Embodiments of the disclosure concern compositions and methods of use related to particular c-kit+ mesenchymal cells, including cardiac stem cells, obtained from a pediatric or neonatal individual. In specific embodiments, the cells, or conditioned medium or partial or total secretomes thereof, are provided in an effective amount to an individual in need thereof.
FIG. 1C
FIG. 2A

nCSCs aCSCs

CD90

FIG. 2B

nCSCs aCSCs

CD105
FIG. 3I

P-8

ncSCs

cnSCs

FIG. 3J

Ratio of Apoptotic Cells/nuclei (mm²)

ncSCs vs acSCs

*
Neovessel formation

IB4 DAPI

FIG. 5K

![Image of neovessel formation with IB4 and DAPI staining.](image_url)

Arterioles/Field

- Anterior-BZ
- Mid-Infarct
- Posterior-BZ

Neonate vs. Adult comparison.
FIG. 5L
FIG. 6A

End Diastolic Volume

FIG. 6B

Stroke Volume
FIG. 8

nCSC aCSC nCSC aCSC
VEGF \\
ANG \\
IGF-1 \\
SCF \\
SDF-1α \\
bFGF \\
HGF-1 \\
PDGF \\
Anti-apoptosis

FIG. 10B
Proliferation

FIG. 10C

Brdu⁺ Cells

NRCMs
NRCMs + CM
FIG. 11A

End Diastolic Volume

Posterior Wall Thickness

Stroke Volume
Total tube length (pixels)

<table>
<thead>
<tr>
<th>Dose (ng)</th>
<th>Total Tube Length (pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000</td>
</tr>
<tr>
<td>2</td>
<td>20000</td>
</tr>
<tr>
<td>4</td>
<td>30000</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 11C

nCSCs

aCSCs
FIG. 12G

Fold Change

Protein Metabolism

ACBD3
CALU
CAND1
CCT
CCP
teS
DYNC1I2
GLO1
GLO4
GOT1:2
HSPA13
HSPA
HSPE1
MTAP
NACA
NEDO5
PCMT1
PFDN2
PPP1
PSAT1
PSMB
PSMA
PSMD4
PSME1
PTGES3
RAD23A
RAD23B
RNPEP
RPL6
RPL12
RPLP
RPS
RRBP1
SKP1
STIP1
SUGT1
TCP1
TFP12
TXNDC12
UBA1
UBB14
UBE2D2
UBE1K
UBE2L3
UBE2N
UBQ1
UFM1
USP14
USP5
VBP1
VCP
VPS
XPNPSTP1
CLEC3B
CPA4
CSF1
CST3
EXT1
GALNT2
ITM2B
LNPEP
LRP1
LUM
MAMDC2
PAM
SERPINE2
SPOCK1
FIG. 13A

Component 1 (55.8%) vs. Component 2 (13%)

FIG. 13B

Intersection of CM-aCSC and CM-nCSC sets:
- CM-aCSC: 33, 298
- CM-nCSC: 419
<table>
<thead>
<tr>
<th>Gene</th>
<th>Calcium regulation</th>
<th>Heat Shock proteins</th>
<th>Stem cell maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPNS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPYSL2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYNLL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUCB2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCN1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S100A13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLEC3B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPDR1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSP90AA1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSP90AB1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPA13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPA1A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPA4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPA5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPA8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPA8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPD1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPE1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPH1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUGT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABRACL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCFD2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YBX1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIG. 17

<table>
<thead>
<tr>
<th>Sample</th>
<th>gMFI All</th>
</tr>
</thead>
<tbody>
<tr>
<td>ckit 1</td>
<td>1840</td>
</tr>
<tr>
<td>ckit 2.fcs</td>
<td>1559</td>
</tr>
<tr>
<td>CDCs 1</td>
<td>25404</td>
</tr>
<tr>
<td>CDCs 2</td>
<td>18836</td>
</tr>
</tbody>
</table>
CARDIAC STEM CELLS FOR CARDIAC REPAIR
CROSS-REFERENCE TO RELATED APPLICATIONS

STATEMENT REGARDING FEDERA LY SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support under Grant Number HL097069 awarded by the National Institutes of Health. The government has certain rights in the invention.

TECHNICAL FIELD

[0003] The field of the disclosure concerns at least the fields of cell biology, molecular biology, and medicine, including cardiology.

BACKGROUND

[0004] Heart disease in adults is a leading cause of death and there is an increasing number of children with heart failure owing to advances in surgical techniques for congenital heart defects and post-operative ICU care (Go, et al., 2014; Go, et al., 2014). It has been recently shown that in clinical studies transplantation of resident cardiac stem cells can regenerate/remodel human myocardium, leading to improvements in cardiac function as indicated by improvements in ejection fraction, reduced scar size, reduced end diastolic and systolic volumes and improvements in quality of life and NYHA class (Garbern, et al., 2013). These and other preclinical and in vivo data indicate that a population of resident human cardiac stem cells (hSCSCs), distinguished by their e-kit+ phenotype, provides substantial benefit in repairing the failing heart following intracoronary infusion (Boll, et al., 2011; Boll, et al., 2013; Tang, et al., 2010).

[0005] It was originally thought that hSCSCs differentiate into cardiomyocytes and repopulate the damaged myocardium with new cardiomyocytes able to replenish lost cells (Boll, et al., 2011; Tang, et al., 2010; Beltrami, et al., 2003; Chugh, et al., 2012). However, it is now recognized that differentiation of the hSCSCs into mature cardiac lineage cells occurs at very low frequency, which was tested in a well-established rodent myocardial infarction (MI) model in which the left anterior descending artery is permanently ligated (Pagani, et al., 2003). Therefore, other mechanisms seem responsible for the regenerative/remodeling capacity of hSCSCs (Bergmann, et al., 2009; Kajstun, et al., 2012).

[0006] There is need for compositions and methods for regenerating functional myocardium in adults and children with cardiac medical conditions, such as heart failure caused by damaged myocardial tissue, for example.

BRIEF SUMMARY

[0007] Embodiments of the disclosure concern methods and compositions related to particular cardiac medical conditions. Although any cardiac medical condition may be treated with such compositions and methods, in specific embodiments the condition is a cardiac condition that would benefit from regenerating or remodeling of the myocardium. In certain embodiments, the methods and compositions facilitate or enhance the regenerative or remodeling capacity of human cardiac stem cells (hSCSCs). Embodiments of the disclosure encompass methods and compositions concerning cells that are mesenchymal cells from a myocardium of a mammal, including a human. In specific embodiments, the cells are e-kit+ mesenchymal cells and have characteristic markers.

[0008] In particular embodiments, particular e-kit+ cardiac stem cells are provided to an individual for treatment of one or more cardiac medical conditions, although in specific embodiments a conditioned medium from the cells is provided to an individual for treatment of a cardiac medical condition, and in particular embodiments, secretomes from the cells are provided to an individual for treatment of a cardiac medical condition.

[0009] In one embodiment there is, as a composition of matter, a composition comprising an isolated plurality of human cardiac cells that have two or more of the following characteristics: e-kit+, CD90+, CD105+, CD31−, CD34−, CD45−, and tryptase negative. In one embodiment there is, as a composition of matter, a pharmaceutical composition comprising an isolated plurality of human cardiac cells that have two or more of the following characteristics: e-kit+, CD90+, CD105+, CD31−, CD34−, CD45−, and tryptase negative; and a pharmaceutically acceptable carrier. In specific embodiments, the cells have one, two, three, or more of the following characteristics: GATA4+, CD44+, CD31−, CD34−, CD45−, CD140−, CD106−, tryptase−, CD80−, CD86−, HLA Class I+, and HLA Class II−.

[0010] In certain embodiments, cells of the disclosure are isolated from the heart of a neonatal individual, including a pediatric or non-pediatric individual. In specific embodiments, the individual has a cardiac medical condition. In certain embodiments, the individual has normal myocardium. The cells may be from the myocardium of a pediatric individual with end stage heart failure, in some embodiments. The myocardium may come from a neonatal individual with congenital heart disease.

[0011] In specific embodiments, the cells secrete exosomes that are CD63+. The cells may secrete one or more cytokines; one or more pro-angiogenic factors; and/or one or more VEGF-A, HGF, SCF, SDF-1α, and ANG-1. The cells may express VEGF-A and/or SDF-1α. In particular embodiments, the cells have activation of expression of one or more components of the heat shock response. The cells may have activation of expression of HSF-1, HSP60, and/or HSP70. In particular embodiments, the cells are manipulated to express Hsp70, Hsp27, ISL-1, or a combination thereof. In particular embodiments, the cells are manipulated to increase secretion of SDF-1α, VEGF-A, PGDF-A, IL-6, FGF-2, or a combination thereof. The cells may be suspended in a medium comprising one or more heat shock response inducers, including one or more heat shock response inducers are selected from the group consisting of celastrol, triptolide, and a combination thereof.

