(54) 发明名称

应用磷酸镁水泥和纤维布复合材料加固混凝土的方法

(57) 摘要

应用磷酸镁水泥和纤维布复合材料加固混凝土的方法属于新型建筑材料和结构修补加固领域。磷酸镁水泥是由镁砂、磷酸盐、缓凝剂、水、掺合料按照一定比例配制而成；把需要加固的混凝土表面进行打磨平整处理，在其上面均匀涂抹磷酸镁水泥，厚度为 2～5mm，并抹平；把纤维布用手轻压贴于需要粘贴的位置，采用滚筒顺纤维方向多次滚压，挤出气泡；最后在纤维布表面再涂覆一层厚度为 3～5mm 磷酸镁水泥作为保护罩层面。本发明的加固方法具有施工方法简单、耐高温和耐久性好、低温施工、成本低廉、绿色环保等优点，具有很好的推广和应用前景。
1. 应用磷酸镁水泥和纤维布复合材料加固混凝土的方法，其特征在于：该复合材料由
粘结剂——磷酸镁水泥和纤维布组成，磷酸镁水泥用于粘接加固的混凝土表面及纤维
布、粘结层纤维布，并在最外层纤维布的外表面作为保护罩面层；
所述的磷酸镁水泥各组成及其质量分数为：20%～50% 镁砂、20%～35% 磷酸盐、0%～
5% 缓凝剂、0%～45% 矿物掺合料以及 10～15% 水；
所述的纤维布为碳纤维、玻璃纤维和芳纶纤维中任意一种，其中碳纤维抗拉强度
≥ 2500MPa，玻璃纤维抗拉强度 ≥ 1500MPa，芳纶纤维抗拉强度 ≥ 2000MPa；
加固方法的具体步骤为：
1）制备磷酸镁水泥
首先将磷酸盐、缓凝剂、矿物掺合料搅拌均匀，再加入水进行搅拌，加水量为磷酸镁水
泥质量的 10～16%；待搅拌均匀后再加入镁砂搅拌，最终得到磷酸镁水泥；
2）混凝土的加固方法
首先将待修复混凝土表面清理打磨和修复平整，转角粘贴处应进行导角处理并打磨成圆
弧状，圆弧曲率半径不应小于 20mm；把磷酸镁水泥均匀涂抹在混凝土表面，厚度为 2～5mm；
把纤维布轻压粘于需要粘贴的位置，采用滚筒顺纤维方向多次滚压，挤出气泡；纤维布包裹
层数为 1～3 层，各层纤维布之间的磷酸镁水泥均匀涂抹在纤维布表面，厚度 为 2～5mm，
然后把纤维布压贴于磷酸镁水泥，再采用滚筒顺纤维方向多次滚压，挤出气泡；当采用多条
或多层碳纤维布加固时，各条或各层碳纤维布的搭接位置应相互错开，并且碳纤维布沿纤
维受力方向的搭接长度不应小于 100mm；最后在纤维布的外表面再涂覆一层厚度为 3～5mm
的磷酸镁水泥作为表面罩面层。

2. 根据权利要求 1 所述的方法，其特征在于：镁砂的为：1200℃以上煅烧过的烧结镁
砂，其 MgO 含量不低于 95%；磷酸盐为：工业产品级别的磷酸二氢钾或磷酸铵，纯度的质量百
分数不低于 98%；缓凝剂为：工业产品级别的硼砂或硼酸，纯度的质量百分数不低于 98%；矿
物掺合料为：一级～三级粉煤灰，S95 级磨细矿粉。
应用磷酸镁水泥和纤维布复合材料加固混凝土的方法

技术领域

【0001】本发明属于新型建筑材料及混凝土加固工程领域，具体涉及一种磷酸镁水泥和采用磷酸镁水泥作为粘结剂粘接纤维布形成复合材料，用来加固混凝土结构的方法。目前结构修补加固普遍采用 Fiber Reinforced Plastic 材料，简称 FRP 材料，其中的粘结剂为有机胶，如环氧树脂等。本发明提出了采用磷酸镁水泥替代有机胶的新方法，磷酸镁水泥是一种在室温下通过化学反应形成的新型无机胶凝材料，具有节能环保、防火环保等突出优点。

背景技术

【0002】钢筋混凝土结构是目前工程中最常见的结构形式。由于设计、施工、环境、自然灾害、使用等各方面的原因造成现在混凝土结构不同程度的损坏，因此从经济和使用方面考虑，必须对混凝土结构进行修补加固。在加固工程中使用的钢板以及加大混凝土界面等加固方法都存在一定的问题，如成本高、操作复杂、耐久性不高、增大结构面会影响建筑本身的使用功能等。目前最为普遍的加固方法是采用 FRP 加固混凝土，以期得到轻质高强、施工速度快等技术优点。FRP 的典型材料及施工工艺是用有机胶将多层纤维布与待加固混凝土粘结。但 FRP 方法存在许多重要缺陷：如采用的粘结剂是有机胶水，不仅对环境造成污染，而且耐火性和耐老化性很差，成本高、低温不能施工、不绿色环保等。

