桥梁高墩施工垂直度自动控制方法

本发明公开了一种桥梁高墩施工垂直度自动控制方法。使用垂直度控制装置，在墩身一节混凝土浇筑完成后，检测成型后墩身偏位情况，安装激光垂直仪，并在下一层模板矫正时提供垂线对模板进行精确矫正，如此往复作业控制，直到该墩身施工完成。使用本发明方法进行桥梁高墩垂直度施工，通过激光垂直仪向上激光线与墩身平行原理，在顶模板激光光靶可以直观观测模板偏位情况。因为有防护措施，在整个高墩施工过程中无需多次架设仪器，减少仪器操作误差，可以每天24小时进行观测，减少测量人员劳动强度和人员数量，同时保证了施工进度和墩身垂直度质量。
1. 一种桥梁高墩施工垂直度控制方法，其特征在于：使用激光垂准仪，在墩身一节混凝土浇筑完成后，检测成形后砼墩身偏位情况，安装激光垂准仪，并在下一模模板矫正时提供垂准线对模板进行精确矫正，如此往复作业控制，直到该墩柱施工完成；

具体施工方法步骤如下：

1.1. 在模板厂家加工高墩支架模板(4)时预留并安装垂直度控制装置: 在模板对角相应激光垂准仪接收激光靶安装位置(5)切割或焊接激光垂准仪接收激光靶孔洞，两层模板或多层模板时要根据垂直原理同时预留孔洞，在模板顶层安装接收激光靶(6)后出场；

1.2. 激光垂准仪改造加工无线遥控装置；

1.3. 桩台浇筑混凝土时预埋：在桩台前根据模板接收激光靶至桩墩身相对位置预埋激光垂准仪安装基座(1)，并且底座至承台外预埋电力管道；

1.4. 首次使用：一般首次浇筑混凝土时无法安装激光垂准仪，先采用传统方法控制首节墩身模板垂直度；

1.5. 墩身控制：首次模板提升后安装激光垂准仪，后安装防护装置，调试无线遥控系统，检测墩身砼偏位情况，投射激光垂准仪激光垂线(3)到接收激光靶(6)，控制模板提升时平面定位标准基线，根据激光在接收激光靶偏位情况直接判读模板偏位值，调整至正确位置后进行砼浇筑，在浇筑过程中同时观测偏位变化，重复模板上升、浇筑砼施工工序直至到设计标高。
桥梁高墩施工垂直度自动控制方法

技术领域
[0001] 本发明涉及一种桥梁施工方法，尤其是一种桥梁高墩施工垂直度自动控制方法。

背景技术
[0002] 传统的桥梁高墩施工方法主要有翻模、爬模、滑模、支架法及最新的倾斜施工等，随着高速公路和高速铁路逐新向山区、深山区的不断推进，特别是西藏、贵州、四川、广西、云南、重庆等地区施工条件越来越艰巨，地质条件越来越复杂，而这些地区又必须打横跨陆上经济发展通道，这样给这些地区桥梁施工带来多方面的影响，其中重要方面之一就是对高墩施工造成的影响。高墩垂直度控制一直是测量人员控制高墩一件繁琐的工作，传统高墩垂直度控制一般采用吊线锤法、全站仪观测法、传统对准仪法。

[0003] 吊线锤法：在工作平台上对应于墩身中心点或四角预定点用铁丝吊挂重15～25kg的线锤，铁丝在小摇车上，随爬升随放线。通过观测线锤与中心点或预定点的偏差，测出墩身中心偏移和扭转程度。如遇大风天气，可将线锤球置于水中或油中以减少摇摆，虽然吊线锤法简单直观，但目前的高墩大多是60米以上，有的已经在100米以上，因为线锤暴露在风中，我们高墩施工区域一般在山谷或河谷中，墩身越高风力越大，对线锤的影响越大，精度无法保证连续施工，因此本办法只适用低墩或辅助方法控制。

[0004] 全站仪观测法：利用全站仪，根据地面观测控制点与模板画出对应点进行测量，根据模板上对应点偏移情况计算出墩身中心的偏移和扭转，也是因为山区简墩越来越高，给测量人员带来繁重的测量任务，高墩模板安装调教时需要测量人员架设棱镜重复观测，有时因为模板变形或其它原因调整模板时需要几个小时甚至十几个小时，需要测量置镜人员多次上下墩身，并且晚上测量观测难度更大，因此本办法只适用白天或检测其它方法精度。

[0005] 传统对准仪观测法：在承台上架设墨线架，安装对准仪，打开和关闭发射激光束按钮，对中点位后精确调平对准仪关闭向下发射按钮，打开向上发射激光束按钮，调节水平仪，调整使激光束在靶标上形成一个直径1mm的光点，首先站在顶层模板平面上，从模板角上沿模板内边缘的延长线拉钢卷尺，将激光光中心十字线的一条线与钢卷尺的50cm刻度线重合，扶平激光靶，使激光靶面与模板顶处于同一水平面内，用另一把钢卷尺丈量激光点距50cm刻度线的距离并记录。依次测量墩身4个点的偏差值，依据标准判定模板4个点平面位置是否合格，若有一个点偏差值超过标准，则需重新调整模板，重新检测。

