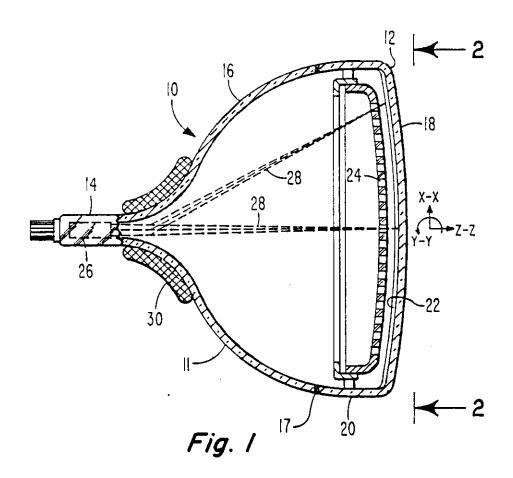


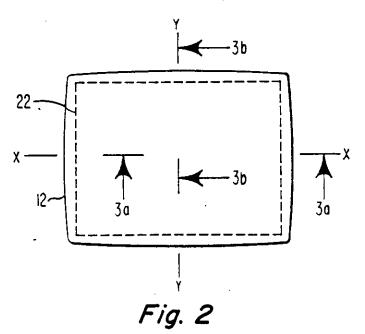
(12) UK Patent (19) GB (11) 2 160 354(13) B

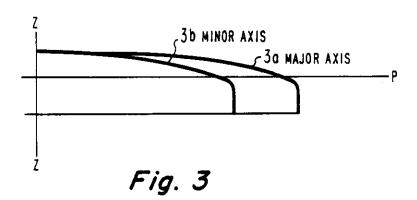
(54) Title of Invention

Color picture tube having improved shadow mask

(51) INT CL4; H01J 29/07


- (21) Application No 8513366
- (22) Date of filing 28 May 1985
- (30) Priority data
 - (31) 615589
 - (32) 31 May 1984
 - (33) United States of America (US)
- (43) Application published 18 Dec 1985
- (45) Patent published 11 Jan 1989
- (52) Domestic classification (Edition J) H1D 4A4 4A7 4G8 4GY 4K4 4K7D 4K7Y 4K8 AF4
- (56) Documents cited None
- (58) Field of search H1D Selected US specifications from IPC sub-class H01J


(73) Proprietor(s) RCA Corporation


> (incorporated in USA-Delaware)

201 Washington Road Princeton New Jersey 08540 United States of America

- (72) Inventor(s)
 Walter David Masterton
- (74) Agent and/or
 Address for Service
 T I M Smith
 GE/RCA Patent Operation
 Burdett House
 15-16 Buckingham Street
 London WC2 6DU

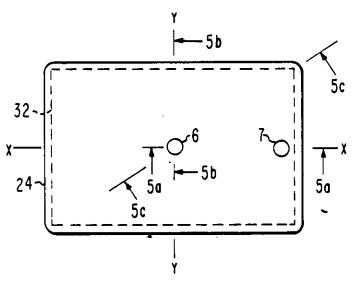
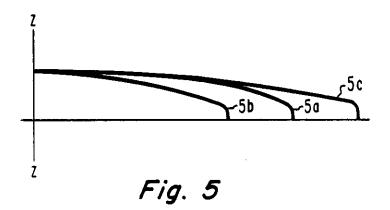



Fig. 4

3/4

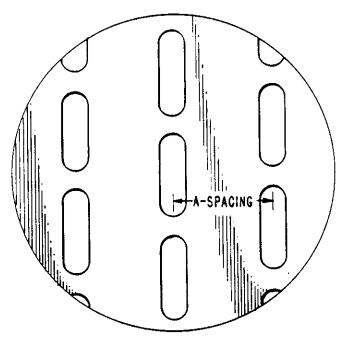
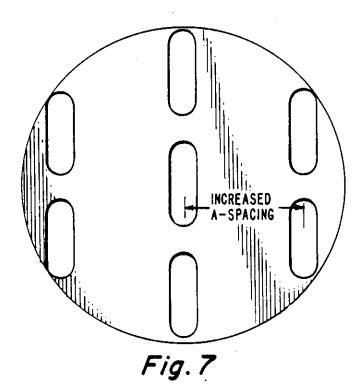



