Title: OLIGOMERS AND POLYMERS ON THE BASIS OF DIETHYL-OCTANEDIOLS, METHOD FOR PRODUCING SAME AND THE USE THEREOF

Bezeichnung: OLIGOMERE UND POLYMERE AUF DER BASIS VON DIETHYLOCTANDIOLEN, VERFAHREN ZU IHRE HERSTELLUNG UND IHRE VERWENDUNG

Abstract: The invention relates to oligomers and polymers which contain at least one positional isomer diethyl octanediol as a monomer unit. The invention also relates to a method for producing the same and to the use thereof for producing moulding compounds, adhesives and coating materials, especially lacquers. The invention especially relates to polyesters on the basis of 2,4-diethyloctane-1,5-diol and the use thereof in 2k-polyurethane lacquers.

Zusammenfassung: Oligomere und Polymere, die mindestens ein stellungsisomeres Diethyloctandiol als Monomerbaustein enthalten. Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Formmassen, Klebstoffen und Beschichtungsstoffen, insbesondere Lackierungen. Insbesondere werden Polyester auf Basis von 2,4-Diethyloctan-1,5-diol und ihre Verwendung in 2k-Polyurethanlacken beschrieben.
Oligomere und Polymere auf der Basis von Diethyloctandiole, Verfahren zu ihrer Herstellung und ihre Verwendung

Die vorliegende Erfindung betrifft neue Oligomere und Polymere, die stellungsisomere Diethyloctandiole als Monomerbausteine enthalten. Außerdem betrifft die vorliegende Erfindung die Verwendung der neuen Oligomeren und Polymeren zur Herstellung von Formmassen, Klebstoffen und Beschichtungstoffen, insbesondere Lacken, sowie deren Folgeprodukte, d.h. die Formteile, Folien, Fasern, Klebschichten und Beschichtungen, insbesondere Lackierungen.

Diese Oligomeren und Polymeren weisen bereits gute anwendungstechnische Eigenschaften auf, indes stößt man bei der Variation ihres Eigenschaftsprofils, beispielsweise der weiteren Flexibilisierung, an eine Grenze, bei deren Überschreiten sich Nachteile bemerkbar machen, etwa eine Verringerung der Härte. Will man daher ihre anwendungstechnischen Eigenschaften weiter variieren und verbessern, damit sie neuen Verwendungszwecken zugeführt
werden können und/oder in ihren bisherigen Verwendungszwecken neue Vorteile bieten, wird es notwendig, neue Monomerbausteine und neue Oligomere und Polymere bereitzustellen.

Aufgabe der vorliegenden Erfindung ist es daher, neue Oligomere und Polymere als Alternative zu den bisher bekannten bereitzustellen. Dabei sollen die neuen Polymeren und Oligomeren die vorteilhaften Eigenschaften der bekannten Oligomeren und Polymeren bewahren und zusätzlich neue Möglichkeiten bieten, das Eigenschaftsprofil in vorteilhafter Weise breit zu variieren, so daß sie auch für neue Verwendungszwecke in Betracht kommen.

Demgemäß wurden die neuen Oligomeren und Polymeren gefunden, die mindestens ein stellungsisomeres Diethylcyclopropan als Monomerbaustein enthalten.

Im folgenden werden diese neue Oligomeren und Polymeren als „erfindungsgemäße Oligomere und Polymere“ bezeichnet.

Außerdem wurden die neuen Formmassen, Klebstoffe und Beschichtungsstoffe gefunden, die mindestens ein erfindungsgemäßes Oligomer und/oder Polymer enthalten. Im folgenden werden diese neuen Formmassen, Klebstoffe und Beschichtungsstoffe als „erfindungsgemäße Formmassen, Klebstoffe und Beschichtungsstoffe“ bezeichnet.

Des weiteren wurden neue Formteile, Folien und Fasern gefunden, die aus den erfindungsgemäßen Formmassen herstellbar sind. Im folgenden werden sie als „erfindungsgemäße Formteile, Folien und Fasern“ bezeichnet.

Ferner wurden neue Klebschichten gefunden, die aus den erfindungsgemäßen Klebstoffen herstellbar sind und im folgenden als „erfindungsgemäße Klebschichten“ bezeichnet werden.
Nicht zuletzt wurden neue Beschichtungen gefunden, die aus den erfindungsgemäßen Beschichtungsstoffen herstellbar sind und im folgenden als „erfindungsgemäße Beschichtungen“ bezeichnet werden.

Darüber hinaus wurden neue Substrate gefunden, die mindestens eine erfindungsgemäße Klebschicht und/oder mindestens eine erfindungsgemäße Beschichtung aufweisen und im folgenden als „erfindungsgemäße Substrate“ bezeichnet werden.

Der wesentliche Bestandteil der erfindungsgemäßen Oligomeren und Polymeren ist mindestens ein stellungsisomeres Diethyloctandiol.

Die erfindungsgemäß zu verwendenden stellungsisomeren Diethyloctandiol enthalten eine lineare C8-Kohlenstoffkette.

Bezüglich der beiden Ethylgruppen weist die C8-Kohlenstoffkette das folgende Substitutionsmuster auf: 2,3, 2,4, 2,5, 2,6, 2,7, 3,4, 3,5, 3,6 oder 4,5. Erfindungsgemäß ist es von Vorteil, wenn die beiden Ethylgruppen in 2,4-Stellung stehen, d. h., daß es sich um 2,4-Diethyloctandiole handelt.
Bezüglich der beiden Hydroxylgruppen weist die C8-Kohlenstoffkette das folgende Substitutionsmuster auf: 1,2, 1,3, 1,4, 1,5, 1,6, 1,7, 1,8, 2,3, 2,4, 2,5, 2,6, 2,7, 2,8, 3,4, 3,5, 3,6, 3,7, 3,8, 4,5, 4,6, 4,8, 5,6, 5,7, 5,8, 6,7, 6,8 oder 7,8.

Erfindungsgemäß ist es von Vorteil, wenn die beiden Hydroxylgruppen in 1,5-Stellung stehen, d. h., daß es sich um Diethyloctan-1,5-diole handelt.

Die beiden Substitutionsmuster werden in beliebiger Weise miteinander kombiniert, d. h., daß es sich bei den erfindungsgemäß zu verwendenden Diethyloctandiole um

2,3-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -
2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6 -, -
5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol.

2,4-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -
2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6 -, -
5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol.

2,5-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -
2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6 -, -
5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol.

2,6-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -
2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6 -, -
5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol.

2,7-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -
2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6 -, -
5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol.
3,4-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5-, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol,

3,5-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5-, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol oder um

3,6-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5-, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol oder um

4,5-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5-, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol

handelt.

Die erfindungsgemäß zu verwendenden stellungsisomeren Diethyloctandiole können als einzelne Verbindungen oder als Gemische von zwei oder mehr Diethyloctandiolien für die Herstellung der erfindungsgemäßen Oligomeren und Polymeren verwendet werden.

Besondere Vorteile resultieren aus der Verwendung von 2,4-Diethyloctan-1,5-diol.

Die erfindungsgemäß zu verwendenden stellungsisomeren Diethyloctandiole sind an sich bekannte Verbindungen und können mit Hilfe üblicher und bekannter Synthesemethoden der Organischen Chemie wie die basenkatalysierte Aldolkondensation hergestellt werden oder sie fallen als Nebenprodukte chemischer Großsynthesen wie der Herstellung von 2-Ethyl-hexanol an.
Ihr Anteil an den erfindungsgemäßen Oligomeren und Polymeren kann außerordentlich breit variieren und richtet sich nach dem jeweiligen Verwendungszweck der erfindungsgemäßen Oligomeren und Polymeren und deren hierfür erforderlichen Eigenschaftsprofil. Erfindungsgemäß ist es von Vorteil, wenn sie in den Ausgangsprodukten der erfindungsgemäßen Oligomeren und Polymeren in einer Menge von, bezogen auf die Ausgangsprodukte, 2 bis 60 Gew.-%, bevorzugt 3 bis 55 Gew.-%, besonders bevorzugt 5 bis 50 Gew.-% und insbesondere 7 bis 45 Gew.-% enthalten sind.