[0006] 随着高墩施工技术的改进和优化，高墩施工速度越来越快，以前传统高墩施工进度每天完成0.6～1.0米，现在使用滑模或倾斜每天可以完成3～6米的施工进度，并且需每天24小时不间断施工。

[0007] 现在业主要求施工进度越来越快，基本每个工作面都是多个高墩同时在施工，测量工作量相应就更大，必须配备足够的测量人员才能满足施工需要，并且调整模板时都在白天，测量人员同时要观测几个高墩控制，这给测量人员带来很大工作量和数据处理难度，有时抬头测量数据时容易造成偏差，传统办法已经无法满足现在施工方法和施工进度。
发明内容
[0008] 本发明的目的是提供一种桥梁高墩施工垂直度自动控制方法。为加快桥梁高墩施工进度，提高墩身垂直度质量，并为项目创造利润空间。
[0009] 本发明采取的技术方案：
[0010] 使用激光垂准仪，在墩身一节混凝土浇筑完成后，检测成型后砼墩身偏位情况，安装激光垂准仪，并在下一模板板面时提供垂准线对模板进行精确矫正，如此往复作业控制，直到该墩柱施工完成。
[0011] 具体施工方法步骤如下：
[0012] (1)、在模板厂家加工高墩支架模板时预留并安装垂直度控制装置；
(2)、激光垂准仪安装位置切割或焊接激光垂准仪激光靶孔洞，两层模板或多层模板时要根据垂直原理同时预留孔洞，在模板顶层安装接收激光靶后出场；
(3)、承台浇筑混凝土时预留；在浇筑砼前根据模板激光靶至砼墩身相对位置预留激光垂准仪底座，并且底座至承台外预埋电力管道；
(4)、首次使用；一般首次浇筑混凝土时无法安装激光垂准仪，先采用传统方法控制首节墩身模板垂直度；
[0016] (5)、墩身控制；首次模板提升后安装激光垂准仪，后安装防护装置，调试无线遥控系统，检测墩身砼偏位情况，投射垂准仪激光垂线到接收激光靶，控制模板提升时平面定位标准基线，根据激光接收激光靶偏位情况直接判断模板偏位值，调整至正确位置后进行砼浇筑，浇筑过程中同时观测偏位变化，重复模板上升、浇筑砼施工工序直至到设计标高。
[0017] 本发明的优点：
[0018] 使用本发明方法进行桥梁高墩垂直度施工，通过激光垂准仪向上激光线与墩身平行原理，在顶端模板接收激光靶可以清晰直观观测模板偏位情况，因为有防护措施，在整个高墩施工工程中无需多次架设仪器，减少仪器操作误差，可以每天24小时进行观测，减少测量人员劳动强度和人员数量，同时保证了施工进度和墩身垂直度质量。

附图说明
[0020] 图1本发明组成结构下构两平面示意图。
[0021] 图2本发明组成结构上构平面示意图。
[0022] 图3本发明组成结构上构立面示意图。
[0023] 图中所示：1.垂准仪安装基座，2.现浇砼墩身，3.垂准仪激光垂线，4.高墩支架模板，5.垂准仪激光靶安装位置，6.接收激光靶。

具体实施方式
[0024] 具体施工方法步骤如下：
[0025] (1)激光垂准仪改造加工无线遥控装置；在购买激光垂准仪后，采购无线遥控模块及交流电源转换器，打开激光垂准仪电源盒，用电烙铁焊接电源连线至仪器外，通过无线
遥控接收板控制端接通至交流电源转换器，无线遥控接收器使用直流12伏电源，通过直流降压至垂准仪使用的直流3伏。

【0025】 (2) 模板加工装置：在加工高墩支墩模板4时根据模板图纸在激光垂准仪激光靶安装位置5切割或焊接激光靶安装通道，安装接收激光靶6在顶层模板位置。

【0026】 (3) 承台浇筑前预埋：在承台绑扎钢筋和预埋墩身钢筋时，同步预埋激光垂准仪底座螺丝，根据模板激光靶位置精确埋置激光垂准仪安装基座1，激光垂准仪防护装置根据防护罩预埋固定钢筋，埋底座位置至承台外的电力供应管道。

【0027】 (4) 墩身施工控制：在墩身第一节混凝土浇筑完成后，安装激光垂准仪在底座螺丝上，接通交流电源，精确调平仪器，检查相应装置和激光点在接收激光靶成像情况，一切无误后开始使用本装置，投射垂准仪激光垂线3到接收激光靶6，可以在施工需要时随时无线遥控打开激光检查墩身偏位数据，一直完成现浇砼墩身2的施工。