Office de la Proprieté Canadian

Intellectuelle Intellectual Property
du Canada Office

Un organisme An agency of
d'Industrie Canada Industry Canada

CA 2491731 C 2011/01/04

(11)(21) 2 491 731

(12 BREVET CANADIEN
CANADIAN PATENT
13) C

(86) Date de déepot PCT/PCT Filing Date: 2003/06/25

(87) Date publication PCT/PCT Publication Date: 2004/01/2
(45) Date de délivrance/lssue Date: 2011/01/04

(85) Entree phase nationale/National Entry: 2004/12/31

(86) N° demande PCT/PCT Application No.: US 2003/020050

(87) N° publication PCT/PCT Publication No.: 2004/010305
(30) Priorité/Priority: 2002/07/17 (US10/197,760)

(51) Cl.Int./Int.Cl. GO6F 1//30(2006.01)

9 | (72) Inventeurs/Inventors:

PRAKASH,

(74) Agent: OSL

AHAD, RAFIUL, US;
CHIANG, JERRY, US;
KIBIREV, OLEG, US;

RAVINDRA, US;
REHMAN, SAMUELSON, US

(73) Proprietaire/Owner:
ORACLE INT

ERNATIONAL CORPORATION, US
R, HOSKIN & HARCOURT LLP

54) Titre : SYSTEME ET PROCEDE DE MISE EN ANTEMEMOIRE DE DONNEES POUR APPLICATION MOBILE
54) Title: SYSTEM AND METHOD FOR CACHING DATA FOR A MOBILE APPLICATION

DISPATCHER REQUESTOR
444 450

SCRIPT ENGINE
448

CLIENT AGENT 440

SERVER

452

T
423 ‘ 426

VOICE ENGINE
448

L

PUSH
QUEUE LISTENER

454

DATABASE 420
CACHE
CACHE CONTROL
TABLE(S) INFORMATION
422 424
CLIENT DEVICE 400

(57) Abrégée/Abstract:

A cache table comprises a set of access parameters and a set of data columns. One or more Iinstances of a cache table are stored
on a mobile computing device. Each instance includes an argument (a unigue set of values for the access parameters) and a result

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - C]

PO 191

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

CA 2491731 C 2011/01/04

anen 2 491 731
13) C

(57) Abrege(suite)/Abstract(continued):

set (a set of values for the data columns). Thus, each result in a result set comprises the argument and corresponding column
values. Cached result sets have specified periods of validity, and may or may not be usable after becoming invalid. Valid cached
data may be used regardless of whether a connection Is available to a data source (e.q., data or application server). Invalid data
may be used for a period of time If no connection Is available to the data source. Data In a cache table may be selectively updated
from a data source without synchronizing the entire local database.

wO 2004/010305 A3 I D0 AT 00 A O 0 A0 O 0

CA 02491731 2004-12-31

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Burcau

(43) International Publication Date

29 January 2004 (29.01.2004) PCT
(51) International Patent Classification’: GO6F 17/30
(21) International Application Number:
PCT/US2003/020050

(22) International Filing Date: 25 June 2003 (25.06.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/197,760 17 July 2002 (17.07.2002) US

(71) Applicant: ORACLE INTERNATIONAL CORPORA -
TION [US/US]; M/S 50p7, 500 Oracle Parkway, Redwood
Shores, CA 94065 (US).

(72) Inventors: AHAD, Rafiul; 863 Hunter Lane, Fremont,
CA 94539 (US). CHIANG, Jerry; 37201 Paseo Padre

(74)

(81)

(84)

(10) International Publication Number

WO 2004/010305 A3

Parkway #107, Fremont, CA 94536 (US). KIBIREY,
Oleg; 3033 La Selva Street #316, San Mateo, CA 94403
(US). PRAKASH, Ravindra; 1170 Alderbrook Lane,
San Jose, CA 95129 (US). REHMAN, Samuelson; 3217
Santiago Street, San Francisco, CA 94116 (US).

Agents: VAUGHAN, Daniel et al.; Park, Vaughan &
Fleming LLP, 702 Marshall Street, Suite 310, Redwood
City, CA 94063 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG,
UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR CACHING DATA FOR A MOBILE APPLICATION

(57) Abstract: A cache table comprises a set of access parameters and a set of data

SERVER

l
COMMUNICATION MODULE

230

DATABASE 220

CACHE

CONTROL
INFORMATION

224

CACHE TABLE
222

MOBILE APPLICATON
210

CLIENT DEVICE 200

columns. One or more instances of a cache table are stored on a mobile computing
device. Each instance includes an argument (a unique set of values for the access pa-
rameters) and a result set (a set of values for the data columns). Thus, each result in a
result set comprises the argument and corresponding column values. Cached result sets
have specified periods of validity, and may or may not be usable after becoming invalid.
Valid cached data may be used regardless of whether a connection is available to a data
source (e.g., data or application server). Invalid data may be used for a period of time if
no connection is available to the data source. Data in a cache table may be selectively
updated from a data source without synchronizing the entire local database.

CA 02491731 2004-12-31

WO 2004/010305 A3 UL HVA!R AR DA 10 0 O AR 00 R A

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ance Notes on Codes and Abbreviations" appearing at the begin-
ES, 1, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, ning of each regular issue of the PCT Gazette.

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

(88) Date of publication of the international search report:
5 August 2004

S

10

15

20

23

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

SYSTEM AND METHOD FOR CACHING DATA
FOR A MOBILE APPLICATION

BACKGROUND

This invention relates to the field of computer systems. More particularly, a
system and methods are provided for caching data on a mobile device.

Applications operated on mobile devices (e.g., laptop computers, personal digital
assistants, mobile telephones) have generally been designed for either online or otfline
use. Both types of mobile applications tend to use some form of browser to interact with
auser. Online applications enjoy continual access to an enterprise server (e.g., central
database server). Offline applications, in contrast, operate with minimal or no contact
with an enterprise server.

More specifically, an online mobile application can access data on the enterprise
server whenever needed, thereby possibly obviating any need to store data locally.
However, because of the “always connected” nature of an online mobile application,
connection costs (e.g., for wireless air time) can be quite high.

Also, an online mobile application generally suffers from unpredictable latency.
When the online application transmits a request to the server, the response time depends
upon the level of usage of the mobile device’s wireless network in addition to any
congestion at the server. Further, usage of the online application may be geographically
limited, depending on the extent of the wireless network, and may be prohibited in some
locations (e.g., airplanes, hospitals).

Yet further, online mobile applications often access data in sets, such as entire
web pages, data tables, etc. When a data item needs to be replaced, the entire dataset may
be replaced rather than just the one item. This can be inefficient and increase the cost of
operating the application.

One reason mobile applications tend to access data in sets (e.g., entire web pages),
is that the data are tightly coupled to the presentation of the data. In particular, when data
are copied or downloaded to a client device for a mobile application, each collection of
data (e.g., a table, a set of database rows or fields) is typically conveyed within the page
in which it will be displayed. Thus, the data cannot be displayed on the client except in

that page. Because each set or collection of data may be stored with a full display page,

1

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

and many pages may be identical except for their encapsulated data, much storage on the
client may be wasted.

In contrast to an online application, an offline mobile application does not enjoy
continual access to data maintained by the enterprise server. Some data (e.g., a snapshot)
from an enterprise server may be copied onto or replicated on a mobile device. Although
the offline application may always be usable (e.g., when offline from the server), 1t will
not always have fresh data, and it can only access data that were copied to it.

An offline mobile application configured to use data snapshots is usually required
to synchronize its stored, offline data with an enterprise server on an occasional or
periodic basis (e.g., once per day). The frequency of synchronization is generally
unrelated to the frequency with which data items are accessed or modified on the mobile
device. Thus, many transactions or operations may be performed on the mobile device
using stale data. And, synchronization may entail high overhead, as a large amount of
data will often be exchanged — even data that have not changed and do not need to be
refreshed. For example, an entire web page or set of web pages may be downloaded or
exchanged even though only one data item in a page needs to be updated.

Because of the infrequent rate of data synchronization, offline mobile applications
are not suitable for use with data that are highly dynamic. In addition, an offline mobile
application is often required to maintain a transaction log of all data changes made by the
application, in order to facilitate synchronization.

In general, enterprise data stored on a mobile device, for use with a mobile
application, may have varying longevity. Some data points or items may be valid for
long periods of time (e.g., a product description, an address); other data points or items
may be invalid after only a relatively short period of time (e.g., a stock quote, a currency
conversion rate). Existing mobile applications and client databases typically are not
configured to recognize or consider the longevity of downloaded data.

Further, mobile client applications that attempt to provide significant functionality
to users tend to require robust software and/or hardware configurations (e.g., a Java
Virtual Machine, an HTTP listener, a servlet engine). Such requirements prevent the use

of smaller, more restrained client devices, such as Personal Digital Assistants (PDA) or

smart telephones, and also add overhead to client operations.

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

SUMMARY

In one embodiment of the invention, a system and methods are provided for fine-
grained caching of data for use with an application executing on a mobile (e.g., wireless)
device contigured for use in a third generation wireless network or other enterprise
network. In this embodiment, the device need not always access a central or master
source of the data (e.g., a data, web or application server) and can use the cached data in
an online or offline mode. Traditional synchronization operations between the device and
the data source are unnecessary, as data cached on the mobile device may be selectively

refreshed when needed. Thus, benefits of both modes of operation (e.g., fresh data,

acceptable connection costs) are obtained.

In an embodiment of the invention, data are cached in cache tables implemented
as part of a local DBMS (Database Management System) of a mobile device. In this
embodiment, a cache table is a table Whése content (e.g., rows) are refrieved from a
server, on demand, and cached locally according to cache control instructions associated
with the content. A subset of the columns (or attributes) of a cache table is designated as
the “access parameters” for the cache table. To retrieve data from a cache table, a value is
provided for each of the access parameters. These values constitute an argument for one
instance of the cache table. If the row(s) with those argument values are not in the local
database, or have expired, the DBMS will contact the corresponding server to retrieve and
cache the rows.

For example, if a cache table is configured to report inventory figures for various
warehouse locations 1n response to a specified part number, the cache table columns may
include a part number, a warehouse number, and a quantity of the part stored in a
corresponding warehouse. The part number, which is supplied as part of a query, may be
an access parameter for the cache table. For each unique part number, a separate instance
of the cache table includes a set of rows (a result set) that reports quantities of the part
stored in each warehouse.

In an embodiment of the invention, data caching is separated from application
logic by encapsulating data caching policies within the cache tables. This relieves
application developers from having to code caching policies as part of the application
logic, and permits a database administrator to define caching policies.