Dementsprechend kann auch das zahlenmittlere Molekulargewicht Mn und die Uneinheitlichkeit des Molekulargewichts Mw/Mn der erfindungsgemäßen Oligomeren und Polymeren je nach Verwendungszweck und Struktur außerordentlich breit variieren. Erfindungsgemäß sind zahlenmittlere
Molekulargewichte Mn von 700 bis 2.000.000 von Vorteil. Innerhalb dieses Bereichs bieten zahlenmäßige Molekulargewichte Mn von 1.000 bis 1.500.000, insbesondere 2.000 bis 1.000.000, weitere besondere Vorteile. Hierbei liegt die Uneinheitlichkeit des Molekulargewichts Mw/Mn vorteilhafterweise bei 1,1 bis 20, vorzugsweise 1,2 bis 15 und insbesondere 1,3 bis 10.

Von diesen sind wiederum die Polyester, die Polyurethane und die Polyester-co-polyurethane ganz besonders vorteilhaft.

Methodisch gesehen weist deren Herstellung keine Besonderheiten auf, sondern erfolgt nach den üblichen und bekannten Methoden der Herstellung von Polykondensationscharzen und Polyadditionscharzen.
Beispielsweise sind die erfindungsgemäßen Polyester erhältlich durch Umsetzung von Polycarbonsäuren und den vorstehend beschriebenen erfindungsgemäß zu verwendenden stellungsisomeren Diethylcandiodiolen sowie gegebenenfalls weiteren Polyolen und/oder Monocarbonsäuren.

Beispiele geeigneter Polycarbonsäuren sind aromatische Polycarbonsäuren wie Terephthalsäure, Isophthalsäure, Phthalsäure, Trimellithsäure oder Pyromellithsäure sowie ihre kernsubstituierten Alkylderivate; cycloaliphatische Polycarbonsäuren wie Tetrahydrophthalsäure, 1,2-Cyclobutandicarbonsäure, 1,3-Cyclobutandicarbonsäure, 1,2-Cyclopentandicarbonsäure, 1,3-Cyclopentandicarbonsäure, Hexahydrophthalsäure, 1,3-Cyclohexandicarbonsäure, 1,4-Cyclohexandicarbonsäure, 4-Methylhexahydrophthalsäure oder Tricyclodecan-Dicarbonsäure, welche sowohl in ihrer cis- als auch in ihrer trans-Form sowie als Gemisch beider Formen eingesetzt werden können; oder acyclische Polycarbonsäuren wie Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Undecandicarbonsäure oder Dodecandicarbonsäure, Maleinsäure, Fumarsäure, Itaconsäure, Citraconsäure oder Dimerfettsäuren.

Erfindungsgemäß geeignet sind auch die veresterungsfähigen Derivate der obengenannten Polycarbonsäuren, wie z.B. deren ein- oder mehrwertige Ester mit aliphatischen Alkoholen mit 1 bis 4-C-Atomen oder Hydroxalkoholen mit 1 bis 4 C-Atomen. Außerdem können auch die Anhydride der obengenannten Polycarbonsäuren eingesetzt werden, sofern sie existieren.

Beispiele geeigneter, gegebenenfalls angewandter Monocarbonsäuren sind 2-Ethylhexansäure, 3,3,5-Trimethylhexansäure, Isononansäure, Pelargonsäure, Fettsäuren aus Kokosefett, Fettsäuren natürlicher Öle, Harzsäuren, Benzoësäure oder p-tert.-Butylenzoësäure.
Beispiele geeigneter Polyole, die neben den erfindungsgemäß zu verwendenden stellungsisomeren Diethylctandiolen zu Zwecken der weiteren Variation des Eigenschaftsprofils als Ausgangsprodukte verwendet werden können, sind Diole wie Ethylenlykol, 1,2- oder 1,3-Propandiol, Methylpropan-1,3-diol, Etheroligomere des Etyleylglykols und Propylyglykols wie Diethylenlykol oder Diproplglykol, 1,2-, 1,3- oder 1,4-Butandiol, 1,2-, 1,3-, 1,4- oder 1,5-Pentandiol, 1,2-, 1,3-, 1,4-, 1,5- oder 1,6-Hexandiol, Hydroxyxivalinsäureneopentylester, Neopenyglykol, 1,2-, 1,3- oder 1,4-Cyclohexandiol, 1,2-, 1,3- oder 1,4-Cyclohexandimethanol, Tricyclodecandimethanol (TCD), Trimethylpentandiol, Ethylbutypropandiol, Octandiole, Nonandiole, 2-Butyl-2-ethylpropandiol-1,3, 2-Butyl-2-methylpropandiol-1,3, 2-Phenyl-2-methylpropandiol-1,3, 2-Propl-2-ethylpropandiol-1,3, 2-Di-tert.-butylpropandiol-1,3, 2-Butyl-2-propylpropandiol-1,3, 1-Dihydroxymethyl-bicyclo[2.2.1]heptan, 2,2-Diethylpropandiol-1,3, 2,2-Di- propylpropandiol-1,3 2-Cyclo-hexyl-2-methyl-propandiol-1,3, 2,5-Dimethylhexandiol-2,5, 2,5-Diethylhexandiol-2,5, 2-Ethyl-5-methylhexandiol-2,5, 2,4-Dimethylpentandiol-2,4, 2,3-Dimethylbutandiol-2,3, 1,4-(2'-Hy droxypropyl)-benzol, 1,3-(2'-Hydroxypropyl)-benzol oder Dimerdiele aus Dimerfettsäuren; oder Triole wie Glycerin, Trimethylolethan, Trimethylolpropan, Trishydroxyethylisocyanurat oder Pentaerythrit.

Hierbei werden die Diole und die Triole in einem molaren Verhältnis angewandt, daß der gewünschte Verzweigungsgrad resultiert.

Üblicherweise wird die Herstellung der erfindungsgemäßen Polyester in Gegenwart geringer Mengen eines geeigneten Lösemittels als Schleppmittel durchgeführt. Als Schleppmittel werden z. B. aromatische Kohlenwasserstoffe, wie insbesondere XyloI und (cyclo)aliphatische Kohlenwasserstoffe, z. B. Cyclohexan oder Methylcyclohexan, eingesetzt.

Enthalten die erfindungsgemäßen Polyester noch mindestens eine, vorzugsweise mindestens zwei und insbesondere zwei freie Hydroxygruppen, können sie in besonders vorteilhafter Weise der Herstellung von weiteren erfindungsgemäßen Polymeren, d. h. Polyester-co-polymeren dienen, was einen weiteren ganz besonderen Vorteil der erfindungsgemäßen Polyester darstellt.

Beispielsweise sind die erfindungsgemäßen Polyurethane nach den üblichen und bekannten Methoden der Polyurethanchemie aus Polysisocyanaten und den erfindungsgemäß zu verwendenden stellungsisomeren Diethyoctandiolen sowie gegebenenfalls weiteren Verbindungen, die mindestens eine, vorzugsweise mindestens zwei gegenüber Isocyanatgruppen reaktive funktionelle Gruppen enthalten, erhältlich. Anstelle der erfindungsgemäß zu verwendenden stellungsisomeren Diethyoctandirole oder zusätzlich zu diesen werden mit besonderem Vorteil auch die vorstehend beschriebenen erfindungsgemäßen Polyester verwendet, wodurch die erfindungsgemäßen Polyester-co-polyurethane resultieren.

