wo 2011/153167 A1 I 10K OO OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

s . N
(19) World Intellectual Property Organization /g [} 1M1 AN 000100 00 T 0 0
ernational Bureau v“)
(43) International Publication Date \!/ (10) International Publication Number

8 December 2011 (08.12.2011)

WO 2011/153167 A1l

(51) International Patent Classification:
HO4L 29/06 (2006.01)

(21) International Application Number:
PCT/US2011/038620

(22) International Filing Date:
31 May 2011 (31.05.2011)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

12/794,676 4 June 2010 (04.06.2010) Us

(71) Applicant (for all designated States except US): APPLE
INC. [US/US]; 1 Infinite Loop, Cupertino, CA 95014

(US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): DEVINE, Graeme
[US/US]; 1 Infinite Loop. MS 302-3KS, Cupertino, CA
95014 (US).

(74) Agents: VINCENT, Lester, J. ct al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 1279 Oakmead Parkway, Sunny-
vale, CA 94085-4040 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

(54) Title: METHODS FOR USING UNIQUE IDENTIFIERS TO IDENTIFY SYSTEMS IN COLLABORATIVE INTERAC-

TION IN A MESH NETWORK
o
INITIATE A COLLABORATIVE APPLICATION AND MATCHING
OF SYSTEMS INTERACTING TO FORM A MESH NETWORK
L WITH A SYSTEM }\l
3

OBTAIN A UNIQUE {DENTIFIER FROM MEMORY QF THE
SYSTEM

THE SYSTEM IN A NON-REVERSIBLE MANNER TO GENERATE
A UNIQUE HASH IDENTIFIER FOR THE SYSTEM

—

WAIT FOR MATCHING TO START T FORM MESH
NETWORK WITH AT LEAST ONE SYSTEM

{

BROADCAST PACKETS THAT INCLUDE THE UNIQUE HASH
IDENTIFIER FROM THE SYSTEM TO AT LEAST ONE OTHER
SYSTEM IN THE MESH NETWORK THAT HAS INITIATED
THE COLLABORATIVE APPLICATION

[PERFORM A HASH FUNCTION ON THE UNIQUE IDENTIFIER FOR 2

202
204
I_voﬁ
208
va
2
™

¥
DETERMINE WHEN ALL OF THE OTHER SYSTEMS HAVE 212
REGEIVED PACKETS THAT INCLUDE UNIQUE HASH IDENTIFIERS
FROM ALL SYSTEMS IN THE MESH NETWORK
13

DETERMINE WHEN THE SYSTEM HAS RECEIVED PACKETS THAT | 214
INCLUDE UNIQUE HASH IDENTIFIERS FROM ALL SYSTEMS
I'\ye

IN THE MESH NETWORK
FSORT THE UNIQUE HASH IDENTIFIERS OF THE SYSTEMS IN

THE MESH NETWORK TO IDENTIFY EACH SYSTEM IN THE
MESH NETWORK

FIG. 2

(57) Abstract: Described herein are methods and systems for using
unique identifiers to identity systems in collaborative interaction in a
mesh network. For example, in at least certain embodiments, upon initia-
tion of a collaborative application each system can broadcast packets that
include a unique hash identifier for each system to other systems in the
mesh network. Each system then can determine when the system has re-
ceived packets that include the unique hash identifiers from all systems.
Then, each system can sort the unique hash identifiers to identify each
system.

WO 2011/153167 PCT/US2011/038620

METHODS FOR USING UNIQUE IDENTIFIERS TO IDENTIFY SYSTEMS IN
COLLABORATIVE INTERACTION IN A MESH NETWORK

TECHNICAL FIELD

[0001] Embodiments of the present invention relate to methods for
using unique identifiers to identify systems in collaborative interaction in a
mesh network.

BACKGROUND

[0002] Various devices such as electronic devices, computing
systems, portable devices, and handheld devices have collaborative
applications such as software gaming applications. These devices can
network with each other for a multi-player gaming experience.

[0003] One prior gaming environment allows players to interact with
each other online. A server communicates over a data network with a
number of client computers. The server receives information from the
client computers to update the state of the multi-player game and
distributes information back to the client computers regarding relevant
game state for each of the client computers.

[0004] However, this prior approach has limitations in terms of
connecting players and network delays. These online connections use
the transmission control protocol (TCP) that provides reliable, ordered
delivery of a stream of bytes from a game application on the client
computer to the server and vice versa. The TCP controls segment size,
flow control, the rate at which data is exchanged, and network traffic
congestion. However, TCP packets may have timing, readiness, and
internet issues that cause some client computers to not have relevant
game information in a timely manner or at all.

WO 2011/153167 PCT/US2011/038620

SUMMARY

[0005] Described herein are methods for using unique identifiers to
identify systems in collaborative interaction in, for example, a mesh
network. For example, in at least certain embodiments, at least one
system initiates a collaborative application (e.g., music creation, document
creation, multi-player games) with other systems. In response, a data
service provides a collaborative environment that matches systems and
provides connection data to the systems to generate a mesh network. In
one embodiment, each system in the mesh network or other network can
perform a hash function on a unique identifier associated with each
system to generate a unique hash identifier for each system. Then, each
system can broadcast packets that include the unique hash identifier for
each system and also status information to other systems in the mesh
network. Each system can then determine when the system has heard
from all systems and when the other systems have also heard from all
other systems. Then, in one embodiment, each system can sort the
unique hash identifiers to assign a relative reference value to each system
in the mesh network and thus identify each system with the sorted unique
hash identifier. In one embodiment, each system identifies other systems
with these assigned relative reference values, which can be used for
determining, for example, a player order in a multi-player gaming
application or can be used for assigning each system to be a server or
client in the mesh network.

[0006] In an embodiment, the unique identifier for each is obtained
from memory of the system. Each system performs a hash function on
the unique identifier for the system in a non-reversible manner to generate
a unique hash identifier for the system and to protect the unique identifier.
The unique identifier can be universally unique relative to all other
systems of relatively unique within a type or subset of systems of a

WO 2011/153167 PCT/US2011/038620

particular type of hardware, or a particular combination of hardware and
software, etc.

[0007] The present disclosure includes systems and devices that
perform these methods, including data processing systems which perform
these methods, and machine readable media which when executed on

data processing systems cause the systems to perform these methods.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying drawings and
in which:

[0009] Figure 1 illustrates a general network topology implemented
in one embodiment that can include a group of “client” or “peer” computing
systems 120-123, respectively, communicating with one another and with

one or more services 109-114 over a network 130;

[0010] Figure 2 illustrates a flow diagram of one embodiment for a
computer-implemented method 200 of using unique identifiers to identify

systems in collaborative interaction in a mesh network;

[0011] Figure 3 illustrates a flow diagram of one embodiment for a
computer-implemented method 300 of using unique identifiers to identify

systems in collaborative interaction in a mesh network;

[0012] Figure 4 illustrates a flow diagram of one embodiment for a

computer-implemented method 400 of determining a status of a cointoss;

[0013] Figure 5 illustrates an exemplary packet broadcast by a
system in accordance with one embodiment;

[0014] Figure 6 illustrates a mesh network 600 having four systems

in communication with each other in accordance with one embodiment;

WO 2011/153167 PCT/US2011/038620

[0015] Figure 7 illustrates a mesh network 700 having eight
systems in communication with each other in accordance with one
embodiment;

[0016] Figure 8 illustrates an exemplary bit string have an expected
final status in accordance with one embodiment;

[0017] Figure 9 shows an embodiment of a wireless system which

includes the capability for wireless communication;

[0018] Figure 10 is a block diagram illustrating an exemplary API
architecture, which may be used in certain embodiments of the present
disclosure; and

[0019] Figure 11 illustrates a Software Stack for an exemplary
embodiment in which applications can make calls to Services A or B using
several Service APIs and to Operating System (OS) using several OS
APls.