[0012] In one embodiment, there is a method of treating an individual for a cardiac medical condition, comprising the step of providing to the individual a therapeutically effective amount of a composition of the disclosure, medium conditioned by a composition of the disclosure, exosomes secreted by a composition of the disclosure, or a combination thereof.
In particular embodiments, the composition, medium, exosomes, or a combination thereof are provided to an hypoxic environment in the heart of the individual. In particular embodiments, the cardiac medical condition is heart failure, cardiomyopathy, or congenital heart disease.

[0013] In one embodiment, there is conditioned medium from the cells of the disclosure, and the conditioned medium and/or components thereof may be provided in therapeutic amounts to the individual instead of the cells themselves. In another embodiment, there are exosomes from the cells of the disclosure, and therapeutic amounts of the exosomes and/or components thereof may be provided to the individual instead of the cells. A mixture of conditioned medium and exosomes may be provided in therapeutic amounts to the individual instead of the cells.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIGS. 1A, 1B, 1C, and 1D display a comparative analysis of proliferative and clonogenic potential of neonatal cardiac stem cells (nCSCs) and adult cardiac stem cells (aCSCs).

[0015] FIGS. 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, and 2M depict C-kit+ cardiac cells specific marker profile of nCSCs and aCSCs.

[0016] FIGS. 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3I, and 3J show a comparative analysis of growth potential of nCSCs and aCSCs at P3 and P8.

[0017] FIGS. 4A, 4B, and 4C illustrate a comparative analysis of nCSCs and aCSCs at P3 and P8.

[0019] FIGS. 6A, 6B, 6C, 6D, and 6E show cardiac function and structure improvement by nCSCs or aCSCs transplantation.

[0020] FIGS. 7A and 7B display expression of angiogenic paracrine factors in vitro and in vivo by nCSCs and aCSCs.

[0021] FIG. 8 provides expression of various angiogenic paracrine factors in vitro by nCSCs and aCSCs.

[0022] FIGS. 9A, 9B, 9C, 9D, and 9E depict expression of pro-angiogenic paracrine factors and effect on proliferation and inflammation after 72 hours of transplantation of nCSCs and aCSCs in vivo.

[0023] FIGS. 10A, 10B, 10C, 10D, and 10E display conditioning medium (CM) of CSCs contain pro-angiogenic, pro-proliferative and anti-apoptotic factors, which can improve cardiac function and attenuate ventricular remodeling similar to CSCs transplantation in MI model.

[0024] FIGS. 11A, 11B, and 11C represent cardiac function and structure improvement by CSCs-CM.

[0025] FIGS. 12A, 12B, 12C, 12D, 12E, 12F, and 12G provide a comparative analysis of the secretome of aCSCs and nCSCs by LC/MS/MS.

[0027] FIGS. 14A, 14B, 14C, 14D, 14E, and 14F represent total Proteome analysis of the aCSC and nCSCs secretome identified by LC/MS/MS.

[0028] FIGS. 15A and 15B depict Isolation of exosomes from C-kit+ cardiac stem cells.

[0029] FIGS. 16A and 16B are characterization of exosomes from C-kit+ cardiac stem cells.

[0030] FIG. 17 is a characterization of exosomes isolated from C-kit+ cardiac stem cells.

[0031] FIGS. 18A, 18B, 18C, 18D, and 18E illustrate flow cytometry analysis of cultured MSCs, CDCs and C-kit+ CSCs.

[0032] FIG. 19 depicts human cells express intermediate levels of major histocompatibility complex I (MHC I), low levels of MHC II and co-stimulatory molecules (CD80 and CD86). B cell acute lymphocytic leukemia (B-cell ALL) cells were used as positive control.

DETAILED DESCRIPTION

[0033] In keeping with long-standing patent law convention, the words “a” and “an” when used in the present specification in concert with the word comprising, including the claims, denote “one or more.” Some embodiments may consist of or consist essentially of one or more elements, method steps, and/or methods of the disclosure. It is contemplated that any method or composition described herein can be implemented with respect to any other method or composition described herein, and embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the subject matter are encompassed in the invention.

[0034] The term “cardiac stem cells” as used herein may be defined as cells derived from cardiac tissue and are clonogenic, multipotent, and self-renewing. In specific embodiments, these cardiac stem cells express one or more of the following: c-kit+, CD90, CD105, and are negative for one or more of the following: CD31, C34, CD45, and tryptase.

I. Cells of the Disclosure and Secretomes Thereof

[0035] Embodiments of the disclosure concern mammalian cells that provide a therapeutic function for an individual in need thereof. In specific embodiments, the cells are human cardiac stem cells (hCSCs) and are useful for a therapeutic function in a mammalian heart. In specific embodiments, the cells have the activity of regenerative or remodeling capacity themselves upon administration to a heart in vivo and/or have the activity for facilitating regenerative or remodeling capacity of endogenous cells and/or tissue in a human myocardium upon administration to a heart in vivo. In specific embodiments, the cells are capable of eliciting a bystander effect, such that upon delivery of the cells to the myocardium in vivo, the cells secrete one or more proteins that enhance regeneration or remodeling of endogenous cells and/or tissues.

[0036] The cells may be from any source, including adult, child or infant, but in specific embodiments the source of the cardiac stem cells are from a neonatal or pediatric individual or from an individual in utero. In particular embodiments, the cells are not adult cardiac stem cells. The cells may be obtained from an individual in need of therapeutic use using progeny of the same cells or the cells may be obtained from another individual. The cells may originate from a donated heart of a neonatal or pediatric individual or from the heart of a living neonatal or pediatric individual. The cells may be provided commercially to the individual in need or may be provided to a medical facility or practitioner overseeing medical care of the individual in need.

[0037] Embodiments of the disclosure encompass cells that are mesenchymal cells from a myocardium of a mammal, including a human. In particular embodiments, the cardiac stem cells may have a specific genotype and/or phenotype.
The cells may be provided to an individual in need thereof following determination of a certain genotype or phenotype of the cells that is suitable for the intended function of the cells upon therapeutic use, in certain embodiments. In specific embodiments, the cells are c-kit+ mesenchymal cells, and in particular embodiments the cells are c-kit+, CD90+, CD105+, and CD34−. In other embodiments, the cells also have one, two, three, or more of the following characteristics: GATA4+, CD44+, CD31+, CD44−, CD106+, tryptase−, CD80−, CD45−, CD68+, HLA Class I+, and HLA Class II−.

In some embodiments, the cells naturally secrete one or more proteins or factors that are beneficial for regeneration or remodeling of localized cells or tissue. Such proteins or factors may be of any kind, but in specific embodiments they are cytokines, pro-angiogenic factors, growth factors, transcription factors, miRNAs and so forth. In some embodiments, the cells secrete one or more of VEGF-A, HGF, SCF, SDF-1α, and ANG-1. In certain embodiments, the cells are manipulated to increase secretion of SDF-1α, VEGF-A, PDGF-A, IL−6, FGF-2, or a combination thereof; such manipulation may be by any manner, but in specific embodiments the manipulation encompasses recombinant technology for increase in expression of one of these factors. Another manipulation is with exposure of the cells to heat shock factor that have been shown to increase the secretion of the cytokines.

In some embodiments, the cells naturally express one or more proteins or factors that are beneficial for regeneration or remodeling of localized cells or tissue, either directly or indirectly. For example, the cells may express VEGF-A and/or SDF-1α. The cells may have expression of HSF-1, HSP60, and/or HSP70, either naturally or by manipulation of the cells to increase expression of HSF-1, HSP60, and/or HSP70. In specific embodiments, the cells are manipulated to express Hsp70, Hsp27, ISF-1, or a combination thereof.

The cells may be present as a plurality of cells, and the plurality may be 100% homogeneous with respect to the desired cardiac stem cells, or the plurality may have less than 100% homogeneity, such as having 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, or 25% homogeneity, or having at least that percentage of homogeneity, with respect to the desired cardiac stem cells. Cells may be utilized in methods when they are present in a plurality have 100% homogeneity or having less than 100% homogeneity, such as having 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, or 25% homogeneity.

The cells may be stored for a period of time before their use, including under suitable medium, temperature, and oxygen level conditions, or they may be used without significant storage time. In specific embodiments, the storage cell medium comprises one or more heat shock response inducers.

The cells may have alloimmune properties, such as defined by having low levels of MHC Class II, or co-stimulator proteins CD86 and CD80. These cells do not initiate an immune response when transplanted into another patient’s immune system. In such a case, the cells may be used as an off the shelf product for clinical applications.

In particular embodiments, cells from a young individual have demonstrated strong regenerative abilities when compared to adult derived cells. This increased regenerative ability is due to a stronger secretome by the young cells, in specific embodiments. This implies that the young cells may be a preferable allogenic product, in at least specific embodiments.

