旦电极的电位达到一定的负电位，则金属离子M"便在该负电极还原并以其金属形式沉积。为了确保该电极在充电和放电循环过程中的良好性能，就希望通过金属均匀同质地沉积在电极上。

然而，在某些条件下，金属可以作为不易附着到电极表面的表面而沉积并且因此可以与电池分开，导致活性材料损失，并因此导致电池组容量损失。还发现，在其它情况下，金属可以以被称为树枝晶的不规则增长的方式沉积。在充电过程中，这些树枝晶可以生长到正电极，从而导致防止充电的内部短路。

在尝试解决这些问题并在充电阶段形成均质锌沉积的过程中，专利 WO2014083268A1 提出保持负电极的电位低于临界阈值。该电位可通过测量在充电过程中处于固定电位的空气电极与负电极之间的电压而得到。

上述考量与单独一个金属-空气电池有关。然而，电池组通常是由彼此串联、并联或者串联与并联相结合的多个电池所构成的。这种电池组的充电利用为电池组提供直流电的单独一个充电器。把充电器连接到电池组的两个末端，这两个末端分别是位于电池组一端的电池负电极和位于电池组另一端的电池充电正电极。

在给电池串联的电池组充电时，即使其中个别电池未能处于相同的充电状态，但电池组总电流始终保持不变。电池还可以处于不同电压。氧气在金属-空气电池阳极的释放会导致电池两个充电电极之间的电压波动较大。实际上，与正电极和负电极都可以充电而因此都可以处于稳定电位的闭式电池组的情况不同，金属-空气电池的充电正电极并不能与活性材料相平衡，因为有氧气释放到外面。

金属-空气电池的较大电压波动会加剧金属在这类电池组的电池的电极上沉积的不规则性。

传统的双极性电池组的充电控制装置可以使充电电流分布在电池组的电池中，以确保所有电池都充满电。这些充电控制装置监测电池组电池的电压，从而确定电池在之前得到的电压-电流-电压曲线上的位置。当电池组的电压超过特征电压（characteristic charging end point）时，就会停止充电。这些充电控制装置不能适于金属-空气电池的电池组，因为所述金属-空气电池中的电压波动会导致电池充电状态数据不准确，而且更重要的是还要当心不能超过如上所述的负极电极的阈电位。

上述约束条件使其在难以为由金属-空气电池所构成的电池组提供有效的控制，以便增加电池组充电和放电循环的效率并且因此有利于延长电池组的使用寿命。因此，需要适用于由金属-空气电池所构成的电池组的充电控制方法以及适用于这类电池组的充电管理器。

