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THREAD OPTIMIZED MULTIPROCESSOR ARCHITECTURE
Background of the Invention

Computer speed may be increased using two general approaches: increase instruction
execution speed or do more instruction execution in parallel. As instruction execution speed
approaches the limits of electron mobility in silicon, parallelism becomes the best alternative to

increasing computer speed.
Previous attempts at parallelism have included:
1. Overlapping next instruction fetching with current instruction execution.

2. Instruction pipelining. An instruction pipeline breaks each instruction into as many
pieces as possible and then attempts to map sequential instructions into parallel execution units.
Theoretical maximum improvement is seldom achieved due to the inefficiencies of multi-step
instructions, inability of many software programs to provide enough sequential instructions to keep
the parallel execution units filled, and the large time penalty paid when a branch, loop, or case

construct is encountered requiring the refilling of the execution units.

3. Single instruction multiple data or SIMD. This type of technique is found in the Intel
SSE instruction set, as implemented in the Intel Pentium 3 and other processors. In this technique, a
single instruction executes on multiple data sets. This technique is useful only for special

applications such as video graphics rendering.

4. Hypercube. This technique employs large two-dimensional arrays and sometimes three-
dimensional arrays of processors and local memory. The communications and interconnects
necessary to support these arrays of processors inherently limits them to very specialized
applications. A pipeline is an instruction execution unit consisting of multiple sequential stages that
successively perform a piece of an instructic;n's execution, such as fetch, decode, execute, store, etc.
Several pipelines may be placed in parallel, such that program instructions are fed to each pipeline
one after another until all pipelines are executing an instruction. Then the instruction filling repeats

with the original pipeline. When N pipelines are filled with instructions and executing, the

chbm AQ115678255v2 306248493 -1-
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performance effect is theoretically the same as an N times increase in execution speed

for a single execution unit.

Successful pipelining depends upon the following:

1. An instruction’s execution must be able to be defined as several successive

states.
2. Each instruction must have the same number of states.

3. The number of states per instruction determines the maximum number of

parallel execution units.

Since pipelining can achieve performance increases based on the number of
parallel pipelines, and since the number of parallel pipelines is determined by the
number of states in an instruction, pipelines encourage complex multi-state

instructions.

Heavily pipelined computers very seldom achieve performance anywhere near
the theoretical performance improvement expected from the paralle! pipeline

execution units. Several reasons for this pipeline penalty include:

1. Software programs are not made up of only sequential instructions. Various
studies indicate changes of execution flow occur every 8-10 instructions. Any branch
that changes program flow upsets the pipeline. Attempts to minimize the pipeline

upset tend to be complex and incomplete in their mitigation.

2. Forcing all instructions to have the same number of states often leads to
execution pipelines that satisfy the requirements of the lowest common denominator
(i.e., the slowest and most complex) instructions. Because of the pipeline, all
instructions are forced into the same number of states, regardless of whether they need
them or not. For cxample, logic operations (such as AND or OR) execute an order of
magnitude faster than an ADD, but often both are allocated the same amount of time

for execution.

3. Pipelines encourage multi-state complex instructions. Instructions that
might require two states are typically stretched to fill 20 states because that is the

depth of the pipeline. (The Intel Pentium 4 uses a 20 state pipeline.)

-2.
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4. The time required for each pipeline state must account for propagation
delays through the logic circuitry and associated transistors, in addition to the design

margins or tolerances for the particular state.

5. Arbitration for pipeline register and other resource access often reduces

performance due to the propagation delays of the transistors in the arbitration logic.

6. There is an upper limit on the number of states into which an instruction
may be split before the additional state actually slows down execution, rather than
speeds it up. Some studies have suggested that the pipeline architecture in the last
generation of Digital Equipment Corporation’s Alpha processor exceeded that point
and actually performed slower that the previous, shorter pipelined version of the

processor.

Splitting Apart the Pipelines

One perspective to re-factoring CPU design is to think of pipelined execution
units that are then split into multiple (N) simplified processors. (Registers and some
other logic may need to be duplicated in such a design.) Each of the N simplified
processors would have the following advantages over the above-discussed pipelined

architectures:
1. No pipeline stalls. No branch prediction necessity.

2. Instructions could take as much or as little time as they need, rather than all

being allocated the same execution time as the slowest instruction.

3. Instructions could be simplified by reducing the necessary execution states,

thereby reducing the pipeline penalty.

4. Each state eliminated from the pipeline could ‘eliminate propagation delays

and remove design margins necessary for the state.
5. Register arbitration could be eliminated.

Furthermore, a system with N simplified processors could have the following

advantages over a pipelined CPU:

1. The limit of maximum pipeline parallelism would be eliminated.

1-NY/2329384.]
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2. Unlike a pipelined processor, multiple standalone processors could be

selectively powered down to reduce power consumption when not in use.

Other Problems with Current Approaches to Parallelism

Many implementations of parallelism succumb to the limits of Amdahl’s Law.
Acceleration through parallelism is limited by overhead due to non-serializable
portions of the problem. In essence, as the amount of parallelism increases, the

communications necessary to support it overwhelms the gains due to the parallelism.

Stoplight Sitting at Redline

Another inefficiency of current processors is the inability of scaling the
computing power to meet the immediate computing demand. Most computers spend
most of their time waiting for something to happen. They wait for 1/0, for the next
instruction, for memory access, or sometimes human interface. This waiting is an
inefficient waste of computing power. Furthermore, the computer time spent waiting

often results in increased power consumption and heat generation.

The exceptions to the waiting rule are applications like engine controllers,
signal processors, and firewall routers. These applications are excellent candidates for
parallelism acceleration due to the predefined nature of the problem sets and solution
sets. A problem that requires the product of N independent multiplications may be

solved faster using N multipliers.

The perceived performance of a general purpose computer is really its peak
performance. The closest a general purpose computer gets to being busy is running a
video game with a rapid screen refresh, compiling a large source file, or searching a
database. In an optimal world, the video rendering would be factored into special
purpose, shading, transforming, and rendering hardware. One method of factoring the

programming to such special purpose hardware is the use of “threads.”

Threads are independent programs that are self contained and infrequently
communicate data with other threads. A common use of threads is to collect data
from slow realtime activity and provide the assembled results. A thread might also be
used to render a change on a display. A thread may transition through thousands or

millions of states before requiring further interaction with another thread.

-4-
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Independent threads present an opportunity for increased performance through

parallelism.

Many software compilers support the generation and management of threads
for the purposes of factoring the software design process. The same factoring will
support multiple CPU parallel processing via the technique of Thread Level
Parallelism implemented in a Thread Optimized Microprocessor (TOMI) of the

preferred embodiment.

Thread Level Parallelism

Threading is a well understood technique for factoring software programs on a
single CPU. Thread level parallelism can achieve program acceleration through use

of a TOMI processor.

One significant advantage of a TOMI processor over other parallel approaches
is that a TOMI processor requires minimal changes to current software programming
techniques. New algorithms do not need to be developed. Many existing programs

may need to be recompiled, but not substantially rewritten.

An efficient TOMI computer architecture should be built around a large
number of simplified processors. Different architectures may be used for different

types of computing problems.

Fundamental Computer Operations

For a general purpose computer, the most common operations in order of

declining frequency are: Loads and stores; Sequencing; and Math and logic.

Load and Store

‘The parameters of LOAD and STORE are the source and destination. The
power of the LOAD and STORE is the range of source and destination (for example,
4 Gbytes is a more powerful range than 256 bytes). Locality relative to the current
source and destination is important for many data sets. Plus 1, minus 1 are the most
useful. Increasing offsets from the current source and destination arc progressively

less useful.

LOAD and STORE may also be affected by the memory hierarchy. A LOAD

from storage may be the slowest operation a CPU can perform.
-5-
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Sequencing

Branches and loops are the fundamental sequencing instructions. Instruction

sequence changes based on a test is the way computers make decisions.

Math and Logic

Math and logic operations are the least used of the three operations. Logic
operations are the fastest operations a CPU can perform and can require as little as a
single logic gate delay. Math operations are more complex since higher order bits
depend on the results of lower order bit operations. A 32-bit ADD can require at least
32 gate delays, even with carry lookahead. MULTIPLY using a shift and add

technique can require the equivalent of 32 ADDs.

Tradeoffs of Instruction Size

The perfect instruction set would consist of op-codes that are large enough to
select infinite possible sources, destinations, operations, and next instructions.
Unfortunately the perfect instruction set op-codes would be infinitely wide and the

instruction bandwidth would therefore be zero.

Computer design for high-instruction bandwidth involves the creation of an
instruction set with op-codes able to efficiently define the most common sources,

destinations, operations, and next instructions with the fewest op-code bits.

Wide op-codes lead to high instruction bus bandwidth requirements and the
resulting architecture will be quickly limited by the Von Neumann bottleneck,
wherein the computer’s performance is limited by the speed with which it fetches

instructions from memory.

If a memory bus is 64 bits wide, one could fetch a single 64-bit instruction,
two 32-bit instructions, four 16-bits instructions, or eight 8-bit instructions in each
memory cycle. A 32-bit instruction had better be twice as useful as a 16-bit

instruction since it cuts the instruction bandwidth in half.

A major objective of instruction set design is to reduce instruction redundancy.
In general an optimized efficient instruction set takes advantage of the locality of both
instructions and data. The easiest instruction optimizations have long since been done.
For most computer programs, the most likely next instruction is the sequentially next

-6-
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instruction in memory. Therefore instead of every instruction having a next

instruction + 1. It is possible to create an architecture with zero bits for source and

zero bits for destination.

Stack Architectures

I
|
instruction field, most instructions assume the next instruction is the current
5
Stack architecture computers are also called zero operand architectures. A
stack architecture performs all operations based on the contents of a push down stack.
A two operand operation would require both operands be present on the stack. When
the operation executes, both operands would be POP’d from the stack, the operation

10 would be performed, and the result would be PUSH’d back on the stack. Stack

architecture computers can have very short op-codes since the source and destination

are implied as being on the stack.

Most programs require the contents of global registers that may not always be
available on the stack when needed. Attempts to minimize this occurrence have
15 included stack indexing that allows accessing operands other than those on the top of
the stack. Stack indexing requires either additional op-code bits resulting in larger
instructions or additional operations to placc the stack index value on the stack itself.
Sometimes one or more additional stacks are defined. A better but not optimal

solution is a combination stack/register architecture.

20 Stack architecture operation is also often redundant in ways that defy obvious

optimizations. For example, each POP and PUSH operation has the potential to cause

a time wasting memory operation as the stack is manipulated in memory.
Furthermore, the stack operation may consume an operand that may be immediately

needed for the next operation, thereby requiring operand duplication with the potential
} 25 of yet another memory operation. Take for example, the operation of multiplying all

the elements of a one dimensional array by 15.

On a stack architecture, this is implemented by:

1. PUSH start address of array

2. DUPLICATE address (So we have the address to store the result to
30 the array.)

3. DUPLICATE address (So we have the address to read from the
array.)

1-NY/2329384.1
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4. PUSH INDIRECT (PUSH the contents of the array location pointed to by the

top of stack)
5.PUSH 15
6. MULTIPLY (15 times the array contents we read in line 3)
7. SWAP (Get the array address on the top of the stack for the next instruction.)
8. POP INDIRECT (POPs the multiplication result and stores it back to the array.)
9. INCREMENT (Point to the next array item.) |
10. Go to step 2 until the array is done.

The loop counter in line 9 would require an additional parameter. In some

architectures, this parameter is stored on another stack.
On a hypothetical register/accumulator architecture, the example is implemented by:
1. STORE POINTER start address of array

2. READ POINTER (Read the contents of the address pointed to into an

accumulator.)
3. MULTIPLY 15
4. STORE POINTER (Store the result into the address pointed to.)
5. INCREMENT POINTER
6. Go to line 2 until the array is done.