II. Methods of Isolation of the Cells

One of skill in the art recognizes that there are routine methods to obtain cells from a human myocardium and further process the cells thereafter. In particular embodiments, there are methods of isolating the desired hCSCs by obtaining tissue from a human myocardium (such as obtained from the right atrial appendage of the heart), including from a neonatal or pediatric myocardium, such as by biopsy. The myocardium may be from an individual with end stage heart failure or from an individual with congenital heart disease, and in these cases the myocardium may or may not be normal. The extracted tissue may be exposed to particular medium while separating singular cells from their tissue, including by cutting the tissue, such as in the presence of collagenase. In specific embodiments, the tissue and tissue fragments are allowed to sediment while in a medium, and the supernatant is obtained. Cells may be collected from the supernatant and suspended in culture medium for a suitable period of time. Following this, the desired c-kit+ hCSCs are isolated therefrom. The isolation of the desired c-kit+ hCSCs may occur by any means, but in specific embodiments the c-kit+ cells are obtained by exposing the collected cells to a substrate comprising a surface with a moiety that binds c-kit, such as a c-kit antibody. The substrate may be a plate, bead, or column, for example. In certain embodiments, once the desired c-kit+ hCSCs are isolated, they may be cultured under standard conditions, including suitable passaging. The medium for culture of the cells may or may not be substantially identical to the medium employed when the cells are delivered to an individual. The medium may or may not comprise one or more heat shock response inducers.

III. Methods of Use of Cells of the Disclosure and Secretomes Thereof

Methods of the disclosure include use of certain c-kit+ cells (and, in some embodiments, cki+ mesenchymal cells) for therapy for at least one cardiac medical condition in an individual in need thereof. In specific embodiments, the cells are useful for cardiac medical conditions wherein tissue repair, regeneration, and/or replacement would be therapeutically effective. In specific embodiments, a therapeutically effective amount of the cells as described herein are provided to the individual, and in particular embodiments the cells are delivered to the individual locally. The individual receiving the cells may be of any gender or age. The individual may or may not be diagnosed by a medical practitioner with the cardiac medical condition. In certain embodiments, the individual has a personal or family medical history of a cardiac medical condition. The individual may be at risk for a cardiac medical condition, such as smoking; high LDL and/or low HDL; uncontrolled hypertension; physical inactivity; obesity (more than 20% over one’s ideal body weight); uncontrolled diabetes; high C-reactive protein; or a combination thereof. In specific embodiments an individual is provided one or more methods of the disclosure upon diagnosis of a certain genotype or phenotype for the individual.

The human CSCs may be provided to an individual wherein the cells are autologous, allogeneic, or xenogeneic with respect to the individual. In cases wherein the cells are
allogeneic or xenogeneic, the cells may be processed to reduce the risk of rejection of the cells by the individual’s immune system. However, in specific embodiments the cells’ general makeup allow them not to elicit an immune response. If there is an immune response generated, one can use autologous based cells for clinical application.

[0047] Upon isolation of the desired cells from the source individual, and prior to their delivery to the individual in need thereof, the cells may be further modified, such as through manipulation for recombinant expression of one or more expression constructs, further culturing and/or enrichment, and so forth. Such practices are routine in the art. An expression construct transfected into the cells may be of any kind, but in specific embodiments the construct expresses a cytokine, pro-angiogenic factor, growth factor, transcription factor, and so forth. In specific embodiments the construct expresses VEGF-A, HGF, SCF, SDF-1α, ANG-1, HSF-1, HSP56, HSP70, Hsp70, Hsp27, ISL-1, PGDF-A, IL-6, FGF-2, or a combination thereof, and/or expresses another protein that directly or indirectly increases their expression. The cells may be exposed to one or more agents to increase secretion and/or expression of certain proteins.

[0048] In certain embodiments, a therapeutically effective amount of cells as described herein are utilized in one or more treatment methods, although in specific embodiments the individual instead receives therapeutically effective amounts of conditioned media from the cells; part of all of the secretome from the cells; one or more secreted proteins or other factors (such as miRNAs) from the cells; or a combination thereof. The use of any one of these components or combinations facilitates proliferation of endogenous cardiomyocytes upon their use, in specific embodiments. In certain embodiments, the use of any one of these components or combinations allow for regenerating or remodeling of the myocardium. In certain embodiments, the use of any one of these components or combinations facilitate or enhances the regenerative or remodeling capacity of HCSCs that are endogenous to the individual.

[0049] In particular embodiments, when cells are provided to the individual, they may be provided in conjunction with (in the same or a different composition) or at the same time as another therapeutic moiety. That is, in specific embodiments the cells are administered to the individual at substantially the same time as one or more agents that enhance the function of the cells upon their administration in vivo. Such an agent may be of any kind, but in specific embodiments the agent is one or more heat shock response inducers.

[0050] Although in some cases one or more agents are provided to the individual at substantially the same time as the cells, in specific embodiments the cells are exposed to one or more agents prior to their delivery to the individual, wherein the agent(s) enhances the function of the cells upon in vivo delivery. In specific embodiments, the cells are exposed to one or more agents while in culture. The cells may be exposed to the agents one or multiple times, and when the cells are passaged in culture, the agents may or may not be present in subsequent media. In specific embodiments, the agents enhance therapeutic use of the cells by increasing expression of one or more genes, increasing secretion of one or more proteins or other factors (such as miRNAs), or a combination thereof. In particular embodiments, the genes or proteins are cytokines, pro-angiogenic factors, growth factors, transcription factors, micro RNAs (miRs), and exosomes (small car-
omyopathy. The cardiomyopathy may be caused by long-term high blood pressure, heart valve problems, heart tissue damage from a previous heart attack, chronic rapid heart rate, metabolic disorders, nutritional deficiencies, pregnancy, alcohol abuse, drug abuse, chemotherapy drugs, viral infection, hemochromatosis, genetic condition, elevated cholesterol levels, or a combination thereof. Cardiomyopathy may also have no identified cause, i.e. idiopathic cardiomyopathy.

V. Combination Therapy

[0056] In some embodiments, an individual who has received therapy of the disclosure, or is receiving, or will receive therapy of the disclosure, is also provided another therapy for the cardiac medical condition. The therapy of the present disclosure may precede or follow the other treatment by intervals ranging from minutes to hours to days to weeks or months. In embodiments where the other agent and the instant therapy are given separately to the individual, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the therapy of the disclosure and the additional therapy would still be able to exert an advantageously combined effect on the individual. In such instances, it is contemplated that one may contact the individual with both modalities simultaneously or within minutes of each other or within about 1-12, 6-12, or 12-24 h of each other, for example. In some situations, it may be desirable to extend the time period for treatment significantly, however, where several days (2, 3, 4, 5, 6 or 7) to several weeks (1, 2, 3, 4, 5, 6, 7 or 8) lapse between the respective administrations.

[0057] In specific embodiments, the therapy of the present disclosure and the additional therapy are provided at the same time or at different times. The separate entities may be within the same compositions or they may be comprised in separate compositions. In cases wherein the therapy of the present disclosure and the second therapy are provided at different times, they may be separated by any suitable range in times, such as minutes, hours, days, or weeks. In embodiments wherein they are provided separately, the order of delivery of two (or more) therapies may be of any suitable order, including delivery of cells, secretomes, and/or conditioned media prior to or subsequent to another therapy.

[0058] Examples of other treatments to be employed with the therapy of the disclosure include one or more of the following: ACE Inhibitors, Aldosterone Inhibitor, Angiotensin II Receptor Blocker (ARBs); Beta-Blockers, Calcium Channel Blockers, Cholesterol-Lowering Drugs, Digoxin, Diuretics, Inotropic Therapy, Potassium or Magnesium, Vasodilators, anticoagulant medication, aspirin, surgery, VAD implantation, VAT, coronary bypass, percutaneous coronary intervention (PCI) or a combination thereof.

VI. Kits of the Disclosure

[0059] Any of the c-kit+ CSCs described herein may be comprised in a kit. The kit may additionally comprise other agents for therapy of a cardiac medical condition.

[0060] The components of the kits may be packaged either in aqueous media or in lyophilized form. The container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which a component may be placed, and preferably, suitably aliquoted. Where there are more than one component in the kit, the kit also will generally contain a second, third or other additional container into which the additional components may be separately placed. However, various combinations of components may be comprised in a vial. The kits of the present disclosure also will typically include a means for containing the one or more compositions in close confinement for commercial sale. Such containers may include injection or blow-molded plastic containers into which the desired vials are retained. In specific embodiments the cells are delivered in a frozen state and may or may not be provided in plastic vials.

[0061] The composition may be formulated into a syringeable composition. In which case, the container means may itself be a syringe, pipette, and/or other such like apparatus, from which the formulation may be applied to an infected area of the body, injected into an animal, and/or even applied to and/or mixed with the other components of the kit. However, the components of the kit may be provided as dried powder(s). When reagents and/or components are provided as a dry powder, the powder can be reconstituted by the addition of a suitable solvent. It is envisioned that the solvent may also be provided in another container means.

[0062] The kits of the present disclosure will also typically include a means for containing the vials in close confinement for commercial sale, such as, e.g., injection and/or blow-molded plastic containers into which the desired vials are retained.

[0063] In particular embodiments, the kit comprises reagents and/or tools for determining that an individual has a cardiac medical condition. In some embodiments, the kit comprises one or more additional therapies for a cardiac-related medical condition, such as one or more of ACE Inhibitor, aldosterone inhibitor, angiotensin II receptor blocker (ARBs); beta-blocker, calcium channel blocker, cholesterol-lowering drug, digoxin, diuretics, inotropic therapy, potassium, magnesium, vasodilator, anticoagulant medication, aspirin, TGF-beta inhibitor, and a combination thereof.