In another embodiment of the invention, an algorithm is provided to define the

data and transactional semantics of cache tables, in a manner that is consistent with the

3

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

ACID (Atomicity, Consistency, Isolation, and Durability) properties of database
transactions. In particular, data stored in a cache table have associated periods of validity,
which may be specified by a data source from which the data were obtained. Data may
also have associated cache control information indicating whether, and how long, they
may be used after becoming invalid, if no connection to the server is available. When a
local database operation affects a cache table, the algorithm is applied to determine
whether to use the cached data or attempt to refresh the data from the data source. The
algorithm may consider whether a connection is available to the data source, whether the
data are locked by the same or another transaction, whether the data are invalid, whether
the associated cache control information allows the data to be used while invalid, etc.

[llustratively, an embodiment of the invention enables a mobile device and
application to access local data offline, and selectively refresh specific data (e.g., cache
table result sets) as needed. As a result, connection costs (e.g., to a dafa source) and the
use of stale data are minimized. And, because the cache table is a table, all mobile

database applications can reap the benefits afforded by cache tables without having to

write extra code in the application logic.

DESCRIPTION OF THE FIGURES

FIG. 1 1s a block diagram depicting a mobile computing environment suitable for

implementation of an embodiment of the present invention.

FIG. 2 1s a block diagram of a client device configured to cache data on a mobile
computing device, in accordance with an embodiment of the invention.

F1Gs. 3A-B comprise a flowchart illustrating one method of using and refreshing

a cache table 1n accordance with an embodiment of the invention.

F1G. 4 depicts a mobile client device equipped with an intelligent client agent, in

accordance with an embodiment of the invention.
FI1G. 5A 1s a flowchart demonstrating a method of operating a dispatcher, within

an intelligent client agent, to process a requested page, in accordance with an embodiment

of the invention.

F1Gs. 5B-C comprise a flowchart demonstrating a method by which a script

engine may assemble a page within an intelligent client agent, in accordance with an

embodiment of the invention.

FIG. 6 depicts a cache table, according to one embodiment of the invention.

4

10

15

20

23

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

FIGs. 7-11 demonstrate illustrative formats for communications between a client

device operating a cache table and a data source associated with the cache table,

according to one embodiment of the invention.

DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to
make and use the invention, and is provided in the context of particular applications of the
invention and their requirements. Various modifications to the disclosed embodiments
will be readily apparent to those skilled in the art and the general principles defined
herein may be applied to other embodiments and applications without departing from the
scope of the present invention. Thus, the present invention is not intended to be limited to
the embodiments shown, but is to be accorded the widest scope consistent with the
principles and features disclosed herein.

The program environment in which a present embodiment of the invention is
executed illustratively incorporates a general-purpose computer or a special purpose
device such as a mobile computer, a PDA (Personal Digital Assistant), a telephone, etc.
Details of such devices (e.g., processor, memory, data storage, display) may be omitted
for the sake of clarity.

It should also be understood that the techniques of the present invention may be
implemented using a variety of technologies. For example, the methods described herein
may be implemented in software executing on a computer system, or implemented in
hardware utilizing either a combination of microprocessors or other specially designed
application specific integrated circuits, programmable logic devices, or various
combinations thereof. In particular, the methods described herein may be implemented
by a series of computer-executable instructions residing on a suitable computer-readable
medium. Suitable computer-readable media may include volatile (e.g., RAM) and/or
non-volatile (e.g., ROM, disk) memory, carrier waves and transmission media (e.g.,
copper wire, coaxial cable, fiber optic media). Exemplary carrier waves may take the

form of electrical, electromagnetic or optical signals conveying digital data streams along

a local network, a publicly accessible network such as the Internet or some other

communication link.

10

15

20

235

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

Introduction

In one embodiment of the invention, a system and method are provided for fine-
grained caching, on a mobile device, of data used by an application executing on the
device. In this embodiment, application data are stored in a database (e.g., a DBMS)
comprising one or more cache tables configured to monitor the validity and/or usability of
cached data.

In this embodiment, a cache table not only caches one or more data rows, but also
stores, or is associated with, cache control information that describes the validity of the
data, where or how to get a fresh copy of the data, etc. When an application accesses the
cache table, the local DBMS inspects the desired data and, if still valid, serves it. If the
cached data are no longer valid, the local DBMS requests updated data from the server if
a connection to the server is available. Instead of retrieving a large set of data in order to
update a single (invalid) data row, just that row may be retrieved.

In an embodiment of the invention, a cache table is a database table of data that
can be retrieved on demand from a data source (e.g., enterprise server, database server,
web server, application server), and stored in a local (e.g., mobile) device.
Communications between the server and the device may employ any suitable protocol,
such as HTTP (Hyper Text Transport Protocol), SOAP (Simple Object Access Protocol),
WAP (Wireless Access Protocol), etc. A server hosting a data source may be configured
to execute CGI (Common Gateway Interface) programs, servlets, applets, Java methods
or other modules to implement interfaces associated with cache table specifications
described herein.

In one embodiment of the invention, a cache table 1s compatible with a database
programming model, so that a mobile application can access the cached data through a
standard interface, such as ODBC (Open Data Base Connectivity) or JDBC (Java Data
Base Connectivity). A mobile application that uses a local database of cache tables can
therefore be written using a normal database model and interface. The database, through
its cache table(s), manages data validity, retrieves updates for invalid data, and so on.

The data and transactional semantics of cache table may be designed to follow industry

standard transactional semantics.

Because the mobile device may not always be actively communicating with an
enterprise server (or other central/master data source), and because data retrievals can be

limited to just those data items that are invalid, connection costs can be kept relatively

6

10

15

20

235

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

low. And, because of the limited number of accesses that must be made to the enterprise
server, there is less of a problem with erratic performance resulting from unpredictable
latency.

In another embodiment of the invention, an intelligent client agent is provided for
enhancing operation of an offline application executed on a mobile computing device
(e.g., a Personal Digital Assistant (PDA), a laptop or notebook computer, a smart
telephone). In this embodiment, the client agent enhances the operation of the offline
application by selectively enabling online access and separating application content from
the presentation format of the content. Content and presentation may be separated by
storing thé data separately (e.g., in a cache table, snapshot or regular database table) from
the presentation description or format of an application page. When an offline application
needs a page, the client agent reconstructs the application page from the presentation
description and data stored in the local database. The client agent may go online to
retrieve volatile data and/or data that are stale; the client ‘agent may also facilitate
synchronization of a client snapshot with a server. Further, a client agent may enable a
server to push information to a client cache table or database (e.g., using a push listener),
and may also support voice-based interaction with a client application.

FIG. 1 depicts an illustrative mobile computing/communication environment in
which an embodiment of the invention may be implemented. In this embodiment,
enterprise server 150 1s accessible through a direct wireless link 130 and/or network 140,
which may comprise the Internet. Users of mobile devices 102a - 102d therefore access
server 150 directly or though a series of communication links. A user’s mobile device
may be a laptop or other portable computer, a PDA, a telephone, a two-way pager or
other device.

In one embodiment of the invention, a client database or DBMS may include one
or more snapshots of server data in addition to any cache tables. In this embodiment, a
cache table stores data that may have originated anywhere (e.g., the client, any remote
server or other system), along with information regarding the validity of the data. A
snapshot stores data from a server or other source that is explicitly synchronized with the
server. Illustratively, snapshot data may always be available when offline, while cache

table may or may not be usable offline, depending on the validity of the data. Finally,

regular database tables may be used store data generated by, and/or only used by, the

client.

10

15

20

235

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

Cache Table Concepts

FIG. 2 1s a block diagram of a mobile client device suitable for implementation
with an embodiment of the invention. Device 200 comprises mobile application 210,

database 220 and communication module 230.

Mobile application 210 is an application that uses or draws upon data stored in
database 220. Database 220 may be configured to store any type of data (e.g., textual,
numerical, graphical, video) for use by application 210. Database 220 includes one or
more cache tables for caching the data, such as cache table 222. Database 220 also
includes associated cache control information 224. Further details regarding cache tables
and cache control information are provided below.

Communication module 230 is configured to access a server or data source that
stores current or master versions of data cached in database 220. Thus, as described
below, database 220 may periodically access the server, through communication module
230, 1n order to download new data, fresh data, updates to cached data, etc.
Communication module 230 may be directly operated by the database, or the database
may access the communication module through application 210, an operating system or
other entity.v Thus, communication module 230 may be coupled to mobile application
210 1n addition to, or instead of, database 220.

In embodiments of the invention described herein, database 220 is a DBMS
(Database Management System) product offered by Oracle® Corporation, such as Oracle
01 Lite.

In an embodiment of the invention, a cache table can be characterized by a four-

tuple 1n the form < S, C, O, P >. In this form, S defines the schema or structure of the

cache table, C defines constraints placed on the cache table, O represents a set of
supported operations, and P represents a set of protocols for retrieving or updating cache

table content (e.g., when the mobile device is connected or intermittently connected to a

data source).

CACHE TABLE SCHEMA

In one embodiment of the invention, the schema, S, of a cache table is defined by

three things: the name of the cache table, a list of column definitions describing the

10

15

20

25

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

structure of the cache table, and a list of access parameters. A cache table name may
adhere to table-naming conventions of SQL (Structured Query Language) databases.

A column definition comprises an identifier and an associated data type. Each
identifier corresponds to a column name of the cache table, and may follow a column-
naming convention. The access parameter list is an ordered list of a subset of the column
identifiers of the cache table.

Because the cache table schema, S, describes the structure of a cache table, it also
defines the structure of each instance of the cache table. In this embodiment of the
invention, a cache table instance comprises all rows of the cache table that have identical
values for the access parameter column(s) of the access parameters. An argument
comprises a list of values — one for each access parameter of the cache table. Thus, an
instance is a set of rows of the cache table with the same argument.

The result set of a cache table instance comprises a set of rows of the instance,
each row comprising a list of columns that are not in the access parameters. That is, a
result set is a projection of a cache table instance on the non-access parameter columns of |
the cache table. A specific instance of a cache table may be indicated by the name of the
cache table followed by the corresponding argument value.

FIG. 6 depicts an illustrative cache table, according to one embodiment of the

invention. Inventory cache table 600 includes three columns: Part# 602, Warehouse# 604

and Quantity on Hand (QOH) 606. In this cache table, the access parameter comprises
just Part# 602. Thus, two arguments are shown: the values 1234 and 9876.
Based on the two arguments, two instances of the Inventory cache table are

shown. One instance comprises three rows having the Part# 1234, and the other

comprises two rows having the Part# 9876. The columns of cache table 600 that are not
part of the access parameter form the result sets for the two instances.

In this embodiment of the invention, an illustrative cache table may be defined
according to the following SQL (Structured Query Language) syntax:

<create cache table> ::=

CREATE CACHE TABLE <table name> (<column list>

|, <constraint>]

[, ACCESS PARAMETERS (<access parameter list>)])
USING <content spec>

where

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

<access parameter list> ::=
<access parameter name> [{ , <access parameter™ }...]