Compare the nine steps for the stack architecture versus the five steps for the register
architecture for the above example. Furthermore, the stack operation has at least 3 possible
opportunities for an extra memory access due to stack operation. The loop control of the

hypothetical register/accumulator architecture could easily be handled in a register.

Stacks are useful for evaluating expressions and are used as such in most compilers. Stacks
are also useful for nested operations such as function calls. Most C compilers implement function
calls with a stack. However, without supplementing by general purpose storage, a stack architecture
requires lots of extra data movement and manipulation. For optimization purposes, stack PUSH and
POP operations should also be separated from math and logic operations. But as can be seen from
the example above, stacks are particularly inefficient when loading and storing data repeatedly,
since the array addresses are consumed by the PUSH INDIRECT and POP INDIRECT.

The above discussion of documents, acts, materials, devices, articles and the like is
included in the specification solely for the purpose of providing a context for the present invention.

It is not suggested or represented that any or all of these matters formed part of the prior art base or

chbm A0115678255v2 306248493 -8-
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were common general knowledge in the field relevant to the present invention as it existed in

Australia before the priority date of each claim of this application.
Summary of the Invention
In one aspect, the invention comprises a system comprising:

a plurality of parallel processors embedded into a random access memory (RAM)
die;
said computer processors in communication with an external memory controller

and an external processor, and

wherein each of said parallel processors is operable to process an instruction set
optimized for thread-level parallel processing, wherein each of said processors is operable
to process a single thread, and wherein a plurality of threads share data through shared

memory or one or more shared variables.

In another aspect, the invention comprises a system comprising: (a) a plurality of parallel
processors on a single chip; and (b) computer memory located on the chip and accessible by each
of the processors, wherein each of the processors' is operable to process an instruction set optimized

for thread-level parallel processing.

In various embodiments: (1) each of the processors is operable to process a de minimis
instruction set; (2) each of the processors comprises local caches dedicated to each of at least three
specific registers in the processor; (3) the size of each of the local caches is equivalent to one row
of random access memory on the chip; (4) the at least three specific registers include an instruction
register, source register, and destination register; (5) the de minimis instruction set comprises seven
basic instructions; (6) each of the processors is operable to process a single thread; (7) a single
master processor is responsible for managing each of the parallel processors; and (8) the de
minimis instruction set includes a minimal set of instruction extensions to optimize processor

operation and facilitate software compiler efficiency.

In another embodiment, the invention comprises a method of thread-level parallel
processing utilizing a plurality of parallel processors, a master processor, and a computer memory

on a single chip, wherein each of the plurality of processors is

chbm A0121798182v1 306248493 -9.
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operable to process a de minimis instruction set and to process a single thread,
comprising: (a) allocating local caches to each of three specific registers in each of
the plurality of processors; (b) allocating one of the plurality of processors to
process a single thread; (c) processing each allocated thread by the processors; (d)
processing the results from each thread processed by the processors; (e) de-allocating
one of the plurality of processors after a thread has been processed; and (f) the de
minimis instruction set includes a minimal set of instructions to optimize processor

management.

In various embodiments the de minimis instruction set comprises seven basic
instructions and the instructions in the de minimis instruction set are at most 8 bits in
length. The de minimis instruction set may also include a set of extension
instructions, beyond the seven basic instructions, that optimize the internal operation
of the TOMI CPU and help optimize the execution of software program instructions
being executed by a TOMI CPU and optimize the operation of software compilers for
the TOMI CPU. Embodiments of the invention with mﬁltiple TOMI CPU cores may
also include a limited set of processor management instructions used for managing the

multiple CPU cores.

In another aspect, the invention comprises a system comprising: (a) a plurality
of parallel processors mounted on a memory module; (b) an external memory
controller; and (c) a general purpose central processing unit; wherein each of the
parallel processors is operable to process an instruction set optimized for thread-level

parallel processing.

In various embodiments: (1) each of the parallel processofs is operable to
process a de minimis instruction set; (2) one or more bits allocated in a memory mode
register is operable to enable or disable one or more of the parallel processors; (3) the
memory module is a dual inline memory module; (4) each of the processors is
operable to process a single thread; (5) a plurality of threads share data through shared
memory; (6) a plurality of threads share data through one or more shared variables; (7)
the memory module is one or more of: DRAM, SRAM, and FLASH memory; (8) at
least one of the parallel processors is treated as a master processor and other of the
parallel processors are treated as slave processors; (9) each processor has a clock
speed, and each processor other than the master processor is operable to have the

-10-
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processor's clock speed adjusted to optimize ¢ither performance or power consumption; (10) each
processor is operable to be treated as either a master processor or a slave processor; (11) the master
processor requests processing by several slave processors, waits for output from the several slave
processors, and combines the output; (12) the master processor combines output from the several
processors as the output is received from each of the several processors; (13) low power dissipation
is provided by enabling one or more of the parallel processors to be stopped; and (14) each of the
parallel processors is associated with a program counter and is operable to be stopped by writing all

ones (1 's) to a program counter associated with the parallel processor.

In another aspect, the invention comprises a system comprising a plurality of parallel
processors embedded into a dynamic random access memory (DRAM) die, the plurality of parallel
processors in communication with an external memory controller and an external processor, and
wherein each of the parallel processors is operable to process an instruction set optimized for

thread-level parallel processing.

In various other embodiments: (1) the die is packaged with a DRAM pinout; (2) the
parallel processors are mounted on a dual inline memory module; (3) the system operates as
DRAM except when the processors are enabled through a DRAM mode register; (4) the external
processor is operable to transfer data and instructions from an associated permanent storage device
to the DRAM; (5) the permanent storage device is FLASH memory; and (6) the external processor
is operable to provide an input/output interface between the parallel processors and external

devices.

In another aspect, the invention comprises a system comprising: (a) a plurality of
processors on a single chip; and (b) computer memory located on the chip and accessible by each
of the processors, wherein each of the processors is operable to process a de minimis instruction
set, and wherein each of the processors comprises local caches dedicated to each of at least three

specific registers in the processor.

In various other embodiments: (1) the size of each of the local caches is equivalent to one
row of random access memory on the chip; (2) each processor accesses an internal data bus of
random access memory on the chip and the internal data bus has a width of one row of the random

access memory; (3) the width of the
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internal data bus is 1024, 2048, 4096, 8192, 16328, or 32656 bits; (4) the width of the
internal data bus is an integer multiple of 1024 bits; (5) the local caches dedicated to
each of at least three specific registers in the processor are operable to be filled or
flushed in one memory read or write cycle; (6) the de minimis instruction set consists
essentially of seven basic instructions; (7) the basic instruction set includes ADD,
XOR, INC, AND, STOREACC, LOADACC, and LOADI instructions; (8) each
instruction in the de minimis instruction set is at most 8 bits in length; (9) the de
minimis instruction set comprises a plurality of instruction extensions to optimize
execution of instruction sequences on a processor, further wherein such instruction
extensions consists essentially of less than 20 instructions; (10) each instruction
extension is at most 8 bits in length; (11) the de minimis instruction set comprises a
set of instructions to selectively control the plurality of processors on the chip; (12)
each processor control instruction is at most 8 bits in length; (13) the plurality of
processors are manufactured on the chip with the computer memory located on the
chip using a semiconductor manufacturing process designed for monolithic memory
devices; (14) the semiconductor manufacturing process uses less than 4 layers of
metal interconnect; (15) the semiconductor manufacturing process uses less than 3
layers of metal interconnect; (16) integration of the plurality of processors into the
computer memory circuit results in less than 30% increase in chip die size; (17)
integration of the plurality of processors into the computer memory circuit results in
less than 20% increase in chip die size; (18) integration of the plurality of processors
into the computer memory circuit results in less than 10% increase in chip die size;
(19) integration of the plurality of processors into the computer memory circuit results
in less than 5% increase in chip die size; (20) less than 250,000 transistors are used to
créate each processor on the chip; (21) the chip is manufactured using a
semiconductor manufacturing process using less than 4 layers of metal interconnect;
(22) each of the processors is operable to process a single thread; (23) an accumulator
is an operand for every basic instruction, except an increment instruction; (24) a
destination for each basic instruction is always an operand register; (25) three registers
auto-increment and three registers auto-decrement; (26) each basic instruction requires

only one clock cycle to complete; (27) the instruction set comprises no BRANCH

-12-
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instruction and no JUMP instruction; and (28) a single master processor is responsible for

managing each of the parallel processors.

In another aspect, the invention comprises a system comprising: (a) a plurality of parallel
processors on a single chip; and (b) computer memory located on the chip and accessible by each
of the processors, wherein each of the processors is operable to process an instruction set optimized
for thread-level parallel processing; and wherein the processor accesses the internal data bus of the

computer memory on the chip and the internal data bus is no wider than one row of the memory.

In various embodiments: (1) each of the processors is operable to process a de minimis
instruction set; (2) each of the processors comprises local caches dedicated to each of at least three
specific registers in the processor; (3) the size of each of the local caches is equivalent to one row
of computer memory on the chip; (4) the at least three specific registers include an instruction
register, source register, and destination register; (5) the de minimis instruction set consists
essentially of seven basic instructions; (6) the basic instruction set includes ADD, XOR, INC,
AND, STOREACC, LOADACC, and LOADI instructions; (7) each instruction in the instruction
set is at most 8 bits in length; (8) each of the processors is operable to process a single thread; (9) a
single master processor is responsible for managing each of the parallel processors; (10) the de
minimis instruction set comprises a plurality of instruction extensions to optimize execution of
instruction sequences on a processor, further wherein such instruction extensions comprise less
than 20 instructions; (1 1) each instruction extension is at most 8 bits in length; (12) the de minimis
instruction set comprises a set of instructions to selectively control the plurality of processors on
the chip; (13) each processor control instruction is at most 8 bits in length; and (14) the plurality of
processors are capable of being manufactured on the chip with the computer memory located on

the chip using a semiconductor manufacturing process designed for monolithic memory devices.

In another aspect, the invention comprises a method of thread-level parallel processing
utilizing a plurality of parallel processors, a master processor, and a computer memory on a single
chip, wherein each of the plurality of processors is operable to process a de minimis instruction set
and to process a single thread, comprising: (a) allocating local caches to each of three specific

registers in each of

chbm A0115678255v2 306248493 -13 -
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the plurality of processors; (b) allocating one of the plurality of processors to process a
sing;lc thread; (c) processing each allocated thread by the processors; (d) processing
the results from each thread processed by the processors; and (e) de-allocating one of

the plurality of processors after a thread has been processed.

In various embodiments: (1) the de minimis instruction set consists essentially
of seven basic instructions; (2) the basic instructions comprise ADD, XOR, INC,
AND, STOREACC, LOADACC, and LOADI instructions; (3) the de minimis
instruction set comprises a set of instructions to selectively coﬁtrol the plurality of
processors; (4) each processor control instruction is at most 8 bits in length; (5) the
method further comprises the step of each processor accéssing the computer memory
using an internal data bus of the memory, wherein the internal data bus is the width of
one row of memory on the chip; and (6) each instruction in the de minimis instruction

set is at most 8 bits in length.

In another aspect, the invention comprises a system comprising: (a) a plurality
of processors embedded in a memory chip that is compatible with electronics industry
standard device packaging and pin layout for such memory devices; and (b) one or
more of the processors may be activated through information transmitted to a memory
mode register of the memory chip, wherein the memory chip is functionally

compatible with the operation of industry standard memory devices except when one

or more of the processors are activated through the memory mode register.

Brief Description of the Drawings
FIG. 1 depicts exemplary TOMI architecture of one embodiment.
FIG. 2 shows an exemplary basic instruction set.
FIG. 2A shows a forward branch in operation.
FIG. 2B illustrates an instruction map for an exemplary TOMI instruction set.