DETAILED DESCRIPTION

[0020] Described herein are methods for using unique identifiers to
identify systems in collaborative interaction in a mesh network. For
example, in at least certain embodiments, at least one system initiates a
collaborative application (e.g., music creation, document creation, multi-
player games). In response, a data service provides a collaborative
environment that matches systems and provides connection data to the
systems to generate a mesh network. Each system generates a hash
identifier based on a unique identifier associated with the system. The
hash identifiers are exchanged between systems within the mesh network.
The hash identifiers can be sorted to identify systems in the mesh
network.

[0021] As illustrated in Figure 1, a general network topology
implemented in one embodiment can include a group of “client” or “peer”

4-

WO 2011/153167 PCT/US2011/038620

computing systems 120-123, respectively, communicating with one
another and with one or more services 109-114 over a network 130.
Although illustrated as a single network cloud in Figure 1, the “network”
130 can be comprised of a variety of different components including public
networks such as the Internet and private networks such as local Wi-Fi
networks (e.g., 902.11n home wireless networks or wireless hotspots),
local area Ethernet networks, cellular data networks, and WiMAX
networks, to name a few. For example, system 120 may be connected to
a home Wi-Fi network represented by network link 125, system 121 may
be connected to a 3G network (e.g., Universal Mobile
Telecommunications System (“UMTS”), High-Speed Uplink Packet Access
(“HSUPA”), etc) represented by network link 126, system 122 may be
connected to a WiMAX network represented by network link 127, and
system 123 may be connected to a public Wi-Fi network represented by
network link 128. Each of the local network links 125-128 over which the
systems 120-123 are connected may be coupled to a public network such
as the Internet, thereby enabling communication between the various
systems 120-123 over the public network. However, if two systems are on
the same local or private network (e.g., the same Wi-Fi network), then the
two systems may communicate directly over that local/private network,
bypassing the public network. It should be noted, of course, that the
underlying principles of the present disclosure are not limited to any
particular set of network types or network topologies and that the term
mesh network is meant to include one or more networks of the same or
different types.

[0022] Each of the systems 120-123 illustrated in Figure 1 can
communicate with a data service 100 that may include a collaborative
service 109 (e.g., game service, music creation service, document
creation service), a connection data exchange (CDX) service 110, a
matchmaker service 111, an invitation service 112, an account service

113, and an application service 114. In one embodiment, the collaborative

-5-

WO 2011/153167 PCT/US2011/038620

service 109 enables user to collaborate with collaborative applications.
For example, the collaborative service 109 may be a game service that
enables users to collaborate for multi-player gaming applications or other
multiple user applications. The game service may include or access any
of the services 110-114. The services 109-114 can be implemented as
software executed across one or more physical computing systems such
as servers. As shown in Figure 1, in one embodiment, the services may
be implemented within the context of a larger data service 100 managed
by the same entity (e.g., the same company) and accessible by each of
the systems 120-123 over the network 130. The data service 100 can
include a local area network (e.g., an Ethernet-based LAN) connecting
various types of servers, a storage area networks (“SANs”) and
databases. In one embodiment, the databases store and manage data
related to each of the user systems (e.g., client systems, computer
systems, mobile systems) 120-123 and the users of those systems (e.g.,
user account data, system account data, user application data, etc.).

[0023] In one embodiment, a collaborative identifier module 130-
133 is located on each system 120-123, respectively. The collaborative
identifier module is associated with a collaborative software application
that provides a collaborative environment in conjunction with the data
service 100.

[0024] In one embodiment, the collaborative identifier module 130-
133 is implemented on a game framework such as that described in co-
pending applications U.S. patent application No. 61/321854, entitled
“APPLICATION PROGRAMMING INTERFACE, SYSTEM AND METHOD
FOR COLLABORATIVE ONLINE APPLICATIONS,” Filed April 7, 2010 by
Mike Lampell, attorney docket No. P9203; U.S. patent application No.
61/321842, entitled “APPARATUS AND METHOD FOR MATCHING
USERS FOR ONLINE SESSIONS”, Filed April 7, 2010 by Jeremy Werner,
Phillip Smith, Andrew H. Vyrros, attorney docket No. P8549; U.S. patent

WO 2011/153167 PCT/US2011/038620

application No. 61/321832, entitled “APPARATUS AND METHOD FOR
INVITING USERS TO ONLINE SESSIONS”, Filed April 7, 2010 by
Andrew H. Vyrros, Jeremy Werner, and Patrick Gates, attorney docket No.
P8547; U.S. patent application No. 61/321841, entitled “APPARATUS
AND METHOD FOR ESTABLISHING AND UTILIZING BACKUP
COMMUNICATION CHANNELS?”, Filed April 7, 2010 by Jeff Tung, Barry
A. Whitebook, Joe Abuan, Hyeonkuk Jeong, Andy Yang, and Roberto
Garcia, attorney docket No. P9162; and U.S. patent application No.
61/321851, entitled “APPARATUS AND METHOD FOR EFFICIENTLY
AND SECURELY EXCHANGING CONNECTION DATA”, Filed April 7,
2010 by Joe Abuan, Jeff Tung, Robert Quattlebaum, Barry A. Whitebook,
and Roberto Garcia attorney docket No. P9164 (hereinafter “Co-pending
Applications”), which are assigned to the assignee of the present
application and which are incorporated herein by reference in their
entirety. It should be noted, however, that the game framework described
in the co-pending applications is not required for complying with the
underlying principles of the invention.-

[0025] The matchmaker service 111 can match two or more
systems for a collaborative peer to peer (P2P) session based on a
specified set of conditions. For example, users of two or more of the
systems may be interested in playing a particular multi-player game. In
such a case, the matchmaker service 111 may identify a group of systems
to participate in the game based on variables such as each user’s level of
expertise, the age of each of the users, the timing of the match requests,
the particular game for which a match is requested and game-specific
variables associated with the game. By way of example, and not
limitation, the matchmaker service 111 may attempt to match users with
similar levels of expertise at playing a particular game. Additionally, adults
may be matched with other adults and children may be matched with other
children. Moreover, the matchmaker service 111 may prioritize user

requests based on the order in which those requests are received. The

-7-

WO 2011/153167 PCT/US2011/038620

underlying principles of the present disclosure are not limited to any
particular set of matching criteria or any particular type of P2P application.