Fig. 6

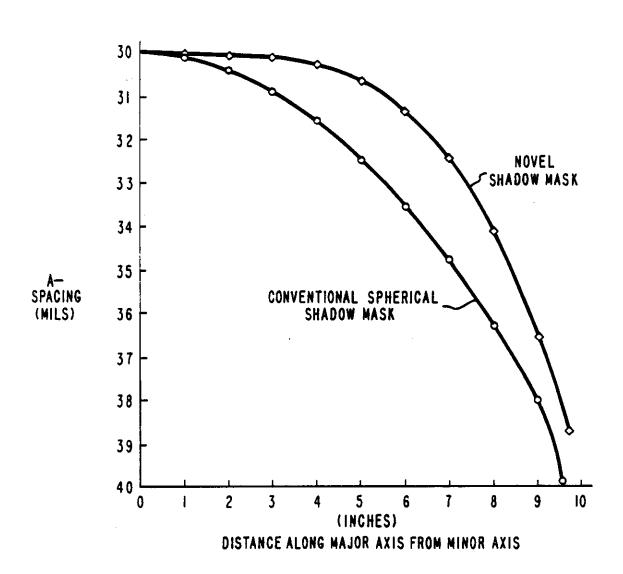


Fig. 8

-RCA-80,908.

COLOR PICTURE TUBE HAVING IMPROVED SHADOW MASK

This invention relates to color picture tubes of the type having a slit-aperture type apertured shadow mask mounted in close relation to a cathodoluminescent line screen of the tube and, particularly, to an improvement in mask aperture column spacing within such tubes.

Most color picture tubes presently being manufactured are of the line screen-slit mask type. tubes have spherically contoured faceplates with line screens of cathodoluminescent materials thereon, and somewhat spherically contoured slit-apertured shadow masks adjacent to the screens. The slit-shaped apertures in such tubes are arranged in columns that substantially parallel the minor axis of the tube. 15

Recently, several color picture tube modifications have been suggested. One of these modifications is a new faceplate panel contour concept which creates the illusion of flatness. Such tube 20 modification is disclosed in our pending applications nos. 2136200A, 2136198A and 2147142A. The faceplate contour of the modified tube has curvature along both the major and minor axes of the faceplate panel, but is nonspherical. In a preferred embodiment described in 25 these applications, the peripheral border of the tube screen is planar or at least visually appears to be substantially planar. In order to obtain this planar or substantially planar peripheral border, it is necessary to form the faceplate panel with a curvature along its major 30 axis that is greater at the sides of the panel than at the center of the panel. Such nonspherical shaping of the faceplate panel creates a problem involving shadow mask shape and aperture column-to-column spacing in the shadow mask.

1

5

10

In the first line screen-slit mask type tubes, the shadow masks were almost spherical and the separation of the adjacent aperture columns along the major axis (horizontal separation) was held constant over the mask. 5 However, some later tubes of this type included a shadow mask with increased curvature and incorporated an aperture column spacing variation taught in U.S. Patent 4,136,300, issued to A. M. Morrell on January 23, 1979. In such later tubes, the spacing between centerlines of adjacent 10 columns of apertures increased from center-to-edge of the mask. This increase varied along the major axis generally as the square of the distance from the minor axis. column-to-column spacing in the newer substantially planar tubes were permitted to vary as the square of the distance 15 from the minor axis, the curvature of the mask would have to be decreased to obtain acceptable location or packing of the screen lines. It should be noted that the screen is formed by a photographic process that uses the shadow mask as a photo master. However, reducing the curvature 20 of the shadow mask reduces its stiffness and increases distortions of the mask during tube operation. the shadow masks for the new substantially planar tubes have contours similar to the faceplate contours. mask contours are generally described in the 25 above-referenced Application no. 2136200A. However, that application does not provide a specific equation for mask contour and does not teach a specific aperture column-to-column spacing variation for such mask. In any event, the prior column-to-column spacing variations are unsuitable for these newer mask contours. 30 Therefore, there is a need for a new aperture column-to-column spacing for use in the shadow masks of

In accordance with the present invention, an improvement is made in a color picture tube having a slit-aperture type shadow mask mounted therein in spaced relation to a cathodoluminescent line screen. In the

such newer tubes.

improved tube, the spacing between adjacent aperture columns increases from center-to-edge of the shadow mask by an amount which varies as approximately the fourth power of the distance from the center of the mask.