Beispiele für geeignete Polysisocyanate sind Isophorondiisocyanat (= 5-Isocyanato-1-isocyanatomethyl-1,3,3-trimethyl-cyclohexan), 5-Isocyanato-1-(2-isocyanatoeth-1-yl)-1,3,3-trimethyl-cyclohexan, 5-Isocyanato-1-(3-isocyanatoprop-1-yl)-1,3,3-trimethyl-cyclohexan, 5-Isocyanato-(4-isocyanatobut-1-yl)-1,3,3-trimethyl-cyclohexan, 1-Isocyanato-2-(3-isocyanatoprop-1-yl)-cyclohexan, 1-Isocyanato-2-(3-isocyanatoeth-1-yl)cyclohexan, 1-Isocyanato-2-(4-isocyanatobut-1-yl)-cyclohexan, 1,2-Diisocyanatocyclobutan, 1,3-Diisocyanatocyclobutan, 1,2-Diisocyanatocyclopentan, 1,3-
Diisocyanatcyclopentan, 1,2-Diisocyanatcyclohexan, 1,3-
Diisocyanatcyclohexan, 1,4- Diisocyanatcyclohexan, Dicyclohexylmethyl-2,4-
diisocyanat, flüssiges Bis(4-isocyanatcyclohexyl)methan eines trans/trans-
Gehalts von bis zu 30 Gew.-%, das erhältlich ist durch Phosgenierung von
Isomerengemischen des Bis(4-aminocyclohexyl)methans oder durch fraktionierte
Kristallisation von handelsüblichem Bis(4-isocyanatcyclohexyl)methan, wie es
DE-A-17 93 785 beschrieben wird. Trimethylendiisocyanat,
Tetramethylendiisocyanat, Pentamethylendiisocyanat, Hexamethylendiisocyanat,
Ethylethylendiisocyanat, Trimethylhexandiisocyanat, Heptanmethylendiisocyanat
oder Diisocyanate, abgeleitet von Dimerfettsäuren, wie sie unter der
Handelsbezeichnung DDI 1410 von der Firma Henkel vertrieben und in den
Patentschriften WO 97/49745 und WO 97/49747 beschrieben werden,
insbesondere 2-Heptyl-3,4-bis(9-isocyanatnononyl)-1-pentyl-cyclohexan, oder 1,2-
, 1,4- oder 1,3-Bis(isocyanatomethyl)cyclohexan, 1,2-, 1,4- oder 1,3-Bis(2-
isocyanatoeth-1-yl)cyclohexan, 1,3-Bis(3-isocyanatoprop-1-yl)cyclohexan, 1,2-
, 1,4- oder 1,3-Bis(4-isocyanatobut-1-yl)cyclohexan, Toluylenendiisocyanat,
Xylylendiisocyanat, Bisphenylendiisocyanat, Naphthylendiisocyanat oder
Diphenylmethandiisocyanat.

Beispiele geeigneter gegebenenfalls als Ausgangsprodukte angewandter weiterer
Verbindungen, die mindestens eine, vorzugsweise mindestens zwei gegenüber
Isocyanatgruppen reaktive funktionelle Gruppen enthalten, sind

gesättigte und ungesättigte höhermolekulare und niedermolekulare Diole
und in untergeordneten Mengen Triole zur Einführung von
Verzweigungen, insbesondere die vorstehend beschriebenen Diole und
Triole,

Polyamine,
- Aminolakohole und

- Verbindungen, durch welche stabilisierende (potentiell) ionische und/oder nichtionische funktionelle Gruppen eingeführt werden.

Weitere besondere Vorteile resultieren, wenn die erfindungsgemäßen Oligomere und Polymere mit olefinisch ungesättigten Monomeren zu Propfischpolymerisaten umgesetzt werden.

Beispiele geeigneter olefinisch ungesättigter Monomere sind

- im wesentlichen säuregruppenfreien (Meth)acrylsäureester,

- Monomere, welche mindestens eine Hydroxylgruppe pro Molekül tragen und im wesentlichen säuregruppenfrei sind, wie Hydroxyalkylester der Acrylsäure, Methacrylsäure oder einer anderen alpha,beta-olefinisch ungesättigten Carbonsäure, die sich von einem Alkylenlykol ableiten, das mit der Säure verestert ist, oder die durch Umsetzung der alpha,beta-olefinisch ungesättigten Carbonsäure mit einem Alkylenoxid erhältlich sind,

- Monomere, welche mindestens eine Säuregruppe, die in die entsprechende Säureaniongruppe überführbar ist, pro Molekül tragen,

- Vinylester von in alpha-Stellung verzweigten Monocarbonsäuren mit 5 bis 18 Kohlenstoffatomen im Molekül,
- Umsetzungsprodukte aus Acrylsäure und/oder Methacrylsäure mit dem Glycidylester einer in alpha-Stellung verzweigten Monocarbonsäure mit 5 bis 18 C-Atomen je Molekül,

5

- cyclische und/oder acyclische Olefine wie Ethylen, Propylen, But-1-en, Pent-1-en, Hex-1-en, Cyclohexen, Cyclopenten, Norbonen, Butadien, Isopren, Cylopetadien und/oder Dicyclopentadien, insbesondere Ethylen,

10 - (Meth)Acrylsäureamide,

- Epoxidgruppen enthaltende Monomere wie die Glycidylester ethylenisch ungesättigter Carbonsäuren,

15 - vinylaromatische Kohlenwasserstoffe,

- Nitrile,

- Vinylverbindungen, insbesondere Vinyl- und/oder Vinylidendihalogenide,

20 - N-Vinylpyrrolidon, Vinylester oder Vinylether,

- Allylverbindungen, insbesondere Allylether und -ester.

Die erfindungsgemäßen Oligomeren und Polymeren können funktionelle Gruppen enthalten, die mit komplementären funktionellen Gruppen Vernetzungsreaktionen eingehen. Dabei können sich die komplementären funktionellen Gruppen in den

Beispiele geeigneter erfindungsgemäß zu verwendender komplementärer funktioneller Gruppen, welche Vernetzungsreaktionen eingehen, sind in der folgenden Übersicht zusammengestellt. In der Übersicht steht die Variable R für einen acyclischen oder cyclischen aliphatischen, einen aromatischen und/oder einen aromatisch-aliphatischen (araliphatischen) Rest; die Variablen R^1 und R^2 stehen für gleiche oder verschiedene aliphatische Reste oder sind miteinander zu einem aliphatischen oder heteroaliphatischen Ring verknüpft.

<table>
<thead>
<tr>
<th>Übersicht: Beispiele komplementärer funktioneller Gruppen im Bindemittel (selbstvernetzend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bindemittel und Vernetzungsmittel</td>
</tr>
<tr>
<td>oder</td>
</tr>
<tr>
<td>Vernetzungsmittel und Bindemittel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-SH</th>
<th>-C(O)-OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>-NH$_2$</td>
<td>-C(O)-O-C(O)-</td>
</tr>
</tbody>
</table>
15

-OH -NCO

-O-(CO)-NH-(CO)-NH₂ -NH-C(O)-OR

5 -O-(CO)-NH₂ -CH₂-OH

-CH₂-O-CH₃

-NH-C(O)-CH(-C(O)OR)₂

10 -NH-C(O)-CH(-C(O)OR)(-C(O)-R)

-NH-C(O)-NR₁R₂

15

= Si(OR)₂

O

-CH-CH₂

|-C(O)-OH

O

-CH-CH₂

20

25 -O-C(O)-CR=CH₂ -OH

-O-CR=CH₂ -NH₂

30 -C(O)-CH₂-C(O)-R

-CH=CH₂

Bei der aktinischen Strahlung kann es sich um elektromagnetische Strahlung wie Röntgenstrahlung, UV-Strahlung, sichtbares Licht oder nahes IR-Licht (NIR) oder um Korpuskularstrahlung wie Elektronenstrahlen handeln.

Die vorstehend beschriebenen erfindungsgemäßen Oligomere und Polymere eignen sich hervorragend für die Herstellung von Formmassen, Klebstoffen und Beschichtungsstoffen, insbesondere Lacken.