FIG. 2C illustrates an exemplary set of multiple TOMI processor management

~ instruction extensions.

FIG. 2D illustrates a clock programming circuit for a TOMI processor.

FIG. 2E shows an exemplary set of instruction extensions.
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FIG. 3 illustrates effective addresses of different addressing modes.
FIG. 4 illustrates how data paths from 4-32 bits are easily created.
FIG. 5 depicts exemplary local caches.

FIG. 6 depicts exemplary cache management states.

FIG. 7A shows one embodiment of additional processing functionality

organized to take advantage of a wide system RAM bus.

FIG. 7B shows an exemplary circuit for interleaving data lines for two memory

banks accessed by a TOMI processor.
FIG. 8 depicts an exemplary memory map.
FIG. 9 depicts an exemplary process availability table.
FIG. 10 illustrates three components of processor allocation.

FIG. 10A illustrates an embodiment of multiple TOMI processors on a DIMM
package.

FIG. 10B illustrates an embodiment of multiple TOMI processors on a DIMM

package interfacing with a general purpose CPU.

FIG. 10C depicts an exemplary TOMI processor initialization for an

embodiment of multiple TOMI processors.
FIG. 10D illustrates use of a memory mode register for TOMI processor
initialization.
FIG. 10E depicts an exemplary TOMI processor availability state diagram.
FIG. 10F shows an exemplary interprocessor communication circuit design.

FIG. 10G shows an exemplary hardware implementation to identify a TOMI

processor to perform work.
FIG. 10H shows an exemplary processor arbitration diagram.
FIG. 11 depicts exemplary factoring.

FIG. 12 depicts exemplary system RAM.
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FIG. 13A depicts an exemplary floorplan for a monolithic array of 64 TOMI

processors.

FIG 13B depicts another exemplary floorplan for a monolithié array of TOMI

processors.

FIG. 14A depicts an exemplary floorplan for a TOMI peripheral controller
chip (TOMIPCC).

FIG. 14B depicts an exemplary design for a cellphone language translator

application using a TOMIPCC.

FIG. 14C depicts an exemplary design for a memory-centric database

application using a TOMIPCC and a plurality of TOMI DIMMS.

FIGS. 15A through 15D show a top level schematic for an exemplary
embodiment of a 32-bit TOMI processor.

FIG. 15E shows the signal descriptions for the schematic shown in FIGS. 15A-

Detailed Description of Certain Embodiments

The TOMI architecture of at least one embodiment of the present invention
preferably uses the minimum logic possible to operate as a general purpose computer.
The most common operations are given priority. Most operations are visible, regular,

and available for compiler optimization.

In one embodiment, the TOMI architecture is a variation on accumulator,

register, and stack architectures, as illustrated in FIG. 1. In this embodiment:

1. Like an accumulator architecture, the accumulator is always one of the

operands, except for the increment instruction.

2. Like a register architecture, the destination is always one of the operand

registers.

3. The accumulator and program counter are also in the register space and may

therefore be operated on.
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4. Three special registers auto-increment and auto-decrement and are useful

for creating stacks and streams of input and output.

5. All instructions are 8-bits in length, simplifying and speeding instruction

decode.
6. There is no BRANCH or JUMP instruction.

7. There are just seven basic instructions cnabling 3 bits of operator selection

from an 8-bit instruction, as illustrated by FIG. 2.
Some of the benefits of the preferred embodiment include:

1. All operations run at the maximum speed allowed by the logic, rather than
being constricted by the equality necessitated by a pipeline. Logic operations are
fastest. Math operations are next fastest. Operations requiring memory access are

slowest.

2. The architecture scales to any data width, limited only by package pins,

adder carry times, and usefulness.

3. The architecture is near the minimum possible functionality necessary to

perform all the operations of a general purpose computer.

4. The architecture is very transparent, very regular, and most operations are

available to the optimizing compiler.

The architecture is designed to be simple enough to be replicated numerous
times on a single monolithic chip. One embodiment embeds multiple copies of the
CPU monolithically with memory. A simplified 32-bit CPU may be implemented in
fewer than 1,500 gates, with most of the gates defining the registers. Nearly 1,000
TOMI CPUs of a preferred embodiment can be implemented using the same number

of transistors as a single Intel Pentium 4.

The reduced instruction set in the TOMI CPU is factored to execute the
operations necessary for a general purpose computer. The smaller the instruction set is
for a processor, the more efficiently it will run. The TOMI CPU is designed with an
extraordinarily low number of instructions compared to modern processor
architecturcs. For example, one embodiment of the TOMI CPU has 25 instructions,
compared to the Intel Pentium processor which has 286 instructions, Intel Itanium
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Montecito processor with 195 instructions, the StrongARM processor with 127 instructions, and

the IBM Cell processor with over 400 instructions.

The basic set of instructions for the TOMI CPU are simplified and designed to execute in a
single system clock cycle, as opposed to 30 clock cycles required for the latest generation Pentium
processor. The TOMI CPU architecture is a "pipelineless” architecture. This architecture and single
clock cycle instruction execution significantly reduce or eliminate stalls, dependencies and wasted
clock cycles found in other parallel processing or pipelined architectures. While the basic
instructions only require a single clock cycle to execute, as clock speeds increase (and clock cycle
times decrease), the time required for the execution result to propagate through the circuit transistor
gates for complex mathematical instructions (such as ADD) may reach the limit of a single clock
cycle. In such instances, it may be optimal to allow two clock cycles for the execution of the
particular instruction, so as not to slow down the execution of the faster instructions. This will
depend upon the optimization of the CPU design to the system clock speed, mahufacturing process,

and circuit layout.

The TOMI simplified instruction set allows a 32-bit TOMI CPU to be built with fewer than
5,000 transistors (not including the caches). A top-level schematic of an embodiment of a single
32-bit TOMI CPU is shown in Figures 15A through 15D, with the signal descriptions shown in
Figure 15E. Even with the caches and related decode logic, a 32-bit TOMI CPU can be built using
between 40,000 and 200,000 transistors (depending upon the size of the CPU caches), as compared
to the 250,000,000 transistors needed for the latest generation Intel Pentium microprocessor chip.
Legacy microprocessor architectures (such as the Intel Pentium, Itanium, IBM Cell, and
StrongARM, to name a few) have required vast and increasing numbers of transistors to achieve
even incremental increases in processing capacity. The TOMI CPU architecture contradicts this
industry progression by utilizing an extraordinarily low number Qf transistors per CPU core. The

low transistor count for the TOMI CPU provides numerous advantages.

Due to the compact size of the TOMI CPU, multiple CPUs can be built on the same silicon
chip. This also allows multiple CPUs to be built on the same chip as the main memory, such as a
DRAM, at little additional manufacturing cost, beyond the manufacturing cost of the DRAM chip
itself. Thus, multiple TOMI CPUs can be placed on a single chip for parallel processing with only a
minimal increase in die size for the DRAM chip and manufacturing cost. For example, a 512MB
DRAM contains approximately 700 million transistors. 64 TOMI CPUs (assuming 200,000
transistors for a single TOMI CPU) would only add 12.8 million transistors to any DRAM design.
For a 512MB DRAM, 64 TOMI CPUs would increase the die size by less than 5%.

The TOMI CPUs are designed to be manufactured using existing inexpensive commodity

memory manufacturing processes, such as for DRAM, SRAM, and FLASH memory devices. The
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low transistor count for a TOMI CPU means that the CPU can be built in a small area and can be
easily interconnected in silicon using an inexpensive semiconductor manufacturing process with 2
layers of metal interconnect, rather than complex and expensive manufacturing processes used to
manufacture large microprocessor chips (such as the Intel Pentium) utilizing 8 or more layers of
metal interconnect or other logic processes. Modern DRAMSs and other commodity memory chips
utilize simpler and lower-cost semiconductor manufacturing processes with fewer layers (e.g., 2) of
metal interconnect to achieve lower manufacturing costs, higher product volume, and higher
product yields. The semiconductor manufacturing process for commodity memory devices is
generally characterized by low current leakage device operation; while processes used to build
modern microprocessors strive for high speed and high performance characteristics, rather than
transistor-level low current leakage values. The ability of the TOMI CPU to be efficiently
implemented with the same manufacturing process used for DRAMs and other memory devices
allows the TOMI CPU to be embedded within an existing DRAM chip (or other memory chip) and
take advantage of the low-cost, high yield memory chip manufacturing processes. This also
provides the advantage that TOMI CPUs can be manufactured using the same packaging and
device pin layout (conforming, for example, to JEDEC standards for memory devices), fabrication
facilities, test fixtures, and test vectors currently in industry use for DRAMs and other memory
chips. A preferred embodiment describes embedding CPUs into a legacy DRAM. This contrasts
favourably with the alternative of embed(-iing a DRAM into a legacy microprocessor. Due to its
high transistor count compared to a preferred embodiment of the present invention, a legacy
microprocessor would likely generate much greater levels of electrical noise and heat which can
adversely affect the performance and reliability of the embedded DRAM. Furthermore, a DRAM
embedded on a legacy microprocessor would likely require a process with 8 or more layers of
metal interconnect compared to a preferred embodiment's 2 layers. In comparison, the resulting
DRAM embedded into a legacy microprocessor would likely be higher cost, lower yield, higher

power consumption, and, ultimately, lower performance.

Another advantage of the preferred embodiment is that the TOMI CPUs are small enough
(and require little power) that they can physically reside next to the DRAM (or other memory)
circuitry and allow the CPUs access to the ultra-wide internal DRAM data bus. In modern DRAMs,
this bus is 1024, 4096, or 8192 bits wide (or an integer multiple thereof), which also typically
corresponds to the width of one row of data in the data banks within the DRAM design. (By
comparison, the Intel Pentium data bus is 64 bits and the Intel Itanium bus is 128 bits wide.) The
internal caches of the TOMI CPU can be sized to match the DRAM row size so that the CPU cache
can be filled (or flushed) in a single DRAM memory read or write cycle. The TOMI CPU uses the
ultra-wide internal DRAM data bus as the data bus for the TOMI CPU. The TOMI CPU caches
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may be designed to mirror the design of the DRAM row and/or column latch circuitry for efficient

layout and circuit operation, including data transfers to the TOMI CPU caches.

Another advantage of the preferred embodiment is the low levels of electrical noise
generated by the TOMI CPUs due to the low transistor count, and because the CPU utilizes the
ultra-wide internal DRAM data bus to access memory, rather than constantly driving I/O circuitry
to access off-chip memory for data. The on-chip CPU caches allow for immediate access to data

for processing, thus minimizing the need for off- chip memory accesses.

A design objective of processor architectures is to maximize processing capacity and
speed, while minimizing the power required to achieve that processing speed. The TOMI CPU
architecture is a high-speed processor, with extremely low power consumption. The power
consumption of a processor is directly related to the number of transistors used in the design. The
low transistor count for the TOMI CPU minimizes its power consumption. The simplified and
efficient instruction set also allows the TOMI CPU to reduce its power consumption. In addition,
the TOMI CPU caches and access to on-chip memory using the wide internal DRAM data bus

eliminate the need to constantly drive the I/O circuitry for off-chip memory access. A single TOMI

~ CPU operating at 1 GHz clock speed will consume approximately 20 to 25 milliwatts of power. In

contrast, the Intel Pentium 4 processor requires 130 watts at 2.93 GHz, Intel Itanium processor
requires 52 watts at 1.6GHz, StrongARM processor requires 1 watt at 200 MHz, and the IBM Cell
processor requires 100 watts at 3.2GHz. It is well known that heat generation in a processor is
directly related to the amount of power required by a processor. The extremely low power TOMI
CPU architecture eliminates the need for fans, large heat sinks, and exotic cooling mechanisms
found in current microprocessor architectures. At the same time, the low- power TOMI CPU

architecture makes new low-power battery and solar powered applications feasible.
Instruction Set

The seven basic instructions in an exemplary instruction set are shown in FIG. 2 along with

their bit mappings. Each instruction preferably consists of a single 8-bit word.
Addressing Modes
FIG. 3 illustrates the effective addresses of the different addressing modes.
The addressing modes are:
Immediate
Register
Register Indirect

Register Indirect Auto-increment
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Register Indirect Auto-decrement
Special Cases

Register 0 and Register 1 both refer to the Program Counter (PC). In one embodiment, all
operations with Register 0 (the PC) as the operand are conditional on the accumulator carry bit (C)
equal to 1. If C=I1, the old value of PC is swapped into the accumulator (ACC). All operations

with Register 1 (the PC) as the operand are unconditional.