VII. Pharmaceutical Compositions

[0064] Embodiments of pharmaceutical compositions of the present disclosure comprise an effective amount of cardiac stem cells dispersed in a pharmaceutically acceptable carrier. The phrases “pharmaceutical or pharmacologically acceptable” refers to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, such as, for example, a human, as appropriate. The preparation of a pharmaceutical composition that comprises cells are known to those of skill in the art in light of the present disclosure, as exemplified by Remington: The Science and Practice of Pharmacy, 21st Ed. Lippincott Williams and Wilkins, 2005, incorporated herein by reference. Moreover, for animal (e.g., human) administration, it will be understood that preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biological Standards.

[0065] As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, surfactants, antioxidants, preservatives (e.g., antibacterial agents, antifungal agents), isotonic agents, absorption delaying agents, salts, preservatives, drugs, drug stabilizers, gels, binders, excipients, disintegration agents, lubricants, sweetening agents, flavoring agents, dyes, such like materials and combinations thereof, as would be known to one of ordinary skill in the art. Except insofar as any conventional carrier is incompatible with the active ingredient, its use in the pharmaceutical compositions is contemplated.
EXAMPLES

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1

Neonatal c-kit-Positive Cardiac Progenitor Cells for treatment of Cardiac Medical Conditions

Cardiac medical conditions, including heart failure, are in need of effective therapy for patients of any age, including babies, children, and adults. In particular, compositions and methods are needed for regenerative functional myocardium in adults and children with cardiac medical conditions, such as heart failure caused by damaged myocardial tissue, for example.

Described in this Example is a novel population of c-kit+ hCSCCs that can be administered to patients in need thereof to treat damaged myocardium. The c-kit+ hCSCCs induce regeneration and/or remodeling of the damaged myocardium and improve cardiac function.

In certain embodiments, the phenotypic characterization of the newly isolated c-kit+ CSCs described herein is c-kit+, CD90+, GATA4+, CD44+, CD105+, CD34+, CD31+, CD140+, CD106+ and tryptase+. This is distinct from previously published hCSCCs, which were phenotypically characterized as c-kit+, Lin−, and not positive for CD90, CD105, GATA4. The newly described c-kit+ CSCs are a subtype of a mesenchymal cell within the myocardium.

The isolation of the c-kit+ cells is performed using a novel protocol in which c-kit+ cells are isolated using specific c-kit+ magnetic beads (as an example of a cell-isolating substrate) and cultured in embryonic stem cell medium, as described in this Example.

The c-kit+ cells isolated from neonatal patients with congenital heart disease but putatively normal myocardium induce greater recovery of ventricular function in a rodent myocardial infarction (MI) model than do c-kit+ cells isolated from adult patients with normal myocardium.

Medium conditioned by human neonatal c-kit+ cells and administered to infarcted myocardium in rodents induced functional recovery of the myocardium (indicated by measurement of ejection fraction) as effectively as transplanted neonatal-derived c-kit+ cells. This suggests the transplanted neonatal-derived c-kit+ cells induce functional recovery by exerting a dominant paracrine effect on surrounding tissue.

In addition, the data suggest that under hypoxic in vitro conditions that replicate conditions in ischemic myocardium, neonatal c-kit+ cells significantly secreted higher levels of paracrine factors in comparison to adult c-kit+ cells. These data suggest that c-kit+ cells have a unique secretome that governs their functional activity.

The data shows that in fact c-kit+ cells secrete exosomes which are characterized by their specific CD63 expression as shown by fluorescence-activated cell sorting (FACS) and electron microscopy properties. It was further shown that injection of the exosomes isolated from medium conditioned by neonatal c-kit+ mesenchymal cells induced functional recovery in the MI rodent model in comparison to the control medium alone. Also demonstrated is that exosomes isolated from medium conditioned by neonatal c-kit+ cells induce neovascularization in endothelial tube formation assays in vitro. Based on these observations, in one embodiment exosomes isolated from medium conditioned by neonatal c-kit+ cells induce recovery of the MI myocardium more strongly than exosomes derived from medium conditioned by adult derived c-kit+ cells due to preferential expression of cytokines and miRs by the neonatal cells versus the adult cells.

The neonatal c-kit+ cells described herein can be used as an “off the shelf” stem cell product for allogeneic transplantation into damaged myocardium in patients in need of such treatment. Because these cells express mesenchymal stem cell markers, they have the innate ability to be immunologically privileged in the manner of immunologically privileged bone marrow-derived mesenhyamel cells. The neonatal c-kit+ cells are HLA Class I+, HLA Class II+, CD80−, and CD86−.

FIGS. 1A-1D show comparative analysis of proliferative and clonogenic potential of nCSCs and aCSCs. FIG. 1A). Representative flow cytometry panel. Higher expression of Ki67 was observed in nCSCs and compared to aCSCs at passage P3. Conjugated isotype control is depicted as red. FIG. 1B). Quantification of expression of various cardiac stem cells specific surface or transcription factors. The expression of ki67 was significantly higher (*p<0.05) in nCSCs as compared to aCSCs. FIG. 1C). nCSCs showed a higher clonogenic capacity as compared to aCSCs. nCSCs underwent 14 population doubling levels (PDL) by day 11 (20,000 cells in 96 wells), while aCSCs underwent 12 PDL by day 20 (5000 cells in 96 wells). Moreover, a decline in the expression of c-kit was also observed in aCSCs as seen by immuno-staining of C-kit (green in a colorized version), DAPI (blue in a colorized version). FIG. 1D). Quantitative PCR was performed to identify the expression of various stem cell specific markers. The expression levels of C-kit, KL-F4, OCT3/4 (POU5F1) were similar at Passage 3 (P3) in nCSCs and aCSCs, the expression of these genes was significantly low in aCSCs by passage 8 (P8). The expression of NANOG and SOX2 was significantly low in aCSCs as compared to nCSCs at P3 and P8 both. Data was analyzed using Graphpad software and represented as mean ±SEM. (*p<0.05, ***p<0.01, ****p<0.0001) and *****p<0.0005). Grouped data was analyzed by 2 way ANOVA followed by Bonferroni post hoc analysis.

FIGS. 2A-2M. C-kit+ cardiac cells specific marker profile of nCSCs and aCSCs. Representative histograms of flow cytometry of antigenic phenotype of nCSCs and aCSCs at P3. Conjugated isotope control (red in a colorized version) used in all experiments. nCSCs and aCSCs both cell types expressed mesenchymal stem cell markers CD90, CD105 (FIGS. 2A-2H). Cardiac specific transcription factor Gata4 and Is1 (FIGS. 2C-2D) were not expressed by nCSCs or aCSCs but both cell types expressed Nkx2.5 (FIG. 2E) and cardiac stem cell marker c-kit (FIG. 2F). nCSCs and aCSCs did not express myocytes specific marker as myosin heavy chain (MHC) (FIG. 2G), embryonic stem cell markers like SSEA3 and SSEA4 (FIGS. 2I-2L), hematopoietic marker
CD34 and CD45 (J-K), endothelial marker CD31 (FIG. 2L) and mast cell marker like tryptase (FIG. 2M).

[0078] FIGS. 3A-3I. Comparative analysis of growth potential of nSCs and aSCs at P3 and P8. FIG. 3A). Representative histograms of flow cytometry of c-kit expression of nSCs and aSCs at P3 and P8. Conjugated isotype control (red) was used in all experiments. C-kit expression was significantly reduced in aSCs at P8 as compared to nSCs at P8. FIG. 3B). Quantification of c-kit expression at each passage in nSCs and aSCs. Data showed that the c-kit expression significantly reduced in aSCs by P5 and kept declining till P8. FIG. 3C). aSCs maintained a high growth potential which remained unaffected by increasing number of passages (P3-P8), while aSCs gradually lost their potential to give rise to daughter cells (P8). FIG. 3D). Quantification of growth potential of nSCs and aSCs. FIGS. 3E-3F). Immunostaining for the telomere length showed a significant reduction in telomere length in aSCs at P3 and P8 as compared to nSCs. as analyzed by. FIG. 3G). nSCs attain senescence by P8 as analyzed by beta-galactosidase staining. FIG. 3G). Quantification of beta-galactosidase positive cells showed a significant difference between nSCs and aSCs at P8. FIG. 3F). nSCs are more resistant to apoptosis induced by 50 mM hydrogen peroxide as assessed by Tunel. FIG. 3J). Quantification of apoptosis showed a significant increase in cell death in aSCs at P8 as compared to nSCs. The data was analyzed using Graphpad software and represented as mean±SEM. (*p<0.05, **p<0.01, ***p<0.001 and ****p<0.0005). Grouped data was analyzed by 2 way ANOVA followed by Bonferroni post hoc analysis.