Using this illustrative SQL syntax, a sample cache table may be defined as

follows:

CREATE CACHE TABLE Inventory

(part# char(4), warechouse char(8), gty number(10),
PRIMARY KEY (part#, warehouse),
ACCESS PARAMETERS (part#))
USING InventoryTDP TYPE updateable AT MyCompanyDS;
The schema, S, of the illustrated cache table is “Inventory (part# char(4),

warehouse char(8), gty number (10)).” One access parameter 1s specified: part#. The

result set for the cache table comprises a set of rows, each of which contains two
columns: a warehouse identifier and the quantity of the specified part that is stored in the
warehouse. Following sub-sections describe portions of this sample cache table
definition in further detail.

In general, the schema for a cache table T may be written as T(ay, ..., an_ 11, ...,
rh), where T 1s the cache table name, a4, ..., an is the list of access parameters and 1y, ...,

Iy are the cache table result set columns. Thus, the sample cache table may be represented

das.

Inventory(part#, warehouse, qty)

An 1nstance of a cache table may be written as T(vy, ..., i), Where v; is a value
for access parameter a;. In this instance, the tuple <vi, ..., vio> constitutes the argument
of a specific cache table instance, and each row of the corresponding result set is of the
form <ry, ..., rp>. Each row of a result set may be considered a separate result. The term
“cache table” may be used herein to refer to a cache table having a particular structure
(schema), or an instance of that cache table.

A set of instances of a cache table may be termed an “extension” of the cache
table. An extension of a cache table is defined to include all instances of the cache table
that are stored in the local database or DBMS. The extension of a cache table T may be
written as E(T).

For a cache table, two predicatés are defined with relation to each row of its
extension: 1sValid and isUsable. As described further below, the isValid predicate may

be used to determine whether a row is valid (e.g., at the time of a query execution), while

10

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

1sUsable may be used to determine whether the row is usable. Illustratively, if a row is
valid, then 1t 1S usable, but if it is invalid, it may or may not be usable.

In one embodiment of the invention, a cache table may be used in multiple ways
In an SQL statement. A reference to the cache table name alone (e.g., Inventory) is
interpreted as a reference to the extension of the cache table. Thus, the SQL statement
“Select * from Inventory” will return aﬂ rows of all result sets of all instances of the
cache table Inventory that are currently stored in the local database. The local DBMS
may not check for validity of usability of the rows nor make any attempt to refresh cache
table instances. Illustratively, this type of reference may be limited to queries, and may
not be usable for updates. It may be considered a “dirty read” of the cache table.

A reference to a cache table that includes a full set of argument values (e.g.,
constants) for an access parameter will return one instance of the cache table. Thus, the
statement

Select * from Inventory(‘P123°)
will return a table of “part#”, “warehouse” and “qty” data for part number ‘P123.” With

this type of reference, the local DBMS will use the flowchart shown in Figures 3A and
3B (described below) to refresh the instance if needed.

Another reference to a cache table, within an SQL statement, may include at least
one variable within the argument. If the reference (e.g., in a query) is valid (i.e., a value

can be bound to the variable), this type of reference returns one or more instances of the

‘cache table. Thus, the statement

Select p#, partName, warehouse, qty From part P, Inventory(P.p#)
can be used to obtain result sets of inventory for part numbers in the part table. If no
values can be bound to the variable, the query is considered invalid. With this type of
reference, the local DBMS will use the flowchart shown in figures 3A and 3B to refresh
the instances if needed.

The preceding example demonstrates how a cache table access parameter can be
bound to a column or expression of another table, including a result set of another cache

table. Illustratively, a fully qualified column specification of a cache table column may
use an alias for the cache table name, as in the following:

SELECT P.p#, P.pname, Inv.qty

FROM P, Inventory(P.p#) Inv

WHERE Inv.qty > 100

11

10

15

20

23

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

CONSTRAINTS

In an embodiment of the invention, constraints may be defined on any cache table
extension (1.e., set of cache table instances). Thus, the column list of a cache table can be
used to define constraints on the cache table. For example, primary and foreign key
constraints may be defined in the definitions of columns of the cache table (e.g., if they
are single attribute keys), or may be defined in a Primary Key or Foreign Key clause in

the constraints portion of the cache table definition.

The sample Inventory cache table defined above includes one constraint, a

primary key consisting of part# and warehouse. This means that, for a given part#, the

result set may contain many rows or results, but no two rows in the result set will have the

same warehouse value.
When defining the constraints, C, of a cache table, there are several options. For
example, a single primary key may be defined as a combination of all of the access

parameters or as a combination of all of the access parameters and some of the result set

identifiers. Illustratively, if access parameter ‘part#’ of the Inventory cache table was
defined as a primary key for the cache table, then the data returned for a particular value

of ‘part#’ could contain, at most, a single row. In contrast, if a primary key was defined

as a combination of ‘part#’ and ‘warehouse,” then multiple rows could be returned for a
given value of ‘part#,” but the values for ‘warehouse’ would be unique for each value of
‘part#.”

For every cache table in one embodiment of the invention, a non-null system
constraint is automatically defined for each access parameter. Additional constraints may
be defined on an extension of the cache table. The DBMS will perform data integrity
checks based on these constraints whenever a result set is received from a data source and
Instances are constructed from them. Integrity constraints may also be used to optimize
storage of a cache table. For example, and as stated above, if a primary key is defined on
any (or all) of the access parameters of a cache table, then each result set will contain at
most one row for an argument, and the extension of the cache table may be stored in one
physical table.

Conceptually, a constraint on a cache table T is a constraint defined on E(T). In

an embodiment of the invention, if a primary key is defined on any (or all) of the access

12

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

parameters of a cache table, the DBMS may store E(T) in a single physical table. All
constraints defined on that cache table may be considered constraints on E(T).

Illustratively, refreshing a cache table instance includes retrieving the result set of
the instance from the corresponding TDP (Table Data Processor — described below) of a
data source, creating a row from the argument for each result, and inserting the row in
E(T). Constraint checking may be conducted in a normal manner for insert, delete and
update operations on E(T).

When a cache table has a foreign key referring to a primary key that comprises an
entire argument of another cache table, the DBMS may check the foreign key constraint
by opening a cursor on the instance of the second cache table. If the instance exists, and
1s valid or locked, then the constraint is deemed satisfied. If the instance does not exist,
or 1s 1nvalid, then the DBMS will try to retrieve or refresh the result set from the data
source. If the data source returns a result, it is cached and the constraint is deemed

satistied. If there is no connection to the data source, an error is reported.

OPERATIONS

In an embodiment of the invention, the operations, O, that are supported for a
cache table may be defined in a “Using” clause of the cache table definition.
[llustratively, a Using clause may specify: the name of a data source, the name of a table
data processor (TDP), and the type of the TDP.

Implementations of cache table operations reside on a server or other location that
hosts a data source and is regularly accessible to the mobile application. The
implementations are invoked by the local DBMS when the corresponding operations are
performed on a cache table. Alternatively, some operation implementations may reside

on the mobile device.

In one embodiment of the invention, a Using clause portion of a cache table '
creation may employ the following SQL syntax:

USING <table data processor name>

I'YPE {read-only | updateable |insertable | deletable }

AT <data source name>

In this embodiment of the invention, two types of TDPs are supported: read-only
and modifiable. A modifiable TDP may be any combination of insertable, deletable, and

updateable. An insertable TDP allows rows to be inserted into the cache table extension

13

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

and implements the insert method that the local DBMS will call after rows have been
inserted into the cache table instance. Similarly, a deletable TDP implements the delete
method and allows rows to be deleted from the cache table, and an updatable TDP
implements the update method and allows rows to be updated (e.g., to change column
values). As stated above, a TDP models an operation that can be performed on a cache
table.

[llustratively, a read-only TDP implements the “select” method only, which takes
an argument (1.¢., set of values for a cache table’s access parameters) and returns a set of
rows comprising a result set. A protocol that may be used is described in a following
section.

In contrast, a modifiable TDP must implement “insert,” “delete” and/or “update”
methods, depending on the type of the TDP declared in the corresponding Using clause,
as well as the “select” method. In an embodiment of the invention, when a client device
or application attempts to update a cache table, the local database first determines whether
the content is still valid (as described below). If valid, the contents are updated and the
corresponding method on the TDP is invoked. If the method returns a failure, the update
is rolled back to the point before the operation started. If the contents were invalid, the
database sends a request (e.g., insert, delete, update) to the TDP and indicates that a new
result set should be returned.

The “data source name” field refers to a data source that may be separate from the
local database. A data source is configured to provide sufficient information to the local
DBMS to enable the DBMS to understand the capabilities and protocol(s) of the source.

A data source may also specify a period of validity and/or usability of a result set of a
cache table instance. Illustratively, a data source may comprise a web server, an

application server, a database server or other source.

A data source may implement one or more TDPs; each TDP provides one or more

methods to facilitate operations, on the data source, on behalf of the cache table. In this

.embodiment of the invention, each TDP is responsible for supplying the result set of a

cache table instance when called by the client DBMS. A TDP may 1implement logic to

perform insertions, deletes, updates, and/or other operations.

In association with the sample cache table creation described above (cache table

“Inventory”), a data source may be defined using the following extended SQL syntax:

14

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

<create data source> ::= CREATE DATA SOURCE <data source name>
TYPE <type name> PROTOCOL <protocol name>
| <authentication>]
<destination>

where

<type name> ::= local | basic | auth | database
<protocol name> ::= omc | http | https | SOAP
<authentication> ::= {USING | USER} { CURRENT USER | <user name> }
{IDENTIFIED BY | PASSWORD} <password>
<destination> ::= AT <URI>
The “data source name” field will be unique within a database schema.

The data source TYPE field defines the capability of the data source (e.g., local,
basic, auth, database).

[llustratively, a “local” data source may be a data server implemented on the client
(mobile) device, and may be used to access a PIM (Personal Information Management)
database, electronic mail, address book, etc. A local DBMS may preload a local data
source for a given client device. In this embodiment, the protocol employed for a local
data source (specified in the “protocol name” field above) is OMC (Oracle Mobile
Client).

A “basic” data source is a simple data source that can accept http, a web service
request, or a similar request. It is generally a session-less server, and may not
authenticate a requestor or support transactions. Therefore, the <authentication> clause
may be omitted for a basic data source.

In this embodiment, an “auth” data source is a data source that requires client
authentication (e.g., the client must login and obtain a session object). The
<authentication> clause for an auth data source provides a user name and password for
logging into the source. A server that provides an auth data source will support login and
logout methods, and the login method will return a session object.