发明内容

为了解决上述问题，本发明提出一种管理金属-空气电池组充电的方法，所述金
属-空气电池组包括至少一个电池，该电池至少包括负电极、第一空气正电极以及第二释氧正电极，所述方法包括，对于每个电池而言，在将电流施加于电池使其在充电时充电电流在负电极与第二释氧正电极之间流动的过程中：
[0027] 将负电极电位的绝对值与临界阈值作比较并相对于第一空气正电极来确定负电极的电位；
[0028] 当负电极电位的绝对值达到阈值时，转移过量的充电电流，所述过量的充电电流是施加于电池的电流与充电电流之差值的函数。
[0029] 本发明提供一种适用于金属-空气电池组的充电控制方法，其适合于这些电池的约束条件并且可用于包括第二充电电极的电池。
[0030] 本发明将各个金属-空气电池负极电位与该电池的参考电压作比较。这种方法不同于现有技术，在现有技术的情况下，为了确定电池组电池的充电状态而监测的参数是充电电极之间的电压。
[0031] 本发明的优点是在所有情况下都能保持负极电位低于阈值。该效果是通过转移部分充电电流来实现的，否则这部分充电电流会将负极电位的电位增至超过阈值。施加于电池组中电池的电流接着遵循两条平行的路径：一部分电流继续供给电池供电，并穿过电解质；而超量部分则重新流向到电池组的至少另一个电池。利用上述通用术语，当负极电极的绝对值达到前述阈值时，则超量的充电电流就从该电池的负极极转移，所述过量的充电电流是施加到电池的电流与充电电流之差值的函数。
[0032] 使用负极电位作为监测电池组充电状态的参数，而不是利用充电电极之间的电压，这就消除了金属-空气电池电压不稳定性限制，所述电压不稳定性限制是设计适用于使用这种电池的电池组的有效控制系统的难度所在。
[0033] 第一空气正电极的电位在充电阶段是稳定的，因此可用作参考电极，以衡量负电极的变化电位。于是，在负电极与第一空气正电极之间的电压接近负电极的电位。本发明通过测量负电极的电位来消除在充电的正极电极处所发生的电位的不稳定，所述不稳定通常是由上述所述的氧气释放反应所产生的。因此，本发明不仅能够防止电池在充电过程中不需要的退化，同时又能保持负极电的电位低于阈值（也称之为参考值）。
[0034] 在电池中所测得的负电极的电位不取决于与该电池相连的相邻电池的状态。因此，本发明的充电控制方法并不取决于电池组中电池的数量。该方法的实施可适用于不受相邻电池状态影响的各个电池。
[0035] 本发明的充电控制方法因此能够准确地识别出何时电位超过临界阈值并防止在负电极上形成泡沫、枝晶，所述泡沫、枝晶会损坏电池并缩短电池组的使用寿命。
[0036] 标准的双电极电池组所使用的充电控制装置通常存在着作为“全有或全无”系统的运行缺点。通常，当充电管理器通过比较其终端的电压与具有完全充电电的参考电压特征而确定电池已经充满电时，就转移所有电流。如果改变会导致负电极的电位不利于上升的过量充电电流的方向，本发明允许为金属-空气电池持续充电，即使负电极的电位已经达到阈值。
[0037] 在一个有利实施例中，可将电池的过量充电电流转移到相邻电池或者转移到充电器。
[0038] 术语“相邻电池”是指电池中的第一或相邻电池。
分配到下一个电池适用于管理包含大量电池的电池组中充电电流的分配。

[0039] 通常，可将电池的充电电流转往相邻的电池，过量充电电流也可以转移到
电池组的充电器，例如，到一个电池，该电池的第二释氧正极直接连接着电池组充电器正端。

[0040] 当达到负电极电位的临界阈值时，所发生的过量充电电流的转移可用于处于不同
充电状态的相邻电池。

[0041] 有利的是，对于各个电池而言，可以根据充电开始时的电位来设置临界阈值。

[0042] 在充电过程中，在还原锌酸盐离子产生锌与还原水产生氢之间会对负电极形成竞
争，第二次制氢反应的发生概率随着负电极电位的增加而增加，甚至变得更负。可以根据充
电开始时的电位来限定还原电位，从而降低发生制氢反应及其损坏电池的风险。有可能设
定负电极的电位阈值，从而使之不会超过一定值，该值对应于充电开始时负电极的电位加
上10%的增量。

[0043] 根据一个实施例，临界阈值可以按照固定时间间隔来重新估计。

[0044] 通常经过一百次充放电循环之后，金属-空气电池组的电池的充电电路-电压的性
能会有所改变，即使采取所有预防措施对其进行保护，亦是如此。因此，利用上文所述的方
法，考虑通过固定时间间隔来调整电位阈值的做法是十分明智的。例如，经过指定次数的充放电循环之后，可以进行如此估算，以便考虑电池的不断退化。

[0045] 根据一个特殊实施例，可以提供包括可变阻抗部件的模拟电路，可以通过改变所
述部件的阻抗来实现过量充电电流的转移。

[0046] 为了在负电极的电位达到电位阈值时能转移过量充电电流，可利用模拟部件来迅
速转移过量充电电流，所述模拟部件可以根据所施加的电压来改变其阻抗。例如，使用基于
比如达林顿 (Darlington) 晶体管这类功率晶体管的这种转移装置就很适合于金属-空气电
池。

[0047] 尤其是，所述部件的阻抗至少可根据代表负电极的电位与所述阈值之间差值的数
量而变化，从而输送所述过量充电电流作为所述部件的输出。

[0048] 使用在负电极的电位与阈值之间的差值，并将其作为调节激活模拟部件的手段，
从而实现转移过量充电电流，这就提供了适合防止电池可能出现退化的方案。于是，当开始
充电时，施加于电池的所有电流都通过电池，当负电极的电位小于阈值且一旦达到阈值时，
便将过量电流转移到另一个电池，其过量电流等于施加于电池的电流与通过电池的电流之
间的差值。