In an alternative embodiment, write operations with Register 0 (PC) as the destination are
conditional on the carry bit (C) equal to 0. If C=1, no operation is performed. If C=0, the value in
the accumulator (ACC) is written to the PC, and program control changes to the new PC address.
Write operations with Register 1 (PC) as the destination are unconditional. The value in the

accumulator (ACC) is written to the PC, and program control changes to the new PC address. |

Read operations with Register 0 as the source load the value of the PC + 3. In this way, the
address of the top of a loop may be read and stored for later use. In most cases, the loop address !
will be pushed on the stack (S). Read operations with Register 1 as the source load the value
pointed to by the next full word addressed by the PC. In this way, a 32-bit immediate operand may
be loaded. The 32-bit immediate operand must be word aligned, but the LOADACC instruction
may be at any byte position in the 4-byte word immediately preceding the 32-bit immediate
operand. Following execution of the read, the PC will be incremented such that it addresses the first

word aligned instruction following the 32-bit immediate operand.
There Is No Branch

Branch and Jump operations are usually a problem for CPU designers because they require
many bits of precious op-code space. The branching function may be created by loading the desired
branch address into the ACC using LOADACC, xx and then using the STOREACC, PC instruction

to effect the branch. A branch may be made conditional on the state of C by storing to Register 0
Skip
A skip may be created by executing INC, PC. Execution will require two cycles, one for

the current PC increment cycle to complete and one for the INC. A skip may be made conditional

|
on the state of C by incrementing Register 0. ' ‘
A Relative Branch |

A relative branch may be created by loading the desired offset into the ACC and then
executing the ADD, PC instruction. A relative branch may be made conditional on the state of C by

adding to Register 0.
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Forward Branches

Forward branches are more useful than rearward branches since the location of the
rearward branches necessary for loops is easily captured by saving the PC as the program steps

through the top of the loop the first time.
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A more efficient forward branch than the relative branch may be created by
loading the least significant bits of the branch endpoint into the ACC and then storing
to the PC. Since the PC can be accessed both conditionally or unconditionally
depending upon the use of Register 0 or Register 1, the forward branch may also be
conditional or unconditional by the selection of the PC register (Register 0 or Register

1) as the destination operand.

For example:

LOADL #1C
STOREACC, PC
If the most significant bits of the ACC are zero, only the least significant 6 bits
are transferred to the PC register. The most significant bits of the register remain
unchanged if the least significant 6 bits of the current PC register are smaller than the
ACC value to be loaded. If the least significant 6 bits of the current PC register are
greater than the ACC value to be loaded, the current PC register is incremented,

starting with the 7th bit.

This effectively allows branches of up to 31 instructions forward. This
method of forward branching should be used whenever possible because not only does
it require 2 instructiohs versus 3 instructions for the relative branch, but it does not
require a pass through the adder, which is one of the slowest operations. Fig. 2A

shows the forward branch in operation.
Loops

The top of a loop may be saved using LOADACC, PC. The resulting pointer
to the top of the looping construct may then be stored in a register or pushed into one
of the éutoindexing registers. At the bottom of the loop, the pointer may be retrieved
with LOADACC, EA and restored to the PC using STOREACC, PC, thereby causing
a backwards loop. The loop may be made conditional on the state of C by storing to

Register 0 thereby causing a conditional backwards loop.
Self Modifying Code

It is possible to write self-modifying code using STOREACC, PC. An

instruction may be created or fetched into the ACC and then stored into the PC where
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it will execute as the next instruction. This technique may be used to create a CASE

construct.

Assume a jump table array in memory consisting of N addresses and base
address of JUMPTABLE. For convenience, JUMPTABLE mighf be in low memory
so its address can be created wi.th LOADI or a LOADI following by one or more right
shifts, ADD, ACC.

Assume that the index into the jump table is in ACC and the base address of

the jump table is in a general purpose register named JUMPTABLE:

ADD, JUMPTABLE Add the index to the base address of the
jump table.

LOADACC, (JUMPTABLE) Load the indexed address

STOREACC, PC Execute the jump.

If low order memory starting at 0000 is allocated to system calls, each system
call may be executed as follows where SPECIAL_FUNCTION is the name of an

immediate operand 0-63:

LOADI, SPECIAL_FUNCTION Load the system call number

LOADACC, (ACC) Load the address of the system
call

STOREACC, PC Jump to the function
Right Shift

The basic architecture does not envision a right shift operation. Should such
an operation be required, the solution of a preferred embodiment is to designate one of
the general purpose registers as the “right shift register.” A STOREACC,
RIGHTSHIFT would store the ACC right shifted a single position into the “right shift
register” where its value could be read with LOADACC, RIGHTSHIFT.

Architectural Scalability

The TOMI architecture preferably features 8-bit instructions, but the data
width need not be restricted. FIG. 4 illustrates how any width data paths from 4-32
bits are easily created. Creating larger width data handling only requires increasing

the width of the register set, the internal data paths, and the ALU to the desired
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widths. The upper bound of the data path is only limited by the carry propagation
delay of the adder and the transistor budget.

The preferred TOMI architecture is implemented as a Von Neumann memory
configuration for simplicity, but a Harvard architecture implementation (with separate

data and instruction buses) is also possible.
Common Math Operations

Two’s complement math can be done several ways. A general purpose register
may be preconfigured as all “1s” and named ALLONES. The operand will be
assumed to be in a register named OPERAND:

LOADACC, ALLONES
XOR, OPERAND
INC, OPERAND The “2s” complement is left in OPERAND.

Common Compiler Constructions

Most computer programs are generated by a compiler. Therefore, a useful

computer architecture should be adept at common compiler constructions.

A C compiler will normally maintain a stack for passing parameters to
function calls. The S, X, or Y registers may be used as the stack pointer. The
function call will push the parameters onto one of the autoindexing registers acting as
the stack, using, for example: STOREACC, (X)+. Upon entering the function the

parameters will be POP’d into general purpose registers for use.
Stack Relative Addressing

There will be times when there are more elements passed in the function call
than can conveniently fit in the general purpose registers. For the purposes of the
following example it is assumed that a stack push operation decrements the stack. If S

is being used as the stack register, to read the Nth item relative to the top of the stack:

LOADI, N
STOREACC, X
LOADACC, S
ADD, X
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LOADACC, (X)

Indexing Into an Array

Upon entry into the array function, the base address of the array is located in a

general purpose register named ARRAY. To read the Nth element in the array:

LOADI, N
STOREACC, X
LOADACC, ARRAY
ADD, X

LOADACC, (X)

Indexing Into an N Word Element Array

Sometimes an array will be allocated for elements N words wide. The base

address of the array is located in a general purpose register named ARRAY. To

access the first-word of the Nth element in a 5 word wide array:

LOADI, N

STOREACC, X Store in temporary register
ADD, ACC Multiply by 2

ADD, ACC By 2 again =4

ADD, X plus1=5

LOADACC, ARRAY

ADD, X plus the base address of the array

LOADACC, (X)

Instruction Set Extensions

Another embodiment of the invention includes extensions of the seven

basic instructions shown in Fig. 2. The instruction set extensions shown in Fig.

2E help further optimize the internal operation of the TOMI processor,

software program instructions, and software compilers for the TOMI

processor.

SAVELOORP - This instruction pushes the current value of the program

counter onto the stack. Saveloop will most likely be executed at the top of a

looping construct. At the bottom of the loop, the saved program counter value

1-NY/2329384.1
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will be copied from the stack and stored to the program counter, effecting a

backward jump to the top of the loop.

SHIFTLOADBYTE - This instruction shifts the ACC left 8 bits left,
reads the 8-bit byte following the instruction, and places it into the least
significant 8-bits of ACC. In this manner, long immediate operands may be
loaded with a sequence of instructions. For example to load a 14-bit

immediate operand:

LOADI, #14 \\ Load the 6 most significant bits of the 14 bit

operand.

SHIFTLOADBYTE \\ Shift the 6 bits 8 positions to the left and load

the following 8-bit value.
CONSTANT #E8.  \\ Eight bit immediate operand.
The resuiting hex value in ACC will be 14E8.

LOOP - This instruction copies the top of the stack to the program
counter. Loop will most likley be executed at the bottom of a looping
construct following execution of Saveloop to store the program éounter at the
top of the loop. When Loop executes, the saved program counter will be
copied from the stack and stored to the program counter, effecting a backward

jump to the top of the loop.

LOOP_IF - This instruction copies the top of the stack to the program
counter. It performs a conditional loop, based on the value of C. Loop_if will
most likly be executed at the bottom of a looping construct following
execution of Saveloop to store the program counter at the top of the loop.
When Loop_if executes, if C=0, the saved program counter will be copied
from the stack and stored to the program counter, effecting a backward jump
to the top of the loop. If C=1, the program counter will increment to point to

the next sequential instruction.

NOTACC - Complement each bit of ACC. If ACC=0, set Cto 1.

Otherwise, set C to 0.
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ROTATELEFTS - Rotate the ACC 8 bits left. At each rotate step, the
MSB shifted out of ACC is shifted into the LSB of ACC.

ORSTACK - Perform a logical OR on ACC and the value in the top of
stack. Place the result in ACC. If ACC=0, set C to 1. Otherwise, set C to 0.

ORSTACK+ - Perform a logical OR on ACC and the value in the top
of stack. Place the resultin ACC. After the logical operation, increment the

stack pointer, S. 1f ACC=0, set C to 1. Otherwise, set C to 0.

RIGHTSHIFTACC - Shift ACC right by a single bit. The LSB of
ACC is shifted into C.

SETMSB - Set the most significant bit of ACC. There is no change to
C. This instruction is used in performing signed comparison.

Local TOMI Caching

A cache is memory smaller in size and faster in access than the main memory.
The reduced access time and the locality of program and data accesses allow cache
operations to increase performance of a preferred TOMI processor for many
operations. From another perspective, a cache increases parallel processing
performance by increasing independence of a TOMI processor from main memory.
The relative performance of cache to main memory and the number of cycles the
TOMI processor can execute before requiring another main memory load or store to or
from cache determine the amount of performance increase due to TOMI processor

parallelism.

TOMI local caches enhance the performance increase due to TOMI processor
parallelism. Each TOMI processor preferably has three associated local caches, as

illustrated in FIG. 5:
Instruction - associated with the PC
Source - associated with the X register
Destination - associated with the Y register

Since the caches arc associated with specific registers, rather than “data” or

“instruction” fetches, the cache control logic is simplified and cache latency is
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significantly reduced. The optimal dimensions of these caches are application
dependent. A typical embodiment may require 1024 bytes for each cache. In other
words, 1024 instructions, and 256 32-bit words of source and destination. At least
two factors determine the optimum size of the caches. First is the number of states the
TOMI processor can cycle before another cache load or store operation is required.
Second is the cost of the cache load or store operation from main memory relative to
the number of TOMI processor execution cycles possible during the main memory

operation.
Embedding TOMI Processors in RAM

In one embodiment, a wide bus connects the large embedded memory to the
caches, so a load or store operation to the caches can occur quickly. With TOMI
processors embedded in RAM, a load or storc of an entire cache would consist of a
single memory cycle to a RAM column. In one embodiment, the embedded memory
will be responding to requests of 63 TOMI processors, so the response time of a cache
load or store for one TOMI processor may be extended while the load or store of

another TOMI processor cache completes.