A “database™ data source is an authenticating data source that may support
database operations such as “beginTransaction,” “prepareToCommit,” “commit” and
“rollback.” The data source may be transactional if the server hosts at least one TDP that

supports cache table updates (e.g., insertion, deletion or update of rows in the cache
table).

15

10

15

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050

In connection with the cache table creation 1llustrated above, the data source

MyCompanyDS that was identified in the Using clause of the cache table creation may be

defined as follows:

CREATE DATA SOURCE MyCompanyDS
TYPE basic PROTOCOL http
AT ‘MyCompany.com/DS’;

PROTOCOL

In an embodiment of the invention, the protocol(s) for communicating between a
local DBMS and a data source or TDP are defined in part P of a cache table’s four-tuple.
In particular, P identifies one or more protocols (e.g., SOAP, HTTP, etc.), plus XML tags
or other devices (e.g., HTML tags) used in a response from a data source or TDP.

The client DBMS may communicate with the data source using any one of the
supported protocols. Regardless of the protocol used, in one embodiment of the invention

the client DBMS may exchange any or all of the data items of TABLE 1 with the data

SOUrcCe.

TABLE 1

Operation Send Data Receive Data
Login User name, password Session 1d
Logout Session id None
Begin transaction Session 1d Transaction 1d
Prepare to commit Transaction 1d OK or ABORT
Commit Transaction id OK
Rollback Transaction 1d OK
Select (multiple An XML document (see An XML document (see

instances may be
selected in a request)

FI1G. 8 for an 1llustrative

Select request document
format)

FIG. 7 for an i1llustrative

response document
format)

Insert (multiple rows | An XML document (see An XML document (see
of a result set may be | FIG. 9 for an illustrative F1G. 7 for an illustrative
inserted for a single Insert request document response document
instance) format) format)

Delete (multiple rows | An XML document (see An XML document (see

of the result set may
be deleted for a single
instance)

F1G. 10 for an illustrative

Delete request document
format)

FI1G. 7 for an illustrative

response document
format)

Update (multiple rows

An XML document (see

An XML document (see

of the result set may FIG. 11 for an illustrative FIG. 7 for an illustrative
be updated for a single | Update request document response document
instance) format) format)

16

10

15

20

235

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

If the protocol used is HTTP, the argument of a cache table instance may be sent
in an XML document as part of the POST method. The result of the select method may
be an XML (Extensible Markup Language) document containing a header and a body.
The header may contain cache control information, and the body may contain a set of
rows that constitute the result set. Illustratively, the body may be encoded as an XML
document according to the OMC Cache Table Result Set format, or it may be encoded as
a more compact Oracle Lite CSV (Comma-Separated Values) file.

The 1nsert and delete methods may accept an argument (i.e., set of access
parameter values) and a list of column values representing a single row that the client
wants to, or previously did, insert into the cache table. The update method may take the
argument and a list of column values that represent a single old row, and another list that
represents an update. All the data for all the methods are sent as an XML document with
the HTTP POST method.

In one embodiment of the invention, the request format is an HTTP POST request
and the URL used is that of the data source. The user agent string is “Oracle Lite”. So

for example, an HTTP request to obtain the instance of Inventory cache table for the

argument ‘pl23° may be as follows:

POST http://MyCompany.com/DS \r\n content-length:\r\n
User-Agent: Oracle Lite \r\n ...

\r\n\r\n

<X:CACHETABLEREQUEST op="select" TDP="InventoryTDP">
<!-- Handle multiple instances -->
<x:INSTANCE>
<x:ARG>
<PART#>P123</PART#>
</x:ARG>
</Xx:INSTANCE>
</x:CACHETABLEREQUEST>

A request header may contain some additional information such as If-Modified-

Since.

The response to a request is an XML document that contains a header and a body.

The format for the response is described in appendix B.

17

10

15

20

23

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

The response header in an embodiment of the invention may contain any or all of

the following information:

Response Date — date of the response in an 3 HTTP formats (e.g., RFC1123)

according to the data source clock;

Last-Modified — date when the data were last modified on the data source (also 1n

HTTP date format);
Expires (or Expiration Date) — date until which the data should be considered
valid;
Time-To-Live — how long the data can be considered valid, expressed in seconds;
Staleness — an integer number greater than zero that indicates whether and how
long a stale (expired) result set can be used if there 1s no network
connection to refresh the result set. A Staleness value of 1 1s default and
indicates that the stale result set cannot be used at all. If the staleness
values 1s n, it indicates that the stale result set can be used for up to » times
the Time-To-Live value.
As described in TABLE 1, FIGs. 7-11 demonstrate sample forms of XML
documents that can be used for communicating between a client device and a data source.
FIGs. 7A-B demonstrate samf)le Response Document Format 702, 704. Each
format includes a header and a body. The header may include a server identification,
client identification, cache information (e.g., Date Last-Modified, Expires, Time-To-Live,
Staleness), TDP name, an argument for a result set, the cache table schema, date format,
etc. The body contains one or more row sets, each of which may identify the row set

format, an action (e.g., replace, insert, delete, update), a separator character, etc. The

body of response format 702 is in XML format, while the body of response format 704 is
in CSV format.

FIG. 8 demonstrates sample Select Request Document 800. FIG. 9 demonstrates
sample Insert Request Document 900. FIG. 10 demonstrates sample Delete Request
Document 1000. FIG. 11 demonstrates sample Update Request Document 1100.

Cache Table Operation

As described above, in one embodiment of the invention, when a client

application issues an operation (e.g., a query) involving a cache table, the local database

or DBMS determines whether the instance for the cache table with the given set of access

18

10

15

20

23

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

parameters 1s already cached and is still valid. If so, the cached result set may be used for
the operation. Otherwise, as just illustrated abdve, the database will call the select
method on the TDP defined for the cache table in order to retrieve the result set. A
response from a TDP may include a header containing any or all of the cache control
parameters mentioned 1n the previous section.

FIGs. 3A-B comprise a flowchart demonstrating an algorithm for determining
whether to update, retrieve or refresh a cache table instance, according to one
embodiment of the invention. In this algorithm, Current Date refers to the current
date/time on the client machine.

In the algorithm of FIGs 3A-B, a cached instance of a cache table may be
considered *“valid™ if 1t 1s used before its expiration (e.g., as defined by the Time-To-Live
or Expiration Date parameter). The instance may be considered “usable” by a transaction
if (1) it 1s “valid”, (2) it is locked by the transaction, or (3) if it has expired but is being
used (because a communication link to the data source is unavailable) before it is stale (as

computed from the Staleness parameter). More formally:

Usable = valid OR locked OR (no connection to data source AND
(Response Date + (Time-To-Live * Staleness) >= Current Date))

In state 300, an operation (e.g., a query) 1s received by the local database or
DBMS (Database Management System). The operation concerns one or more cache table
instances the database is configured to store.

In state 302, the DBMS determines whether this is the first operation involving the
argument provided as part of the operation. More generally, the DBMS may determine
whether it has a result set corresponding to the argument, regardless of whether the result
set 1s valid, usable, stale, or in some other condition. If this is the first operation for this
argument (e.g., the database contains no result set associated with the argument), the
1llustrated method continues at state 304; otherwise, the method advances to state 310.

In state 304, the DBMS issues a request to a data source, to be directed to the
Table Data Processor associated with the cache table, for the result set corresponding to
the argument. .

In state 306, a new cache table instance is generated in the DBMS for the result
set, and 1s used to satisfy the operation. Illustratively, caching headers may be stored on

the client device. The method then ends. If the data source could not be contacted to

obtain the result set (e.g., in state 304), an error may be signaled by the database.

19

10

15

20

23

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

In state 310, a previous result set pertaining to the argument was located in the
cache table, and the DBMS determines whether it is presently locked by the current
transaction. In this embodiment of the invention, if the transaction isolation level of the
current transaction is “Repeatable Read” or “Serializable” (which would account for the
result set being locked), the DBMS will not refresh the result set for the current
transaction. If the current transaction has locked the result set, the illustrated method
advances to state 316.

Otherwise, 1n state 312, the DBMS determines whether the current transaction has
an active cursor on the cached result set. In this embodiment of the invention, if the
transaction isolation level of the current transaction 1s “Read Committed” (which would
account for the active cursor and no lock), the DBMS will not update the result set, so as
to provide read consistency and cursor stability. If the current transaction has an active
cursor open on the result set, the method advances to state 316.

Otherwise, 1n state 314, the DBMS determines whether the cached result set 1s
valid. As specified above, the result set may be considered valid if a Time-To-Live
parameter or Expiration Date for the result set has not yet been exceeded (e.g., Response
Date + Time-To-Live >= Current Date). If the cached result set is not valid, the
illustrated method continues at state 316; otherwise, the method advances to state 322.

In state 316, the DBMS determines whether a connection 1s available to a data
source (e.g., TDP) associated with the cache table. If a connection is available, the
method proceeds to state 324.

In state 318, no connection 1s available to the data source, and the cached result
set 1s known to be invalid, so the database determines whether the result set is usable or
stale. Illustratively, the result set may be considered stale if (Response Date + (Time-To-

Live * Staleness) < Current Date). If the cached result set is not yet stale, then the

method continues to state 322.

Otherwise, the cached result set is not valid and is stale, and there is no connection

available to a data source that can refresh the cache table instance. Therefore, in state 320

the DBMS signals an error and the method ends.
In state 322, the existing result set in the DBMS is used to satisfy the current

operation. The procedure then ends.

In state 324, the presently cached result set has been deemed invalid, but a

connection is available to the data source, so a refresh operation is requested.

20

10

15

- 20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

[llustratively, a refresh request may include an If-Modified-Since header reflecting the
Last Modified date of the previous refresh of the result set. If the Last Modified date
value 1s not available from the last refresh or update, then Response Date may be used
instead.

In state 326, the DBMS determines whether any updates are received in response
to the request. Illustratively, if the TDP (via the data source) finds that the result set has
not been updated since the last time 1t was provided to the local DBMS, then no updates
will be sent. If any updates were received, the illustrated method proceeds to state 330.

Otherwise, no updates were received, and so in state 328 the cache control
information is updated appropriately and the cached result set is used for the current
operation. Illustratively, any cache control information received with the response will be
used to update or overwrite existing cache control information. The method then ends.

In state 330, the DBMS determines whether the cached result set 1s currently in
use by another transaction.

In state 332, the result set 1s in use, and so the DBMS copies it and marks the copy
as the latest version of the result set. Copies other than the latest version may be marked
to be deleted when the transactions using them are terminated.

Then, 1n state 334, the DBMS updates the result set according to the update(s)
received from the data source, and uses the updated result set for the current operation.
The 1llustrated method then ends.

In an embodiment of the invention in which synchronization of local and server
(data source) clocks is a problem, a Local Date value may be computed and used in place

of Response Date. Also, Response Date and Expiration Date may be used to compute the

Time-To-Live value (if not included in a response).