[0049] 根据一个实施例，负电极电位的测量可包括在负电极与第一空气电极之间的稳压
滤波。

[0050] 金属-空气电池的充电动态会导致电解液中的载荷子的移动，产生噪声，所述电池
负电极电位的测量结果对该噪声十分敏感。噪声会导致电流和电压的变化，从而干扰金属-空
气电池的充电控制。例如，可通过处于差分结构的运算放大器对在阴极与空气电极之间测得
的电压进行滤波，以减少高频电压的变化。于是，所测得的负电极电位不再有快速波
动，所述快速波动很可能在电池组充电控制过程中很有可能引起控制偏差。

[0051] 本发明还涉及一种适用于金属-空气电池组电池的充电管理器，所述金属-空气电
池组包括至少一个电池且电池至少包括负极、第一空气正电极以及第二释氧正电极，充
电管理器包括适用于各个电池的电路且在将电流施加于电池的过程中，尤其是在充电过程
中，从而使得充电电流在负电极与第二释氧正电极之间流动，将该电路设置为：

将负电极电位的绝对值与临界阈值作比较，负电极的电位相对于第
一空气正电极来确定；
当负电极电位的绝对值达到阈值时，就转移过量充电电流，所述过
量充电电流是施加于电池的电流与充电电流之间差值的函数。
这种充电管理器的构成部件能够有效的执行上述方法。尤其是，通过不利用两个
充电电极之间的电压，而是利用负极电的电位且该电位与临界阈值作比较，本发明可有效
地防止电池受到由负电极处的高电位所导致的损坏。因此，本发明解决了如上所述在金属-
空气电池中发生充电电极之间有明显的电压波动的问题。
该电路通过转移过量充电电流来控制电池的充电，所述过量充电电流相当于会使
电极电位增加到阈值以上的电流，当负极电的电位达到阈值时，有效地实现这种过量充电
电流的转移。

于是，本发明的充电管理器能够控制各个电池的充电状态，同时对其进行保护并
确保较长的使用寿命，且与电池组其它电池的充电状态和/或电位无关。
尤其是，模拟电路可以通过与所述相邻电池或者充电器的各个连接将过量充电电
流转移到相邻电池或者转移到充电器。
根据一个实施例，适用于转移过量充电电流的模拟电路可包括可变阻抗部件，并
通过改变所述部件的阻抗来实现过量充电电流的转移。
尤其是，可变阻抗部件是功率晶体管。
功率晶体管的使用可为转移过量电流提供快速的响应时间。此级，控制这种模拟
部件需要较少的能量，以便能在几百微秒的时间内转移大约3安培的大电流。
尤其是，功率晶体管可以是达林顿晶体管。
达林顿晶体管可用作适于转移大电流的部件，它只需要几毫安低电流的指令控制
就能转移数安培的大电流。在负电极的电位接近阈值时，尤其是该电位达到阈值时，还可以
满足从金属-空气电池转移电流的响应时间的要求。
根据一个实施例，充电管理器可进一步包括适于测量在负电极与第一空气正电
极之间电位差的电路。
根据一个实施例，电子测量电路可包括稳压滤波器。
金属-空气电池的充电动态会导致电解质中的载荷子移动，产生噪声，且电池负电
极位位的测量结果对该噪声十分敏感。这会引起通过充电电极的电压的迅速波动，这波动
通常超过75Hz。针对降低噪声，例如，本发明可利用以差分放大器为基础的测量结果，其中
所述差分放大器利用运算放大器作为低通滤波器。这样，负电极电位的测量就不再受到与
通常大于75Hz频率的高频噪声相关的偏差影响。
本发明还涉及包括至少一个电池的一种电池组，各个电池都至少包括负电极、第
一空气正电极、第二释氧正电极以及如上所述的充电管理器。