Caches may be stored and loaded based on changes of the associated memory
addressing registers X, Y, PC, as illustrated in FIG. 6. For example, the total width of
the PC register might be 24 bits. If the PC cache is 1024 bytes, the lower 10 bits of
the PC would define access within the PC cache. When the PC is written such that
there is a change in the upper 14 bits, a cache load cycle would be required. The
TOMI CPU associated with that PC cache would stop executing until the cache load

cycle was complete and the indicated instruction could be fetched from the PC cache.
Cache Double Buffering

A secondary cache may be loaded in anticipation of the cache load
requirement. The two caches would be identical and alternately be selected and
deselected based on the contents of the upper 14 bits of the PC. In the example above,
when the upper 14 bits of the PC changed to match that of the data pre-cached in the
sccondary cache, the secondary cache would become selected as the primary cache.
The old primary cache would now become the secondary cache. Since most computer

programs linearly increase in memory, one embodiment of the invention would have
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the secondary cache always fetching the contents of the cache contents of main

memory referenced by the upper 14 bits of the current PC plus 1.

The addition of secondary caches will reduce the time the TOMI processor
must wait for memory data to be fetched from main memory when moving outside of
the boundary of the current cache. The addition of secondary caches nearly doubles
the complexity of a TOMI processor. For an optimal system, this doubling of
complexity should be offset by a corresponding doubling of performance of the TOMI

processor. Otherwise, two simpler TOMI processors without secondary cache can be

implemented with the same transistor count.
High Speed Multiply, Floating Point Operations, Additional Functionality

Integer multiplication and all floating point operations require many cycles to
perform, even with special purpose hardware. Thus, these operations could be
factored into other processors rather than included in the basic TOMI processor.
However, a simple 16 bit x 16 bit multiplier can be added to the TOMI CPU (using
less than 1000 transistors) to provide additional functionality and versatility to the

TOMI CPU architecture.

Digital Signal Processing (DSP) operations often use deeply pipelined
multipliers that produce a result every cycle even though the total multiplication rhay
require many cycles. For signal processing applications that repeat the same
algorithm over and over, such a multiplier architecture is optimal and may be
incorporated as a peripheral processor to a TOMI processor, but it would likely
increase complexity and reduce overall performance if it were incorporated directly in
the TOMI processor. FIG. 7A shows one example of additional processing

functionality organized to take advantage of the wide system RAM bus.
Accessing Adjacent Memory Banks

The physical layout design of the memory circuit in memory chips is often
designed so that the memory transistors are laid out in large banks of memory cells.
The banks are usually organized as equal sized rectangular areas and placed in two or
more columns on the chip. The layout of memory cells in large banks of cells may be

used to speed up the memory read and/or write accesses.
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In one embodiment of the invention, one or more TOMI processors may be
placed between two columns of memory cell banks in a memory chip. The row data
lines of two memory banks may be interleaved such that using the logic shown in Fig,
7B, a TOMI processor may access either Memory Bank A or Memory Bank B by
enabling Select A or Select B. In this manner, the memory directly addressable by a

specific TOMI processor in a memory chip may be doubled.

TOMI Interrupt Strategy

An interrupt is an event external to the normal sequential operation of a
processor that causes the processor to immediately change its sequence of operation.
Examples of interrupts might be completion of an operation by an external device or
an error condition by some hardware. Traditional processors go to great lengths to
quickly stop normal sequential operation, save the state of current operation, begin
performing some special operation to handle whatever event caused the interrupt, and
when the special operation is completed restore the previous state and continue

sequential operation. The primary metric of interrupt handling quality is the time to

‘respond.

Interrupts pose several problems for traditional processors. They make
execution time indeterminate. They waste processor cycles storing and then restoring
status. They complicate processor design and can introduce delays that slow every

processor operation.

Immediate interrupt response is unnecessary for most processors, with the
exceptions being error handling and those processors directly interfacing to real world

activity.

In one embodiment of a multiprocessor TOMI system, only one processor
possesses primary interrupt capability. All other processors run uninterrupted until
they complete some assigned work and stop themselves or until they are stopped by

the coordinating processor.

Input/Output (1/0)
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In one embodiment of the TOMI processor environment, a single processor is responsible for all

interfacing to the external world.

Direct Memory Access (DMA) Control

In one embodiment, immediate response to the external world in a TOMI processor system
occurs via a DMA controller. A DMA controller, when requested by an external device, transfers
data from the external device to the internal data bus for writing to the system RAM. The same
controller also transfers data from the system RAM to the external device when requested. A DMA

request would have the highest priority for internal bus access.
Organizing an Array of TOMI Processors

The TOMI processor of preferred embodiments of the invention is designed to be
replicated in large numbers and combined with additional processing functionality, a very wide
internal bus, and system memory on a monolithic chip. An exemplary memory map for such a

system is illustrated in FIG. 8.

The memory map for each processor dedicates the first 32 locations ( IF hex) to the local
registers for that processor (see FIG. 3). The remainder of the memory map is addressable by all
processors through their cache registers (see FIG. 6). The addressability of the system RAM is
limited only by the width of the three registers associated with the local caches; PC, X, and Y. If
the registers are 24 bits wide, the total addressability would be 16 Mbytes, but there is no upper
limit.

In one embodiment, 64 TOMI processors are implemented monolithically with memory. A
single master processor is responsible for managing the other 63. When one of the slave processors
is idle, it is not clocking so it consumes little or no power and generates little or no heat. On
initialization, only the master processor is operational. The master begins fetching and executing
instructions until a time that a thread should be started. Each thread has been precompiled and
loaded into memory. To start a thread, the master allocates the thread to one of the TOMI CPUs.

Processor Availability
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Coordination of the availability of TOMI processors to do work preferably is
handled by the Processor Availability Table shown in FIG. 9. The coordinating

(master) processor preferably can perform the following functions:

1. Push the calling parameters for a slave processor onto its stack, including
but not limited to the execution address of the thread, the source memory, and the

destination memory.
2. Start a slave processor.

3. Respond to a slave processor thread completion event either by polling or by

responding to an interrupt.
Requesting a Processor

The coordinating processor may request a processor from the availability table.
The number of the lowest processor with an available_flag set to “0” is returned.
The coordinating processor may then set the available flag associated with the

“1”

available processor to “1”, thereby starting the slave processor. If no processor is
available, the request will return an error. Alternatively, processors may be allocated
by the coordinating processor based upon a priority level associated with the requested
work to be performed. Techniques to allocate resources based upon priority schemes
are well-known in the art. FIG. 10 illustrates three preferred components of processor

allocation; Coordinating Processor initiating operations, Slave Processor operations,

and Coordinating Processor result handling through interrupt response.
Step-by-Step Starting a Slave Processor

1. Coordinating processor pushes the parameters for the thread to run onto its
own stack. Parameters may include: starting address of the thread, source memory for

the thread, destination memory for the thread, and last parameter_count.
2. Coordinating processor requests an available processor.

3. Processor allocation logic returns either the number of the numerically
lowest slave processor that has both its associated available_flag set and its associated

done_flag cleared, or an error.
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4. 1f an error was returned, the coordination processor may either retry the
request until a slave processor becomes available or perform some special operation to

handle the error.

5. If an available processor number was returned, the coordinating processor
clears the available_flag for the indicated processor. This operation pushes the
parameter_count number of stack parameters to the stack of the selected slave

processor. The done_flag is cleared to zero.

6. The slave processor retricves the top stack item and transfers it to the slave

processor’s program counter.

7. The slave processor then fetches the memory column indicated by the

program counter into the instruction cache.

8. The slave processor begins executing instructions from the beginning of the
instruction cache. The first instructions will likely retrieve the calling parameters

from the stack.

9. The slave processor executes the thread from the instruction cache. When
the thread completes, it checks the state of its associated done_flag. If the done_flag
is set, it waits until the done_flag is cleared, indicating the coordinating processor has

handled any previous results.

10. If the interrupt vector associated with the slave processor is set to -1, no
interrupt will be created by setting the done_flag. The coordinating processor may

therefore poll for the done_flag to be set.

When the coordinating processor detects that the done_flag is set, it may
handle the slave processor’s results and possibly reassign the slave processor to do
new work. When the slave processor’s results have been processed, the associated

coordinating processor will clear the associated done_flag.

If the interrupt vector associated with the slave processor is not equal to -1,
setting the associated done_flag will cause the coordinating processor to be

interrupted and begin executing an interrupt handler at the interrupt vector address.

If the associated available_{flag has been set also, the coordinating processor
may also read the return parameters pushed on the slave processor’s stack.

234 -
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The interrupt handler will handle the slave processor's results and possibly reassign the
slave processor to do new work. When the slave processor's results have been processed, the

interrupt handler running on the coordinating processor will clear the associated done_flag.

11. If the done_flag is clear, the slave processor sets its associated done_flag and saves the
new start_time. The slave processor may continue to do work or may return to the available state.
To return to the available state, the slave processor may push return parameters onto its stack,

followed by a stack count and set its available flag.
Managing TOMI Processors Using Memory Mode Register

One technique for implementing and managing multiple TOMI processors is to mount the
TOMI processors on a dual inline memory module (DIMM) as shows in FIG. 10A. The
TOMI/DIMM can be included in a system consisting of an external memory controller and a
general purpose CPU such as a personal computer. FIG 10B. shows such a configuration. A mode
register is commonly found in DRAMs, SRAMs and FLASH memories. The mode register is a set
of latches that may be written by an external memory controller independent of memory access.
Bits in the memory mode register are often used to specify parameters such as timing, refresh

control, and output burst lengths.

One or more bits can be allocated in a memory mode register to enable or disable the
TOMI CPUs. For example., when the TOMI CPUs are disabled by the mode register, the memory
containing the TOMI CPUs would function as a normal DRAM, SRAM or FLASH memory. When
fhe mode register enables TOMI CPU initialization, the sequence will be performed as described in
FIG 10C. In this embodimént, a single processor is determined to be the Master Processor. It is this
processor that always starts first following a RESET operation. At the end of initialization, the
master processor will be running at full speed and executing the desired application program.
While the TOMI CPUs are executing, the DRAM, SRAM, or FLASH memory will be inaccessible.
From time to time the Memory Mode Register may be directed by the external memory controller
to halt execution of the TOMI CPUs. When the TOMI CPUs are halted, the contents of the DRAM,
SRAM, or FLASH may be read by the external memory controller attached to a general purpose
CPU. In this way, results may be passed to the general purpose CPU and additional data or
executables may be written to the DRAM, SRAM, or FLASH memory.