Für die Herstellung der erfindungsgemäßen Formmassen können erfindungsgemäße flüssige oder feste Oligomere und Polymere verwendet werden, die die vorstehend beschriebenen funktionellen Gruppen enthalten, so daß sie in üblicher und bekannter Weise durch Erhitzen und/oder durch Bestrahen mit aktinischer Strahlung zu duroplastischen erfindungsgemäßen Formteilen, Folien und Fasern bearbeitet werden können. Indes werden vorteilhafterweise feste erfindungsgemäße Oligomere und Polymere verwendet, die thermoplastische Eigenschaften haben und keine reaktiven funktionellen Gruppen mehr aufweisen, so daß sie in üblicher und bekannter Weise beispielsweise durch Extrusion gefolgt von Spritzgießen, Folienblasen oder dem Ziehen von Fasern zur thermoplastischen erfindungsgemäßen Formteilen, Folien und Fasern verarbeitet werden können.
Die erfindungsgemäßen Formteile, Folien und Fasern lassen sich in hervorragender Weise mit den erfindungsgemäßen Klebstoffen verkleben und/oder mit den erfindungsgemäßen Beschichtungsstoffen beschichten bzw. lackieren.

5 Die erfindungsgemäßen Formmassen bestehen aus den erfindungsgemäßen Oligomeren und Polymeren oder sie enthalten übliche und bekannte Kunststoffadditive in wirksamen Mengen.

Für die Herstellung von erfindungsgemäßen Klebstoffen, die als Kontaktkleber dienen, werden vorzugsweise erfindungsgemäße Oligomere und Polymere verwendet, die keine oder nur eine sehr geringe Menge der vorstehend beschriebenen funktionellen Gruppen enthalten.

10 Für die Herstellung von erfindungsgemäßen Klebstoffen, die als Reaktivkleber dienen, werden vorzugsweise erfindungsgemäße Oligomere und Polymere verwendet, die über eine größere Menge der vorstehend beschriebenen funktionellen Gruppen verfügen, so daß sie thermisch und/oder mit aktinischer Strahlung gehärtet werden können. Darüber hinaus können die erfindungsgemäßen Klebstoffe die nachstehend bei den Beschichtungsstoffen beschriebenen Additive enthalten, sofern diese für die Verwendung in Klebstoffen in Betracht kommen.

Mit Hilfe der erfindungsgemäßen Klebstoffe lassen sich die nachstehend beschriebenen Substrate, insbesondere die erfindungsgemäßen Formteile, Folien und Fasern, in hervorragender Weise verkleben.

Ganz besonders bevorzugt werden die erfindungsgemäßen Oligomere und Polymere für die Herstellung von Beschichtungsstoffen, insbesondere von Lacken, verwendet. Für diesen Verwendungszweck werden vorzugsweise Oligomere und Polymere verwendet, die die vorstehend beschriebenen
funktionellen Gruppen enthalten. Hierbei sind die erfindungsgemäßen Beschichtungsstoffe im vorstehend genannten Sinne selbstvernetzend oder fremdvernetzend, insbesondere aber fremdvernetzend. Des weiteren sind sie thermisch oder mit aktinischer Strahlung oder thermisch und mit aktinischer Strahlung härtbar, welch letzteres von der Fachwelt auch als Dual Cure bezeichnet wird.

Die Auswahl der jeweiligen komplementären funktionellen Gruppen richtet sich zum einen danach, daß sie bei der Lagerung keine unerwünschten Reaktionen eingehen dürfen und/oder gegebenenfalls die Härtung mit aktinischer Strahlung nicht stören oder inhibieren, und zum anderen danach, in welchem Temperaturbereich die thermische Härtung erfolgen soll.

Können höhere Vernetzungstemperaturen, beispielsweise von 100 °C bis 180 °C, angewandt werden, kommen als erfindungsgemäße Beschichtungsstoffe auch Einkomponentensysteme in Betracht, worin die funktionellen Gruppen in den Bindemitteln vorzugsweise Thio-, Amino-, Hydroxyl-, Carbamid-, Allophanat-, Carboxy-, und/oder (Meth)acrylatgruppen, insbesondere aber Hydroxylgruppen, und die funktionellen Gruppen in den Vernetzungsmitteln vorzugsweise Anhydrid-

Im Rahmen der vorliegenden Erfindung ist unter einem Einkomponenten (1K)-System ein thermisch härternder Beschichtungsstoff zu verstehen, bei dem das Bindemittel und das Vernetzungsmittel nebeneinander, d.h. in einer Komponente, vorliegen. Voraussetzung hierfür ist, daß die beiden Bestandteile erst bei höheren Temperaturen und/oder bei Bestrahen mit aktinischer Strahlung miteinander vernetzen.

Der erfindungsgemäße Beschichtungsstoff kann des weiteren ein Zweikomponenten (2K)- oder Mehrkomponenten (3K, 4K)-System sein.

Im Rahmen der vorliegenden Erfindung ist hierunter ein Beschichtungsstoff zu verstehen, bei dem insbesondere das Bindemittel und das Vernetzungsmittel getrennt voneinander in mindestens zwei Komponenten vorliegen, die erst kurz vor der Applikation zusammengegeben werden. Diese Form wird dann gewählt, wenn Bindemittel und Vernetzungsmittel bereits bei Raumtemperatur miteinander reagieren. Beschichtungsstoffe dieser Art werden vor allem zur Beschichtung thermisch empfindlicher Substrate, insbesondere in der Autoreparaturlackierung, angewandt.

Der erfindungsgemäße Beschichtungsstoff wird zur Herstellung dekorativer und/oder schützender Beschichtungen, insbesondere Lackierungen wie transparente Klarlackierungen, Grundierungen, insbesondere Steinschlagschutzgrundierungen und Füller, oder farb- und/oder effektgebende Lackierungen, insbesondere Decklackierungen und Basislackierungen, verwendet. Dabei können die Lackierungen ein- oder mehrschichtig sein.

Desweiteren kann der erfindungsgemäße Beschichtungsstoff organische und anorganische Füllstoffe in üblichen und bekannten, wirksamen Mengen enthalten. Beispiele für geeignete Füllstoffe sind Kreide, Calciumsulfate, Bariumsulfat, Silikate wie Talk oder Kaolin, Kieselsäuren, Oxide wie Aluminiumhydroxid oder Magnesiumhydroxid oder organische Füllstoffe wie Textilfasern, Cellulosefasern, Polyethylenfasern oder Holzmehl.
Diese Additive entfallen, wenn die erfindungsgemäßen Beschichtungsstoffe als Klarlacke verwendet werden.

Beispiele geeigneter Additive, welche sowohl in den erfindungsgemäßen Klarlacken und Decklacken vorhanden sein können, sind

- übliche und bekannte oligomere und polymere Bindemittel wie thermisch härbare hydroxylgruppenhaltige lineare und/oder verzweigte und/oder blockartig, kammartig und/oder statistisch aufgebaute Poly(meth)acrylate oder Acrylatcopolymerisate, Polyester, Alkyde, Aminoplastharze, Polyurethane, acrylierte Polyurethane, acrylierte Polyester, Polylactone, Polycarbonate, Polyether, Epoxidharz-Amin-Addukte, (Meth)Acrylatdiele, partiell verseifte Polyvinylester oder Polyharnstoffe oder mit aktinischer Strahlung härbare (meth)acrylfunktionelle (Meth)Acrylatcopolymer, Polyetheracrylate, Polyesteracrylate, ungesättigte Polyester, Epoxycrylate, Urethanacrylate, Aminoacrylate, Melaminacrylate, Silikonacrylate und die entsprechenden Methacrylate;

- übliche und bekannte thermisch und/oder mit aktinischer Strahlung härbare Reaktiverdünnner wie die erfindungsgemäß zu verwendenden Diethyloctandiole als solche, di- oder höherfunktionelle (Meth)Acrylate oder (Meth)Acrylatgruppen enthaltende Polyisocyanate;

- UV-Absorber und Lichtschutzmittel wie Benztriazole, Triazine oder Oxalanilide;

- Radikalfänger wie HALS-Verbindungen;