READ-ONLY CACHE TABLE

In one embodiment of the invention, when a query or other cache table operation
refers to cache table T by name only (i.e., without an argument), a cursor is opened on
E(T) (i.e., the extension of the cache table). The cursor iterates through the latest version
of each instance within E(T), without regard to whether the instance is usable. The local
DBMS will not attempt to refresh or lock an instance. An instance within E(T) may be

refreshed, however, if some other transaction opens a cursor on it. It should be recalled

21

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

that an update operation must provide an argument, and will therefore not refer to a cache
table by name alone.

When a query refers to a specific cache table instance, such as T(vy, ..., Vi),
where each v; is a constant, the DBMS will check whether the instance is usable. If so, a
cursor 1S opened on it; if not, the DBMS will try to refresh it. If there is no connection
available to the requisite data source, an error may be returned.

In an embodiment of the invention, if a transaction that issues a query against a
cache 1s in “Read Committed” isolation level, and the query includes an argument, no
lock will be applied to the affected cache table instance. If the transaction is in
“Repeatable Read” isolation level, a read lock is applied to the instance. If the transaction
1s 1n “Serializable” isolation level, a read lock may be applied to the instance and E(T).

If a given transaction closes a cursor on a cache table and then reopens it, the
refresh policy may depend on the transaction isolation level. Illustratively, if the
transaction isolation level is Read Committed, then the cached content will be refreshed if
the cache became unusable before the cursor was reopened. If the transaction level is

either Repeatable Read or Serializable (a read lock is applied to the instance), the same

content may be used for the reopened cursor, regardless of whether or not the content has
expired.

For a cache table T, different instances may have differing periods of validity. For
example, the period of validity of a cache table instance Ti(vy, ..., vm) may be one hour,
while the period of validity of cache table instance T»(uy, ..., un) may be thirty minutes.
In this example, (v, ..., V) and (uy, ..., Uy) are arguments. Illustratively, the validity
period of an instance is set by a data source from which the result set was obtained, and a
client DBMS may not refresh cache table content that is still valid.

In an embodiment of the invention, the local DBMS makes a Closed World
Assumption regarding the validity period of a result set, and will not refresh any cache
table content (result set) if still valid. It also assumes that any content obtained from a

data source during a refresh comprises data that have been committed at the source.

UPDATEABLE CACHE TABLE

For an updateable cache table, in one embodiment of the invention only one

transaction may update a cache table instance at a time. In this embodiment, a write lock

is applied to an updateable cache table instance.

22

10

15

20

25

30

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050

When a transaction updates an updateable cache table instance, the update is first
applied to the result set if it is still valid or is already locked for this transaction. Then the
corresponding update method of the TDP is invoked at the data source. [ustratively, the
update fails if the method fails.

If no connection to the data source is available when a cache table instance 1s
updated, an error is reported. And, if there is any error during application of an update,
the DBMS will rollback the transaction at the data source. |

An instance of a cache table T is a unit of read consistency for queries, stability of
cursors and, in this embodiment, is the smallest object that can be locked for concurrency
control of updateable cache tables. Formally, a cache table instance is a subset of E(T),

wherein all rows in the subset have the same argument:
T(vy, ..., v) ={x|x e NE(T) rx.a; =v; A ... AX. Ay = Vi /

A cache table instance is valid in this embodiment if, and only if, the cursor
opened on the instance is opened before the end of the time period marked by the sum of
Response Date and Time-To-Live:

IsValid(T(vy, ..., Vi) < (Response Date(T(vy, ..., Vi)
Time-To-Live(T(vy, ..., v)) >= Current Date

A result set of cache table instance is usable in this embodiment if, and only if, it

is either (1) valid, (2) locked by a transaction for update, or (3) there is no connection

available to the data source when a cursor is opened on the instance and the instance has

not yet passed its Staleness limit:

IsUsable(T(vy, ..., vw)) < isValid(T(vy, ..., V)
v hasLock(T(vy, ..., Vi)

v (— isReachable(DataSource(T)) » (Response Date(T(vy, ..., Vi) +

(Time-to-Live(T(vy, ..., vy)) * Staleness(T(vy, ..., Vw)))) >= Current Date)

In an embodiment of the invention, whenever a cursor is positioned on a row of an
instance, that instance cannot be modified. If another transaction attempts to open a
cursor on the same instance, the local DBMS will retrieve the result set for that instance
from the data source and create a new instance. The new instance becomes the latest

version of the instance and all other versions will be purged when their cursors are

moved.

23

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

An Intelligent Client Agent

In one embodiment of the invention, an intelligent client agent is provided to
facilitate operation of an offline or mobile application on a mobile client device. More
particularly, in this embodiment, a client agent enhances a mobile application with one or
more features, such as: voice interaction with a user, pushing data from a server to the
client, and selective online access to remote data (i.e., data stored elsewhere than on the
client).

The client agent may also enable the separation of content to be presented to a
user from the format in which the content is to be presented. Illustratively, the latter
benefit allows the client to generate pages on the fly from a specified presentation format
and one or more sets of data that can be displayed using the format. The pages may then
be displayed by a suitable client browser.

For example, in an embodiment of the invention implemented for a mobile
application involving access to inventory data, a client agent allows a presentation
description or format for the data to be stored separate from the inventory data. Thus, the
presentation format may be configured to present information such as a part name,
description, price, quantity on hand, and so on, for a given part number. The data may be
stored in a database, cache, cache table or other structure. When a user provides a
particular part number, the corresponding data are retrieved and combined with the
presentation format for display to the user.

[llustratively, a presentation format or presentation description page may be
populated with variables, field names or other placeholders representing data or content
items, as well as commands in a script language that can be used to control how the data
in the local database can be used to replace the placeholders. A script engine of the
intelligent client agent executes the script language in the page to replace the placeholders
with actual values before the page is returned to the browser.

One skilled in the art will appreciate that previous mobile or offline applications
were configured to store static, monolithic pages combining content with a presentation
format. As aresult, each set of content was stored as a separate page, thereby requiring
greater storage capacity and providing less flexibility. For example, if just one data item
in a stored page needed to be updated, the entire page containing that item had to be

retrieved. And, if that one item was part of multiple pages, each of those pages had to be

retrieved.

24

10

135

20

23

30

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050

Implementing an intelligent client agent in a mobile client device along with a
cache table facilitates development and use of a hybrid online/offline application that
accesses data locally (e.g., offline) but which can also avail itself of online access 1o
selected (e.g., highly volatile) data. A mobile application may also be operated fully
offline, and submit data changes, completed forms and other information when placed
back online. Yet further, content and applications may be dynamically downloaded, and
may even be pushed to the client (e.g., a new travel itinerary, a change to a set of tasks).

In an embodiment of the invention, content stored on a mobile client device may
be stored in accordance with a predetermined schema. According to the schema, the
content may be stored in a database table, a snapshot of data server contents, a cache table
or other structure. For example, storing data in a database table allows the client agent to
easily and explicitly load and refresh the data. Storing data in a snapshot may facilitate
the push of new/updated data to the client from a server (as described further below).
Storing data in a cache table, as described in previous sections, allows the use of an
intelligent refresh policy for the data as well as on-demand loading from virtually any
source (e.g., a server). The schema may include or be associated with a URL (Uniform
Resource Locator) indicating a location of data to be retrieved, loaded, updated, etc.

As mentioned above, besides separating content from the presentation format for
that content, an embodiment of a client agent allows a user to interact with a mobile
application using voice. In the above example, for instance, a user may speak a part
number and the mobile application may respond by speaking the associated inventory
data. This may be of particular value when the user is operating a vehicle or otherwise
cannot divert his or her eyes or hands from another task. In this embodiment of a client
agent, voice utilities or components of speech-to-text and text-to-speech converters (e.g.,
erammar checker, phonemes) may be installed as part of a client device’s operating
system or as part of the mobile application.

The process of configuring a client device for an embodiment of the invention
may involve downloading to the device a set of application pages or modules, content or
data for the application, schema page(s), utilities (e.g., voice application or utilities), a
browser, etc. An application page designed to elicit data or content from a user, or
provide data or content to a user, may be expressed as a presentation description or format
(as described above). For a mobile application configured according to this embodiment

of the invention, a download page may identify some or all of the application pages

23

10

15

20

235

30

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050

(presentation formats), voice files, schema pages, and so on. Loading or browsing the
download page may automatically trigger the loading or retrieval of each component.

In an embodiment of the invention, a download page comprises a program written
in a suitable script language. The program includes special tags or markers (€.2.,
“import,” “schema”) to identify items to be downloaded and actions 10 be taken. Thus,
the download page is more than a mere list of pages or other content to be cached.

FIG. 4 depicts a mobile client device equipped with an intelligent client agent,
according to one embodiment of the invention. In this embodiment, client device 400
may be a PDA, a smart telephone, a handheld, laptop or notebook computer, or some
other mobile computing device.

Client 400 includes database 420, client agent 440 and a browser. The client
browser may be compatible with HTML (Hypertext Markup Language), XML
(Extensible Markup language), or any other markup language now known or hereaiter
developed. The browser is configured with suitable protocol identification and handling
as described below. Client agent 440 interacts with database 420 using ODBC (Open
Database Connectivity), JDBC (Java Database Connectivity) or some other interface.

Although client agent 440 may frequently operate in an offline mode, it may also
operate online when needed (e.g., as described below), at which time it may interface
with one or more servers through a wireless (or wired) network. Client agent 440 may
operate as described below for one or more embodiments of the invention without
requiring a Java Virtual Machine (VM) on client 400.

Database 420 includes one or more cache tables 422, described in a previous
section, and corresponding cache control information 424. The database may also
comprise one or more snapshots 426 of data copied from a server, and data tables 428.
Illustratively, database 420 may be Oracle 9i, 9iLite, or another DBMS offered by Oracle
Corporation.

In one implementation of the illustrated embodiment of the invention, database
tables such as table(s) 428 contain locally useful data that are not synchronized with a
data server. Snapshot(s) 426 contain a subset of data (from the data server) that may be
synchronized periodically with the data server. Cache table(s) 422 include data having

specified periods of validity and may be refreshed as described in a previous section (e.g.,

when requested cache table content is stale).

26

10

15

20

235

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

Cache 442 of client agent 440 is configured to store presentation descriptions or
formats of pages to be displayed by the browser. As described above, a presentation
format may be populated with multiple different sets of content, as needed, thereby
eliminating the need to store each assembled page. Cache 442 may also cache selected
data from database 420.