Such fourth order spacing variation permits shaping of the shadow mask so that the contour of the mask along its major axis also varies as a function of the fourth power of distance from the center of the mask.

In the drawings:

5

25

30

35

FIGURE 1 is a plan view, partly in axial section, of a shadow mask color picture tube incorporating a novel shadow mask in accordance with the present invention and also that claimed in Divisional Application No. 8801566 (RCA 80908A).

FIGURE 2 is a front view of the faceplate of the color picture tube taken at line 2-2 of FIGURE 1.

FIGURE 3 is a compound view showing the surface contours of the faceplate panel at the major axis, 3a-3a, and the minor axis, 3b-3b, cross-sections of FIGURE 2.

FIGURE 4 is a front view of the shadow mask of the color picture tube of FIGURE 1.

FIGURE 5 is a compound view showing the surface contours of the shadow mask at the major axis, 5a-5a, the minor axis, 5b-5b, and the diagonal, 5c-5c, cross-sections of FIGURE 4.

FIGURES 6 and 7 are enlarged views of the shadow mask taken at circles 6 and 7, respectively, of FIGURE 4.

FIGURE 8 is a graph showing aperture column-to-column spacing variations in a conventional spherical shadow mask and in a shadow mask according to the present invention.

the form of a color picture tube 10 having a glass envelope 11, comprising a rectangular faceplate panel 12 and a tubular neck 14 connected by a funnel 16. The panel comprises a viewing faceplate 18 and a peripheral flange or sidewall 20, which is sealed to the funnel 16 by a glass frit 17. A rectangular three-color cathodoluminescent phosphor screen 22 is carried by the

inner surface of the faceplate 18. The screen is preferably a line screen, with the phosphor lines extending substantially parallel to the minor axis, Y-Y, of the tube (normal to the plane of FIGURE 1). A novel multi-apertured color selection electrode or shadow mask 24 is removably mounted within the faceplate panel 12 in predetermined spaced relation to the screen 22. An inline electron gun 26, shown schematically by dashed lines in FIGURE 1, is centrally mounted within the neck 14 to generate and direct three electron beams 28 along initially coplanar convergent paths through the mask 24 to the screen 22.

The tube 10 of FIGURE 1 is designed to be used with an external magnetic deflection yoke, such as the yoke 30 schematically shown surrounding the neck 14 and funnel 16 in the neighborhood of their junction, for subjecting the three beams 28 to vertical and horizontal magnetic flux, to scan the beams horizontally in the direction of the major axis (X-X) and vertically in the direction of the minor axis (Y-Y), respectively, in a rectangular raster over the screen 22.

15

20

25

30

35

FIGURE 2 shows the front of the faceplate panel 12. The periphery of the panel 12 forms a rectangle with slightly curved sides. The border of the screen 22 is shown with dashed lines in FIGURE 2. This screen border is rectangular.