- thermolabile radikalische Initiatoren wie organische Peroxide, organische Azoverbindungen oder C-C-spaltende Initiatoren wie Dialkylperoxide,
Peroxocarbonsäuren, Peroxodicarbonate, Peroxidester, Hydroperoxide, Ketonperoxide, Azodinitrile oder Benzpinakolsilylether;

- Katalysatoren für die Vernetzung wie Dibutylzinndilaurat oder Lithiumdecanoat;

- Slipadditive;

- Polymerisationsinhibitoren wie Phosphite;

- Entschäumer;

- Emulgatoren, insbesondere nicht ionische Emulgatoren wie alkoxylierte Alkanole und Polyole, Phenole und Alkylphenole oder anionische Emulgatoren wie Alkalivalsalze oder Ammoniumsalze von Alkancarbon säuren, Alkansulfonsäuren, und Sulfosäuren von alkoxylierten Alkanolen, Polyolen, Phenolen und Alkylphenolen;
- Netzmittel wie Siloxane, fluorhaltige Verbindungen, Carbonsäurehalbester, Phosphorsäureester, Polycrylsäuren und deren Copolymere oder Polyurethane;

- Haftvermittler wie Tricyclodecandimethanol;

- Verlaufsmittel;

- hochsiedende organische Lösemittel („lange Lösemittel“);

- filmbildende Hilfsmittel wie Cellulose-Derivate;

- transparente Füllstoffe auf der Basis von Siliziumdioxid, Aluminiumoxid oder Zirkoniumoxid; ergänzend wird noch auf das Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, 1998, Seiten 250 bis 252, verwiesen;

Polyvinylpyrrolidon, Styrol-Maleinsäureanhydrid- oder Ethylen-Maleinsäureanhydrid-Copolymere und ihre Derivate oder hydrophob modifizierte ethoxylierte Urethane oder Polyaacrylate;

- Flammschutzmittel und/oder

- Mattierungsmittel.

Diese Additive werden den erfindungsgemäßen Beschichtungsstoffen in üblichen und bekannten, wirksamen Mengen zugesetzt.

Die stoffliche Zusammensetzung der erfindungsgemäßen Beschichtungsstoffe kann je nach ihrem Verwendungszweck außerordentlich breit variieren, was ein weiterer wesentlicher Vorteil der Beschichtungsstoffe ist. Im allgemeinen empfiehlt es sich, die vom Stand der Technik her bekannten Mengen an Bindemitteln, Vernetzungsmitteln und Additiven anzuwenden. Von Vorteil sind hierbei erfindungsgemäße Beschichtungsstoffe, die

- 1 bis 90 Gew.-%, bevorzugt 2 bis 80 Gew.-%, besonders bevorzugt 3 bis 75 Gew.-% und insbesondere 4 bis 70 Gew.-% mindestens eines erfindungsgemäßen Oligomeren und Polymeren,

- 0 bis 60 Gew.-%, bevorzugt 1 bis 50 Gew.-%, besonders bevorzugt 2 bis 45 Gew.-% und insbesondere 4 bis 40 Gew.-% mindestens eines Vernetzungsmittels sowie
0 bis 90 Gew.-%, bevorzugt 0,1 bis 80 Gew.-%, besonders bevorzugt 0,5 bis 75 Gew.-% und insbesondere 1 bis 70 Gew.-% mindestens eines Additivs,

wobei sich die Prozentangaben auf den Festkörpergehalt des betreffenden erfindungsgemäßen Beschichtungsstoffes beziehen und sich zu 100 Gew.-% addieren.

Der Beschichtungsstoff kann in unterschiedlichen Formen vorliegen.

So kann er bei entsprechender Wahl seiner vorstehend beschriebenen Bestandteile als flüssiger Beschichtungsstoff vorliegen, welcher im wesentlichen frei von organischen Lösemitteln und/oder Wasser ist (100%-System).

Indes kann es sich bei dem Beschichtungsstoff um eine Lösung oder Dispersion der vorstehend beschriebenen Bestandteile in organischen Lösemitteln und/oder Wasser handeln. Es ist ein weiterer Vorteil des Beschichtungsstoffs, daß hierbei Feststoffgehalte bis zu mehr als 80 Gew.-%, bezogen auf den Beschichtungsstoff, eingestellt werden können.

Der Beschichtungsstoff kann des weiteren ein vorstehend beschriebenes Zwei- oder Mehrkomponentensystem sein, bei dem zumindest das Vernetzungsmittel getrennt von den übrigen Bestandteilen gelagert und erst kurz vor der Verwendung zu diesen hinzugegeben wird. In diesem Falle kann der erfindungsgemäße Beschichtungsstoff auch wäβrig sein, wobei das
Vernetzungsmittel vorzugsweise in einer ein Lösungsmittel enthaltenden Komponente vorliegt.

Die Herstellung des Beschichtungsstoffs aus seinen Bestandteilen weist keine Besonderheiten auf, sondern erfolgt in üblicher und bekannter Weise durch Vermischen der Bestandteile in geeigneten Mischaggregaten wie Rührkessel, Dissolver oder Extruder nach den für die Herstellung der jeweiligen Beschichtungsstoffe geeigneten Verfahren.

Der erfindungsgemäße Beschichtungsstoff dient der Herstellung der erfindungsgemäßen Lackierungen, insbesondere Mehrschichtlackierungen ML, auf grundierten oder ungrundierten Substraten.

Als Substrate kommen alle zu lackierenden Oberflächen, die durch eine Här tung der hierauf befindlichen Lackierungen unter Anwendung von Hitze und/oder aktinischer Strahlung nicht geschädigt werden, in Betracht, das sind z. B. die erfindungsgemäßen Formteile, Folien und Fasern, Metalle, Kunststoffe, Holz, Keramik, Stein, Textil, Faserverbunde, Leder, Glas, Glasfasern, Glas- und Steinwolle, mineral- und harzgebundene Baustoffe, wie Gips- und Zementplatten oder Dachziegel, sowie Verbunde dieser Materialien. Demnach ist die erfindungsgemäße Mehrschichtlackierung auch für Anwendungen außerhalb der Kfz-Lackierung, insbesondere Automobillackierung geeignet. Hierbei kommt sie insbesondere für die Lackierung von Möbeln und die industrielle Lackierung, inklusive Coil Coating und Container Coating, in Betracht. Im Rahmen der industriellen Lackierungen eignet sie sich für die Lackierung praktisch aller Teile für den privaten oder industriellen Gebrauch wie Radiatoren, Haushaltsgeräte,
Kleinteile aus Metall wie Schrauben und Muttern, Radkappen, Felgen, Emballagen oder elektrotechnische Bauteile wie Motorwicklungen oder Transformatorwicklungen.

Im Falle elektrisch leitfähiger Substrate können Grundierungen verwendet werden, die in üblicher und bekannter Weise aus Elektrotauchlacken (ETL) hergestellt werden. Hierfür kommen sowohl anodische (ATL) als auch kathodische (KTL) Elektrotauchlacke, insbesondere aber KTL, in Betracht.

Im Falle von nichtfunktionalisierten und/oder unpolaren Substratoberflächen können diese vor der Beschichtung in bekannter Weise einer Vorbehandlung, wie mit einem Plasma oder mit Beflammen, unterzogen oder mit einer Hydrogrundierung versehen werden.

Die erfindungsgemäßen Mehrschichtlackierungen ML können in unterschiedlicher Weise hergestellt werden.

In einer ersten bevorzugten Variante umfaßt das erfindungsgemäße Verfahren die folgenden Verfahrensschritte:
(I) Herstellen einer Füllerlackschicht durch Applikation eines Füllers auf das Substrat,

(II) Härtung der Füllerlackschicht, wodurch die Füllerschicht resultiert,

(III) Herstellen einer Unidecklackschicht durch Applikation eines Unidecklacks auf die Füllerschicht und

(IV) Härtung der Unidecklackschicht, wodurch die Unidecklackierung resultiert.