附图说明
通过阅读出于阐释性目的而非限制性的展示的以下几个示例性实施例的说明且
通过观察附图，可以更好地理解本发明的方法，附图包括：
说明书

图1示出了具有三个电极的金属-空气电池；以及，
图2示出了由三个金属-空气电池相互串联连接而组成的电池组，其包括转移过量
充电电流的组件；
图3示出了适用于具有三个电极的金属-空气电池的充电管理器；
图4是适用于测量金属-空气电池的负极电位的电路的电路图；
图5a和图5b是适用于估算对应于在参考电极位和所得得的负极电位之间差值
的电路的电路图；
图6是适用于调整根据图5a和图5b图示的所得得差值的电路的电路图；
图7是适用于获得控制可变阻抗组件的电压以便转移过量充电电流的电路的电路
图；以及，
图8是适用于控制达林顿晶体管的激活以便把过量充电电流转移到相邻电池的电
路的电路图。
图中清晰的显示，这些图中显示的各个元件的尺寸不一定与实际尺寸成比例。
在各图中，相同的标记与相同的元件相对应。

具体实施方式

本发明涉及由串联、并联或者串并联相结合所连接的金属-空气电池所构成的电
池组的充电。
在使用寿命方面最成功、最有效的金属-空气电池是三电极电池，比如图1所示的
电池，图1示性地阐释了由单独一个电池-空气电池10所构成的电池组。这种电池10包括
通常由碱性溶液所形成的电解质4。通常为比如锌、铁或锂之类的金属的负电极1连接着充
电器1的负端。在放电时，第一电极正电极2用于电源电路。在充电时，第一电极正电极2仅用于
测量负电极1的电位。充电或放电的运行模式可通过比如继电器这类切换装置6来选择。只
有给电池组充电时才使用第二释氧正电极3。在充电时，可借助于被称为电池组管理系统或
者BMS的充电管理器7来控制电池组件。
由于充电终端1与3之间存在着较大电压波动，所以普通双电极电池组所使用的充
电管理器不适于包括金属-空气电池的电池组。将负极电位保持在阈值以下有利于避免
金属离子在充电阶段沉积在电极上的过程中而形成树枝晶或泡沫。
在对包括多个电池的电池组进行充电时，无论各个电池的电位如何，由充电器5所
输送的直流电都通过电池组的各个电池。各个电池的充电历程都是不同的，因此在这对电池
组进行充电时，各个电池的负极电位会产生很大差距，并且有些电池的电位临界阈值会
超出限度，导致电池组退化。
图2示性地阐释了包括三个金属-空气电池相互串联连接且分别装有本发明的
充电管理器7的电池组，由充电器6输送的充电电流在与位于电池组一端的电池11负电极1相
连的负端和与位于电池组另一端的电池12的第二释氧电极3相连的的正端之间流动。本发
明把充电管理器7与电池组的各个电池连接在一起，适于接收电池1负电极电位的测量结
果，将该值与对应于不得超过的参考值的阈值作比较，并且在达到阈值时，启动适于转移
过量充电电流的部件。
过量充电电流可定义为等于施加于电池的电流与实际通过电池的电流之间差值。
的电流，所述施加于电池的电流也称为电池输入电流，所述实际通过电池的电流经由电解质从负电极流向第二释氧正电极。

[0065] 图3图示解释了本发明充电管理器7所包含的主要部件。为了清晰起见，该图阐释了由充电器5供电的单独一个电池。

[0066] 充电管理器7包括电路40，通过测量第一空气正电极2与负电极1之间电位差来衡量负电极1的电位。将通过电路40所测得的值传递到调整电路80。该电路80还可以接收参考阈值50，所述参考阈值可以是固定值或者经过指定次数的充电电循环之后重新估计的值。电路80可包括用作调整校正器60的第一电子单元，所述调整校正器60所测得的电位与参考阈值50作比较，以便控制构成转移充电电流的部件70的第二电子单元。

[0067] 本发明的充电管理器7与现有技术充电管理装置的另一个区别还在于，它对过量充电电流的转移进行模拟控制，而不是二进制控制。因此，转移的充电电流的量可以当负电极的电位达到参考值50时仍通过电池的那部分电流。然而，只有达到阈值时，此转移才真正起作用。