A comparison of the relative contours of the exterior surface of the faceplate panel 12 along the minor axis, Y-Y, and major axis, X-X, is shown in FIGURE 3. The exterior surface of the faceplate panel 12 is curved along both the major and minor axes, with the curvature along the minor axis being greater than the curvature along the major axis in the center portion of the panel 12. For example, at the center of the faceplate, the ratio of the radius of curvature of the exterior surface contour along the major axis to the radius of curvature along the minor axis is greater than 1.1 (i.e., there is a greater than 10% difference). The curvature along the major axis,

however, is much less in the central portion of the faceplate and increases near the edges of the faceplate. In this one embodiment, the curvature along the major axis, near the edges of the faceplate, is greater than the general curvature along the minor axis. With this design, 5 the central portion of the faceplate becomes flatter, while the points of the faceplate exterior surface at the edges of the screen lie substantially in a plane P and define a substantially rectangular peripheral contour The surface curvature along the diagonal is 10 selected to smooth the transition between the different curvatures along the major and minor axes. In a preferred embodiment, the curvature along the minor axis is at about 4/3 greater than the curvature along the major axis in the central portion of the faceplate. 15

By using the differing curvatures along the major and minor axes, the points on the exterior surface. of the panel, directly opposite the edges of the screen 22, lie substantially in the same plane P. substantially planar points, when viewed from the front of 20 the faceplate panel 12, as in FIGURE 2, form a contour line on the exterior surface of the panel that is substantially a rectangle superposed on the edges of the Therefore, when the tube 10 is inserted into a television receiver, a uniform width border mask or bezel can be used around the tube. The edge of such a bezel that contacts the tube at the rectangular contour line also is substantially in the plane P. Since the periphery border of a picture on the tube screen appears to be planar, there is an illusion created that the picture is flat, even though the faceplate panel is curved outwardly along both the major and minor axes.

25

30

FIGURE 4 shows a front view of the novel shadow The dashed lines 32 show the border of the apertured portion of the mask 24. The surface contours 35 along the major axis, X-X, the minor axis, Y-Y, and the diagonal of the mask 24 are shown by the curves 5a, 5b and 5c, respectively, in FIGURE 5. The mask 24 has a

different curvature along its major axis than along its minor axis. The contour along the major axis has a slight curvature near the center of the mask and greater curvature at the sides of the mask. The contour of such a 5 shadow mask can be generally obtained by describing the major axis, X-X, curvature as a large radius circle over about the central portion of the major axis, and a smaller radius circle over the remainder of the major axis. However, more specifically, the sagital height along the major axis varies substantially as the fourth power of 10 distance from the minor axis, Y-Y. Sagital height is the distance from an imaginary plane that touches and is tangent to the center of the surface of the mask. curvature parallel to the minor axis, Y-Y, is such as to 15 smoothly fit the major axis curvature to the required mask periphery and can include a curvature variation as is used along the major axis. Such mask contour exhibits some improved thermal expansion characteristics because of the increased curvature near the ends of the major axis. 20 relation of improved thermal expansion characteristics from increased curvature is discussed in the above-referenced U.S. Patent 4,136,300.

the novel shadow mask along its major axis, X-X, for a tube having a 27 inch (68.58cm) diagonal viewing screen. The first column of Table I represents distance from the minor axis, Y-Y. The second column is the distance from the minor axis taken to the fourth power. The third column represents fourth power calculations for Z-axis or sagital heights. Such calculations are based on the equation, Sagital height (mils)=0.1314x (inches)⁴.

TABLE I

	(Inches)	(Inches) ⁴	(Mils) 0.1314X ⁴
5	0	0	0
	1	1	0
10	2	16	2
	3	81	10
	4	256	33
	5	625	82
	6	1296	170
	7	2401	315
	8	4096	538
	9	6561	862
15	9.5	8145	1070

Because of the novel approximately fourth order contour, the spacing variations between aperture columns that were used in prior shadow masks are inappropriate for the novel shadow mask. Generally, the a-spacing, that is, the spacing between the centerlines of adjacent aperture columns, increases from center-to-edge in the novel mask as does the a-spacing in the prior masks. Such increase in a-spacing can be seen by comparing FIGURE 6, representing the center of the mask, with FIGURE 7, representing the edge of the mask. However, in the novel mask, the variation in a-spacing differs in a substantial and important manner from such variations in prior masks.

The horizontal a-spacing between aperture

columns in the novel shadow mask 24 varies approximately as a function of the fourth power of distance from the center or Y-axis of the tube. This fourth order a-spacing variation is presented in Table II for a color picture tube having a 27 inch (68.58cm) diagonal viewing screen.