Eine weitere bevorzugte Variante des erfindungsgemäßen Verfahrens umfaßt die Verfahrensschritte:

(I) Herstellen einer Basislackschicht durch Applikation eines Basislacks auf das Substrat,

(II) Trocknen der Basislackschicht,

(III) Herstellen einer Klarlackschicht durch Applikation eines Klarlacks auf die Basislackschicht und

(IV) gemeinsame Härtung der Basislackschicht und der Klarlackschicht, wodurch die Basislackierung und die Klarlackierung resultieren (Naß-in-naß-Verfahren).

Eine dritte bevorzugte Variante des erfindungsgemäßen Verfahrens umfaßt die Verfahrensschritte:

(I) Herstellen einer Füllerlackschicht durch Applikation eines Füllers auf das Substrat,
(II) Härting der Füllerlackschicht, wodurch die Füllerschicht resultiert,

(III) Herstellen einer Basislackschicht durch Applikation eines Basislacks auf die Füllerschicht,

(IV) Trocknen der Basislackschicht,

(V) Herstellen einer Klarlackschicht durch Applikation eines Klarlacks auf die Basislackschicht und

(VI) gemeinsame Härting der Basislackschicht und der Klarlackschicht, wodurch die Basislackierung und die Klarlackierung resultieren (Naß-in-naß-Verfahren).

Welche bevorzugte Variante gewählt wird, richtet sich nach dem Verwendungszweck der erfindungsgemäßen Mehrschichtlackierungen ML. So wird insbesondere die dritte Variante bei der Automobilserienlackierung besonders bevorzugt angewandt.

Demzufolge können die erfindungsgemäßen Mehrschichtlackierungen ML einen unterschiedlichen Aufbau aufweisen.

In einer ersten bevorzugten Variante der erfindungsgemäßen Mehrschichtlackierung ML liegen

(1) eine mechanische Energie absorbierende Füllerschicht und

(2) eine farb- und/oder effektgebende Decklackierung

in der angegebenen Reihenfolge übereinander.
In einer zweiten bevorzugten Variante der erfindungsgemäßen Mehrschichtlackierung ML liegen

(1) eine mechanische Energie absorbierende Füllerschicht,

(2) eine farb- und/oder effektgebende Basislackierung und

(3) eine Klarlackierung

in der angegebenen Reihenfolge übereinander.

In einer dritten bevorzugten Variante der erfindungsgemäßen Mehrschichtlackierung ML liegen

(1) eine farb- und/oder effektgebende Basislackierung und

(2) eine Klarlackierung

in der angegebenen Reihenfolge übereinander. Die dritte bevorzugte Variante wird insbesondere bei der Kunststofflackierung angewandt.

Die Applikation des erfindungsgemäßen Beschichtungsstoffs kann durch alle üblichen Applikationsmethoden, wie z.B. Spritzen, Rakeln, Streichen, Gießen, Tauchen, Tränken, Träufeln oder Walzen erfolgen. Dabei kann das zu beschichtende Substraten als solches ruhen, wobei die Applikationseinrichtung oder -anlage bewegt wird. Indes kann auch das zu beschichtende Substrat, insbesondere ein Coil, bewegt werden, wobei die Applikationsanlage relativ zum Substrat ruht oder in geeigneter Weise bewegt wird.
Vorzugsweise werden Spritzapplikationsmethoden angewandt, wie zum Beispiel Druckluftspritzen, Airless-Spritzen, Hochrotation, elektrostatischer Sprühaufrag (ESTA), gegebenenfalls verbunden mit Heißspritzapplikation wie zum Beispiel Hot-Air – Heißspritzen. Die Applikationen kann bei Temperaturen von max. 70 bis 80 °C durchgeführt werden, so daß geeignete Applikationsviskositäten erreicht werden, ohne daß bei der kurzzeitig einwirkenden thermischen Belastung eine Veränderung oder Schädigungen des Beschichtungsstoffs und seines gegebenenfalls wiederaufzubereitenden Overspray eintreten. So kann das Heißspritzen so ausgestaltet sein, daß der Beschichtungsstoff nur sehr kurz in der oder kurz vor der Spritzdüse erhitzt wird.

Die für die Applikation verwendete Spritzkabine kann beispielsweise mit einem gegebenenfalls temperierbaren Umlauf betrieben werden, der mit einem geeigneten Absorptionsmedium für den Overspray, z. B. dem Beschichtungsstoff selbst, betrieben wird.

Sofern der Beschichtungsstoff Bestandteile enthält, die mit aktinischer Strahlung vernetztaßbar sind, wird die Applikation bei Beleuchtung mit sichtbarem Licht einer Wellenlänge von über 550 nm oder unter Lichtausschluß durchgeführt. Hierdurch werden eine stoffliche Änderung oder Schädigung des Beschichtungsstoffs und des Overspray vermieden.

Im allgemeinen werden die Füllerlackschicht, Decklackschicht, Basislackschicht und Klarlackschicht in einer Naßschichtdicke appliziert, daß nach ihrer Aushärtung Schichten mit der für ihre Funktionen notwendigen und vorteilhaften Schichtdicken resultieren. Im Falle der Füllerschicht liegt diese Schichtdicke bei 10 bis 150, vorzugsweise 15 bis 120, besonders bevorzugt 20 bis 100 und insbesondere 25 bis 90 μm, im Falle der Decklackierung liegt sie bei 5 bis 90, vorzugsweise 10 bis 80, besonders bevorzugt 15 bis 60 und insbesondere 20 bis 50 μm, im Falle der Basislackierung liegt sie bei 5 bis 50, vorzugsweise 10 bis 40, besonders bevorzugt 12 bis 30 und insbesondere 15 bis 25 μm, und im Falle der...
Klarlackierungen liegt sie bei 10 bis 100, vorzugsweise 15 bis 80, besonders bevorzugt 20 bis 70 und insbesondere 25 bis 60 µm.

Die Aushärtung kann nach einer gewissen Ruhezeit erfolgen. Sie kann eine Dauer von 30 s bis 2 h, vorzugsweise 1 min bis 1 h und insbesondere 1 min bis 30 min haben. Die Ruhezeit dient beispielsweise zum Verlauf und zur Entgasung der Lackschichten oder zum Verdunsten von flüchtigen Bestandteilen wie Lösemittel, Wasser oder Kohlendioxid, wenn der Beschichtungsstoff mit überkritischem Kohlendioxid als Lösemittel appliziert worden ist. Die Ruhezeit kann durch die Anwendung erhöhter Temperaturen bis 80 °C unterstützt und/oder verkürzt werden, sofern hierbei keine Schädigungen oder Veränderungen der Lackschichten eintreten, etwa eine vorzeitige vollständige Vernetzung.

Die thermische Här tung weist keine methodischen Besonderheiten auf, sondern erfolgt nach den üblichen und bekannten Methoden wie Erhitzen in einem Umluftofen oder Bestrahlen mit IR-Lampen. Hierbei kann die thermische Här tung auch stufenweise erfolgen. Vorteilhafterweise erfolgt die thermische Här tung bei einer Temperatur von 50 bis 100 °C, besonders bevorzugt 80 bis 100 °C und insbesondere 90 bis 100 °C während einer Zeit von 1 min bis zu 2 h, besonders bevorzugt 2 min bis zu 1 h und insbesondere 3 min bis 30 min. Werden Substrate verwendet, welche thermisch stark belastbar sind, kann die thermische Vernetzung auch bei Temperaturen oberhalb 100 °C durchgeführt werden.
werden. Im allgemeinen empfiehlt es sich, hierbei Temperaturen von 180 °C, vorzugsweise 160 °C und insbesondere 140 °C nicht zu überschreiten.

Auch im Falle der Här tung mit UV-Strahlung kann, um die Bildung von Ozon zu vermeiden, unter Inertgas gearbeitet werden.

Die Anlagen und Bedingungen dieser Här tungsmethoden werden beispielsweise in R. Holmes, »U.V. and E.B. Curing Formulations for Printing Inks«, Coatings
and Paints, SITA Technology, Academic Press, London, United Kingdom 1984,
beschrieben.