发明内容

【0003】针对以上的问题，本发明提出了以磷酸镁水泥作为粘结剂替代有机胶水，磷酸镁水泥、纤维布复合在一起，通过各层材料本身及多层材料的复合增强作用加固混凝土结构的新方法。由于磷酸镁水泥是由镁砂、磷酸盐、矿物掺合料和缓凝剂等按一定比例混合后经过化学反应而成的无机胶凝材料，其主要优点是黏结强度高、凝结硬化速度快、早期强度高、干缩小、耐火性能好、耐磨和抗冻优异等。同时磷酸镁水泥可以大掺量地胶结各种工业废弃物如粉煤灰、矿渣等，因此是一节能环保的新型绿色材料。

【0004】应用磷酸镁水泥和纤维布复合材料加固混凝土的方法，其特征在于：该复合材料由粘结剂——磷酸镁水泥和纤维布组成，磷酸镁水泥用于粘接及加固的混凝土表面及纤维布、粘结各层纤维布、并在最外层纤维布的外表面作为保护罩层面；

【0005】所述的磷酸镁水泥各组成及其质量分数为：20%～50%镁砂、20%～35%磷酸盐、0%～5%缓凝剂、0%～45%矿物掺合料以及10%～15%水；

【0006】所述的纤维布为碳纤维、玻璃纤维和芳纶纤维中任意一种，其中碳纤维抗拉强度≥2500MPa，玻璃纤维抗拉强度≥1500MPa，芳纶纤维抗拉强度≥2000MPa；

【0007】加固方法的具体步骤为：

【0008】1）制备磷酸镁水泥

【0009】首先将磷酸盐、缓凝剂、矿物掺合料搅拌均匀，再加入水进行搅拌，加水量为磷酸镁水泥质量的10～16%待搅拌均匀后再加入镁砂搅拌，最终得到磷酸镁水泥；

【0010】2）混凝土的加固方法
说明 书

[0011] 首先将待修复混凝土表面清理打磨和修复平整，转角粘贴处应进行导角处理并打磨成圆弧状，圆弧曲率半径不应小于 20mm；把磷酸铵水泥均匀涂抹在混凝土表面，厚度为 2～5mm；把纤维布轻压贴于需要粘贴的位置，采用滚筒顺纤维方向多次滚压，挤出气泡，纤维布包裹层数为 1～3 层，各层纤维布之间的磷酸铵水泥均匀涂抹在纤维布表面，厚度为 2～5mm，然后把纤维布压贴于磷酸铵水泥，再采用滚筒顺纤维方向多次滚压，挤出气泡；当采用多条或多层碳纤维布加固时，各条或各层碳纤维布的搭接位置应相互错开，并且碳纤维布沿纤维受力方向的搭接长度不应小于 100mm；最后在纤维布的外表面再涂覆一层厚度为 3～5mm 的磷酸铵水泥作为表面罩面层。

[0012] 进一步，镁砂的为：1200℃以上煅烧过的烧结镁砂，其 MgO 含量不低于 95%；磷酸铵盐为：工业产品级别的磷酸二氢钾或磷酸铵，纯度的质量百分数不低于 98%；缓凝剂为：工业产品级别的硼砂或硼酸，纯度的质量百分数不低于 98%；矿物掺合料为：一级～三级粉煤灰，S95 级磨细矿粉。

[0013] 磷酸铵水泥增强纤维布复合材料加固混凝土后的抗压、抗折、抗震等结构及力学性能优异，能够达到或超过传统 FRP 加固后的混凝土结构性能，今后可以广泛地应用于混凝土结构修补和加固，是一种具有良好应用前景的混凝土修补和加固新材料。

具体实施方式

[0014] 一、使用的原材料及施工工法情况

[0015] 1. 磷酸铵水泥的原材料组成及配合比

[0016] 下表中，镁砂的特征为：1600℃煅烧过的烧结镁砂，其 MgO 含量为 96.5%；磷酸铵盐特征为：工业产品级别的磷酸二氢钾或磷酸铵，纯度的质量百分数 98%；缓凝剂特征为：工业产品级别的硼砂或硼酸，纯度的质量百分数 99%；矿物掺合料的特征为：二级粉煤灰，S95 级磨细矿粉。