[0026] In response to a match request, the matchmaker service 111
can coordinate with the CDX service 110 to ensure that all matched
participants receive the necessary connection data for establishing P2P
sessions in an efficient and secure manner.

[0027] In one embodiment, the invitation service 112 also identifies
systems for participation in collaborative P2P sessions. However, in the
case of the invitation service 112, at least one of the participants is
specifically identified by another participant. For example, the user of
system 120 may specifically request a collaborative session with the user
of system 121. As with the matchmaker service 111, in response to an
invitation request, the invitation service 112 can identify the set of
participants and coordinate with the CDX service 110 to ensure that all
participants receive the necessary connection data for establishing P2P
sessions in an efficient and secure manner.

[0028] Figure 2 illustrates a flow diagram of one embodiment for a
computer-implemented method 200 of using unique identifiers to identify
systems in collaborative interaction in a mesh network. The unique
identifiers can be universally unique or merely unique within a set of
devices, such as devices having the same set of software or hardware (or
a combination of the same software and hardware). Mesh networking is a
type of networking in which each node in the network may act as an
independent router, regardless of whether it is connected to another
network or not. The computer-implemented method 200 is performed by
processing logic that may comprise hardware (circuitry, dedicated logic,
etc.), software (such as is run on a general purpose computer system or a
dedicated machine or a system), or a combination of both.

[0029] At block 202, the processing logic can initiate a collaborative

application (e.g., music creation, document creation, multi-player games)

-8-

WO 2011/153167 PCT/US2011/038620

and matching of systems interacting collaboratively to form a mesh
network. The matchmaker service 111 can match two or more systems
for a collaborative session (e.g., peer to peer (P2P)). At block 204, the
processing logic of a system can obtain a unique identifier from memory of
the system. At block 206, the processing logic can perform a hash
function on the unique identifier for the system in a non-reversible manner

to generate a unique hash identifier for the system.

[0030] The unique hash identifier is generated in a non-reversible
manner to protect the unique identifier of the system and prevent a
spoofing attack. Even though the unique hash identifier is provided to
other devices in a collaborative session, the unique identifier remains a
secret (relative to those other devices) because the hash function used is
non-reversible (e.g., the hash function cannot be reversed to reveal the
unique identifier if the unique hash identifier is known). At block 208, the
processing logic can wait for the matching to start to form a mesh network
with at least one system. As discussed above, the matchmaking service
111 can match two or more systems for a collaborative session (e.g.,
music creation session, document creation session, multi-player gaming
session).

[0031] At block 210, the processing logic can broadcast packets
that include the unique hash identifier from the system to at least one
other system in the mesh network or other network that has initiated the
collaborative application. In one embodiment, each packet also contains
heard from status information (e.g., cointoss data). The status information
includes a field that indicates how many systems including the first system
in the mesh network that the first system has heard from, a heard from
status field for the first system, a heard from status field for the second
system, a heard from status field for the third system, etc.

[0032] In an embodiment, the packets are sent and received using
an unreliable connectionless protocol (e.g., user datagram protocol

9.

WO 2011/153167 PCT/US2011/038620

(UDP)). UDP is a simple to implement protocol because it does not require
tracking of every packet sent or received and it does not need to initiate or
end a transmission. An establishment of a series of unique network
identifiers to be shared amongst systems is guaranteed by using the
unreliable protocol because the reliable protocol (TCP) is not guaranteed
in @ mobile environment and TCP queuing is undesirable when
establishing this mesh. One of the unique aspects of this unreliable
protocol is that by necessity it works well over unreliable networks that can
actually be unreliable with only a certain percentage of packets actually
arriving.

[0033] At block 212, the processing logic can determine when all of
the other systems have received packets that incilude unique hash
identifiers from all systems in the mesh network. At block 214, the
processing logic can determine when the system has received packets
that include unique hash identifiers from all systems in the mesh network.
At block 216, the processing logic for each system or the data service 100
can sort the unique hash identifiers in order to identify each system in the
mesh network. The unique hash identifiers may be assigned relative
reference values to identify each system. In certain embodiments, the
reference value for each system can be used to order players in a gaming
application, assign preferences (e.g., colors) to each user or player
sharing the collaborative application, or assign systems to be either a
server or a client in the mesh network.

[0034] Figure 3 illustrates a flow diagram of one embodiment for a
computer-implemented method 300 of using unique identifiers to identify
systems in collaborative interaction in a mesh network. The computer-
implemented method 300 is performed by processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), software (such as is
run on a general purpose computer system or a dedicated machine or a
system), or a combination of both.

WO 2011/153167 PCT/US2011/038620

[0035] At block 302, the processing logic of a system may receive a
user selection to initiate a collaborative application (e.g., multi-player
gaming application) and matching of systems interacting collaboratively.
The matchmaker service 111 can match two or more systems for a
collaborative session (e.g., peer to peer (P2P)) based on a specified set of
conditions. For example, users of two or more of the systems may be
interested in playing a particular multi-player game. In such a case, the
matchmaker service 111 may identify a group of systems to participate in
the game based on variables such as each user's level of expertise, the
age of each of the users, the timing of the match requests, the particular
game for which a match is requested and game-specific variables
associated with the game. In response to a match request, the
matchmaker service 111 can coordinate with the CDX service 110 to
ensure that all matched participants receive the necessary connection
data (e.g., network addresses) for establishing P2P sessions in an
efficient and secure manner to form a mesh network of systems that
interact collaboratively.

[0036] At block 304, the processing logic for each system can
obtain a unique identifier that uniquely identifies each system. The unique
identifier may be obtained from memory of the system. At block 306, the
processing logic for each system may perform a hash function on the
unique identifier for each system to generate a unique hash identifier for
each system. At block 308, the processing logic can wait for the matching
to start to form a mesh network with at least one system. As discussed
above, the matchmaking service 111 can match two or more systems for a
collaborative peer to peer (P2P) session (e.g., multi-player gaming
session). For example, the matchmaking service may match four players
having similar skill levels to play a multi-player gaming application.

[0037] At block 310, each system broadcasts packets to determine
a cointoss for the multi-player gaming application. For example, the

11-

WO 2011/153167 PCT/US2011/038620

cointoss may determine player ordering or colors for each player. For a
particular system, the packets include the unique hash identifier for the
particular system. Each packet also contains heard from status
information (e.g., cointoss data) as illustrated in Figure 5 and described in
more detail below in conjunction with Figure 5. In an embodiment, the
packet for a first system includes a unique hash identifier for the first
system, a field that indicates how many systems including the first system
in the mesh network that the first system has heard from, a heard from
status field for the first system, a heard from status field for the second
system, a heard from status field for the third system, etc.