[0079] FIGS. 4A-4C. Comparative analysis of nSCs and aSCs at P3 and P8. FIG. 4A). Immunostaining analysis showed a declined c-kit expression in aSCs at P8. FIG. 4B). aSCs express p16Ink4a at P8 as shown by immunocytochemistry. FIG. 4C). aSCs enlarged in size at P8 as shown by immunostaining analysis using WGA membrane marker.

[0080] FIGS. 5A-5I. Cardiac function measured by echocardiography. FIGS. 5A-5D). Representative M-mode tracings from animals at baseline 4 weeks post-MI treated with IMDM, nSCs, or aSCs. All the animals that underwent surgeries, received follow-up echocardiography at 2 and 4 weeks post-MI. FIGS. 5E-5F). Structural and functional parameters derived from echocardiography measurements are shown. A significant increase in ejection fraction, fractional shortening and significant decrease in the end systolic volume was observed after aSCs transplantation as compared to aSCs and placebo (IMDM) (FIGS. 5G-5H). FIG. 5I). Transplantation of nSCs significantly increased the number of cycling cardiomyocytes. FIG. 5J). 4 weeks post-MI very few cells were tracked in the rodent myocardium after nSCs or aSCs transplantation. Immunofluorescence demonstrated increased formation of neovessels marked by IB4 expression (FIG. 5K) and of arterioles marked by α-SMA expression (FIG. 5L) in myocardium sections of the mid-infarct regions transplanted with nSCs than transplanted with aSCs.

[0081] FIGS. 6A-6E. Cardiac function and structure improvement by nSCs or aSCs transplantation. FIGS. 6A-6B). End diastolic and stroke volume were not affected by transplantation of aSCs or nSCs. FIGS. 6C-6D). Infarct size determined by Masson’s trichrome staining was reduced with transplanted nSCs when compared with IMDM or aSCs. FIG. 6E). Quantification of the cells retained in rodent myocardium as determined by RT-PCR analysis.

[0082] FIGS. 7A-7B. Expression of angiogenic paracrine factors in vitro and in vivo by nSCs and aSCs. FIG. 7A). ELISA of the paracrine factors like HGF-1, ANG-1, PDGFB, SDF-1α, FGF-2 and VEGFA was significantly higher in nSCs as compared to aSCs. No difference was observed in the secretion of IGF-1 by nSCs or aSCs. FIG. 7B). Characterization of paracrine factors secreted by nSCs and aSCs after 24 hours post-MI in vivo. After 10 minutes of MI, rats received nSCs or aSCs. The animals were euthanized 24 hours post-MI for analysis of paracrine factor production. Human cells (nSCs or aSCs) were tracked using human mitochondria antigen in rat myocardium. nSCs stained positive for VEGF, HGF-1, SCF, SDF-1α and ANG-1 but negative for IGF-1, PDGFB and FGF. aSCs stained positive for VEGFA and ANG-1 but stained negative for PDGFB, SCF, HGF, IGF-1, and SDF-1α. Nuclei are labeled with DAPI (blue in a colorized version). VEGF, vascular endothelial growth factor, Ang-1 indicates angiopoietin-1; bFGF, basic fibroblast growth factor; HGF, hepatocyte growth factor; IGF-1, insulin like growth factor; PDGF, platelet-derived growth factor; SCF, stem cell factor; SDF-1, stromal-derived factor-1. Data were represented as mean±SEM and analyzed by t-test (Mann-Whitney test) followed by Dunn’s post hoc test. (***p<0.001, **p<0.01, *p<0.05).

[0083] FIG. 8. Expression of various angiogenic paracrine factors in vitro by nSCs and aSCs. Higher expression of VEGF, ANG-1, SCF, SDF-1α, HGF-1 and PDGFB was observed in nSCs as compared to aSCs.

[0084] FIGS. 9A-9E. Expression of pro-angiogenic paracrine factors and effect on proliferation and inflammation after 72 hours of transplantation of nSCs and aSCs in vivo. FIG. 9A). After 10 minutes of MI, rats received nSCs or aSCs. The animals were euthanized 72 hours post-MI for analysis of paracrine factor production. Human cells (nSCs or aSCs) were tracked using human mitochondria antigen in rat myocardium. After 72 hours nSCs stained positive for VEGF, HGF-1, SCF, and ANG-1 but negative for SDF-1α. aSCs stained positive for VEGFA and ANG-1. FIGS. 9B-9C). nSCs showed a higher rate of proliferation in ischemic rat myocardium after 72 hours as compared to aSCs. FIGS. 9D-9E). Inflammation in the myocardium at 72 hours post-MI as identified by immune-histochemical staining of CD68-positive cells after transplantation of nSCs or aSCs. Transplantation of nSCs reduce the inflammation significantly more than IMDM or aSCs. Data are represented as mean±SEM and analyzed by t-test (Mann-Whitney test) followed by Dunn’s post hoc test. *p<0.05.

[0085] FIGS. 10A-10E. Conditioning medium (CM) of CSCs contain pro-angiogenic, pro-proliferative and anti-apoptotic factors, which can improve cardiac function and attenuate ventricular remodeling similar to CSCs transplantation in MI model. FIG. 10A). Representative images of HUVEC tube formation (left) and quantification of total tube length (right) after plating HUVEC cells on reduced growth factor matrix coated wells with IMDM condition medium from CSCs and HUVEC cells growing complete medium. Quantification shows that the CSCs-CM is contains highly angiogenic property. FIG. 10B). CSCs-CM treatment significantly reduced the H2O2 induced apoptosis in NRCMs after 24 hours. FIG. 10C). CSCs-CM treatment for 48 hours significantly enhances BrdU uptake by NRCMs. FIG. 10D). Functional parameters derived from echocardiography measurements are shown. A significant increase in ejection fraction, fractional shortening and significant decrease in the end systolic
volume was observed after CSCs-CM transplantation as compared to corresponding CSCs and placebo (IMDM). FIG. 10E). Immunohistochemistry demonstrated increased formation of new vessels marked by IB4 expression and of arteries marked by a- SMA expression in rat myocardium sections of the mid-infarct regions injected with CSCs-CM than transplanted with CSCs.

[0086] FIGS. 11A-11C. Cardiac function and structure improvement by CSCs-CM. FIG. 11A). End diastolic volume, posterior wall thickness and stroke volume were not affected by injection of CSCs-CM or CSCs. FIG. 10B). Infarct size determined by Masson’s trichrome staining was reduced with injected CSCs-CM when compared with IMDM or CSCs. FIG. 10C). Angiogenic potential of nCSCs-CM and nCSCs-CM shows higher angiogenic potential as compared to aCSC-CM. The angiogenic potential of aCSCs actually decreases with increase in the amount.

[0087] FIGS. 12A-12G. Comparative analysis of the secretome of aCSCs and nCSCs by LC-MS/MS. FIG. 12A). The presence of proteins and their integrity in nCSCs-Cm and aCSC-CM (5 different biological samples each) was determined by SDS-PAGE analysis. FIG. 12B). Volcano plot showing the distribution of the proteins. Proteins with more than 2 fold change further analyzed. FIG. 12C). The identified proteins were subjected to GOBP (Gene ontology biological process) and various categories of proteins was identified. FIG. 12D). Heat map showing the average of protein expression in nCSCs-CM and aCSC-CM. The proteins identified in nCSCs-CM and aCSC-CM with their roles in Cell proliferation (FIG. 12E), Cell metabolism (FIG. 12F) and protein metabolism (FIG. 12G).

[0088] FIGS. 13A-13N. Total Proteome analysis of the aCSC and nCSCs secretome identified by LC-MS/MS. FIG. 13A). Principal component analysis (PCA) of nCSCs-CM and aCSC-CM suggested the similarity between nCSCs-CM while great deal of diversity was with the nCSC-CM. FIG. 13B). Venn diagram showed the protein expression from nCSCs-CM and nCSCs-CM. FIG. 13C). GOMF enrichment showed that the majority of proteins in nCSCs-CM were nucleotide binding while the majority of proteins in nCSCs-CM were carbohydrate or collagen binding. FIG. 13D). The proteins were classified according to their roles relevant to cardiac development and represented as number of proteins in each identified and nCSCs-CM. FIG. 13E). The proteins showing proteins identified from nCSCs-CM and aCSC-CM with angiogenic potential (FIG. 13E), anti-angiogenic potential (FIG. 13F), anti-apoptosis potential (FIG. 13G), apoptotic potential (FIG. 13H), anti-oxidants (FIG. 13I), anti-inflammatory (FIG. 13J), telomere length maintenance (FIG. 13K), anti- senescence (FIG. 13L), senescence (FIG. 13M) and cell cycle inducing or proliferation induction (FIG. 13N).

[0089] FIGS. 14A-14E. Total Proteome analysis of the aCSC and nCSCs secretome identified by LC-MS/MS. The graph showing proteins identified from nCSCs-CM and aCSCs-CM with myocardial infarction healing (FIG. 14A), chromatin modeling (FIG. 14B), calcium regulation (FIG. 14C), heat shock proteins (FIG. 14D) and stem cell maintenance. (FIG. 14E) Western blot showing the expression of heat shock protein 70 in nCSC and aCSCs.