In Table II, the first column represents distance from the minor axis, Y-Y, measured along the major axis, X-X. The

second column represents the distance in the first column taken to the fourth power. The third column represents a calculated a-spacing based upon a function of the fourth power of distance.

5	TABLE II		
	(Inches)	(Inches)4	(Mils)
	X	x ⁴	$30+.001x^4$
	0	0	30.0
	1	. 1	30.0
10	2	16	30.0
	3	81	30.1
	4	256	30.3
	5	625	30.6
	6	1296	31.3
15	7	2401	32.4
	8	4096	34.1
	9	6561	36.6
	9.67	8744	38.7

Comparable data for a conventional

substantially spherical contour shadow mask of similar size is presented in Table III. In this table, the first column represents the distance along the major axis from the minor axis. The second column represents the square of the distance from the minor axis. The third column represents a calculated a-spacing based upon a function of the second power of distance.

TABLE III

	(Inches)	(Inches) ²	(Mils) 30+.097x ²
	0	0	30.0
10	1	1	30.1
	2	4	30.4
	3	9	30.9
	4	16	31.6
	5	25	32.4
	6	36	33.5
	7	49	34.8
	8	64	36.2
	9	81	37.9
	9.60	92.2	38.9

presented in Table II and in Table III, for visual comparison. The a-spacing of the conventional shadow mask begins increasing near the minor axis and continues increasing toward the edge of the mask in rather smooth fashion. However, the a-spacing of the novel shadow mask is relatively constant throughout the center portion of the mask and increases more rapidly approaching the sides of the mask.

The a-spacings of the novel mask at

cross-sections parallel to, but off of, the major axis also vary approximately with the fourth power of distance from the minor axis, although in a slightly different manner. Table IV shows data, comparable to that of Table II, for a cross-section of the novel shadow mask near the border of the apertured pattern (Y=7 inches) which parallels the major axis. For cross-sections between the major axis and the Y=7 inch parallel cross-section, the coefficients of X⁴ lie between .001 and .00126.

TABLE IV

	(Inches)	(Inches) ⁴	(Mils)
	X	x ⁴	$30 + .00126 x^4$
	0	0	30.0
5	1	. 1	30.0
	2	16	30.0
	3	81	30.1
	4	256	30.3
	5	` 625	30.8
10	6	1296	31.6
	7	2401	33.0
	8	4096	35.2
	9	6561	38.3
	9.78	8744	41.0

CLAIMS:

- 1. A color picture tube including a shadow mask mounted adjacent a cathodoluminescent line screen, said shadow mask including a plurality of slit-shaped apertures therein located in columns, wherein the spacing between adjacent aperture columns increases from center-to-edge of said shadow mask by an amount which varies as approximately the fourth power of the distance from the center of said shadow mask.
- 2. The tube as defined in Claim 1, wherein the contour of said mask along its major axis varies in sagital height as approximately the fourth power of the distance from the center of said shadow mask.
- ask mounted adjacent a cathodoluminescent line screen, said shadow mask including a plurality of slit-shaped apertures therein located in columns, wherein the spacing between adjacent aperture columns increases from center-to-edge of said shadow mask by an amount which varies approximately as a function of the fourth power of the distance from the center of said shadow mask, said function being a coefficient times the fourth power of distance, and said coefficient being larger for cross-sections of said mask that are parallel to but off of a major axis of said mask than on the major axis.
- 4. A color picture tube having a shadow mask substantially as hereinbefore described with reference to FIGURES 4-8 of the accompanying drawings.

ř.