When the general purpose CPU has completed any reads or writes of the DRAM, SRAM,
or FLASH memory, the external memory controller will write the mode register bit from HALT to
RUN and execution of the TOMI CPUs will continue executing from where they left off. FIG. 1
OD shows a typical Memory Mode Register from a DRAM, SRAM, or FLASH memory and how
that register will be modified to control the TOMI CPUs.
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Adjusting Processor Clock Speed

Processor clock speed determines processor power dissipation. The TOMI architecture
enables low power dissipation by allowing all but one processor to be stopped. Furthermoré, each
processor other than the Master Processor may have its clock speed adjusted to optimize either

performance or power consumption using the logic shown in FIG. 2D.
Another Embodiment of TOMI Processor Management

Some computer software algorithms are recursive. In other words, the primary function of
the algorithm calls itself. The class of algorithms known as "divide and conquer" is often
implemented using recursive techniques. Divide and conquer is applicable to searches and sorts of
data, and certain mathematical functions. It may be possible to parallelize such algorithms with
multiple processors such as those available with the TOMI architecture. In order to implement such
algorithms, one TOMI CPU must be able to pass work to another TOMI CPU and receive the
results from that CPU. Another embodiment of the TOMI processor allows any processor to be a
Master Processor and treat any other available TOMI processor as a Slave Processor. Starting and
stopping TOMI processors, communicating between processors, and managing independent and

dependent threads is supported in this embodiment of processor management.
Stopping a TOMI CPU

A TOMI CPU may be stopped by writing all 1 's to its PC. When a TOMI CPU is stopped,
its clock is not running and it's not consuming power. Any TOMI CPU may write all 1 's to its own

PC.
Starting a TOMI CPU

A TOMI CPU may start executing when a value other than all 1's is written to its PC. The
master processor has a value of 0 written to its PC when it is reset by the mode register as shown in

FIG 10D.
Independent Processor Threads

When multiple threads éxecute on a single general purpose processor, those threads may be
very loosely coupled, only communicating infrequently. Rather than run, return results, and stop,
some threads may run forever, delivering results continuously and in perpetuity. An example of
such threads would be a network communications thread or a thread reading a mouse device. The
mouse thread runs continuously and delivers mouse position and click information either to a
shared memory area where it can be polled or to a callback routine where it is immediately

presented.
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Such independent threads are primarily used to simplify programming rather than to
accelerate performance. Similar threads can be executed on a multiprocessor system such as TOMI.
The results may be delivered to a shared memory area. In some cases, communications may be

accomplished through a shared variable.

In the TOMI architecture, a shared variable may be more efficient than shared memory
since the variable can avoid the necessity for a memory RAS cycle to load a complete row to the
X_cache or Y cache. An example of use of a variable would be an input pointer to a receive buffer
for a TOMI CPU monitoring network traffic. The network monitoring CPU would increment the
variable as data is received. The data consuming CPUs would read the variable from time to time
and when enough data was present, perform an operation to load a memory row into either the X
cache or Y cache. The received network data could then be read from the cache up to the value

indicated by the shared variable. -
Dependent Processor Threads

Some algorithms (such as those classified as divide and conquer) can achieve parallelism
by simultaneously executing pieces of the algorithm on several processors and combining the
results. In such a design, a single Master Processor will request work from several Slave Processors
and then wait while the slaves perform the work in parallél. In this way, the Master Processor is

dependent on work being completed by the slave processors.

When a Slave Processor's work is completed, the Master Processor will read the partial
results and combine them into the final result. This capability enables the TOMI architecture to
efficiently process a class of algorithms known as "divide and conquer." Some of the more

common simple divide and conquer algorithms are searches and sorts.
Multiprocessor Management Instruction Set Extensions

A series of extensions to the basic TOMI instruction set enable both independent and
dependent thread management. These instructions would be implemented using some of the
available NOOP codes shown in FIG. 2B. These management extension instructions are

summarized in FIG. 2C.

GETNEXTPROCESSOR - This instruction queries the processor availability table and

loads the ACC with a number associated with the next available processor.
SELECTPROCESSOR - This instruction writes the ACC to the Processor

Select Register. The Processor Select Register selects which processor will be evaluated by
TESTDONE and READSHAREDVARIABLE.
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STARTPROCESSOR - This instruction writes to the PC of the processor selected by the
Processor Select Register. This instruction is most likely to be executed when a master processor
wants to start a slave processor that is stopped. A slave processor is stopped if its PC is all 1's. By
writing a value to the PC of the slave processor, the master processor will cause the slave processor
to begin running a program at the location of the written PC. If the operation was successful, the
ACC will contain the PC value being written to the selected processor. If the operation was not
successful, the ACC will contain -1. The most likely reason for a failed operation is that the

selected processor was unavailable.

TESTDONE - This instruction tests the PC of the processor selected by the Processor
Select Register and sets the C bit of the calling processor to "1" if the PC = all ones. In this manner

a loop testing the PC may be created as follows:
LOADI, processorNumber
SELECTPROCESSOR
LOADACC, LOOPADDRESS

TOP TESTDONE

STOREACC, PC_COND // Loop to TOP until the selected processor is
stopped with PC =all 1s.

TESTAVAILABLE - This instruction tests the "available" bit in the Processor Allocation
Table bit for the processor selected by the Processor Select Register and sets the C bit of the calling
processor to "1 " if the selected processor is available. In this manner a loop to test the availability

for further work may be created as follows:
LOADI, processorNumber
SELECTPROCESSOR
LOADACC, LOOPADDRESS
TOP TESTAVAILABLE

STOREACC, PC_COND // Loop to TOP until the selected processor is

available.

SETAVAILABLE - This instruction sets the "available" bit in fhe Processor Allocation
Table for the processor selected by the Processor Select Register. This instruction will most likely
be executed by one processor which has requested that another processor do work as shown in FIG.
10E. When the working processor.completes its work, it stops by setting its PC to all Is. The
requesting processor will periodically TESTDONE for the working processor. When the
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working processor has completed its work, the requesting processor will read the results either
through a shared memory location or through a shared variable. When the results have been read,
the working processor is available to be reassigned another task, and the requesting processor will

use SETAVAILABLE so that other processors may request it to do further work.

READSHAREDVARIABLE - This instruction reads the Shared Variable of the processor
selected by the Processor Select Register. This instruction will most likely be executed by one
processor which has requested that another processor do work. The Shared Variable may be read
by any processor to determine the progress of the assigned work. As an example, the working
processor might be assigned to process data being received from a high speed network. The Shared
Variable would indicate the amount of data that had been read and was available to other
processors. Each processor contains a Shared Variable. That Shared Variable may be read by any

other processor but a Shared Variable may only be written by its own processor.

STORESHAREDVARIABLE - This instruction writes the value of the ACC to the Shared

‘Variable of the processor executing the instruction. The Shared Variable may be read by any other

processor and is used to communicate status and results to other processors.
Interprocessor Communications Using Data Ready Latches

Fig. 10F illustrates one possible hardware implementation of communications between
TOMI processors. One TOMI processor may establish a connection between itself and another
TOMI processor using the SELECTPROCESSOR command. This instruction creates a logical
connection that allows the selecting and selected processors to exchange data using a shared
register and the READSHAREDVARIABLE and STORESHAREDVARIABLE commands.

The top half of Fig. 10F shows the logic for the processor to send data to another processor
controlled by a ready flag register. The bottom half of Fig. 10F shows the logic for the processor to

receive data from another processor controlled by a ready flag register.
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The status of the shared register may be read into the C bit of either the
selecting or selected processors. In operation, a processor writes data to its shared
register thereby setting the associated data rcady flag. The connected processor reads
its shared register until the C bit indicates that the associated data ready flag has been

set. The read operation clears the ready flag so the process can repeat.
Arbitrating Processor Allocation

As described above, a TOMI processor can delegate work to another TOMI
processor whose availability has been determined by GETNEXTPROCESSOR.

GETNEXTPROCESSOR determines if a processor is available. An available
processor is one that is not currently performing work and is not holding results of

previous work which have not yet been retrieved by READSHAREDVARIABLE.

Fig. 10G shows one hardware implementation to identify an available
processor to which work can be delegated. Fig. 10H shows the events of an

exemplary processor arbitration. The process is as follows:

1. The requesting processor executes a GETNEXTPROCESSOR instruction
which pulls down the "Request Next Available Processor" line to the Arbitration

Logic.

2. The Arbitration Logic produces a number corresponding to a TOMI CPU on

the "Next Available Processor" lines.

3. The requesting processor executes a SELECTPROCESSOR instruction
which stores the number in the requesting processor's PSR (Processor Select

Register).

4. The requesting processor then executes a STARTPROCESSOR instruction
which writes to the PC of the processor selected by the Processor Select Register. If
the operation was successful, the number of the selected processor is also stored to the
Arbitration Logic to indicate that the selected processor is no longer available to be
assigned to do work. If the operation was unsuccessful, the reason is probably that the
selected processor is not available. The requesting processor will execute another

GETNEXTPROCESSOR to find another available processor.
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5. When the selected processor executes STORESHAREDVARIABLE to
make its results available, the Arbitration Logic is notified that the selected processor

has results waiting to be read.

6. When the selected processor is stopped by writing -1 to its PC, the

Arbitration Logic is notified that the selected processor is available.

7. When the selected processor's results are retrieved by
READSHAREDVARIABLE, the Arbitration Logic is notified that the selected

processor's results have been read.
Memory Locking

TOMI processors read and write system memory through their caches. A
completely cached column is read or written at one time. Any processor may read any
portion of system memory. An individual processor may lock a column of memory
for its exclusive writing. This locking mechanism avoids memory writing conflicts

between processors.
Suggested Applications

Parallelism effectively accelerates applications that may be factored into
independent pieces of work for individual processors. One application that factors
nicely is image manipulation for robotic vision. Image manipulation algorithms
include correlation, equalization, edge identification, and other'operations. Many are

performed by matrix manipulation. Very often the algorithms factor nicely, as

illustrated in FIG. 11.

In FIG. 11, the example imagemap shows 24 processors, with a processor

allocated to manipulate the image data for a rectangular subset of the total imagemap.

FIG. 12 shows how the TOMI system RAM may be allocated in one
embodiment. One block of system RAM holds the image capture pixels, and another

block holds the processed results.

In operation, the coordinating processor has allocated a DMA channel to
transfer the image pixels from an external source to the internal system RAM every

fixed amount of time. A typical speed of image capture might be 60 images per
second.
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The coordinating processor then enables slave processor 1 by pushing the
address of the imagemap to be used by the X register, the address of the processed
image to be used by the Y register, the parameter count of 2, and the address of the
image processing algorithm. The coordinating processor subsequently and similarly
enables processors 2 through 25. The processors continue to execute independently

and in parallel until the image processing algorithm is completed.

When the algorithm is completed, each processor sets its associated done_flag
in the Processor Availability Table. The results are handled by the coordinating
processor, which is polling for completion or responding to an interrupt on the “done”

event.

Figures 13A and 13B show exemplary floorplans for a monolithic array of 64
TOMI processors implemented with on-chip system memory. The floorplan may vary
depending upon the circuit design and layout of the memory circuit and the overall

chip architecture.
TOMI Peripheral Controller Chip (TOMIPCC)

One embodiment of the TOMI architecture embeds one or more TOMI CPUs
in a standard DRAM die. The resulting die is packaged in the standard DRAM
package with the standard DRAM pinout. The packaged part may be mounted on the
standard DRAM DIMM (dual inline memory module).

In operation, this embodiment behaves like a standard DRAM except when the
embedded TOMI CPUs are enabled through the DRAM mode register. When the
TOMI CPUs are enabled and operating, they cxecute programs loaded to the DRAM
by an external processor. The results of TOMI CPU calculations are provided to the

external processor through the shared DRAM.

In some applications the external processor will be provided by a PC. In other
applications, a specialized processor may be provided to perform the following
functions for the TOMI DRAM chip(s). Fig. 14A shows one embodiment of such a
processor, TOMI Peripheral Controller Chip (TOMIPCC). The functions of this

Processor arc:

-43 -

1-NY/2329384.1




10

15

20

25

1. Provide a mechanism to transfer data and instructions from an associated
permanent storage device to the TOMI chip DRAM for use. In many systems, the

permanent storage device may be a flash RAM.

2. Offer an input/output interface between the TOMI chip(s) and real world

devices such as displays and networks.

3. Execute a small set of operating system functions necessary to coordinate

TOMI CPU operations.

‘ Fig. 14B shows a very small system using the TOMIPCC. The example of a
Cellphone Language Translator consists of only three chips; flash RAM, TOMIPCC,
and a single TOMI CPU/DRAM. In this minimal application, the single TOMI
CPU/DRAM will communicate through the standard 8-bit DRAM 1/O as indicated
D0-D7. ‘

The flash RAM will contain the dictionary of phonemes and syntax that define
spoken language as well as the instructions necessary to interpret and translate the

spoken language from one form to another.