[0090] FIGS. 15A-15B. Isolation of exosomes from c-Kit+ cardiac stem cells. FIG. 15A). Transmission electron microscopy (TEM) image of exosomes isolated form c-Kit+ CSCs using. FIG. 15B). Exosomes were identified by immunogold staining for CD63 cell surface antigen.

[0091] FIGS. 16A-16B. Characterization of exosomes from c-Kit+ cardiac stem cells. FIG. 16A). Exosomes were isolated from c-Kit+ CSCs and characterized using zetasizer for their size distribution, FIG. 16B). The average size of exosomes identified using zetasizer was identified as 30-50 nm.

[0092] FIG. 17. Characterization of exosomes isolated from c-Kit+ cardiac stem cells. Exosomes were isolated from c-Kit+ CSCs and CDCs. FACS analysis of exosomes using CD68 and PE labeled magnetic beads showed that the average size of exosomes isolated from CDS was found to be bigger than c-Kit+ CSCs.

[0093] FIGS. 18A-18E. Flow cytometry analysis of cultured MSCs, CDCs and c-Kit+ CSCs. FIG. 18A). MSC (red peaks in a colorized version), CDCs (Purple peaks in a colorized version) and c-Kit+ CSCs (green peak in a colorized version) express CD44, FIG. 18B). The phenotypic difference between MSCs CDCs and c-Kit is shown by the expression of CD90. MSCs express CD90 uniformly on their membrane while CDCs and c-Kit CSCs show only a partial expression of CD90. FIG. 18C). C-Kit CSCs and CDCs both showed no expression of CD140b while MSCs stain positive for CD140b. FIG. 18D). -Kit CSCs and CDCs both showed weak expression of CD106 while MSCs stain positive for CD106. FIG. 18E). MSCs and CDCs showed lower expression of c-Kit antigen while c-Kit+ CSCs showed uniform expression of c-Kit.

[0094] FIG. 19. Human cells express intermediate levels of major histocompatibility complex 1 (MHC I), low levels of MHC II and co-stimulatory molecules (CD80 and CD86). B cell acute lymphocytic leukemia (B-cell ALL) cells were used as positive control.

An example of Isolation of c-Kit+ Stem Cells from Neonatal Patients with Congenital Heart Disease

[0095] 1. Obtain biopsy tissue from the right atrial appendage (RAA) of human neonates diagnosed with congenital heart disease. Transfer the biopsy tissue to a 100 mm Petri dish filled with saline solution to wash the tissue. This step is repeated twice. Forceps sterilized in Steri 250 (Inotech) are used to remove fibrotic tissue and fat from the cardiac specimen. Samples are transferred to iSTEM® embryonic stem cell culture medium (Stem Cells, Inc.) and minced in 1-2 mm² slices.

[0096] 2. The tissue fragments are transferred to a 50 ml tube and allowed to sediment. The supernatant is removed and the sedimented pieces are resuspended in 5-10 ml of Collagenase type II, CSL2 (Worthington # 4777). The collagenase is dissolved at a concentration of 2.5 mg/ml in iSTEM medium. Subsequently, the samples are incubated on a shaker for 30-45 min at 37° C.

[0097] 3. Following the collagenase treatment, the tube is removed from the shaker, undigested pieces are allowed to sediment and the supernatant containing the released cells is transferred into a 15 ml tube. The cells are centrifuged at 600 g for 10 min at 4° C, resuspended in the growth medium (see below) and plated in Petri dishes containing growth medium enriched with iSTEM medium. Petri dishes are placed in an incubator at 37 °C, under 5% CO2.

[0098] 4. At confluence, the growth medium is removed and cells are detached with 5 ml of Accutase [Gibco® A11105-02] per dish for 2-3 minutes. When the cells detach, 5 ml of the iSTEM medium is added and the suspension is transferred to a 15 ml test tube.
[0099] Cells are then sorted for c-kit with Miltenyi microbeads (CD 117 MicroBead Kit human #130-091-332) in accordance with the kit's instructions. Cells are centrifuged for 10 min at 600 g, the supernatant is removed, the pellet is resuspended in 1 ml of cold MACS buffer (0.5% BSA and 2 mM EDTA) and the procedure is repeated. Subsequently, the supernatant is removed and the cell pellet is resuspended in 300 μl of MACS buffer, 100 μl Fe blocking buffer and 100 μl of mouse monoclonal c-kit antibody conjugated with microbeads (CD117 MicroBead Kit human, Miltenyi, cat. # 130-091-332). The cells are incubated for 30 minutes at 4°C on a 360° swinging rotor. At the end of incubation, 1 ml of MACS buffer is added and the cells are centrifuged for 10 min at 600 g. The supernatant is removed and the cells are resuspended in 500 μl of MACS buffer. The column is activated using 500 μl of MACS buffer under the hood and the cells are transferred to the column. The depleted cell population (c-kit-NEG cells) is collected in a 15 ml tube and discarded. The cells are washed 3 times by adding each time 500 μl of MACS buffer in the column. One ml of cold MACS buffer is added to the column and the column is detached from the Magnetic System. Subsequently, the plugger is applied to the column and the sorted c-kit+ cells are flushed into a 15 ml tube. The cells are centrifuged for 10 min at 600 g, resuspended in culture medium and plated in culture dishes.

[0100] c-kit+ cells are then plated in growth medium for expansion. After 1-2 months, approximately 1 million cells are obtained. The growth medium is changed twice a week for the entire period of cell expansion.

[0101] Reagents used in Example 1

[0102] iStEM® embryonic stem cell culture medium (Stem Cells, Inc.)

[0103] Fetal Bovine Serum (10%): 50 ml (HyClone SH 30406-02—Lot DPK0185)

[0104] Recombinant Human FGF-basic: 50 ul of stock (100 μg/ml) F[10 ng/ml] (PeproTech, 100-18B—Lot 1205CY08)

[0105] L-Glutathione: 1 ml of stock (100 mM) (Sigma, G6013—Lot 10K09131)

[0106] Human Erythropoietin: 250 ul of stock (10 U/ml) (Sigma E5627—Lot 125K1542)

[0107] C-kit antibody BD Pharmingen (#555714, Lot 400065)

Example 2

Neonatal-Derived Stem Cells Mediate Cardioprotection Via Paracrine Signaling Mechanism

[0108] The findings of a clinical trial (Cardiac stem cells in patients with ischaemic cardiomyopathy, or SCIPIO) and other studies, reported the use of resident cardiac stem cells (c-kit+ hSCCs), to regenerate the infarcted myocardium in adults with ischemic myocardium. However, the studies performed using adult hSCCs cannot be extrapolated to the pediatric cases.

[0109] Neonates with heart failure are the most medically and surgically challenging and have the highest congenital mortality rates. The unique ability of neonatal-derived hSCCs to function at multiple levels, including generating myocardium and releasing angiogenic factors, makes these cells ideal to treat pediatric heart failure patients, in specific embodiments of the disclosure.

[0110] The present example provides results about the efficiency of c-kit+ human cardiac stem cells to recover the ischemic myocardium in a rat myocardial infarction model. The results show phenotypic characterization of these cells and comparative study of growth potential and regenerative potential of c-kit+ cardiac stem cells which are dependent on the physiological conditions of the source of these cells. The results also highlight the importance of these cells that can shed more light on the underlying mechanism of action.

[0111] One can characterize c-kit+ hSCCs derived from neonatal and adult human myocardium, such as follows:

Embryonic Stem Cell markers	SSEA3 and SSEA4
Mesenchymal Stem Cell marker	CD105 and CD90
Cardiac Stem cell Markers	C-kit
Cardiac-specific transcription factors	Nkx2.5, GATA4, ASL
Hematopoietic markers	CD34 and CD45
Endothelial Marker	CD31
Mast Cell Marker	Tryptase

[0112] In specific embodiments, the following table notes specific markers or factors present or not present in the cells:

| Embryonic Stem Cell Markers | SSEA3 <3% cells positive |
| Mesenchymal Stem Cell markers | CD105 <99% cells positive |
| CD90 >85% cells positive |
Cardiac Stem Cell marker	C-kit >85%
Cardiac-specific transcription factors	Nkx2.5, GATA4, ASL <1%
Hematopoietic markers	CD34 and CD45 <1%
Mast Cell Marker	Trypsin <1%
Proliferative Marker	Ki67/Neonate >34%
Adult <14%	

Example 3

Increasing Functional Activity of the Cells

[0113] In the present Example, it was considered for at least certain embodiments that a) the age and physiological condition of the source of hSCCs can affect their potential of recovering myocardial infarction after acute myocardial ischemia (AMI); and b) as a very small percentage of the transplanted cells could be detected days after myocardial infarction, the cardioprotective effects can be attributed to the secretome of the hSCCs. Compared here are the phenotypic and functional properties of human cardiac stem cells (CSCs) isolated from human neonate heart (<1 month) to CSCs isolated from human adult heart (≥50 years).