Dispatcher 444 implements an interface defined by the browser to register itself as
a protocol handler. The dispatcher receives page requests from the browser and passes
assembled pages to the browser. In one embodiment of the invention, dispatcher 444
only receives page requests corresponding to one or more specified protocols. For
example, the browser may be configured to send page requests for an Oracle Mobile
Client (OMC) protocol to the dispatcher; such requests may comprise URLSs in the form
“ome://www.oracle.com.” Hlustratively, regular HTTP (Hypertext Transport Protocol)
requests (e.g., “http://www.oracle.com™) may be submitted by the dispatcher 444 to a
server (€.g., through a wireless network). If a requested page is cached, dispatcher 444
will forward the assembled page to the browser; if the requested page is not cached, the
request may be forwarded to a remote server. A request sent to a remote server may be
handled by requestor 450 and/or processed through queue 452.

The dispatcher may, before serving a page to the browser, inspect information
contained in the request and in the header of the page, such as the MIME (Multipurpose
Internet Mail Extension) type of the page, and call an appropriate request handler. The
request handler will perform the appropriate action, which may produce a valid page in a
markup language supported by the browser, which may then be given to the browser by
the dispatcher. Client agent 440 may be configured with a request handler for OTL
(Oftline Tag Library) pages, which use tags that may contain SQL (Structured Query
Language) tags referring to database tables, snapshots and/or cache tables. In FIG. 4,
script engine 446 may comprise a handler for OTL MIME type.

In the 1llustrated embodiment of the invention, script engine 446 performs
assembly of pages that are to be presented to a user graphically via the browser (1.€., not
via voice). When the script engine receives a request for a cached page (e.g., from
dispatcher 444), it retrieves the page’s presentation format (e.g., from cache 442) and the
appropriate data (e.g., from database 420). The data are then bound to the corresponding
variables or placeholders of the presentation format to produce an assembled page. The

assembled page may then be returned to the dispatcher and passed to the client browser.

27

10

15

2()

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

The script engine 446 is configured to work with voice engine 448. When the
script engine encounters a voice tag such as <say ...> or <prompt...>, it prepares the
arguments to the appropriate method of the voice engine and calls the method. The voice
engine then responds aurally to the method call and returns the control and the result of
the method call to the script engine.

Page requestor 450 may handle interaction with a remote system (e.g., a data
server) to retrieve a requested page (e.g., a presentation format) and/or content that is not
stored locally or that is stored locally but is stale. Queue 452 may store requests and/or
other communications to be exchanged with remote systems.

Push listener 454 may be configured to listen for pushed content, pages (e.g.,
presentation formats), download pages, application pages, and/or other items. Pushes
may be received as SMS (Short Message Service) communications or in some other
format recognizable to client 400. As just one example of a push, a data server may push
an SMS message containing a series of SQL statements. Push listener 454 may execute
the statements or pass them to dispatcher 444 or some other component of client agent
440 for execution. Illustratively, the statements may cause new or updated data to be
stored 1n database 420.

F1Gs. SA-C depict methods of operating a mobile application with an intelligent
client agent, according to one embodiment of the invention. In this embodiment, the
mobile application is executed on a mobile or portable (e.g., wireless) computing device
(such as client device 400 of FIG. 4). The mobile application is configured for offline
operation (e.g., without any active connection to a remote server or other computer
system), but can take advantage of an available connection to retrieve data that are stale

or unavailable (e.g., not stored on the mobile device).

FI1G. SA demonstrates a method of operating a dispatcher (e.g., dispatcher 444 of
FIG. 4). FIGs. 5B-C demonstrate a method of operating a script engine (e.g., script
engine 446 of FIG. 4).
 In state 502 of FIG. S5A, the intelligent client agent (e.g., dispatcher 444 of FIG. 4)
receives a request from a caller, typically the client browser. [llustratively, the request

may be submitted in one of a set of predetermined protocols (e.g., OMC) associated with

the client agent.

In state 504, the dispatcher determines whether the requested page or other item is

currently cached. In particular, the dispatcher may examine a client agent cache (e.g.,

28

10

15

20

25

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

cache 442 of FIG. 4) to determine if it contains a presentation description or format for
the requested page. If a format for the requested page is in the cache, the illustrated
method proceeds to state 510.

Otherwise, if not cached, then in state 506 the client agent forwards the request to
a requestor (e.g., requestor 450 of FIG. 4) to pass to a remote system. If the mobile
device is currently offline, this state may entail queuing the request until a connection is

available.

In state 508, a page (e.g., a presentation page) returned from the remote server is
put into the cache.

In state 510, the dispatcher determines whether the requested page should be
returned as-1s to the caller (e.g., the browser) or whether it should be sent to one of the
handlers for further processing. Illustratively, if the page 1s an OTL page, the dispatcher
will call the script engine, which acts as the handler of OTL pages. Ifno further
processing 1s required, the illustrated method proceeds to state 516.

In state 512, the dispatcher invokes a handler (e.g., the script engine) to process
the page. FIG. 5B demonstrates one method according to which the script engine may

operate.

In state 514, the dispatcher checks to see if the handler has returned a page. If not,

the method advances to state 518.

In state 516, the requested page is delivered to the caller. The illustrated
dispatcher method then ends.

In state 518, the dispatcher may signal an error, thus ending the method. Or, the
dispatcher may wait an additional period of time for the page to be provided by the
handler or may retry the operation.

FIG. 5B depicts the operation of an OTL handler, such script engine 446 of FIG.
4, according to one embodiment of the invention. In this embodiment, the script engine
receives an OTL page as input. OTL pages typically contain the presentation format of a
page. lhe presentation format may serve as a sort of page template. Instead of
containing actual data, however, the data are represented by their variables, field or
column names, table names or other placeholders. The OTL page may contain tags to
download other pages or resources (e.g., an image file), tags to create the database
schema if needed, tags to interact with the voice engine, tags to execute SQL statements

and bind the result to variables, tags to write the value of the variables to the output file,

29

10

15

20

235

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

and tags that provide the flow control needed to program the generation of the output
page.

In state 530, the OTL handler creates an empty output page. As the illustrated
method proceeds, the output page will be populated with content from the input page

and/or other content.

In state 532, it starts scanning the input page or content. Illustratively, the
scanning may be performed tag-by-tag.

In state 534 it examines a tag to see if it is an OTL tag. Ifit is an OTL tag, the
method continues at state 540.

Otherwise, in state 536, the tag is not an OTL tag and so the script engine copies
characters from the input page to the output page until an OTL tag is encountered in the
input or the end of the page is reached. If an OTL tag is reached, the method advances to
state 540.

Otherwise, if the end of the input 1s reached, in state 538 the output page is closed
and returned to the caller (e.g., the dispatcher), and the method ends. The output page
may be empty.

In state 540, the script engine tests the tag to see if it is a “download” tag. If not,

the method continues at state 544,

But, 1f the tag is a download tag, then in state 542 the script engine calls the

- dispatcher to download the page at the URL given as an attribute to the download tag. In

the illustrated embodiment of the invention, a downloaded page is not parsed or executed
at this point. After downloading the page, the script engine returns to state 532.

In state 544, the tag is tested to see if it is an “import” tag. If not, the method
advances to state 548.

Otherwise, if the tag is an import tag, in state 546 the dispatcher is called to import
a page associated with a URL provided as an attribute to the import tag.

Illustratively, the script engine sets an import mode to “on.” Turning the import
mode “on” indicates to the dispatcher and possibly to the script engine (if the dispatcher
makes the call to the script engine) that it is processing an import page. The script engine
then makes a recursive call to the dispatcher and provides the URL of the page to be

imported. When the dispatcher returns control to the script engine, the import mode is set

to “off” and the illustrated method resumes at state 532.

30

10

15

20

235

30

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

In state 548, if the tag is not an “import” tag then the script engine tests the tag to
see if it 1s a “schema” tag. If not a schema tag, the method advances to state 554.

In state 550, the script engine examines a local database to see if the schema
already exists. If it does, the method returns to state 532.

Otherwise, in state 552 the script engine calls the dispatcher to process the page at
the URL given by the “schema” tag. After state 552, the method returns to state 532.

In state 640 the script engine determines whether import mode is on or off. If the
import mode 1s on, this indicates that the page being processed is a download page.
Theretore, the script engine will not attempt to process the other tags in the page and will
instead resume operation from state 520. Illustratively, this helps ensure that imported
pages are not executed right away and that any pages they depend on are also downloaded
or imported and any schema they depend on are created.

In state 556, the OTL tag is examined to see if it an “SQL” tag. If not, the method
proceeds to state 562.

Otherwise, 1n state 558 the script engine calls the client DBMS to execute the
query that accompanies the tag.

Then, 1n state 560 the script engine binds the result of the query (e.g., a table) to
the variable included 1n the “SQL” tag. The method then returns to state 532 where it

continues the scanning of the input page.

In state 562, 1f the tag encountered is not a “submit™ tag, the script engine

advances to state 566.

Otherwise, in state 564, the script engine responds to the submit tag by submitting

the output page to the queue (e.g., queue 452 of FIG. 4), which will forward the page to a

specified server.

In this embodiment of the invention, the submit tag has at least three attributes.

‘The first attribute is the URL of the server to which the page is submitted. The second

attribute i1dentifies the return code from the server that will indicate a successful
submission. The third is the URL of the page that will be called if the return code from
the server is anything other than the code identified in the second attribute.

When the Queue has a connection to the server, it will submit any queued

requests. If there is an error, it will call the error-handling page and pass it the URL of

the server and the returned code.

31

10

15

20

235

30

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050

In state 566, the tag is examined to see if it is a voice tag. If not, the illustrated
method advances to state 570.

Otherwise, if it is a voice tag, in state 568 the script engine prepares parameter
values, from variables in the script, to call the necessary voice engine methods. As the
result of calling the method, the voice engine will speak a message to the user (if the
voice tag was a “say” tag) or aurally prompt the user for an input (if the tag was a
“prompt” tag). If the tag is a prompt, then the voice engine will accept aural input and
then try to recognize it and translate it into a text string. This text string is returned as the
result of the method. The script engine then returns to state 532 to continue scanning the
Input page.

In state 570, the script engine tests the tag to see if it is an “out” tag. An “out” tag
tells the script engine to output a value (a constant or a value bound to a variable).

If the tag is an “out” tag, in state 572 the script engine writes the value to the

output page and then returns to state 532.

If the tag is not an “out” tag, then in state 574 the script engine processes 1t as one
of the statements that it supports and then returns to state 532.

While implementing the method of FIGs. 5B-C, the script engine retrieves the
data for the requested page. For example, if the data are currently stored in a client
database (e.g., in a table, cache table or snapshot) and are valid, they may be retrieved
from the database during state 558. However, if any data items are not currently in the
database, or if a necessary data item is stale, then the client engine may initiate a
connection to a remote system to retrieve one or more data item(s). In this method of the
invention, it may be noted that the connection to the remote system is minimized by
retrieving just the necessary data. In particular, the client engine may avoid downloading
other data (e.g., data that are locally available and not stale) and non-data components

(e.g., the presentation description or format) of the requested page.