[0038] The processing logic for each system can wait to receive
packets broadcasted from other systems in the mesh network at block
312. Each system may continue to broadcast packets at block 310. At
block 314, one or more systems can receive packets (e.g, cointoss
packets) from other systems in the mesh network or other network. For
example, the first system broadcasts packets to the other systems. These
packets indicate that the first system is ready for the collaborative
application (e.g., multi-player application). The other systems broadcast
packets and these packets indicate to the first system that these systems
are ready and also that these other systems know that the first system is
ready. In one embodiment, the packets are sent and received using an
unreliable connectionless protocol (e.g., UDP).

[0039] At block 316, the processing logic for each system that
receives packets from other systems can update internal cointoss data for
the particular system. At block 318, the processing logic for each system
can determine whether the cointoss is complete. The flow diagram of
Figure 4 describes this operation in more detail. In an embodiment, the
first system determines whether the cointoss is complete by checking the
heard from status information (e.g., cointoss data). This data may indicate
that the first system has heard from all systems in the mesh network or

WO 2011/153167 PCT/US2011/038620

other network and additionally that each system has individually heard
from all systems (and received the unique hash identifier from all systems)
in the mesh network or other network. In this case, the cointoss is
complete for the first system. [f all systems determine that the cointoss is
complete, then the unique hash identifiers can be sorted at block 320, in
each of all of the systems, in order to assign a relative reference value to
each system in the mesh network or other network. If the cointoss is not
complete for a particular system at block 318, then the system broadcasts
packets at block 310.

[0040] Each system may sort the unique hash identifiers using the
same or similar sorting routine or method (e.g., numerical, alphabetic,
alphanumerical, etc.) and thus generate the same result. The resulting
relative reference values may indicate a player order, player colors, etc.
for the multi-player gaming application. The relative reference values may
also be used to configure the systems in the mesh network or other
network. For example, one system may be elected as a server and the
other systems are elected as clients. Alternatively, the systems may form
P2P connections.

[0041] Figure 4 illustrates a flow diagram of one embodiment for a
computer-implemented method 400 of determining a status of a cointoss.
The computer-implemented method 400 is performed by processing logic
that may comprise hardware (circuitry, dedicated logic, etc.), software
(such as is run on a general purpose computer system or a dedicated
machine or a system), or a combination of both. Processing logic of each
system in a mesh network or other network may perform the method 400.

[0042] At block 402, the processing logic for each system can
determine a heard from status for the other systems to determine if the
other systems have heard from all other systems in the mesh network or
other network. The other systems may be checked at block 402. For
example, in one embodiment, a first system checks a heard from status

13-

WO 2011/153167 PCT/US2011/038620

for a second system. If the second system has an expected final status
(e.g., 4444 for 4 systems), then the second system has heard from all
other systems and the cointoss is complete for the second system. The
flow returns to block 402 if the second system has not heard from all other
systems. If the second system has heard from all other systems, then the
processing logic determines whether the other systems (e.g., third and
fourth systems) have also heard from all other systems at block 402. If so,
then the processing logic for the first system determines whether the first
system has heard from all other systems in the mesh network at block 404
and has the expected final status (e.g., 4444 for 4 systems) as illustrated
as bit string 800 in Figure 8 in accordance with one embodiment. The bit
string 800 includes the hash identifier 802 for the system and the number
of systems that each system has heard from. [f the other systems do not
have the expected final status, then the flow returns to block 402 to
determine if the other systems (e.g., third system, fourth system) have
heard from all other systems and have the expected final status (e.g.,
4444 for 4 systems). This flow of operations continues until all systems
have heard from all other systems and have received the unique hash
identifier from each of the other systems. Once this occurs and each
system has heard back from all other systems, then the cointoss is
complete for all systems. At block 406, sorting of the unique hash
identifiers can occur as described at block 320 of method 300.

[0043] If the first system has not heard back from all other systems
at block 404, then the flow returns to block 402. In an embodiment,
packets are sent and received between systems across an unreliable
network using an unreliable connectionless protocol (e.g., user datagram
protocol (UDP)). One of the unique aspects of this unreliable protocol is
that by necessity it works well over unreliable networks that can actually
be unreliable with only a certain percentage of packets actually arriving.

WO 2011/153167 PCT/US2011/038620

[0044] Figure 5 illustrates an exemplary packet broadcast by a
system in accordance with one embodiment. The packet may be
associated with an unreliable connectionless protocol (e.g., user datagram
protocol (UDP)). Each packet 500 may contain a header portion 502 and a
data portion 504. The header portion may include source information
(e.g., source port), destination information (e.g., destination port), length
information, and checksum information. In an embodiment, the data
portion 504 includes an identification field 510 having a unique hash
identifier (e.g., 64 bit identifier) for the first system, a field 512 that
indicates how many systems the first system has heard from (e.g., 1 if the
first system has only heard from the first system), and a heard from status
field 520 of the first system that indicates heard from status of the first
system (e.g., 1344 for four systems in a mesh network with 1 representing
the number of systems heard by the first system, 3 representing the
number of systems heard by the second system, 4 representing the
number of systems heard by the third system, and 4 representing the
number of systems heard by the fourth system). The data portion 504
also includes a heard from status field 530 for the second system that
indicates how many systems including the second system that the second
system has heard from, a heard from status field 540 for the third system,
a heard from status field 550 for the fourth system, etc.

[0045] Figure 6 illustrates a mesh network 600 having four systems
in communication with each other in accordance with one embodiment. It
will be understood that an embodiment of the invention can use a mesh
network to connect at least some of the devices in a collaborative session
and that other embodiments of the invention can use a non-mesh network
to connect all of the devices in a collaborative session. One or more of
the systems 610, 620, 630, and 640 initiates a collaborative application.
The systems are matched together as discussed at block 302 of Figure 3.
Once the systems have been matched and the connections formed
between systems that now have network addresses for each other then

-15-

WO 2011/153167 PCT/US2011/038620

the systems can broadcast packets to each other as discussed at block
310. For simplicity only the packets 612, 614, and 616 from system 610
have been shown in Figure 6. In a similar manner, the other systems
broadcast packets as well in order to determine the cointoss and assign
reference values to each system. The packets include various fields as
discussed in conjunction with Figure 5. A packet may have an expected
final status (e.g., 4444 for 4 systems) as illustrated as bit string 800 in
Figure 8. The bit string 800 includes the hash identifier 802 for the system
and the number of systems that each system has heard from.In an
embodiment, the users associated with systems 610, 620, 620, and 640
may want to play a four person gaming application. Each user may need
to know which system is player 1, player 2, player 3, and player 4. This
information is necessary for assigning colors, positions, and having the
same guaranteed result on each system. Also, if one player wants to add
random elements to the game or an artificial intelligence of some sort,
then a player needs to be elected to manage these additions or changes
and tell others about it. The cointoss can be used to determine player
ordering. The players exchange a token that is unique (e.g., hash
identifiers) and wait for responses. Networking issues may cause one or
more players to be missing a vital bit of information. Thus, each system
needs to hear from all of the other systems and each system needs to
know that the other systems have also heard from all systems.