The TOMIPCC will receive the analog spoken language (or its equivalent),
convert it to a digital representation, and present it to the TOMI DRAM for
interpretation and translation. The resulting digitized speech will be passed back from
the TOMI DRAM to the TOMIPCC, converted to an analog voice representation, and

then output to the cellphone user.

Fig. 14C shows a very large system using the TOMIPCC. An example of such
a system is a Memory-centric Database Appliance (or MCDB). An MCDB system
operates on an entire database in high speed memory instead of paging pieces of it in
from a much slower disk or storage device. Fast searches and sorts are possible with
the TOMI architecture by the use of so-called divide and conquer algorithms
executing on the TOMI CPUs residing on the same chips as the Memory-centric

Database.

Such a system will likely be built with TOMI DIMM s (dual in-line memory
modules) incorporating a plurality of TOMI CPU chips. The datapath to a standard
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240- pin DIMM is 64 bits. Therefore, the TOMIPCC in a Memory-centric Database application
will drive a 64-bit wide database, as indicated by D0-D63.

It will be appreciated that the present invention has been described by way of example only
and with reference to the accompanying drawings, and the invention is not limited by the specific
embodiments described herein. As will be recognized by those skilled in the art, improvements and
modifications may be made to the invention and the illustrative embodiments described herein

without departing from the scope or spirit of the invention.

It is to be understood that, throughout the description and claims of the specification the
word "comprise" and variations of the word, such as "comprising" and "comprises”, is not intended

to exclude other additives, components, integers or steps.
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The claims defining the invention are as follows:
A system comprising:

a plurality of parallel processors embedded into a random access memory (RAM)

10 Jul 2012

die;
5 said plurality of parallel processors in communication with an external memory

controller and an external processor, and

wherein each of said parallel processors is operable to process an instruction set
optimized for thread-level parallel processing, wherein each of said processors is operable

to process a single thread, and wherein a plurality of threads share data through shared

2008355072

10 memory or one or more shared variables.
2. A system as in claim |, wherein said die is packaged with a RAM pinout.

3. A system as in claim 1 or claim 2, wherein said parallel processors are mounted on a dual

inline memory module.

|
|
‘ 4, A system as in any of the preceding claims, wherein said system operates as RAM except

15 when said processors are enabled through a RAM mode register.
5. A system as in any of the preceding claims, wherein said external processor is operable to

transfer data and instructions from an associated permanent storage device to said RAM.

| 6. A system as in claim 5, wherein said permanent storage device is FLASH memory.

7. A system as in any of the preceding claims, wherein said external processor is operable to
| 20 provfde an input/output interface between said parallel processors and external devices.
l 8. A system as in any of the preceding claims, wherein one or more bits allocated in a

' memory mode register is operable to enable or disable one or more of said parallel

processors.
9. A system as in any of the preceding claims, wherein at least one of said parallel processors
25 is treated as a master processor and other of said parallel processors are treated as slave
processors.
10. A system as in claim 9, wherein each processor has a clock speed, and each processor other

than aid master processor is operable to have said processor's clock speed adjusted to

optimize either performance or power consumption.

30 11. A system as in claim 9 or claim 10, wherein each processor is operable to be treated as

either a master processor or a slave processor.
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13.

14.

15.

16.

17.

18.

A system as in any one of claims 9 to 11, wherein said master processor requests
processing by several slave processors, waits for output from several slave processors, and

combines said output.

A system as in claim 12, wherein said master processor combines output from said several

processors as said output is received from each of said several processors.

A system as in any of the preceding claims, wherein low power dissipation is provided by

enabling one or more or said parallel processors to be stopped.

A system as in claim 14, wherein each of said parallel processors is associated with a
program counter and is operable to be stopped by writing all ones (1's) to a program

counter associated with said parallel processor.

A system as in any of the preceding claims, wherein the plurality of processors are
manufactured on said chip with the computer memory located on said chip using a

semiconductor manufacturing process designed for monolithic memory devices.

A system as in claim 16, wherein the semiconductor manufacturing process uses less than 4

layers of metal interconnect.

A system as in claim 17, wherein the semiconductor manufacturing process uses less than

three layers of metal interconnect.
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Instruction Op Code Map

Op Code Mnemonic Operation Carry

00b bbbbb LOADI, IMM IMM -> ACC No change
010 bbbbb LOADACC,R R ->ACC No change
011 bbbbb STOREACC, R ACC ->R No change
100 bbbbb ADD, R ACC+R->R C = carry
101 bbbbb AND, R ACCANDR->R If zero, C=1
110 bbbbb XOR, R ACC XORR->R If zero, C=1
111 bbbbb INC, R R+1->R If zero, C=1

b - a single binary bit
IMM - 6-bit immediate operand
R - Register

Fig. 2




Forward Branches

MSB LSB
PC  X00MX(XXX  XXXXXXXX XXWWWWWW

ACC 00000000 00000000 00zzzzzz

Forward branch is taken, zzzzzz -» WWWWWW

if wwvwwww > zzzzzz,
then XXxXXXXXX XXXXXXXX XX + 1 OO XXXXXX XX

Fig. 2A




Instruction Map

Op code bits 765 165 765 165 165 165 165 765
(000) (001) (010) (011) (100) (101 {(110) (111)
LOADI  LOADI LOADACC STOREACC ADD AND XOR INC

$3210

00000 | ; SAVELOOP jcaic  Cebcopc  LOOPF it
00001 | SHFTLOADBYTE ACC>PC  ACC+PC-»PC LOOP SETMSB PC+->PC
00010 | NOTACC  ROTATELEFT8 :g,,c{?cc"mc :,Z:[fg ,’:32: c« ,',,Ni:,%c
00011 PROCESSOR PROCESSOR  pROGRSsor  TESTOONE AVALABLE  AVALABLE
00100 S»ACC o ﬂ*iﬁg _ A
001 01 S-~&C SIRCC>ACC
00110} ror NRME  RRN D [hen] Puee
001 1 1 RIGHTSHFTACC PUSH g)*ACC->ACC (SS+)&ACC->ACC g‘ACC-vACC OJACC>ACC
01 000 XSRCC ACC-»X ‘ 8

01001 Operate on X_cache regite | X

01010 Pre-decrement X, operate on X_cache register pointed to by X
01011 ¢ Operate on X_cache register pointed to by X, post-increment X
01100 YoACC ACC->Y
01101} Operate on Y_cache register pointed to by Y

01110 Pre-decrement Y, operate on Y_cache register pointed to by Y
01111 Operate on Y_cache register pointed to by Y, post-increment Y
10000 Shared Variable

L B
10010

10011

10100

10101

10110

1 01 1 1 ....................

1 1 000 .......

11001

11010

11011 |

11100

11101

11110

11111




Multiprocessor Management
Instruction Set Extensions

Mnemonic Operation | Carry Effect
GETNEXTPROCESSOR N ->ACC . No change
SELECTPROCESSOR ACC -> PSR No change
STARTPROCESSOR ACC -> processor[PC] On success, C=1
TESTDONE Test processor [ PC]=-1 If PC=-1, set C=1
TESTAVAILABLE TEST processor{AvailableFlag] If available, set C=
"SETAVAILABLE Set AvailableFlag to 1 No change

READSHAREDVARIABLE processor[SharedVariable]->ACC No change
STORESHAREDVARIABLE ACC ->SharedVariable No change

NOTE: Op codes are implementation dependent and are
selected from the available op codes indicated in FIG 2B.

b - a single binary bit

IMM - 6-bit immediate operand

R - Register

N - 32-bit integer

PSR - Processor Select Register

processor - Processor indicated by Processor Select Register

Fig. 2C




TOMI Clock Programming

» Master CPU

Fixed System Clock Clock
@———> Freq. Scaler —L

R

Variable Clock Scale Select Mux - Other CPU
2N + 1 inverters Clocks

- »---\----o»rf»
W TN

Speed Select - Select

Fig. 2D




Mnemonic
SAVELOOP
SHIFTLOADBYTE
LOOP
LOOP_IF
NOTACC
ROTATELEFTS
ORSTACK
ORSTACK+
RIGHTSHIFTACC
SETMSB

NOTE: Op codes are implementation dependent and are
selected from the available op codes indicated in FIG 2B.

b - a single binary bit

Instruction Set Extensions

Operation
PC -> -(S)
Shift ACC left 8 bits, next byte->ACC
(S)-> PC
if C=0, (S) ->PC
~ACC -> ACC
Rotate ACC 8 bits left
ACC | (8) -> ACC
ACC | (S)+ -> ACC
Shift ACC right
231 -> ACC

IMM - 8-bit immediate operand

R - Register

N - 32-bit integer

PSR - Processor Select Register
processor - Processor indicated by Processor Select Register

Fig. 2E

Carry Effect

No change

No change

No change

No change

if ACC=0, set C=1
No change

If ACC =0, set C=-
If ACC =0, set C=’
LSB->C

No change




Effective Addresses

Register Name Effective Operand Cycles Special Operations

00000 PCO PC+3 for read, else PC 1 Write is conditional on C=(
00001 PC1 load 8-bit imm. read, else PC 1
00010 ACC ACC 1
00011

00100 S S 1
00101 (S) data addressed by S 2
00110 -(S)  (S) predecrement 2
00111 (S)+ (S) postincrement 2
01000 X X 1
01001 (X) data addressed by X 2
01010 -(X) (X) predecrement 2
01011 (X)+  (X) postincrement 2
01100 Y Y 1
01101 (Y) data addressed by Y 2
01110 -(Y)  (Y) predecrement 2
01111 (Y)+ (YY) postincrement 2
10000 R10  Register 10 1
10001 R11  Register 11 1
10010 R12  Register 12 1
10011 R13  Register 13 1
10100 R14  Register 14 1
10101 R15  Register 15 1
10110 R16 . Register 16 1
10110 R17  Register 17 1
10111 R18  Register 18 1
11000 R19  Register 19 1
11001 R1A  Register 1A 1
11010 R1B  Register 1B 1
11011 R1C  Register 1C 1
11100 R1D Register 1D 1
11101 R1E  Register 1E 1
11111 R1F  Register 1F 1

Fig. 3




Architectural Scalability

4 bit +—>
8 bit +—>
16 bit < >
24 bit < >
32 bit <
Y
X
S
ACC
O
P
=
®
“
A
®
gl
-
e
®
”
ALU

Fig. 4
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Y cache

Local Caches

Instruction cache

X cache

N bits wide bus ——»
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per
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Cache Management States for X and Y Cache

'

Requires new
instruction cache

Fetch next
instruction/
Increment
PC

Fill
“instruction
cache

Cache filled

Fetch complete

Cache write

Old cache completed/
clear cache

has been A s

written to dirty” bit

" Requires

new data Decode complete

Decode
instruction

Requires cache

. access

Fill data Select
operator &
Cache operands
Cache filled selected
‘ Operand fetch
Perform Requires ALU cycle complete
Cycle done
Requires cache Execute
access oache. operator

Select
destination
cache

Requires
cache access

Operation
complete

Store
Result storec result

Fig. 6




System RAM

AAA
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10ss320.d Juiod Buneol -
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Memory Bank A Row Data (1 of 8192)

Memory Bank A

Sharing Memory Banks
Fig. 7B

Memory Bank B




System Memory Map

System RAM

Fig. 8

Always addresses system memory
(Accessible to all processors)




Processor Availability Table

Processor available_flag done_flag Interrupt Vector time_started error_flag
- |L3F
3E
3D
3C

3B
3A

30
2F
2E

08
0/
06
09
04
03
02
01

Fig. 9




Slave Processor Allocation States

Coordinating Processor

Push calling parameters and parameter
count followed by the address of the
thread to run onto the stack.

v

Request the numerically lowest
\Jon?' processor that has its available_flag
=1 and its done_flag = 0.

ailable

Clear the available_flag of the
available processor
(which starts the slave processor)
and save the associated system_time.

zoordinating Processor Interrupt Handler

T No _Available_flag =0 ?
Yes
Pop the indicated number of available
return parameters from the associated
slave_processor's stack

|
v

Handle any returned parameters
or other results.

v

Clear the done_flag.