[0068] 应该注意的是，给电池充电是一个非线性过程。于是，充电循环开始时，通过电池流过的电流会比较高以及负电极1的电位可低于阈值50。负电极1的电位随着金属离子在负电极1的减少而增加。然而，充电器为电池提供恒定电流。本发明能够在对电池组进行充电的第一阶段中保持恒定电流通过电池，同时保持负电极的电位低于阈值50。当负电极1的电位达到阈值时，就将过量电流转移到另一个电极。剩余部分能够在不损坏电池的条件下完成电池组充电。通常在将一定量的电流供应给电池组之后，结束电池组的充电。因此本发明能够将过量充电电流重新分配给电池组内的电池，这些电池仍然可以利用来自充电器5的内部电路或全部电流，所以就有可能将预先确定的值来根据充电器所输送的总电流结束充电，所述预先确定的值对应于能够给电池组所有电池充满电的电流量。

[0069] 图4至图8阐释了关于上文所描述的部件40、80、60和70的一个特定的示例性实施例。基于实现测量功能、比较电位与参考值的功能以及管理转移部件功能的其它技术手段的替代实施例均可用于执行上文所描述的充电控制方法。

[0070] 图4展示了一个测量负电极1电位的电路40的实例。该电路40由差分放大器2001所构成，所选的差分放大器通常在5V至5V之间电压范围内运行。该电压范围的值通常取决于电池组所包含的电池数量。放大器2001的负端可经由电阻器4001连接着负电极1。该电极的电位101用V-表示。正端可经由电阻器4002连接着第二释氧正电极2。接地的电阻器4003可设置在电阻器4102与放大器2001之间。该电极的电位102用V+表示。放大器可包括反馈电阻器4004。在电路40的输出端，可以得到对应于负电极1的电位，用Vdiff表示的电压301。

[0071] 适用于测量电压的运算放大器的使用特别有利于金属-空气电池的情况，因为其涉及低压和小电流。实际上，使用运算放大器能够使得所获得的测量结果受到测量电极1和2的电力状态所产生的很小的干扰。此外，运算放大器可用作低通滤波器，用于消除电压波动，所述电压波动会引起控制的偏差。作为替代方案，有可能在电位测量组件的上游或下游使用低通滤波器。

[0072] 在一个特殊实施例中，电阻器4001至4004可选自等于2.2kΩ的运算放大器可选择LT1001A®放器。这类组件使得流向V-的线上电流为1.4mA，功率损耗为4.2mW，使得流向V+的线上电流为0.7mA，功率损耗为1.1mW。由于图4至图8所示的不同电路之间的相互连接，
这些值可有细微的变化。

[0093] 然后，可以将电压301按线路传输至调整校正器60，以便与参考值作比较，如图5b所示。

[0094] 图5a、图5b和图6显示了作为图3所示调整校正器60的示例性实施例的电路。

[0095] 图5a提出一种反相放大器组件，适用于改变与阈值Vref相对应的电压50的符号。该组件包括运算放大器2002，所述运算放大器中的正端可经由电阻器5002接地。负端可经由电阻器5001连接着参考电压50。还可以提供反馈电阻器5003。

[0096] 电阻器5001-5003具有例如2.2kΩ的数值。放大器2002可以有与放大器2001相同的特征。因此，图5a所示组件可适合转换介于1.3V至1.7V之间的输入电压50。反相放大器输出端电压51的绝对值也可以介于1.3V至1.7V之间。包括Vref输入端的线上最大电流可为0.8mA。各个电阻器消耗的功率可为1.4mW。

[0097] 图5a所示组件的输出端51用作图5b所示求和反相器组件的输入端。

[0098] 图5b所示反相求和放大器组件可被提供用于计算参考值50与代表负极1电位的电压301之间的差值。反相求和放大器2003的负端可经由电阻器5004连接着获取电压51的线路。还可以经由电阻器5005将其连接着获取电压301的线路。放大器2003的正端可经由电阻器5006接地，放大器2003可具有反馈电阻器5007，放大器2003可以输出以Vref-Vdiff表示的电压53，所述电压对应于参考值50和由电压301给定的负电极1电位之间的差。