[0046] As discussed above, in an embodiment, the packets are sent
and received using an unreliable connectioriless protocol (e.g., user
datagram protocol (UDP)). An establishment of a series of unique
network identifiers to be shared amongst systems is guaranteed by using
the unreliable protocol because the reliable protocol (TCP) is not
guaranteed in a mobile environment and TCP queuing is undesirable
when establishing this mesh. One of the unique aspects of this unreliable
protocol is that by necessity it works well over unreliable networks that can

16-

WO 2011/153167 PCT/US2011/038620

actually be unreliable with only a certain percentage of packets actually

arriving.

[0047] In one embodiment, system 610 has a heard from status
field of 1344, system 620 has a heard from status field of 3144, system
630 has a heard from status field of 4134, and system 640 has a heard
from status field of 4314. These status fields would indicate that all
systems having the same data in regards to each other. If system 610
hears from system 620, then the status field for system 610 updates to
2344,

[0048] Alternatively, system 610 may have a different status field for
system 620 than system 620 actually has because the status field of
system 620 has been recently updated and system 610 is not aware of
this update.

[0049] Mesh networking allows for continuous connections and
reconfiguration around broken or blocked paths by “hopping” from node to
node until the destination is reached. Mesh networks are self-healing: the
network can still operate when one node breaks down or a connection
goes bad. As a result, the network may typically be very reliable, as there
is often more than one path between a source and a destination in the
network. A mesh network can be a local area network (LAN) that employs
one of two connection arrangements, full mesh topology or partial mesh
topology. In the full mesh topology, each (system or other device) is
connected directly to each of the others. In the partial mesh topology,
some nodes are connected to all the others, but some of the nodes are
connected only to those other nodes with which they exchange the most
data.

[0050] Figure 7 illustrates a mesh network 700 having eight
systems in communication with each other in accordance with one
embodiment. The systems 710, 720, 730, 740, 750, 760, 770, and 780
initiate a collaborative application and are matched together as discussed

-17-

WO 2011/153167 PCT/US2011/038620

at block 302 of Figure 3. Once the systems have been matched and the
connections formed between systems then the systems can broadcast
packets to each other as discussed at block 310. Exemplary bidirectional
communication links 781-796 used in part for broadcasting packets are
illustrated in Figure 7. The packets with the cointoss data are used to
determine the cointoss and assign reference values to each system. In
certain embodiments, the collaborative application is a multi-player
gaming application and the assigned reference values determine player
ordering. The reference values can also be used to configure the systems
in the mesh network. One system can be elected a server and the other
systems can be elected a client. For example, system 750 may be
elected a server. Packets sent from system 770 to system 730 may be
routed through system 750. If system 750 quits the collaborative
application (e.g., multi-player gaming application), then another system
can be elected to be the server. In an embodiment, after a collaborative
application begins then additional players can not be added. A star or ring
network of nodes can also be formed using the reference values.

[0051] In an alternative embodiment, the network 700 is a node
based network that implements the cointoss to obtain cointoss data from
other systems and to identify systems in the network 700. For example,
system 740 can be a node that communicates with system 710, system
770, system 720, system 750, and system 780. System 750 can be a
node that communicates with system 730, system 760, and system 780.
If either of system 740 or 750 drops from the node network, then the node
network automatically reforms using the cointoss data.

[0052] Attention is now directed towards embodiments of a system
architecture that may be embodied within any portable or non-portable
device including but not limited to a communication device (e.g. mobile
phone, smart phone), a multi-media device (e.g., MP3 player, TV, radio), a
portable or handheld computer (e.g., tablet, netbook, laptop), a desktop

WO 2011/153167 PCT/US2011/038620

computer, an All-In-One desktop, a peripheral device, or any other system
or device adaptable to the inclusion of system architecture 900, including
comnbinations of two or more of these types of devices. Figure 9 is a block
diagram of one embodiment of system 900 that generally includes one or
more computer-readable non-transitory storage mediums 901, processing
system 904, Input/Output (I/O) subsystem 906, radio frequency (RF)
circuitry 908 and audio circuitry 910. These components may be coupled
by one or more communication buses or signal lines 903.

[0053] It should be apparent that the architecture shown in Figure 9
is only one example architecture of system 900, and that system 900
could have more or fewer components than shown, or a different
configuration of components. The various components shown in Figure 9
can be implemented in hardware, software, firmware or any combination
thereof, including one or more signal processing and/or appIiCation
specific integrated circuits.

[0054] RF circuitry 908 is used to send and receive information over
a wireless link or network to one or more other devices and includes well-
known circuitry for performing this function. RF circuitry 908 and audio
circuitry 910 are coupled to processing system 904 via peripherals
interface 916. Interface 916 includes various known components for
establishing and maintaining communication between peripherals and
processing system 904. Audio circuitry 910 is coupled to audio speaker
950 and microphone 952 and includes known circuitry for processing
voice signals received from interface 916 to enable a user to communicate
in real-time with other users. In some embodiments, audio circuitry 910
includes a headphone jack (not shown).

[0055] Peripherals interface 916 couples the input and output
peripherals of the system to processor 918 and computer-readable
medium 901. One or more processors 918 communicate with one or more
computer-readable mediums 901 via controller 920. Computer-readable

-19-

WO 2011/153167 PCT/US2011/038620

medium 901 can be any device or medium (e.g., storage device, non-
transitory storage medium) that can store code and/or data for use by one
or more processors 918. Medium 901 can include a memory hierarchy,
including but not limited to cache, main memory and secondary memory.
The memory hierarchy can be implemented using any combination of
RAM (e.g., SRAM, DRAM, DDRAM), ROM, FLASH, magnetic and/or
optical storage devices, such as disk drives, magnetic tape, CDs (compact
disks) and DVDs (digital video discs). Medium 901 may also include a
transmission medium for carrying information-bearing signals indicative of
computer instructions or data (with or without a carrier wave upon which
the signals are modulated). For example, the transmission medium may
include a communications network, including but not limited to the Internet
(also referred to as the World Wide Web), intranet(s), Local Area
Networks (LANs), Wide Local Area Networks (WLANSs), Storage Area
Networks (SANs), Metropolitan Area Networks (MAN) and the like.

[0056] One or more processors 918 run various software
components stored in medium 901 to perform various functions for system
900. In some embodiments, the software components include operating
system 922, communication module (or set of instructions) 924, touch
processing module (or set of instructions) 926, graphics module (or set of
instructions) 928, one or more applications (or set of instructions) 930, and
collaborative identifier module [or set of instructions] 938. In an
embodiment, a collaborative application is associated with a collaborative
identifier module 938. Each of these modules and above noted
applications correspond to a set of instructions for performing one or more
functions described above and the methods described in this application
(e.g., the computer-implemented methods and other information
processing methods described herein). These modules (i.e., sets of
instructions) need not be implemented as separate software programs,
procedures or modules, and thus various subsets of these modules may
be combined or otherwise rearranged in various embodiments.

20-

WO 2011/153167 PCT/US2011/038620

[0057] In some embodiments, medium 901 may store a subset of
the modules and data structures identified above. Furthermore, medium
901 may store additional modules and data structures not described
above.