The foregoing descriptions of embodiments of the invention have been presented
for purposes of illustration and description only. They are not intended to be exhaustive
or to limit the invention to the forms disclosed. Accordingly, the above disclosure is not

intended to limit the invention; the scope of the invention is defined by the appended

claims.

32

CA 02491731 2010-04-28

The embodiments of the present invention for which an exclusive property or privilege is

claimed are defined as follows:

1. A system for caching data on a mobile computing device connectable to a central data
source through a wireless link, comprising:

a database configured to selectively operate in either of an on-line mode and an off-
line mode with respect to a central data source;

within the database, a cache table defined by:

a set of access parameters corresponding to a first set of attributes of the data source;
and

a second set of attributes of the central data source;

within the database, one or more instances of said cache table, wherein each said
cache table instance comprises:

an argument comprising a value for each of said access parameters; and

a set of results, wherein each said result comprises a value for each of said second set
of attributes of the data source; and

for each said cache table instance, information for determining whether said result set
1s usable;

wherein the database facilitates caching of data from a data source, on a mobile

computing device coupled to the data source with a discontinuously available communication

link.

2. The system of claim 1 , wherein said information for a first result set ot a first cache

table instance comprises one or more of:

a response-date parameter configured to indicate when said first result set was last
provided to the database from the data source;

a last-modified-date parameter configured to indicate when said first result set was

last modified at the data source;

a time-to-live parameter configured to indicate a first period of time during which said
first result set is valid, wherein said first result set 1s usable 1f said first result set 1s valid; and
a staleness parameter configured to indicate a second period of time, starting at the

expiration of said first period of time, during which said first result set may be usable.

33

CA 02491731 2010-04-28

3. The system of claim 2, wherein:
a first operation 1nvolving said first cache table instance 1s received at a time O;
said first period of time ends at a time V;
said second period of time ends at a time U; and
said result set 1s usable for said first operation 1f:
O 1s earlier than V; or
O is later than V and O 1s earlier than U and said database 1s operated in the off-line

mode with respect to the data source.

4, The system of claim 1, wherein said database operates 1n the online mode with the
central data source to receive a first result set for a first cache table instance only when:
said first result set does not exist in the database; or

said first result set exists in the database, but 1s not usable.

5. The system of claim 1, wherein:
if a first result set of a first cache table instance 1s valid, said database operates in the
oft-line mode during an operation involving said first cache table

instance regardless of whether the wireless link to the central data source 1s available.

6. A system for caching data on a mobile computing device, wherein the mobile
computing device 1s configured for connection to a central data source on a discontinuous
basis, the system comprising:

a cache table configured to cache data, from the central data source, on the mobile
computing device;

one or more entries in said cache table, each said entry comprising a set of data from
the central data source;

for each entry in said cache table, a validity parameter for determining a period of
time during which said set of data 1s valid;

for each entry in said cache table, a usability parameter for determining whether said
set of data 1s usable after said period of time during which said set ot data 1s valid; and

a communication module configured to connect the mobile computing device to the

central data source on a less than continuous basis;

34

CA 02491731 2010-04-28

wherein the cache table facilitates caching of data from a data source, on a mobile

computing device coupled to the data source with a discontinuously available communication

link.

7. The system of claim 6, wherein said validity parameter is configured to 1identity a first
time at which said set of data becomes invalid;

wherein, until said first time, said set of data is used for an operation mvolving said
cache table entry, regardless of whether the mobile computing device is connected to the

central data source.

8. The system of claim 6, wherein said usability parameter 1s configured to identify a
second time at which said set of data becomes stale;

wherein, after said first time and until said second time, said set of data 1s used for an

operation involving said cache table entry, only 1f the mobile

computing device is not connected to the central data source.

0. The system of claim 6, wherein said communication module 1s configured to connect

the mobile computing device to the central data source for a maximum of one cache table

entry operation at a time.

10. The system of claim 9, wherein the mobile computing device 1s not connected to the

central data source for an operation involving a cache table entry that 1s valid.

11. A method of caching data on a mobile computing device, wherein the mobile
computing device is connectable to a data source via a discontinuously available wireless
link, comprising:

receiving a first operation involving a first set of data cached on a mobile computing
device;

determining whether said first set of data 1s valid,;

if said first set of data is invalid, determining whether said discontinuously available
wireless link 1s available;

if said first set of data 1s invalid and said less than continuously available wireless link

is unavailable, determining whether said first set of data 1s usable; and

35

CA 02491731 2010-04-28

retrieving an update for said first set of data from the data source only if:
sald first set of data is invalid; and said less than continuously available wireless link

1s available.

12. The method of claim 11, further compnsing:
determining whether said first set of data 1s locked by a first transaction;

wherein said first operation was mnitiated by said first transaction.

13. The method of claim 11, further compnsing:
determining whether an active cursor is open on said first set of data by a first

transaction;

wherein said first operation was initiated by said first transaction.

14. The method of claim 11, wherein said determining whether said first set of data is
valid comprises:

accessing a validity parameter associated with said first set of data, wherein said
validity parameter 1s configured to indicate a first time at which said first set of data becomes
invalid; and

comparing a time of said first operation with said first time;

wherein said first set of data is valid before said first time.

15. The method of claim 14, wherein said determining whether said first set of data 1s

usable comprises:

accessing a staleness parameter associated with said first set of data, wherein said
staleness parameter i1s configured to indicate a second time, after said first time, when said
first set of data becomes stale; and

comparing said time of said first operation with said second time;

wherein said first set of data is usable between said first time and said second time.

16. The method of claim 11, further comprising, prior to said receiving a first operation:
contiguring a cache table on the mobile computing device for caching data, including

said first set of data, wherein said cache table 1s defined by:

36

CA 02491731 2010-04-28

a set of access parameters comprising a first set of columns of a dataset on the data
source; and

a second set of columns of the dataset.

17. The method of claim 16, further comprising, prior to said receiving a first operation:
generating one or more instances of said cache table, wherein each said cache table
Instance comprises:
an argument comprising a unique set of values for said set of access parameters; and
a result set comprising values for said second set of columns;

wherein said first set of data comprises a first result set of a first cache table instance.

18. The method of claim 16, wherein said dataset comprises one or more database tables.

19. The method of claim 16, wherein said dataset comprises one or more database views.

20. The method of claim 11, further comprising:
1t said first set of data 1s invalid and said discontinuously available wireless link is

unavailable and said first set of data is unusable, signaling an error.

21. The method of claim 11, further comprising;
using said first set of data for said first operation if:
said first set of data 1s valid; or
said first set of data 1s invalid and said less than continuously available wireless link 1s

unavailable and said first set of data 1s usable.

22. A method of facilitating the caching of data from a data source, on a mobile
computing device coupled to the data source with a discontinuously available communication
link, comprising:

configuring a cache table within a database on the mobile computing device, wherein
said cache table includes:

access parameters comprising a first set of columns of a dataset on a data source;

result columns comprising a second set of columns of the dataset distinct from the

first set of columns of the dataset;

37

CA 02491731 2010-04-28

generating one or more instances of said cache table within the database, wherein
each said cache table instance comprises a set of rows, wherein each said row comprises:

an argument, said argument comprising a value for each column of the access
parameters; and

a result set comprising a value for each column of the result columns, wherein each
row 1n a set of rows comprises the same argument; and

for each said cache table instance, storing one or more parameters for determining
whether said result set of said cache table instance may be used for a data operation

wherein said parameters include a time-to-live parameter configured to indicate a first
period of time during which said result set 1s valid; and

wherein said result set becomes invalid at the end of said first period of time.

23. The method of claim 1, wherein said parameters include a response date indicating

when said result set was received from the data source.

24. The method of claim 1, wherein said parameters include a last modification date

indicating when said result set was last modified at the data source.

25. The method of claim 1, wherein said result set 1s used for said data operation if said
result set 1s vahid, regardless of whether the discontinuously available communication link is

available.

26. The method of claim 1, wherein a replacement result set for said result set is retrieved

from the data source only if said result set is invalid.

27. The method of claim 1, wherein an update for said result set is retrieved from the data

source only 1f said result set 1s invalid.

28. The method of claim 1, wherein said parameters include a staleness parameter

configured to indicate a second period of time, following said first period of time, during

which said result set 1s usable; and

wherein said result set becomes stale at the end of said second period of time.

38

CA 02491731 2010-04-28

29. The method of claim 28, wherein said result set 1s used for said data operation 1f said

result set is usable and the discontinuously available communication link 1s not available.

30. The method of claim 28, further comprising:
receiving a first data operation, involving a first cache table instance; and using said
result set of said first cache table instance 1f:
(a) sald result set of said first cache table instance 1s valid; or
(b) said result set of said first cache table instance is invalid and:
(1) said result set of said first cache table instance 1s usable; and
(2) the less than continuously available communication link is not

available.

31. The method of claim 30, further comprising:
retrieving an update for said result set of said first cache table instance only if said

result set of said first cache table instance is invalid.

32. The method of claim 30, further comprising:

retrieving a replacement result set for said result set of said first cache table instance

only if said result set of said first cache table instance 1s invalid.

33. The method of claim 30, further comprsing:

signaling an error if:

said result set of said first cache table instance 1s invalid; said result set of said first
cache table instance is stale; and the less than continuously available communication link 1s

not available.

34. The method of claim 1, wherein said dataset 1s one of a database table and a view.

35. A computer readable storage medium storing instructions that, when executed by a
computer, cause the computer to perform a method of facilitating the caching of data, from a
data source, on a mobile computing device coupled to the data source with a less than

continuously available communication link, the method comprising:

39

CA 02491731 2010-04-28

configuring a cache table within a database on the mobile computing device, wherein

said cache table includes:

access parameters comprising a first set ot columns of a dataset on a data source;

result columns comprising a second set of columns of the dataset distinct from the
first set of columns of the dataset; generating one or more instances of said cache table within
the database, wherein each said cache table instance comprises a set of rows, wherein each
said row comprises:

an argument, said argument comprising a value for each column of the access
parameters; and

a result set comprising a value for each column of the result columns, wherein each
row in a set of rows comprises the same argument; and

for each said cache table instance, storing one or more parameters for determining
whether said result set of said cache table instance may be used for a data operation

wherein said parameters include a time-to-live parameter configured to indicate a first
period of time during which said result set is valid; and

wherein said result set becomes invalid at the end of said first period of time.

36. A computer readable storage medium storing instructions that, when executed by a
computer, cause the computer to perform a method of caching data on a mobile computing
device, wherein the mobile computing device is connectable to a data source via a
discontinuously available wireless link, the method comprising:

receiving a first operation involving a first set of data cached on a mobile computing
device;

determining whether said first set of data 1s valid,;

if said first set of data is invalid, determining whether said less than continuously

available wireless link 1s available;

if said first set of data 1s invalid and said discontinuously available wireless link 1is
unavailable, determining whether said first set of data 1s usable; and

retrieving an update for said first set of data from the data source only if:
said first set of data 1s invalid; and

said less than continuously available wireless link 1s available.