Cell Surface Markers and Clonogenic Capacity of CSCs

[0114] hSCCs were isolated from the right atrium appendage of 11 neonate specimens (nCSC) and 10 adult hearts specimens (aCSC) using well established protocol. Flow cytometry analysis was performed on the affinity column purified c-kit+ cells for various cell markers like: CD34 and CD45 (hematopoietic markers), CD31 (endothelial marker), tryptase (mast cell marker), KI67 (proliferative marker), GATA4, ASL1, Nkx2.5 (cardiac specific transcription factor), SSEA3 and SSEA4 (embryonic stem cell markers), CD105 and CD90 (mesenchymal stem cell marker) and c-kit at passage 3 for both nCSC and aCSCs.
nCSCs and aCSCs were negative for CD34, CD45, tryptase, CD31, SSEA3, SSEA4, CD105 and CD90 as well as for the cardiomycocytes specific transcription factor GATA4 and ISL1. Both type of cells were found to be positive for Ki67, Nkx2.5 and c-kit suggesting their cardiac origin and quantitatively, the number of Ki67 positive in nCSCs was 3.5-fold higher as compared to aCSC. Neonatal derived c-kit+ CSCs showed a higher rate of proliferation as determined by higher expression of ki67 (neonate hCSCs 30.23%±1.8 vs adult hCSCs, 11.03%±0.65 p=0.0286). Thus, increasing age may suggest to adversely affecting the proliferative potential of CSCs. To validate this observation, single c-kit* cell of nCSC and aCSC was analyzed for its clonogenic capacity. The potential of a stem cell can be directly linked to the number of daughter cells to which it gives rise. Flow cytometry sorted single nCSC and aCSC were seeded in single well of 96 wells plate. Although nCSC and aCSC both could make a homogenous population of c-kit+ cells, spindle-shaped clones from nCSCs were formed over a period of 1 week from, but same number of clones from aCSC were formed over a month and the cells showed hypertrophy.

The expression of these genes is important to maintain the self-renewing and multi-potent state of stem cells. Quantitative PCR was performed on the nCSCs and aCSCs at passage 3 (P-3) and passage 8 (P-8). Although the expression of pluripotency-associated genes was found in both cell types, results show that the expression of c-Kit, OCT3/4 and KLF4 was similar between the two CSC types at P3, but at P-8 the expression of these genes was significantly decreased in aCSCs as compared to nCSCs. The expression of NANOG and SOX2 was significantly different between nCSCs and aCSCs at P3 as well as at P8. Data was analyzed by non-parametric t-test followed by Mann-Whitney’s analysis. P value lesser than 0.05 was considered significant. The high levels of expression of pluripotency genes in nCSCs as compared to aCSC, can partially explain their higher clonogenic potential is dependent on age and may be responsible for its high clonogenic capacity.

Transplantation of nCSC Improved Cardiac Function and Remodeled Left Ventricular as Compared to aCSC

The studies conducted above about the phenotypic characteristic, clonogenic properties, growth potential, cell metabolism, telomere length and senescence suggested that nCSC may have a higher potential to recover the injured myocardium in an acute myocardial infarction model as compared to aCSC. To consider this, a randomized blinded study was performed by transplanting nCSCs or aCSCs at passage 3, as a stem cell therapy in an acute infarcted myocardium model of immunodeficient rat. After the left anterior descending artery ligation, CICs, cardiac fibroblasts, or Isceo modified Dulbecco medium (IMDM; control) were injected. The consistency of the MI model was verified for each treatment group by performing random echocardiography at baseline and 24 hours after MI. There was no difference in EF between the 3 groups at baseline or 24 hours post-MI that signified all MIIs performed were consistently among all three groups. Both stem cell therapies improved the cardiac function and attenuated left ventricular remodeling of MIs. Rats receiving aCSCs therapy did demonstrate an improvement in ejection fraction and fractional shortening relative to P12 basal medium, but these improvements were more pronounced in
nCSC's treated MI. Animals receiving nCSC therapy had significantly improved ejection fraction and fractional shortening as early as 1 week post MI and these improvements were sustained for at least 4 weeks. A Representative M-mode picture from animals of different treated or untreated groups is utilized. Improvements in ejection fraction and FS were significantly greater in nCSC animals versus aCSCs treated animals. Animals in the MI+IMDM group demonstrated a significant increase in end systolic volume (ESV) and End diastolic Volume (EDV) but MI+NCSC or MI+AGCSC had decreased post-MI ESV and EDV at all the time points studied. This difference was very significant with nCSCs therapy after 4 weeks. nCSCs treated MIs also showed thickening of posterior cell wall which was otherwise noted to be relatively thin in IMDM or aCSCs treated MIs. Scar formation was quantified by histological evaluation of myocardial sections with Masson trichrome to determine the extent of infarct expansion after LAD ligation. Hearts were harvested, perfused and five rats were randomly selected from each group (MI+IMDM, MI+NCSC and MI+AGCSC). A typical Masson trichrome pattern in hearts transplanted with control, cardiac fibroblast, or CDCs is determined. The positive red-stained regions (viable tissue) within the predominately blue-stained regions (fibrous tissue) are the typical pattern seen in all hearts. After 4 weeks post MI, chronic infarct size was analyzed by measuring the area of fibrosis relative to total stained myocardial area. Animals receiving either nCSCs or aCSCs therapy had significantly smaller infarcted areas relative to IMDM-treated controls but the reduction in myocardial infarction was even significantly smaller in nCSC treated hearts as compared to aCSC.

[0119] The human CSCs were tracked using their expression of human nuclear antigen (HNA), to represent a lineage tracing experiment in the rodent myocardial infarct (MI) model to determine their final identity within the myocardium. Using immunofluorescence to detect human nuclei, there was low engraftment of transplanted nCSCs or aCSCs into cardiomyocytes in the peri-infarction zone of infarcted wall of rodent myocardium after 4 weeks. The frequency of cycling cardiomyocytes (co-expressing Ki-67 and α-smooth muscle actin (per mm²)) was comparatively increased after nCSCs cell therapy as compared to aCSCs therapy and these cells were found only in the peri-infarction region. Both stem cell therapies augmented the preservation/formation of neovessels (isolecitin B4) and arterioles (α-SMA), but the formation of neo-vessels and arterioles was significantly higher after nCSCs therapy as compared to aCSCs therapy. Although blood vessels spanned the length of the infarct, the largest significant differences were found in the epicardium of the mid-infarct receiving the transplanted nCSCs while arterioles were found to be significantly higher in anterior and mid-infarct zones after nCSC therapy.

Expression of Paracrine Factors by nCSCs and aCSCs

[0120] The results so far have shown that transplanted CSCs were minimally present in the myocardium after 3 days of transplantation. Thus, in specific embodiments a paracrine mechanism is an explanation for the myocardial recovery after CSCs transplantation. To determine the expression of paracrine factors using a candidate based analysis in the cells in vitro, cultured nCSCs and aCSCs were immunostained for paracrine factors, well established for their role in myocardial regeneration: HFG and IGF-1 (cardioprotective; inhibits apoptosis and stimulates growth), SCF and SDF-1α (Stem cell function and proliferation) and ANG-1, VEGF-A, PDGF and FGF (angiogenesis). nCSCs and aCSCs, both type of cells expressed paracrine factors. The quantitative analysis of the conditioned medium (CM) isolated from nCSCs and aCSCs for using ELISA showed the secretion of above-mentioned factors was significantly higher from nCSCs as compared to aCSC (except IGF-1). The environment in the infarcted myocardium is highly inflammatory and ischemic during the transplantation of CSCs, which is a very different from the in vitro conditions where CSCs were cultured. This change in the environment may cause the CSCs to change the expression pattern of their paracrine factors. Thus the expression was analyzed of above mentioned paracrine factors in a time course manner at two time points a) 24 hours and b) 72 hours post-MI. Hearts receiving nCSCs and aCSCs were immunostained for the paracrine factors using listed specific antibodies. Human mitochondria antigen (Mito) was used to track the human cells in the rat myocardium. There was differential secretion of 5 paracrine factors in the cases of nCSCs and aCSCs. VEGF-A, HGF, SCF, SDF-1α and ANG-1 were secreted by nCSCs while aCSC were found to express VEGF and ANG-1. To analyze the effect of myocardium environment, the hearts were harvested after 72 hours of post MI receiving CSCs treatment, as a second time point. Immunohistochemical analysis was performed for the 5-paracrine factors, which showed a differential expression pattern at 24 hours. The infarcted area, which received CSCs, showed that nCSCs continued to express all the paracrine factors except SDF-1α whose expression could not be sustained, while aCSCs expressed ANG-1 and VEGFA. Also, a greater number of nCSCs was retained in the peri-infarcted region of rat myocardium after 72 hours of transplantation as compared to aCSCs. These heart sections were co-stained with Ki67 and human mitochondria antigen to identify the proliferative potential of CSCs in vivo. Immunohistochemical analysis showed that nCSCs were significantly more proliferative (6-fold, P<0.05), as compared to aCSC. To determine whether CSCs transplantation has an effect on the inflammation in the infarcted myocardium, macrophage infiltration was measured in the infarcted zone of MI animals treated with IMDM, nCSCs and aCSCs. MI animals receiving nCSCs has significantly (P<0.05) lower inflammation as compared to animals receiving aCSCs. These data indicate that, in certain embodiments, nCSCs secrete more paracrine factors with cardio protectory, chemokine and angiogenic capability, as compared to the paracrine expression by aCSCs. This paracrine secretion and increased proliferative capability of nCSCs can explain increased neovascularization and decreased inflammation in the infarcted myocardium. These data provide evidence that there is a difference in the cytokine secretion by the nCSCs as compared to aCSCs and implicate highly expressed cytokines as the key secreted cytokines involved in the functional recovery.