[0099] 在一个具体实施例中，电阻器5004-5007的数值可为2.2kΩ，放大器2003可以与放大器2001和2002相同。输出端电压53可以在-1.7V至1.3V之间变化。获取电压301的线路中的最大电流可为1.4mA，获取电压51的线路中的最大电流可为0.8mA，最大输出电流可为0.8mA。因为输出端53连接着图6所示反相放大器组件，通常连接着输入线上电阻器，所以就有可能更准确地估算图5b所示组件的最大电流和功率损耗。获取电压301线路中的最大电流可为2.1mA，获取电压51线路中的最大电流可为1.6mA。该组件的功率损耗可为26mW。

[0100] 图6所示组件相当于反相放大器组件，用于放大电压差53，以便构成用于转移过量充电电流的部件的控制电压。图6所示组件能够对所述电压差53引入增益。该增益调整负电极电位与参考值50之间的差值，当超出所述参考值50时，图8所示可变阻抗部件81就开始转移施加于电势的一部分电流。因此，有可能选择增益，使之即使在负电极的电位未达到参考值50的情况下，可变阻抗部件81也能够转移施加于电势的一小部分电流，如下文所述。

[0101] 放大器2004的正端可经由电阻器6001连接着获取电压53的线路。正端可经由电阻器6002接地。通常在10kΩ至300kΩ之间调整的电阻电位计6003可用作反馈电阻器。反相放大器的增益因此可以调整。放大器2004正端和负端的输入电流通常可以忽略，因为反馈电位计很高。图6所示组件可以输出控制电压54，其相当于电压53乘以阿尔法增益。该增益可用电阻器R6003和R6001表示为R6003/R6001。放大器2004可与放大器2001-2002相同，电阻器6001的值可为1kΩ以及电阻器6002的值可为2.2kΩ。

[0102] 将电位计用作反馈元件允许把增益调整到上文所述的各个电位的特性。电位计的电阻可以通过在使用之前进行一次校准来进行调整或者经过一定次数的充放电循环之后进行重新校准。

[0103] 为了稳定输入电压53，有可能在电阻器6001上游增加低通滤波器，例如，具有截止频率为75Hz的低通滤波器。这种滤波器限制电压振荡，否则所述电压振荡在图8所示的可变
阻抗部件处会产生交叠开关和停止过量电流的转移的不利影响。

【0104】电源转移元件70可包括用于生成诸如功率晶体管的可变阻抗部件的控制电压的电路，如下文所述。图7显示一种设置，其中将控制电压54施加至负电极的电压101，从而产生这种控制电压。这种设置包括反相求和放大器2005，随后是串联连接的反相放大器2006。放大器2005的正端经由电阻器7002连接着获取电压54的线路以及经由电阻器7001连接着获取电压101的线路。正端经由电阻器7003接地。可以设置反馈电阻器7004。

【0105】放大器2005输出端经由电阻器7005连接着放大器2006的端。放大器2006的正端经由电阻器7006接地。可以设置反馈电阻器7007。作为放大器2006的输出端，组件可以输送与电压101和电压54之和相对应的电压55。

【0106】根据一个特殊实施例，电阻器7001-7007的值可为2.2kΩ。放大器2005和2006可以与放大器2001-2004相同。

【0107】当放大器可以串联(rail-to-rail)运行时，电压54可以在-15V与+15V之间变化，电压101通常可在0至3V之间变化。因此，当放大器可以串联运行于电压55的最大值为15V，最小电压为-15V，放大器2005在饱和状态限于的所述极限范围内运行。

【0108】图8所示的，可在获取电压55线路的输出端和图8所示的电压跟随器元件的上游设置二极管。因为二极管防止关于施加的负电压的电流通过。因此，就有可能计算从反相放大器2006所输出的电流，来自2006的最大输出电流可为7mA。反相端的电压接近1V，放大器2006的功率损耗可为7mW。对于包括电阻器7002的线路中的7mA电流以及包括电阻器7001的线路中的0.9mA电流而言，已知放大器2006的反馈可以增加7mA电流。来自2005的最大输出电流为15mA。

【0109】串联放大器2005的功率损耗可为15mW。

【0110】通过这个信息，我们可以估算放大器2004饱和运行的功率损耗为7mW。放大器2004的最大功率损耗可为30mW，放大器2005的最大功率损耗为60mW，放大器2006的最大功率损耗为30mW。