40

CA 02491731 2010-04-28

37. A database for caching data on a mobile device, the database comprising:
a cache table defined by:

a set of access parameters corresponding to a first set of attributes of a data source
accessible through a wireless communication connection; and

a second set of attributes of the data source;

wherein the database is discontinuously connected to the central data source through
the wireless communication connection; and one or more instances of said cache table,
wherein each said cache table instance comprises:

an argument, said argument comprising a unique set of values for said access

parameters; and

a result set comprising values for said second set of attributes; and for each said cache
table instance, information for determining a period of time during which said result set is

usable on the mobile devices;

wherein the database facilitates caching of data from a data source, on a mobile

computing device coupled to the data source with a discontinuously available communication

link.

38. The database of claim 37, wherein said period of time during which said result set 1s

usable comprises:

a first period of time during which said result set 1s valid.

39. The database of claim 38, wherein said first period of time 1s specified by the data

SOUICe.

40. The database of claim 38, wherein the database is configured to not retrieve said

result set from the central data source during said first period of time.

41. The database of claim 38, wherein said period of time during which said result set 1s

usable further comprises:

a second period of time during which said result set is invalid but not yet stale;

wherein said second period of time immediately follows said first period of time.

41

CA 02491731 2010-04-28

42. The database of claim 41, wherein said result set is not usable by a database
transaction after said second period ttime unless:
said result set 1s locked by the database transaction; or

the database transaction has an active cursor open on said result set.

43. The database of claim 37, wherein said information comprises:
a first parameter configured to indicate when said result set becomes 1nvalid; and

a second parameter configured to indicate when said result set becomes stale.

44. The database of claim 37, further comprising:

a queue configured to store operations on said one or more cache table instances prior

to transmission of the operations to the data source;

wherein the operations are stored in said queue when the data source is not accessible

through the wireless communication connection.

42

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
1/15

L| Network 140
B ——
Mobile User
1022
Mobile User
102b
Mobile User Mo%ez ;JSE‘F

102¢

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
2/15

SERVER

COMMUNICATION MODULE

230

DATABASE 220

CACHE
CACHE TABLE CONTROL
222 INFORMATION
224

MOBILE APPLICATON
210

CLIENT DEVICE 200

FIG. 2

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
3/15

Create new cache table
instance
306

Receive operation (e.g., query)

at local database
300

First
operation for this

argument?
302

Yes

Reguest result set from data
- source (Table Data Processor)
304

NO

|s cached Yes

result set locked by this
transaction?
310

No

I
Yes |

Active
cursor on result set for
this transaction?
312

IS
the cached result set
valid?
314

Yes

Use cached result set

322

No

CA 02491731 2004-12-31

WO 2004/010305

No

Connection
available to data source?
316

Yes

Request update from data
source

324

NO

Update
received?
326

Yes

Cached
result set in use by

other transaction?
330

Yes

No

Update result set and cache

control information; use
updated result set

334

END

4/15

PCT/US2003/020050

No

IS
the cached result set
stale?
318

Yes

Raise error

320

Update cache control
information; used cached result

set
328

Copy instance, mark as latest

332

TR IR— S g

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
S5/15

BROWSER SERVER

PUSH
DISPATCHER REQUESTOR QUEUE ISTENER

444 450 452 454

CACHE 442

SCRIPT ENGINE VOICE ENGINE
446 4438

CLIENT AGENT 440

TABLE(S) SNAPSHOT(S)
428 | 426

DATABASE 420

CACHE
CONTROL

INFORMATION
424

CLIENT DEVICE 400

FIG. 4

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
6/15

START

Dispatcher receives request
502

Reqguestor obtains page from
remote system
506

No

Need
further processing?
510

Store page in cache

o508

Yes

Call script engine
512

NoO

|
Page
received from engine?
Yes

Retry or Signal error
518

514

Return page to caller
516

CA 02491731 2004-12-31
WO 2004/010305 PCT/US2003/020050

Return oufput page
538

Write from input to output until
reach OTL tag or end of input

7/18

START

Create empty output page

930 536

Scan input page/content
532

OTL tag?
534

Yes

Call dispatcher to download ves

page
042

Download
tag?
540

No

Call dispatcher to import page
546

| Yes Schema Yes Schema
exist locally? tag?
550 548

No No

Call dispatcher to retrieve

schema
552

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
8/15

Bind resuit
560

Yes
- Execute SQL
tag? 558
556
NO

Submit
tag
562

Submit output page to queue
564

No

Call voice engine
568

Out Yes . | i

tag’? Write to output page

570 o572 |
No |

Process other tag __
574)

FIG. 5C

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
9/15

Access
Parameter

Quantity on Hand

Part# Warehouse#
602 604

1234 warehouse1 100

606

Instance 1234 I warehousez2 150
\I 1234 II 100

-

Argument —=

Result
Set

—ryeini

Instance

e ——

Inventory Cache Table 600

FIG. 6

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
10/15

<?xml version="1.0"7>
<CACHETABLERESULTSET>
<HEADER>
<CACHEINFO>
<Date>Fri1, 15 Mar 2002 17:37:42 GMT</Date>
<Last-Modified>Fri, 15 Mar 2002 14:00:15 GMT</Last-Modified>
<Time-To-Live>10000</Time-To-Live>
</CACHEINFO>
<TDPNAME>
Emplnfo
</TDPNAME>
<ARGUMENT>
<EMPNO>7369</EMPNO>
</ARGUMENT>
<SCHEMA>
<COL name="EMPNO" type="NUMBER" precision="4" scale="0"/>
<COL name="ENAME" type="VARCHAR" precision="10"/>
<!-- additional columns follow -->
<CONSTRAINT name=..........
</SCHEMA>
</HEADER>

<BODY>
<ROWSET format="XML", action = replace>
<ROW>
<EMPNO>7369</EMPNQO>
<ENAME>Yev</ENAME>
<JOB>ENGINEER</JOB>
<MGR>7370</MGR>
<HIREDATE>02/21/2000 0:0:0</HIREDATE>
<SAL>800</SAL>
<DEPTNO>20</DEPTNO>
</ROW>
<ROW>
<EMPNO>7370</EMPNO>
<ENAME>Ravi</ENAME>
<JOB>MANAGER</JOB>
<MGR>7902</MGR>
<HIREDATE>12/17/1997 0:0:0</HIREDATE>
<SAL>800</SAL>
<DEPTNO>20</DEPTNO>
</ROW>
<ROW>
<EMPNO>7371</EMPNO>
<ENAME>Smith</ENAME>
<JOB>CLERK</JOB>
<MGR>7902</MGR>

<HIREDATE>12/17/1980 0:0:0</HIREDATE>
<SAL>800</SAL>

<DEPTNO>20</DEPTNO>
</ROW>
</ROWSET>
</BODY>

</CACHETABLERESULT>

Response Document 702

FIG. 7A

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
11/15

<?xml version="1.0"7>
<CACHETABLERESULT>
<HEADER>
<CACHEINFO>

<Date>Fri1, 15 Mar 2002 17:37:42 GMT</Date>

<Last-Modified>Fri, 15 Mar 2002 14:00:15 GMT</Last-Modified>
<ITmme-To-Live>10000</Time-To-Live>
</CACHEINFO>
</HEADER>

<ROWSET format="CSV">
<[CDATA]

"7369','Yev', ENGINEER','7370','02/21/20000:0:0','800",'20’
"7370' 'Rav1' 'MANAGER' '7902' '12/17/19970:0:0" '800' , 20

7371 'Smlth' , CLERK '7902' '12/ 17/19800:0:0', 800! '20']]>
</ROWSET>

</CACHETABLERESULT>

Response Document 704

FIG. 7B

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
12/15

xmins:x=http://www.oracle.com/Oraclelite
<x:CACHETABLEREQUEST op="select" TDP="TDP-name">
<!-- Handle multiple instances -->
<x:INSTANCE>
<x:ARG>
<arg-1-name> arg-1-value </arg-1-name>

éérg—n-name> arg-n-value </arg-n-name>
</x:ARG>
</x:INSTANCE>

<x:INSTANCE>
<x:ARG>
<arg-1-name> arg-1-value </arg-1-name>

<arg-n-name> arg-n-value </arg-n-name>
</x:ARG>
</X:INSTANCE>
</x:CACHETABLEREQUEST>

Select Request Document 800

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
13/15

<CACHEREQUEST op="insert", TDP="TDP-name">
<!-- Handle multiple instances -->
<INSTANCE>

<x:ARG>
<arg-l-name> arg-1-value </arg-1-name>

<arg-n-name> arg-n-value </arg-n-name>
</x:ARG>

<ROWSET>
<l-- set of rows -->

<!-- same as in response specification -->
<ROW>

............

</ROWSET>
</INSTANCE>

...............

</CACHEREQUEST>

Insert Request Document 900

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
14/15

<CACHEREQUEST op="delete", TDP="TDP-name">
<!-- Handle multiple instances -->
<INSTANCE>
<x:ARG>
<arg-1-name> arg-1-value </arg-1-name>

za..rg-n-name> arg-n-value </arg-n-name>
</x:ARG>
<ROWSET>

<!-- set of rows -->
<!-- same as in response specification -->

<ROW>

</ROWRSET>
</INSTANCE>

000000000000000

</CACHEREQUEST>

Delete Request Document 1000

FIG. 10

CA 02491731 2004-12-31

WO 2004/010305 PCT/US2003/020050
15/15

<CACHEREQUEST op="update", TDP="InventoryTDP">
<!-- Handle multiple instances -->
<INSTANCE>
<ARG>
<PART#>P123</PART#>
</ARG>
<ROWSET>
<ROW>
<l-- Specify the old values in the where clause -->
<WHERE>
<WAREHOUSE>W234</WAREHOUSE>
<QTY>1000</QTY>
</WHERE>
<l-- Specity the values to be updated -->
<QTY>900</QTY>
</ROW>
<ROW>

.............

</ROWSET>
</INSTANCE>

...............

</CACHEREQUEST>

Update Request Document 1100

FIG. 11

BROWSER

SERVER

1

|

r
DISPATCHER REQUESTOR QUEUE ! gT”;NHER |
444 450 452 P

CACHE 442 l
| SCRIPT ENGINE VOICE ENGINE | !
448 448
CLIENT AGENT 440
TABLE(S) SNAPSHOT(S)
428 426
L .
| — 4
| DATABASE 420
— r
CACHE CACHE
icpid CONTROL
422() INFORMATION
—

CLIENT DEVICE 400

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - abstract drawing