Is the coordinating processor done
No with this thread?

Yes

Set the available_flag.
|

v

Return

Fig.

Slave Processor

Pop the thread address off the
coordinating processor's stack and
put it into the slave processor's PC.

Pop the indicated number of
calling parameters from the
coordinating processor's stack
into the slave processor's stack.

Fetch the memory column
indicated by the PC into the
instruction cache.

Execute the thread until some @
useful work has been done.

Done_flag=0?
No— (Any previous results have
been handled.)

Yes

Set the done_flag.
l_-—_ .

Set the error_flag.
Set PC =-1
(which stops execution)

Interrupt_yector=-1?

No Yes
Interrupt the

coordinating processor

Yes
Does thread want to continug? ————————

¢No

Set the available_flag. Setthe PC = -1,
(which stops execution)




TOMI Processors Mounted on a DIMM

s Sixty four 32-bit TOMI CPUs + 64Mbyte RAM
O (assuming a 64Mbyte DRAM)

Single TOMI package

| TN T nnnnannmn S
Sixteen TOMI packages on a DIMM

1024 32-bit TOMI CPUs + 1Gbyte RAM

Fig. 10A




A TOMI System with a
General Purpose CPU

TOMI/DIMM

DOO00000
General Purpose CPU

(such as Pentium)

L
Memory
2 Controller CPU

Fig. 10B




TOMI Processor Initialization
1. TOMI CPUs are enabled by the memory mode register

2. Reset configuration is:
- All processors stopped but master processor,

- Master processor clock set to slow speed,

- Master processor PC set to 0,
- Master processor instruction cache loaded with address 0

which contains power-on-self-test (POST) and starting execution
address.

3. Master processor performs power-on-self-test.
4. Master processor determines its optimal clock speed.

5. Master processor:
- Starts each slave processor individually,
- Tests at slow speed,
- Stops the processor.

6. Master processor: |

- Starts each slave processor individually,

- Determines the optimal clock speed for each slave processor, -
- Stops the processor.

7. Master processor begins executing at the starting execution
address.

Fig. 10C




Use of Memory Mode Register

Extended Mode Register 3, EMR(3) |
(iodified from JEDEC DDR2 SDRAM specification JESD79-2C)

\\ ADIABIATIABIAS|A4|A3]A2 A‘iAO
\ | |

TOMI reset
\ 4
TOMI enabled

Fig. 10D




Processor Availability State Diagram
(for a single slave processor)

Master processor:
- Locates an available slave with

Power on GETNEXTPROCESSOR
reset - Selects the Slave Processor with
SELECTPROCESSOR

- Starts the Slave Processor with STARTPROCESSOR
which sets AvailableFlag of Slave Processor to 0

Processor

Unavailable
and

Running

Processor Available:
- PC - -1
- Available Flag = 1

Slave Processor writes
all 1s toits PC and
stops executing

Master processor:;
- Tests that Slave Processor is
stopped with TESTDONE

- Reads the Slave Processor's PI"OCGSSOI"
results with : . .
READSHAREDVARIABLE or Unavailable .
through shared memory and

- Sets the Slave Processor's
AvailableFlag to 1with
SETAVAILABLE

Stoppéd
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Factoring Computation of Imagemap

processor 1

processor 2

processor 3

processor 4

processor 5

processor 6

processor 7

processor 8

processor 10

processor 11

processor 12

processor 13

processor 14

processor 15

processor 16

processor 17

processor 18

processor 19

processor 20

processor 21

processor 22

processor 23

processor 24

processor 25

Fig.

11




Possible Floorplan of 64 Processor System

INENUEANEED] -—~—w__

IBEENASESSERSERERERENAI &LLE_.FFFFFFFF__

~_~:j~4 LLLL]

IS SIS SN ENRS!

_—-_~__—_Hhucrr~xn—4ﬂ~_— ITIEESELENS RN

praeny

TOMI CPUs /

Fig. 13A



Another Possible Floorplan

TOMI

CPUs

0000000000000000000000000000000000

decode

TOMI

0000000000000006000000000000000800D00

DDDDDDDDDDDDDDDDDDDDDDDDUDDDDDDDDDDDDDDDDDDDDDDDUODDDDDDDDDDDDDDDDDDDDDDDDDDDD

CPUs

Fig. 13B




Multimedia Interface

0gsn

Lasn

HIOMLEN

Audio
Analog .
RGBHV HDMI L R Mic
I | L 11
VGA DIA X2 o=
D/A X 3 HDMI controller AD %
O
o)
3 2
o X
=~ - TOMI CPU 3
82 o] =
i B
= o o
< 3 o Z
¥ .= 3 =&
c g © S35
a > = RS
Lo -
L g 64K RAM
Z T
! [ ot
g — c g
© e
=8
DRAM Interface O =

VOAdO  SMIDLNO NI

I
]

TOMI DRAM Interface

FAFTFTTTTTT 77T

A0-A13 D0-D7D8-D63 CS WE CK.CKE CAS RAS BAO;Q

Fig. 14A TOMI Peripheral Controller Chip




TOMI
CPU/DRAM
| /| (single chip)

AD-A1

TOMIPCC

CE
(=]
L
~

Flash RAM

TEC

>

/\

Keyboard, analog I/O,
display, RF control

Fig. 14B Cellphone Language Translator




Flash RAM

b

-D7

\

TOMIPCC

DO-D63
TOMI TOMI TOMI
DIMM DiMM DIMM
(16 chips) (16 chips) {18 chips)
| AD-A12

Network and other /O

Cin 440 MDA Natahaeca Annlianre:




AEQ8

COMPWORD
AEQB 1 S[31:0]

4 A31:0)
TRISTATE32
EN
Accumulator A3
AWORD
’ I[31:0)
D31:} AWORD[31:0) |—AB10
{RSTB >— P Y= B0 —
Al
A 8[31:0
A[31:0} ¢ B[31:0}
M_ Iﬂé&ﬂlllxmzo
= — ENPB
2 g OVERFLOW Exasp
g _ = 5 envoR 2
2 z i} A2
—= £ "
2 ] i 4
& s[p31:0]
2 Q > 5% wSseooa
(] = = m. <« e ZT & O
= = xX < X Z
z s Gguwwu

: |
}
FIGURE 15A
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$(31:0)

N,

i WRITECOMPLETE

be

3
|
i L CACHE
RSTB “ DRAMWRITEDONE
DRAMDATAREADY
LK
n:.z FC[31:0] f—— Fep1:0]
RSTE FM[8191:0) —— FM[8197]0)
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RY RY INCPC
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Signal Name irection

RSTB In

CLK in

M[8191:0) 1o

MADD{31:10) Out
STARTREADREQUEST Out
STARTWRITEREQUEST Out

WRITECOMPLETE In

READCOMPLETE In

To be determined:

WP Oout

RPSR Out

PSR(5:0] o

Signal Name From Block

ENOR INSTRUCTION_DECODER
ENPB INSTRUCTION_DECODER
ENAND INSTRUCTION_DECODER
ENXOR INSTRUCTION_DECODER
Ci INSTRUCTION_DECODER
CE INSTRUCTION_DECODER
co ALU

A[31:0) ACCUMULATOR

B[31:0) REGISTERS or CACHE
5{31:0} ALU

EM INSTRUCTION_DECODER
CARRY OVERFCARRY

TST INSTRUCTION_DECODER
AEQB COMPARE

WX INSTRUCTION_DECODER
wy INSTRUCTION_DECODER
ws INSTRUCTION_DECODER
RX INSTRUCTION_DECODER
RY INSTRUCTION_DECOQDER
ENI INSTRUCTION_DECODER
ENA INSTRUCTION_DECODER
TIELOW TO W! UNUSED

PC31:0) REGISTERS

INDEX[9:2] REGISTERS

XMISS REGISTERS

YMISS REGISTERS

SMISS REGISTERS

PCMISS REGISTERS

INCPC CACHE

INCP_SKIP INSTRUCTION_DECODER
L{21:0) INSTRUCTION_DECODER
ENPC

FO REGISTERS

F1 REGISTERS

ENX REGISTERS

INCX REGISTERS

DECX REGISTERS

ENY REGISTERS

INCY REGISTERS

DECY REGISTERS

ENS REGISTERS

INCS REGISTERS

DECS REGISTERS

LR INSTRUCTION_DECODER

INSTRUCTION[7:0)

CACHE

From/To
global

global

memory
memory
memory
memory
memory
memory

arbiter
arbiter
PSR

To Block
ALY
ALY
ALU
ALU
ALU
ALU

AtU

ALU

Muttiple locations.
Optional Muttipfier
INSTRUCTION_DECODE
OVERFCARRY
INSTRUCTION_DECODE
CACMHE

CACHE

CACHE

CACHE

CACHE

CACHE
TRISTATE32
CACHE

CACHE

CACHE

CACHE

CACHE

CACHE

CACHE
REGISTERS
REGISTERS
REGISTERS

CACHE
CACHE
CACHE
CACHE
CACHE
CACHE
CACHE
CACHE
CACHE
CACHE
CACHE
REGISTER_DECODE

Rescription

Reset Bar Inpat

System Clock input

Wide memory data bus (8K bits)

high order memory bits adressing 8K bit sets of memory per address
Request read data from DRAM bank.

Request write data to DRAM bank.

Feedback from memory controller that operation is compiete.
Feedback from memory controller that operation is complete.

Write Processor Indexed by Processor Select Ragister
Read Processor Select Register
Processor Select Data Bus

Enable OR function between A and B inputs, result at S

Enabie pass B functionfromBto $

Enable AND function between A and B inputs. result at $

Enable XOR function between A and B inputs, resultat S

ALU Cany in input used for addition, increment, decrement instructions.
Carry enable tumns on camy lookahead adder unit for addition inc, dec.
Overflow result or Carry Out from ALU for operations using Carry
Accumulator Value used as one ALU input.

Register and Cache value used as the second ALU input.

ALU Output Sumn or Result

Enable Multipfer Output

Indicates if a canry occurred after the last test “TST" instruction.

Latches the carry result to a register for use by a later branch instruction
Instruction decode input indicating comparison resutt between A and B

Write X Register

Write Y Register

Wiite Stack

Read X Register

Resad Y Register

Enable Index

Aflows the Accumulator to drive both ALU inputs at the same time.

This signal would allow instruction cache to wiite back to memory. Not useful.
Program Counter

Index Value of 32 bit set within 8Kbits.

Indicates a X Cache miss and will generate a Read or Write Memory request.
Indicates a Y Cache miss and will generate a Read or Write Memory request.
Indicates a Stack Cache miss and will generate a Read or Write Memory request.
indicates a Program Counter Cache miss and will generate a Read Memory request.
Usad to prevent PC from counting while walting for a cache miss to resoive.
Used to increment PC twice in order to skip an instruction.

Load control lines for alk registers.

Enable Program Counter Output

Force 0000 hex. Can be used with F1 to force 8000 hex.

Force 0001 hex. Can be used with FO to force 8000 hex.

Enable X Register Out

Increment X

Decrement X

Enable Y Register Out

Increment Y

Decrement Y

Enable Stack Pointer

Increment Stack Pointer

Decrement Stack Pointer

Load Data Register

INSTRUCTION_DECODE  Eight Bit TOM! Instruction

FIGURE 15E
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