Hierbei kann die Aushärtung stufenweise erfolgen, d. h. durch mehrfache
Belichtung oder Bestrahlung mit aktinischer Strahlung. Dies kann auch
alternierend erfolgen, d. h., daß abwechselnd mit UV-Strahlung und
Elektronenstrahlung gehärtet wird.

Werden die thermische Hartung und Hartung mit aktinischer Strahlung zusammen
angewandt (Dual Cure), können diese Methoden gleichzeitig oder alternierend
gesetzt werden. Werden die beiden Hartungsmethoden alternierend verwendet,
kann beispielsweise mit der thermischen Hartung begonnen und mit der Hartung
mit aktinischer Strahlung geendet werden. In anderen Fällen kann es sich als
vorteilhaft erweisen, mit der Hartung mit aktinischer Strahlung zu beginnen und
hiermit zu enden. Der Fachmann kann die Hartungsmethode, welche für jeden
Einzelfall besonders gut geeignet ist aufgrund seines allgemeinen Fachwissens
gegebenenfalls unter Zuhilfenahme einfacher Vorversuche ermitteln.

Die erfindungsgemäßen Mehrschichtlackierungen ML weisen ein hervorragendes
Eigenschaftsprofil auf, das hinsichtlich der Mechanik, Optik,
Korrosionsbeständigkeit und Haftung sehr gut ausgewogen ist. So weisen die
erfindungsgemäßen Mehrschichtlackierungen ML die vom Markt geforderte hohe
optische Qualität und Zwischenschichthaftung auf und werfen keine Probleme
wie mangelnde Schwitzwasserbeständigkeit der Füllerschichten, Rißbildung
(mudcracking) in den Basislackierungen oder Verlaufsstörungen oder
Oberflächenstrukturen in den Klarlackierungen auf.

Insbesondere weist die erfindungsgemäße Mehrschichtlackierung ML einen
hervorragenden Metallic-Effekt, einen hervorragenden D.O.I. (distinctiveness of
the reflected image) und eine hervorragende Oberflächenglättung, auf. Sie ist
witterungsstabil, resistent gegenüber Chemikalien und Vogelkot und kratzfest und zeigt ein sehr gutes Reflow-Verhalten.

Ein weiterer wesentlicher Vorteil ist die sehr gute Überlackierbarkeit der erfindungsgemäßen Mehrschichtlackierung ML auch ohne Anschleifen. Dadurch kann sie leicht mit üblichen und bekannten hochkratzfesten Beschichtungsstoffen auf der Basis organisch modifizierter Keramikmaterialien beschichtet werden.

Nicht zuletzt erweist es sich aber als ganz besonderer Vorteil, daß mit Hilfe der vorstehend beschriebenen Verfahren eine Mehrschichtlackierung realisiert werden kann, welche ausschließlich auf den erfindungsgemäßen Beschichtungsstoffen basiert.

Demzufolge weisen auch die erfindungsgemäßen Substrate besondere Vorteile wie eine längere Gebrauchsdauer, einen besseren ästhetischen Eindruck beim Betrachter und eine bessere technologische Verwertbarkeit auf.

Beispiele

Beispiel 1

Die Herstellung des erfindungsgemäßen Polyesters 1

In einen 4 Liter-Edelstahlreaktor, ausgerüstet mit Rührer, Rückflußkühler, Wasserabscheider und regelbarer Heizung, wurden 195 Gewichtsteile Hexandiol-1,6, 720 Gewichtsteile Trimethylolpropan, 334 Gewichtsteile 2,4-Diethyloctan-1,5-diol, 131 Gewichtsteile Isononansäure, 1272 Gewichtsteile Hexahydrophtalsäureanhydrid und 104 Gewichtsteile Xylol eingewogen. Die resultierende Mischung wurde langsam auf maximal 225 °C aufgeheizt und bei dieser Temperatur bis zu einer Säurezahl von 16 mg KOH/g und einer Viskosität von 12 dPas (60 %ig in Solventnaphtha) kondensiert. Die resultierende
Reaktionsmischung wurde anschließend abkühlen lassen und bei 130 °C mit 1530 Gewichtsteilen Solventnaphtha angelöst. Die resultierende Lösung des erfindungsgemäßen Polyesters wies einen Festkörpergehalt von 58,5 Gew.-%, eine Säurezahl von 16,3 mg KOH/g und eine Viskosität von 11 dPas (Original) auf.

Beispiel 2

Die Herstellung des erfindungsgemäßen Polyesters 2

In einen 4 Liter-Edelstahlreaktor, ausgerüstet mit Rührer, Rückflußkühler, Wasserscheider und regelbarer Heizung, wurden 383 Gewichtsteile Trimethylolpropan, 355 Gewichtsteile 2,4-Diethyloctan-1,5-diol, 69 Gewichtsteile Isononansäure, 676 Gewichtsteile Hexahydrophthalsäureanhydrid und 59 Gewichtsteile Xylo eingewogen und langsam auf maximal 225 °C aufgeheizt und bei dieser Temperatur bis zu einer Säurezahl von 17 mg KOH/g und einer Viskosität von 12 dPas (60 %ig in Solventnaphtha) kondensiert. Die resultierende Reaktionsmischung wurde anschließend abkühlen lassen und bei 130 °C mit 840 Gewichtsteilen Solventnaphtha angelöst. Die resultierende Lösung des erfindungsgemäßen Polyesters wies einen Festkörpergehalt von 59,5 Gew.-%, eine Säurezahl von 17,1 mg KOH/g und eine Viskosität von 13 dPas (Original) auf.

Beispiel 3

Die Herstellung des erfindungsgemäßen Klarsacks 1

In ein Rührgefäß mit mechanischem Rührer wurden 68,6 Gewichtsteile des erfindungsgemäßen Polyesters 1 gemäß Beispiel 1, 1,0 Gewichtsteile Tinuvin® 292 (Lichtschutzmittel der Firma Ciba-Geigy), 1,5 Gewichtsteile Tinuvin® 1130 (Lichtschutzmittel der Firma Ciba-Geigy), 10 Gewichtsteile Butyldiglykolacetat,
9 Gewichtsteile Butylglykolacetat, 7 Gewichtsteile Methoxypropylacetat, 9,3 Gewichtsteile Butylacetat und 0,2 Gewichtsteile BYK® 310 (Verlaufmittel der Firma Byk) eingewogen und vermischt. Zur resultierenden Mischung wurden kurz vor der Applikation 24,1 Gewichtsteile eines Vernetzungsmittels auf der Basis von Hexamethyldiisocyanat gegeben, wonach das Zweikomponentensystem homogenisiert wurde.

Beispiel 4

Die Herstellung der erfindungsgemäßen Mehrschichtlackierung ML 1

Auch die Zwischenschichthaftung war hervorragend: Gitterschnitt mit Tesaabrieb nach DIN EN ISO 2409: GT 0.

Diese Werte belegen die Vorteilhaftigkeit der erfindungsgemäßen Mehrschichtlackierung, des erfindungsgemäßen Klarlacks und des erfindungsgemäßen Polyesters.

Beispiel 5

Die Herstellung des erfindungsgemäßen Klarlacks 2

Beispiel 3 wurde wiederholt, nur daß anstelle des erfindungsgemäßen Polyesters 1 gemäß Beispiele 1 der erfindungsgemäße Polyester 2 gemäß Beispiel 2 verwendet wurde.

Beispiel 6

Die Herstellung der erfindungsgemäßen Mehrschichtlackierung ML 2

Beispiel 4 wurde wiederholt, nur das anstelle des erfindungsgemäßen Klarlacks 1 gemäß Beispiel 3 der erfindungsgemäße Klarlack 2 gemäß Beispiel 5 verwendet wurde. Es resultierten die gleichen vorteilhaften Ergebnisse.
Oligomere und Polymere auf der Basis von Diethyloctandiolen, Verfahren zu ihrer Herstellung und ihre Verwendung

Patentansprüche

1. Oligomere und Polymere, die mindestens ein stellungsisomeres Diethyloctandiol als Monomerausteine enthalten.

2. Oligomere und Polymere nach Anspruch 1, dadurch gekennzeichnet, daß das stellungsisomere Diethyloctandiol ein 2,3-, 2,4-, 2,5-, 2,6-, 2,7-, 3,4-, 3,5-, 3,6- oder 4,5-Diethyloctandiol ist.