[0058] Operating system 922 includes various procedures, sets of
instructions, software components and/or drivers for controlling and
managing general system tasks (e.g., memory management, storage
device control, power management, etc.) and facilitates communication

between various hardware and software components.

[0059] Communication module 924 facilitates communication with
other devices over one or more external ports 936 or via RF circuitry 908
and includes various software components for handling data received from
RF circuitry 908 and/or external port 936.

[0060] Graphics module 928 includes various known software
components for rendering, animating and displaying graphical objects on a
display surface. In embodiments in which touch I/O device 912 is a touch
sensitive display (e.g., touch screen), graphics module 928 includes
components for rendering, displaying, and animating objects on the touch
sensitive display.

[0061] One or more applications 930 can include any applications
installed on system 900, including without limitation, a collaborative
application, a browser, address book, contact list, email, instant
messaging, word processing, keyboard emulation, widgets, JAVA-enabled
applications, encryption, digital rights management, voice recognition,
voice replication, location determination capability (such as that provided
by the global positioning system (GPS)), a music player, efc.

[0062] Touch processing module 926 includes various software
components for performing various tasks associated with touch 1/O device

21-

WO 2011/153167 PCT/US2011/038620

912 including but not limited to receiving and processing touch input
received from I/O device 912 via touch |/O device controller 932.

[0063] System 900 may further include collaborative identifier
module 938 (e.g., collaborative mesh network module) for performing the
method/functions as described herein in connection with Figures 2-4. In
one embodiment, the collaborative identifier module 938 may at least
function to use unique identifiers associated with systems in a mesh
network to identify the systems. For example, the collaborative identifier
module may identify the systems for player ordering in a multi-player
gaming application. The collaborative identifier module can perform a
hash function on a unique identifier associated with each system to
generate a unique hash identifier for each system. Then, each system
broadcasts packets that include the unique hash identifier for each system
and also status information to other systems in the mesh network. The
collaborative identifier module then can determine when the system has
heard from all systems and when the other systems have also heard from
all other systems. Then, the collaborative identifier module of each
system can sort the unique hash identifiers to assign a relative reference
value to each system in the mesh network and thus identify each system.
In one embodiment, the collaborative identifier module of each system
identifies other systems with these assigned relative reference values,
which can be used for determining a player order in a multi-player gaming
application or can be used for assigning each system to be a server or
client in the mesh network.

[0064] Module 938 may also interact with collaborative application
930 to provide the methods and functionality described herein. Module
938 may be embodied as hardware, software, firmware, or any
combination thereof. Although module 938 is shown to reside within
medium 901, all or portions of module 938 may be embodied within other

WO 2011/153167 PCT/US2011/038620

components within system 900 or may be wholly embodied as a separate
component within system 900.

[0065] I/0 subsystem 906 is coupled to touch 1/O device 912 and
one or more other I/O devices 914 for controlling or performing various
functions. Touch I/O device 912 communicates with processing system
904 via touch I/O device controller 2032, which includes various
components for processing user touch input (e.g., scanning hardware).
One or more other input controllers 2034 receives/sends electrical signals
from/to other I/O devices 914. Other I/0O devices 914 may include physical
buttons, dials, slider switches, sticks, keyboards, touch pads, additional
display screens, or any combination thereof.

[0066] If embodied as a touch screen, touch I/O device 912
displays visual output to the user in a GUI. The visual output may include
text, graphics, video, and any cornbination thereof. Some or all of the
visual output may correspond to user-interface objects. Touch I/O device
912 forms a touch-sensitive surface that accepts touch input from the
user. Touch I/O device 912 and touch screen controller 932 (along with
any associated modules and/or sets of instructions in medium 901)
detects and tracks touches or near touches (and any movement or release
of the touch) on touch I/O device 912 and converts the detected touch
input into interaction with graphical objects, such as one or more user-
interface objects. In the case in which device 912 is embodied as a touch
screen, the user can directly interact with graphical objects that are
displayed on the touch screen. Alternatively, in the case in which device
912 is embodied as a touch device other than a touch screen (e.g., a
touch pad), the user may indirectly interact with graphical objects that are
displayed on a separate display screen embodied as 1/O device 914.

[0067] Touch I/O device 912 may be analogous to the multi-touch
sensitive surface described in the following U.S. Patents: 6,323,846
(Westerman et al.), 6,570,557 (Westerman et al.), and/or 6,677,932

23.

WO 2011/153167 PCT/US2011/038620

(Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of
which is hereby incorporated by reference in its entirety.

[0068] Embodiments in which touch I/O device 912 is a touch
screen, the touch screen may use LCD (liquid crystal display) technology,
LPD (light emitting polymer display) technology, OLED (organic LED), or
OEL (organic electro luminescence), although other display technologies

may be used in other embodiments.

[0069] Feedback may be provided by touch I/O device 912 based
on the user’s touch input as well as a state or states of what is being
displayed and/or of the computing system. Feedback may be transmitted
optically (e.g., light signal or displayed image), mechanically (e.g., haptic
feedback, touch feedback, force feedback, or the like), electrically (e.g.,
electrical stimulation), olfactory, acoustically (e.g., beep or the like), or the
like or any combination thereof and in a variable or non-variable manner.

[0070] System 900 also includes power system 944 for powering
the various hardware components and may include a power management
system, one or more power sources, a recharging system, a power failure
detection circuit, a power converter or inverter, a power status indicator
and any other components typically associated with the generation,

management and distribution of power in portable devices.

[0071] In some embodiments, peripherals interface 916, one or
more processors 918, and memory controller 920 may be implemented on
a single chip, such as processing system 904. In some other
embodiments, they may be implemented on separate chips.

[0072] In certain embodiments of the present disclosure, the system
900 can be used to implement at least some of the methods discussed in
the present disclosure.

[0073] Some portions of the detailed descriptions are presented in
terms of algorithms which include operations on data stored within a

-24-

WO 2011/153167 PCT/US2011/038620

computer memory. An algorithm is generally a self-consistent sequence
of operations leading to a desired result. The operations typically require
or involve physical manipulations of physical quantities. Usually, though
not necessarily, these quantities take the form of electrical or magnetic
signals capable of being stored, transferred, combined, compared, and
otherwise manipulated. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits, values,

elements, symbols, characters, terms, numbers, or the like.

[0074] It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quantities. Unless
specifically stated otherwise as apparent from the following discussion, it
is appreciated that throughout the description, discussions utilizing terms
such as "processing" or "computing" or "calculating" or "determining" or
“displaying" or the like, can refer to the action and processes of a data
processing system, or similar electronic device, that manipulates and
transforms data represented as physical (electronic) quantities within the
system's registers and memories into other data similarly represented as
physical quantities within the system’s memories or registers or other such
information storage, transmission or display devices.

[0075] The present disclosure can relate to an apparatus for
performing one or more of the operations described herein. This
apparatus may be specially constructed for the required purposes, or it
may comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer. Such a
computer program may be stored in a machine (e.g. computer) readable
non-transitory storage medium, such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical
disks, read-only memories (ROMs), random access memories (RAMs),
erasable programmable ROMs (EPROMs), electrically erasable

WO 2011/153167 PCT/US2011/038620

programmable ROMs (EEPROMSs), flash memory, magnetic or optical
cards, or any type of media suitable for storing electronic instructions, and
each coupled to a bus.