【0111】图8描述了能够产生可变阻抗部件的控制电压的电压跟随器元件，如下文所述。该元件包括二极管801，用于矫正控制信号55并保护可变阻抗部件。二极管可采用例如1N914型。

【0112】有利地，放大器2007与放大器2001-2006的区别在于，只提供+15V的电压，其它端接地，以防止向可变阻抗部件81提供负电压。例如，可以采用LT1006型放大器。放大器2007的正端可包括经由电阻器8001接地的连接点。对于0.12mW的功率损耗而言，二极管801的最大电流可为0.2mA。当该电阻器的电阻值为100kΩ时，电阻器8001的功率损耗可为4mW。放大器2007可输出整流电压56。因此，该放大器2007通常使较小电流通过二极管801。在没有放大器2007的情况下，二极管801的尺寸可以起到输送充足电流以控制达林顿晶体管的作用。

【0113】放大器2007所输出的最大功率的特征可以通过转移过量充电电流的可变阻抗部件81的控制要求来制定。图8所示的可变阻抗部件81，可以是如达林顿晶体管这类功率晶体管，有利于确保至少转移3A的电流。图8所示的达林顿晶体管81的最小极限100而言，从反相放大器2007输出的控制电流可等于30mA。因为将高态电压视为13V，达林顿晶体管的控制电阻可约为40000Ω。放大器2007的最大功率损耗可为150mW。
图8所示达林顿晶体管81可经由电阻器8002连接着获取控制电压56的电路。该控制电压可以为达林顿可变阻抗装置的第一晶体管的基极供电。达林顿可变阻抗装的第二晶体管的发射极可连接着至电位101的当前电池的负极极1。达林顿可变阻抗装置81第一晶体管和第二晶体管共用的集电极可连接着电池组中下一个电池的负电极。

例如，电阻器8002可以选择使其等于1kOhm。选择该电阻器的值使之能够调整达林顿晶体管的控制电压。因此，达林顿晶体管的响应可通过选择图6所示反相放大器的增益、辅助于电位计6003以及通过选择电阻器8002来调整。

当施加于基极的电压足以使达林顿晶体管能导通时，达林顿晶体管的基极使过量充电电流能够从当前电池的负电极传输到电池组中下一个电池的负电极。实际上，构建如上所述的调整电路，以便负电极的电位达到阈电位50时或者至少接近阈电位50而不超过阈值50时，达林顿晶体管能导通。在这种情况下，施加于所讨论的电池的电流可以采取两种不同的路径：一部分电流可以在两个充电电极之间流过电解质，其余部分则可以流过达林顿晶体管81。

通过达林顿晶体管81从电池转移的电流可以是这样的：只允许将负电极1的电位保持在小于或等于阈值的施加于电池的部分电流通如在两个充电电极之间的电解质。于是，达林顿晶体管81用作模拟可变阻抗元件，由施加于达林顿晶体管81基极的控制电压56控制这种变化。因为达林顿部件81的响应通常由于在导通状态下获得的高增益而可以用指数函数表示，所以防止有可能将负电极1的电位增加至超过阈值50的电流的通过。控制电压56基于负电极1的电位与阈值50之间的差。然后，与负电极1电位101之间的差值相关的方差，将这种调节用于调节达林顿晶体管的阻抗。

上文所述的调整电池组充电的系统能够提供超过几米微秒的响应时间，尤其是由于所采用的运算放大器的响应时间，估计为40微秒。达林顿可变阻抗部件81通常具有十纳秒左右的快速响应动态。仅通过向第一晶体管的基极提供的5mA电流便可以转移5A电流。

此外，本发明不仅限于上文通过实例所展示的特殊实施例。

例如，有可能将过量充电电流转移至除相邻电池以外的别处，例如，所转移的充电电流用于向蓄能装置供电。

本发明可以在包括单独一个金属-空气电池的电池组中实施，也可以在包括相互电气连通的多个金属-空气电池的电池组中实施。

仅作为示例性实施例而提供部件（电阻器、放大器）的选择，以阐明本发明可以通过快速响应时间来调整高强度的电流，同时只需要很少的能量。
图2
图3
图8