3. Oligomere und Polymere nach Anspruch 2, dadurch gekennzeichnet, daß das stellungsisomere Diethyloctandiol ein 2,4-Diethyloctandiol ist.

4. Oligomere und Polymere nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das stellungsisomere Diethyloctandiol ein Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5-, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol ist.

5. Oligomere und Polymere nach Anspruch 4, dadurch gekennzeichnet, daß das stellungsisomere Diethyloctandiol ein Diethyloctan-1,5-diol ist.

6. Oligomere und Polymere nach Anspruch 5, dadurch gekennzeichnet, daß das stellungsisomere Diethyloctandiol 2,4-Diethyloctan-1,5-diol ist.

7. Oligomere und Polymere nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es sich um Polyadditionsharze und/oder Polykondensationsharze handelt.

10. Oligomere und Polymere nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sie linear und/oder verzweigt und/oder blockartig, kammartig und/oder statistisch aufgebaut sind, eine Kern-Schale-Struktur aufweisen und/oder als vernetzte Mikroteilchen vorliegen.

11. Oligomere und Polymere nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie

- funktionelle Gruppen, die mit komplementären funktionellen Gruppen, die sich in den Oligomeren und Polymeren selbst und/oder in getrennt hiervon vorliegenden Verbindungen befinden, Vernetzungsreaktionen eingehen, und/oder

- funktionelle Gruppen, die bei der Einwirkung von aktinischer Strahlung miteinander oder mit anderen Gruppen regieren,

aufweisen.
12. Oligomere und Polymere nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß sie mit olefinisch ungesättigten Monomeren gepropft sind.

13. Verwendung der Oligomeren und Polymeren gemäß einem der Ansprüche 1 bis 12 für die Herstellung von Formmassen, Klebstoffen und Beschichtungsstoffen, insbesondere Lacken.

14. Formmassen, Klebstoffe und Beschichtungsstoffe, dadurch gekennzeichnet, daß sie mindestens ein Oligomer und/oder Polymer gemäß einem der Ansprüche 1 bis 12 enthalten.

15. Verwendung der Formmassen, Klebstoffe und Beschichtungsstoffe gemäß Anspruch 14, für die Herstellung von Formteilen, Folien, Fasern, Klebschichten und dekorativen und/oder schützenden Beschichtungen, insbesondere Lackierungen.

19. Substrate, welche mindestens eine Klebschicht gemäß Anspruch 17 und/oder mindestens eine Beschichtung, insbesondere Lackierung, gemäß Anspruch 18 aufweisen.

20. Substrate nach Anspruch 19, dadurch gekennzeichnet, daß es sich um Formteile, Folien und Fasern gemäß Anspruch 16,
Kraftfahrzeugkarosserien, industrielle Bauteile, inklusive elektrotechnische Bauteile, Coils und Emballagen, oder Möbel handelt.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>C08G63/12</td>
<td></td>
</tr>
<tr>
<td>C08G18/42</td>
<td></td>
</tr>
<tr>
<td>C09D167/00</td>
<td></td>
</tr>
<tr>
<td>C08L101/00</td>
<td></td>
</tr>
<tr>
<td>C09D201/00</td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>C08G</td>
<td></td>
</tr>
<tr>
<td>C09D</td>
<td></td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, CHEM ABS Data, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>claims 1-5; example page 4, line 31 - line 41</td>
<td>20</td>
</tr>
<tr>
<td>Y</td>
<td>DE 40 24 204 A (BASF LACKE & FARBNEN) 6 February 1992 (1992-02-06) cited in the application abstract; claim 15</td>
<td>20</td>
</tr>
<tr>
<td>X</td>
<td>GB 778 924 A (NATIONAL DISTILLERS PRODUCTS CORP.) 17 July 1957 (1957-07-17) claims 1,6; example I page 4, line 75 - line 85</td>
<td>1, 2, 4, 7-10</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C. X Patent family members are listed in annex.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claims or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "R" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "S" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "Q" document member of the same patent family

Date of the actual completion of the international search: 8 December 2000

Date of mailing of the international search report: 19/12/2000

Name and mailing address of the ISA:
European Patent Office, P.B. 5816 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2940, Tx. 31-651 Epo nl. Fax: (+31-70) 340-3016

Authorized officer: Krische, D
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>EP 0 940 459 A (BASF COATINGS AG) 8 September 1999 (1999-09-08) claims 1,6-9,14,15,36; example page 2, line 5 - page 3, line 21 page 8, line 20 - line 31</td>
<td>1-9, 18-20</td>
</tr>
</tbody>
</table>

Form PCT/ISA/2/10 (continuation of second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 19826715 A</td>
<td>28-01-1999</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 4024204 A</td>
<td>06-02-1992</td>
<td>AT 115171 T</td>
<td>15-12-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9106715 A</td>
<td>13-07-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2087338 A</td>
<td>01-02-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59103830 D</td>
<td>19-01-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 541604 T</td>
<td>08-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9202590 A</td>
<td>20-02-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2067946 T</td>
<td>01-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7033496 B</td>
<td>12-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5326820 A</td>
<td>05-07-1994</td>
</tr>
<tr>
<td>GB 778924 A</td>
<td></td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>EP 0940459 A</td>
<td>08-09-1999</td>
<td>DE 19809643 A</td>
<td>09-09-1999</td>
</tr>
<tr>
<td>JP 9272731 A</td>
<td>21-10-1997</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C08G1 8/42 C09D167/00 C08L101/00 C09D201/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK.

B. RECHERCHIERTE GEBIETE
Recherche unter Mindestpräparate (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C08G C09D
Recherche aber nicht zum Mindestpräparat gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen.

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
WPI Data, PAJ, CHEM ABS Data, EPO-Internal

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Ansprüche 1-5; Beispiel Seite 4, Zeile 31 - Zeile 41</td>
<td>20</td>
</tr>
<tr>
<td>Y</td>
<td>DE 40 24 204 A (BASF LACKE & FARBEN) 6. Februar 1992 (1992-02-06) in der Anmeldung erwähnt Zusammenfassung; Anspruch 15</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>GB 778 924 A (NATIONAL DISTILLERS PRODUCTS CORP.) 17. Juli 1957 (1957-07-17) Ansprüche 1.6; Beispiel I Seite 4, Zeile 75 - Zeile 85</td>
<td>1.2.4, 7-10</td>
</tr>
</tbody>
</table>

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

** Sehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche
8. Dezember 2000

Abmeldedatum des internationalen Recherchenberichts
19/12/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rotterdam
Tel. (+31-70) 340-2040, Tx 31 651 epp nl
Fax (+31-70) 340-3016

Brevvollmachtiger Bevollmächtigter
Krische, D
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erordentlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>EP 0 940 459 A (BASF COATINGS AG) 8. September 1999 (1999-09-08) Ansprüche 1.6-9,14,15,36; Beispiel Seite 2, Zeile 5 - Seite 3, Zeile 21 Seite 8, Zeile 20 - Zeile 31 ---</td>
<td>1-9, 18-20</td>
</tr>
<tr>
<td>Patentnummer</td>
<td>Land</td>
<td>Datum der Veröffentlichung</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>DE 19826715</td>
<td>A</td>
<td>28-01-1999</td>
</tr>
<tr>
<td>DE 4024204</td>
<td>A</td>
<td>06-02-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB 778924</td>
<td>A</td>
<td>KEINE</td>
</tr>
<tr>
<td>EP 0940459</td>
<td>A</td>
<td>08-09-1999</td>
</tr>
<tr>
<td>JP 9272731</td>
<td>A</td>
<td>21-10-1997</td>
</tr>
</tbody>
</table>