<table>
<thead>
<tr>
<th>原材料 水泥种类</th>
<th>镁砂</th>
<th>磷酸铵</th>
<th>缓凝剂</th>
<th>矿物掺合料</th>
<th>水</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20%</td>
<td>磷酸铵 20%</td>
<td>0%</td>
<td>粉煤灰 45%</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
<td>磷酸铵 25%</td>
<td>硼酸 2%</td>
<td>粉煤灰 28%</td>
<td>15%</td>
</tr>
<tr>
<td>3</td>
<td>40%</td>
<td>磷酸铵 30%</td>
<td>硼砂 2%</td>
<td>粉煤灰 15%</td>
<td>13%</td>
</tr>
<tr>
<td>4</td>
<td>50%</td>
<td>磷酸铵 35%</td>
<td>硼酸 5%</td>
<td>粉煤灰 0%</td>
<td>10%</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>磷酸铵 35%</td>
<td>硼砂 5%</td>
<td>粉煤灰 0%</td>
<td>10%</td>
</tr>
<tr>
<td>6</td>
<td>20%</td>
<td>磷酸二氢钾 20%</td>
<td>0%</td>
<td>矿粉 45%</td>
<td>15%</td>
</tr>
<tr>
<td>7</td>
<td>30%</td>
<td>磷酸二氢钾 25%</td>
<td>硼酸 2%</td>
<td>矿粉 28%</td>
<td>15%</td>
</tr>
<tr>
<td>8</td>
<td>40%</td>
<td>磷酸二氢钾 30%</td>
<td>硼砂 2%</td>
<td>矿粉 15%</td>
<td>13%</td>
</tr>
<tr>
<td>9</td>
<td>50%</td>
<td>磷酸二氢钾 35%</td>
<td>硼酸 5%</td>
<td>矿粉 0%</td>
<td>10%</td>
</tr>
<tr>
<td>10</td>
<td>50%</td>
<td>磷酸二氢钾 35%</td>
<td>硼砂 5%</td>
<td>矿粉 0%</td>
<td>10%</td>
</tr>
</tbody>
</table>

[0018] 2. 采用的纤维布品种包括 3 类：碳纤维布、玻璃纤维布、芳纶纤维布。采用北京市卡本工程技术研究所有限公司生产的纤维布，碳纤维布抗拉强度 ≥ 4100MPa，玻璃纤维抗拉强度 ≥ 2000MPa，芳纶纤维抗拉强度 ≥ 2000MPa。

[0019] 3. 施工工法为：首先将待修复混凝土表面清理打磨和修复平整，转角粘贴处应进行
导角处理并打磨成圆弧状，圆弧曲率半径不应小于 20mm；把磷酸镁水泥均匀涂抹在混凝土表面，厚度为 2～5mm；把纤维布轻压贴于需要粘贴的位置，采用滚筒顺纤维方向多次滚压，挤出气泡；纤维布包裹层数为 1～3 层，各层纤维布之间的磷酸镁水泥均匀涂抹在纤维布表面，厚度为 2～5mm，然后把纤维布压贴于磷酸镁水泥，再采用滚筒顺纤维方向多次滚压，挤出气泡；当采用多条或多层碳纤维布加固时，各条或各层碳纤维布的搭接位置应相互错开，并且碳纤维布沿纤维受力方向的搭接长度不应小于 100mm，最后在纤维布的外表面再涂覆一层厚度为 3～5mm 的磷酸镁水泥作为表面罩面层。

[0020] 4. 实施效果考核方法：用本发明提出的复合材料包裹强度等级相同的无钢筋混凝土小梁，尺寸为 100mm×100mm×400mm，然后测量其抗折强度。以无纤维布包裹、无钢筋的混凝土梁抗折强度为 1 来表示，其他加固后的混凝土梁抗折强度与其进行比较，修补效果用抗折强度比来表示。

[0021] 二、具体实施例

[0022]
<table>
<thead>
<tr>
<th>实施例</th>
<th>水泥种类</th>
<th>纤维布种类</th>
<th>纤维布层数</th>
<th>混凝土表面及纤维布之间的水泥厚度/mm</th>
<th>纤维布外表面水泥厚度/mm</th>
<th>修补效果/抗折强度比</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>碳纤维布</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2.76</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>玻璃纤维布</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1.65</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>芳纶纤维布</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3.66</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>碳纤维布</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3.96</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>玻璃纤维布</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1.87</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>芳纶纤维布</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2.42</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>碳纤维布</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4.66</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>玻璃纤维布</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1.34</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>芳纶纤维布</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2.48</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>碳纤维布</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4.72</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>玻璃纤维布</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1.71</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>芳纶纤维布</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1.96</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>碳纤维布</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2.65</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>玻璃纤维布</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1.63</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>芳纶纤维布</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3.86</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>碳纤维布</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3.68</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>玻璃纤维布</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1.94</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>芳纶纤维布</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2.84</td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td>碳纤维布</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4.99</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>玻璃纤维布</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1.44</td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td>芳纶纤维布</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2.72</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>碳纤维布</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5.06</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>玻璃纤维布</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1.83</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>芳纶纤维布</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1.86</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>碳纤维布</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5.16</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>玻璃纤维布</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1.39</td>
</tr>
<tr>
<td>27</td>
<td>9</td>
<td>芳纶纤维布</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2.55</td>
</tr>
<tr>
<td>28</td>
<td>10</td>
<td>碳纤维布</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3.01</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>玻璃纤维布</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1.76</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>芳纶纤维布</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3.59</td>
</tr>
</tbody>
</table>