TIMED: 30/11/93 14:25:26 PAGE: 1

REGISTER ENTRY FOR GB2160354

Form 1 Application No GB8513366.8 filing date 28.05.19

Priority claimed:

31.05.1984 in United States of America - doc: 615589

Divisional GB8801566.4

Title COLOR PICTURE TUBE HAVING IMPROVED SHADOW MASK

Applicant/Proprietor
RCA CORPORATION, Incorporated in USA - Delaware, 201 Washington Road,
Princeton, New Jersey 08540, United States of America
[ADP No. 00697417003]

Inventor

WALTER DAVID MASTERTON, 834 Blue Grass Road, Lancaster, Pennsylvania, United States of America [ADP No. 00260547001]

Classified to H1D H01J

Address for Service

T I M SMITH, GENERAL ELECTRIC TECHNICAL SERVICES COMPANY INC, London
Patent Operation, Burdett House, 15-16 Buckingham Street, LONDON, WC2N
6DU, United Kingdom [ADP No. 00002279003]

Publication No GB2160354 dated 18.12.1985

Examination requested 22.05.1986

Patent Granted with effect from 11.01.1989 (Section 25(1)) with title COLOR PICTURE TUBE HAVING IMPROVED SHADOW MASK

31.05.1989 RCA LICENSING CORPORATION, Incorporated in USA - Delaware, Two Independence Way, Princetown, New Jersey 08540, United States of America [ADP No. 04179081001] registered as Applicant/Proprietor in place of RCA CORPORATION, Incorporated in USA - Delaware, 201 Washington Road, Princeton, New Jersey 08540, United States of America [ADP No. 00697417003] by virtue of deed of assignment dated 08.12.1987. Certified copy filed on GB2198311

Entry Type 8.4 Staff ID. WE1 Auth ID. F21

28.10.1991 Application under Section 32 filed on 21.10.91.

Entry Type 10.1 Staff ID. MM Auth ID. E0

REGISTER ENTRY FOR GB2160354 (Cont.)

PAGE:

2

31.10.1991 Notification of change of Applicant/Proprietor name of RCA LICENSING CORPORATION, Incorporated in USA - Delaware, Two Independence Way, Princetown, New Jersey 08540, United States of America [ADP No. 04179081001]

to
RCA THOMSON LICENSING CORPORATION, Incorporated in USA - Delarare,
2 Independence Way, Frinceton, New Jersey 08540, United States of
America (ADP No. 05564408001)
dated 30.06.1991. Official evidence filed on GB2215154
Entry Type 7.2 Staff ID. GO Auth ID. EO

01.11.1991 Notification of change of Address For Service name and address of T I M SMITH, GENERAL ELECTRIC TECHNICAL SERVICES COMPANY INC, London Patent Operation, Burdett House, 15-16 Buckingham Street, LONDON, WC2N 6DU, United Kingdom [ADP No. 000022790031 to

GENERAL ELECTRIC TECHNICAL SERVICES COMPANY INC, Burdett House, 15-16 Buckingham Street, LONDON, WC2N 6DU, United Kingdom [ADP No. 00007849001]

dated 25.10.1991. Official evidence filed on GB2215154
Entry Type 7.1 Staff ID. MM Auth ID. EO

15.06.1992 Notification of change of Address For Service address of GENERAL ELECTRIC TECHNICAL SERVICES COMPANY INC, Burdett House, 15-16 Buckingham Street, LONDON, WC2N 6DU, United Kingdom [ADP No. 00007849001]

to GENERAL ELECTRIC TECHNICAL SERVICES COMPANY INC, Essex House, 12-13 Essex Street, LONDON, WC2R 3AA, United Kingdom

[ADP No. 00007849002]

dated 14.04.1992. Official evidence filed on GB2215154 Entry Type 7.3 Staff ID. GO Auth ID. F20

**** END OF REGISTER ENTRY ****

OA80-01 FG

OPTICS - PATENTS

30/11/93

14:25:47 PAGE: 1

RENEWAL DETAILS

PUBLICATION NUMBER

GB2160354

PROPRIETOR(S)

RCA Thomson Licensing Corporation, Incorporated in USA - Delaway 2 Independence Way, Princeton, New Jersey 08540, United States America

DATE FILED

28.05.1985

DATE GRANTED

11.01.1989

DATE NEXT RENEWAL DUE

28.05.1994

DATE NOT IN FORCE

DATE OF LAST RENEWAL

20.04.1993

YEAR OF LAST RENEWAL

09

STATUS

PATENT IN FORCE