CSCs Secrete Pro-Angiogenic, Pro-Proliferative and Anti-Apoptotic Factors, Which Can Improve Cardiac Function and Attenuate Ventricular Remodeling Similar to CSCs Transplantation in MI Model

[0121] CSCs are shown to secrete many paracrine factors which has cardio protective potential. As the presence of CSCs is minimal soon after the transplantation, one can consider that functional potential of cardiac stem cell therapy is dependent on the quality and quantity of various proteins in
hCSCs' secretome, which can be categorized according to their molecular function. The conditioned medium (CM) was analyzed from CSCs for a) angiogenic potential, b) antioxidant potential and c) proliferative potential. To analyze the angiogenic potential of CM isolated from CSCs, endothelial cell tube-forming assays were performed using human umbilical vein endothelial cells (HUVECs). HuVECs cells cultured with complete endothelial growth media or CM harvested from CSCs, formed tubes within 6 hours of plating on the matrix, while no tube formation (P<0.05) was assessed in the presence of basal medium (IMDM). The anti-oxidant properties of CM were further analyzed on neonatal rat cardiomyocytes (NRCMs). NRCMs were treated with 50 mM hydrogen peroxide in the presence or absence of CM, and the number of apoptotic cells was determined using Annexin V/PI staining by FACS. Hydrogen peroxide treatment increased the early apoptotic cells and total dead cells NRCMs while CM treatment significantly (P<0.05) ameliorated the effect of hydrogen peroxide on the cells. The effect of CM on non-proliferative NRCM by BrdU incorporation using FACS (BrdU flow kit, BD Biosciences) was analyzed. A significant 2-fold increase (P<0.05) was found in the cells undergoing proliferation after treatment of NRCMs with CM. To determine whether the angiogenic, antioxidant and proliferative potential of CM derived from CSCs can be correlated with improved functional potential, a randomized blinded study was performed to evaluate the effectiveness of CM and CSCs in improving acute infarcted myocardium in an immunodeficient rat model. 1 million yhCSCs or the CM from 1 million yhCSCs corresponding to 0.5ug protein were injected in the rat myocardium after induction of MI. Echocardiography performed at 7 and 28 days showed CM from CSCs was more effective (7% better ejection fraction) than CSCs proving that CM derived from CSCs is more effective than CSCs transplantation for functional recovery of left ventricle in the rat myocardium in MI model. There was improvement in the EDV, posterior wall thickness and systolic volume. After 4 weeks post MI, infarct size was analyzed as mentioned above. Animals receiving either CM or CSCs therapy had significantly smaller infarcted areas relative to IMDM-treated controls (P<0.05) but the reduction in myocardial infarction was even significantly smaller in CM treated hearts as compared to CSCs transplantation. The paracrine factors of CSCs are the real agents to bring myocardial recovery and attenuate LV remodeling in the infarcted heart. Thus, the product of CSCs are more important for cardiac regeneration and functional recovery than the physical presence of the CSCs.

The Comparative Analysis of the Secretome of aCSCs and nCSCs

So far, it has been shown that the nSCs have better regeneration potential than aCSCs and at least in specific embodiments the paracrine secretions of these CSCs are the factors responsible for myocardial regeneration and functional improvement. Thus, one can identify and quantitate the proteins in the secretome of CSCs, which can promote angiogenesis, cardiomyocyte proliferation and endogenous stem cell differentiation while reducing inflammation and cellular apoptosis in the injured myocardium. CM was further characterized by comparing CM from nCSCs and aCSCs for their angiogenic potential using tube assay formation by HuVECs cells. The CM from nCSCs has more angiogenic potential as compared to CM from aCSCs. Moreover the higher concentration of ahCSCs actually hampers the tube formation as shown in the quantification graph. CM from nCSCs and aCSCs was utilized for SDS-PAGE analysis, and there was a different pattern of proteins among aCSCs (A1-A5) and nCSCs (N1-N5). Also no disintegration of the proteins was observed. 50 microgram of the protein from each sample was trypsin digested and analyzed by LC-MS/MS for the identification of the protein. The protein component analysis (PCA) of the proteins showed that the paracrine secretion of neonate samples was very similar among different samples while no such similarity was found among the adult samples, which can be explained due to different way of life of individuals. There was a total of 798 and 331 proteins in yhCSCs and aCSCs, respectively, out of which 298 proteins were found to be expressed in the CM of both cell types. The proteins were further categorized on the basis of >2 fold difference in their expression pattern and volcano plot identified a total of 384 proteins in the CM of nCSCs and 64 proteins in CM from aCSCs. Proteins were categorized as per the GOC and GOBP enrichment analysis. GOMF enrichment suggested that proteins related to cellular metabolism, DNA and RNA processing were highly enriched in CM from nCSCs while CM from aCSC was enriched in collagen, cytoskeleton and carbohydrate binding proteins.

Example 4

Cardiac Stem Cells With Enhanced Functional Activity for Cardiac Repair

[0123] The present example concerns the therapeutic use of cells from dysfunctional myocardium of pediatric end stage failing heart (ESHF) patients.

Methods and Results

[0124] ESHF derived human cardiome derived cells (hCDCs) had a higher number of cardiac stem cells expressing c-kit™, Islet-1™, and Sca-1™. When transplanted in an infected rodent model, ESHF derived hCDCs had a significantly higher preservation of ventricular function, prevented adverse remodeling, and enhanced angiogenesis when compared with congenital heart disease (CHD) derived CDCs. The superior functional recovery of the ESHF derived hCDCs was mediated in part by increased SDF-1α and VEGF-A secretion which recruited more endogenous stem cells and proliferation of cardiomyocytes. The mechanism for the superior secretome is due to the heat shock response (HSR) which is supported by three lines of evidence. First, gain of function studies demonstrated that the HSR induced the low functioning CHD derived CDCs to significantly recover the injured myocardium to the same extent as ESHF derived CDCs. Secondly, loss-of function studies targeting the HSR down regulated the ability of the ESHF derived CDCs to functionally recover the injured myocardium. Finally, the HSR alone increased the number of the c-kit™ CSCs both in vitro and in vivo.

Conclusion

[0125] These findings indicate that the HSR enhances the functional activity of ESHF derived CDCs by regulating their secretome.

[0126] In accordance with the present Example, CDCs or c-kit+ cardiac stem cells (CSCs) can be treated with celastrol (or other inducers of the heat shock response) to enhance the functional ability of the treated cells to repair damaged myo-
cardium in patients suffering from heart failure. In specific embodiments, cells are obtained from the myocardium of an individual and exposed to one or more heat shock response inducers such that the cells, the secretion by the cells, or both are altered compared to the cells obtained from the individual and not exposed to one or more heat shock response inducers.

[0127] The scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification.

REFERENCES

cardiokine in promoting angiogenesis via activation of vegfr2. *PloS one.* 2012;7:e32765

9. The composition of claim 1, wherein the cells secrete exosomes that are CD63+.
10. The composition of claim 1, wherein the cells secrete one or more cytokines.
11. The composition of claim 1, wherein the cells secrete one or more pro-angiogenic factors.
12. The composition of claim 1, wherein the cells secrete one or more VEGF-A, HGF, SCF, SDF-1 α, and ANG-1.
13. The composition of claim 1, wherein the cells express VEGF-A and SDF-1 α.
14. The composition of claim 1, wherein the cells have activation of expression of one or more components of the heat shock response.
15. The composition of claim 1, wherein the cells have activation of expression of HSF-1, HSP60, and/or HSP70.
16. The composition of claim 1, wherein the cells are manipulated to express Hsp70, Hsp27, ISL-1, or a combination thereof.
17. The composition of claim 1, wherein the cells are manipulated to increase secretion of SDF-1 α, VEGF-A, PGDF-A, IL-6, FGF-2, or a combination thereof.
18. The composition of claim 1, wherein the cells are suspended in a medium comprising one or more heat shock response inducers.
19. The composition of claim 18, wherein the one or more heat shock response inducers are selected from the group consisting of celastrol, triptolide, and a combination thereof.
20. A method of treating an individual for a cardiac medical condition, comprising the step of providing to the individual a therapeutically effective amount of the composition of claim 1, medium conditioned by the composition of claim 1, exosomes secreted by the composition of claim 1, or a combination thereof.
21. The method of claim 20, wherein the composition, medium, exosomes, or a combination thereof are provided to an hypoxic environment in the heart of the individual.
22. The method of claim 20, wherein the cardiac medical condition is heart failure, cardiomyopathy, or congenital heart disease.
23. A conditioned medium from the cells of claim 1.
24. Exosomes from the cells of claim 1.

* * * * *