[0076] A machine-readable medium includes any mechanism for
storing or transmitting information in a form readable by a machine (e.g., a
computer). For example, machines store and communicate (internally and
with other devices over a network) code and data using machine-readable
media, such as machine storage media (e.g., magnetic disks; optical
disks; random access memory; read only memory; flash memory devices;
phase-change memory).

[0077] One or more Application Programming Interfaces (APIs) may
be used in some embodiments. An APl is an interface implemented by a
program code component or hardware component (hereinafter “API-
implementing component”) that allows a different program code
component or hardware component (hereinafter “API-calling component”)
to access and use one or more functions, methods, procedures, data
structures, classes, and/or other services provided by the API-
implementing component. An API can define one or more parameters that
are passed between the API-calling component and the APl-implementing
component.

[0078] An API allows a developer of an API-calling component
(which may be a third party developer) to leverage specified features
provided by an APl-implementing component. There may be one API-
calling component or there may be more than one such component. An
API can be a source code interface that a computer system or program
library provides in order to support requests for services from an
application. An operating system (OS) can have multiple APIs to allow
applications running on the OS to call one or more of those APIs, and a
service (such as a program library) can have multiple APIs to allow an
application that uses the service to call one or more of those APIls. An API

26-

WO 2011/153167 PCT/US2011/038620

can be specified in terms of a programming language that can be

interpreted or compiled when an application is built.

[0079] In some embodiments the APIl-implementing component
may provide more than one API, each providing a different view of or with
different aspects that access different aspects of the functionality
implemented by the APl-implementing component. For example, one API
of an API-implementing component can provide a first set of functions and
can be exposed to third party developers, and another API of the API-
implementing component can be hidden (not exposed) and provide a
subset of the first set of functions and also provide another set of
functions, such as testing or debugging functions which are not in the first
set of functions. In other embodiments the API-implementing component
may itself call one or more other components via an underlying API and
thus be both an API-calling component and an APIl-implementing
component.

[0080] An API defines the language and parameters that API-calling
components use when accessing and using specified features of the API-
implementing component. For example, an API-calling component
accesses the specified features of the APl-implementing component
through one or more API calls or invocations (embodied for example by
function or method calls) exposed by the API and passes data and control
information using parameters via the API calls or invocations. The API-
implementing component may return a value through the API in response
to an API call from an API-calling component. While the API defines the
syntax and result of an API call (e.g., how to invoke the API call and what
the API call does), the API may not reveal how the API call accomplishes
the function specified by the API call. Various API calls are transferred via
the one or more application programmiing interfaces between the calling
(API-calling component) and an API-implementing component.
Transferring the API calls may include issuing, initiating, invoking, calling,

27-

WO 2011/153167 PCT/US2011/038620

receiving, returning, or responding to the function calls or messages; in
other words, transferring can describe actions by either of the APl-calling
component or the APIl-implementing component. The function calls or
other invocations of the APl may send or receive one or more parameters
through a parameter list or other structure. A parameter can be a
constant, key, data structure, object, object class, variable, data type,
pointer, array, list or a pointer to a function or method or another way to
reference a data or other item to be passed via the API.

[0081] Furthermore, data types or classes may be provided by the
API and implemented by the APIl-implementing component. Thus, the API-
calling component may declare variables, use pointers to, use or
instantiate constant values of such types or classes by using definitions
provided in the API.

[0082] Generally, an API can be used to access a service or data
provided by the API-implementing component or to initiate performance of
an operation or computation provided by the API-implementing
component. By way of example, the API-implementing component and
the API-calling component may each be any one of an operating system,
a library, a device driver, an API, an application program, or other module
(it should be understood that the API-implementing component and the
APl-calling component may be the same or different type of module from
each other). APl-implementing components may in some cases be
embodied at least in part in firmware, microcode, or other hardware logic.
In some embodiments, an APl may allow a client program (e.qg.,
collaborative application) to use the services provided by a Software
Development Kit (SDK) library. In other embodiments an application or
other client program may use an API provided by an Application
Framework. In these embodiments the application or client program may
incorporate calls to functions or methods provided by the SDK and
provided by the API or use data types or objects defined in the SDK and

WO 2011/153167 PCT/US2011/038620

provided by the API. An Application Framework may in these
embodiments provide a main event loop for a program that responds to
various events defined by the Framework. The API allows the application
to specify the events and the responses to the events using the
Application Framework. In some implementations, an API call can report
to an application the capabilities or state of a hardware device, including
those related to aspects such as input capabilities and state, output
capabilities and state, processing capability, power state, storage capacity
and state, communications capability, etc., and the APl may be
implemented in part by firmware, microcode, or other low level logic that

executes in part on the hardware component.

[0083] The API-calling component may be a local component (i.e.,
on the same data processing system as the API-implementing
component) or a remote component (i.e., on a different data processing
system from the API-implementing component) that communicates with
the APl-implementing component through the APl over a network. It
should be understood that an API-implementing component may also act
as an API-calling component (i.e., it may make API calls to an API
exposed by a different APl-implementing component) and an API-calling
component may also act as an API-implementing component by
implementing an API that is exposed to a different API-calling component.

[0084] The APl may allow multiple API-calling components written
in different programming languages to communicate with the API-
implementing component (thus the API may include features for
translating calls and returns between the APl-implementing component
and the API-calling component); however the APl may be implemented in
terms of a specific programming language. An API-calling component
can, in one embedment, call APIs from different providers such as a set of
APIs from an OS provider and another set of APIs from a plug-in provider

WO 2011/153167 PCT/US2011/038620

and another set of APIs from another provider (e.g. the provider of a
software library) or creator of the another set of APIs.

[0085] Figure 10 is a block diagram illustrating an exemplary API
architecture, which may be used in certain embodiments of the present
disclosure. As shown in Figure 10, the API architecture 3200 includes the
APl-implementing component 1010 (e.g., an operating system, a library, a
device driver, an API, an application program, software or other module)
that implements the APl 1020. The API 1020 specifies one or more
functions, methods, classes, objects, protocols, data structures, formats
and/or other features of the APIl-implementing component that may be
used by the APl-calling component 1030. The API 1020 can specify at
least one calling convention that specifies how a function in the API-
implementing component receives parameters from the API-calling
component and how the function returns a result to the API-calling
component. The API-calling component 1030 (e.g., an operating system,
a library, a device driver, an API, an application program, software or other
module) makes API calls through the API 1020 to access and use the
features of the API-implementing component 1010 that are specified by
the APl 1020. The API-implementing component 1010 may return a value
through the API 1020 to the API-calling component 1030 in response to an
API call.

[0086] It will be appreciated that the API-implementing component
1010 may include additional functions, methods, classes, data structures,
and/or other features that are not specified through the API 1020 and are
not available to the API-calling component 1030. It should be understood
that the API-calling component 1030 may be on the same system as the
APIl-implementing component 1010 or may be located remotely and
accesses the APIl-implementing component 1010 using the APl 1020 over
a network. While Figure 10 illustrates a single API-calling component
1030 interacting with the API 1020, it should be understood that other API-

-30-

WO 2011/153167 PCT/US2011/038620

calling components, which may be written in different languages (or the
same language) than the API-calling component 1030, may use the API
1020.

[0087] The APIl-implementing component 1010, the APl 1020, and
the API-calling component 1030 may be stored in a machine-readable
medium (e.g., computer-readable medium), which includes any
mechanism for storing information in a form readable by a machine (e.g.,
a computer or other data processing system). For example, a machine-
readable medium includes magnetic disks, optical disks, random access
memory; read only memory, flash memory devices, etc.

[0088] In Figure 11 (“Software Stack”), an exemplary embodiment,
applications can make calls to Services A or B using several Service APls
and to Operating System (OS) using several OS APIls. Services A and B
can make calls to OS using several OS APlIs.

[0089] Note that the Service 2 has two APls, one of which (Service
2 API 1) receives calls from and returns values to Application 1 and the
other (Service 2 API 2) receives calls from and returns values to
Application 2. Service 1 (which can be, for example, a software library)
makes calls to and receives returned values from OS API 1, and Service 2
(which can be, for example, a software library) makes calls to and
receives returned values from both OS API 1 and OS API 2. Application 2
makes calls to and receives returned values from OS API 2.

[0090] In the foregoing specification, the disclosure has been
described with reference to specific exemplary embodiments thereof. It
will be evident that various modifications may be made thereto without
departing from the broader spirit and scope of the disclosure as set forth in
the following claims. The specification and drawings are, accordingly, to
be regarded in an illustrative sense rather than a restrictive sense.

-31-

WO 2011/153167 PCT/US2011/038620

CLAIMS
What is claimed is:

1. A computer-implemented method comprising:

initiating a collaborative application on a system;

obtaining a unique identifier from memory of the system;

performing a hash function on the unique identifier for the system
in a non-reversible manner to generate a unique hash identifier for the
system;

broadcasting packets that include the unique hash identifier from
the system to at least one other system in a network that has initiated the
collaborative application; and

determining when the system has received packets that include
unique hash identifiers from all systems in the network that have initiated
the collaborative application.

2. The computer-implemented method of claim 1, further comprising:
sorting the unique hash identifiers of the systems in the network to
assign a relative reference value for each system in the network.

3. The computer-implemented method of claim 1, further comprising:

determining when each system has received the unique hash
identifiers from all systems in the network and wherein the network is a
mesh network.

4. The computer-implemented method of claim 2, wherein the unique
hash identifier is generated in a non-reversible manner to protect the
unique identifier of the system.

5. A machine readable non-transitory storage medium containing

executable computer program instructions which when executed by a

-32-

WO 2011/153167 PCT/US2011/038620

computing system cause said system to perform a method, the method
comprising:

initiating a collaborative application on a system;

obtaining a unique identifier from memory of the system;

performing a hash function on the unique identifier for the system
in a non-reversible manner to generate a unique hash identifier for the
system;

broadcasting packets that include the unique hash identifier from
the system to at least one other system in a network that has initiated the
collaborative application; and

determining when the system has received packets that include
unique hash identifiers from all systems in the network that have initiated
the collaborative application.

6. The medium of claim 5, the method further comprises:
sorting the unique hash identifiers of the systems in the network to
assign a relative reference value for each system in the network.

7. The medium of claim 5, the method further comprises:

determining when each system has received the unique hash
identifiers from all systems in the network and wherein the network is a
mesh network.

8. A computer-implemented method comprising:

initiating a multi-player gaming application on a system;

performing a hash function on a unique identifier for the system to
generate a unique hash identifier for the system;

broadcasting packets that include the unique hash identifier from
the system to at least one other system in a mesh network that has
initiated the multi-player gaming application; and

WO 2011/153167 PCT/US2011/038620

determining when the system has received packets that include
unique hash identifiers from all systems in the mesh network that have
initiated the multi-player gaming application.

9. The computer-implemented method of claim 8, further comprising:
determining when each system has received the unique hash
identifiers from all systems in the mesh network.

10. The computer-implemented method of claim 9, further comprising:
sorting the unique hash identifiers to assign a relative reference
value to each system in the mesh network.

11. The computer-implemented method of claim 10, wherein the relative
reference values in combination generate a player order for each player
associated with a system in the mesh network.

12. The computer-implemented method of claim 10, wherein one of the
relative reference values is used to assign a system to be a server in the
mesh network.

13. The computer-implemented method of claim 12, wherein the other
relative reference values are used to assign the other systems to be
clients in the mesh network.

14. A machine readable non-transitory storage medium containing
executable computer program instructions which when executed by a
computing system cause said system to perform a method, the method
comprising:
initiating a multi-player gaming application on a system;
performing a hash function on a unique identifier for the system to
generate a unique hash identifier for the system;

-34-

WO 2011/153167 PCT/US2011/038620

broadcasting packets that include the unique hash identifier from
the system to at least one other system in a mesh network that has
initiated the multi-player gaming application; and

determining when the system has received packets that include
unique hash identifiers from all systems in the mesh network that have
initiated the multi-player gaming application.

15. The medium of claim 14, the method further comprises:
determining when each system has received the unique hash
identifiers from all systems in the mesh network; and
sorting the unique hash identifiers to assign a relative reference
value to each system in the mesh network.

16. The medium of claim 15, wherein the relative reference values in
combination generate a player order for each player associated with a
system in the mesh network.

17. The medium of claim 14, wherein one of the relative reference values
is used to assign a system to be a server in the mesh network and the
other relative reference values are used to assign the other systems to be
clients in the mesh network.

18. A computer-implemented method comprising:

initiating a multi-player gaming application on a plurality of systems
in @ mesh network;

performing a hash function on a unique identifier for each system
to generate a unique hash identifier for each system;

broadcasting packets that include the unique hash identifier and
status information from each system in the mesh network; and

WO 2011/153167 PCT/US2011/038620

determining when each system has received packets that include
the unique hash identifiers and status information from all systems in the
mesh network.

19. The computer-implemented method of claim 18, further comprising:
sorting the unique hash identifiers to assign a relative reference
value to each system in the mesh network.

20. The computer-implemented method of claim 19, wherein the relative
reference values in combination generate a player order for each player

associated with a system in the mesh network.

21. The computer-implemented method of claim 5, wherein each packet
is broadcast and received with an unreliable connectionless protocol.

22. A machine readable non-transitory storage medium containing
executable computer program instructions which when executed by a
computing system cause said system to perform a method, the method
comprising:

initiating a multi-player gaming application on a plurality of systems
in @ mesh network;

performing a hash function on a unique identifier for each system
to generate a unique hash identifier for each system;

broadcasting packets that include the unique hash identifier and
status information from each system in the mesh network; and

determining when each system has received packets that include
the unique hash identifiers and status information from all systems in the
mesh network.

23. The medium of claim 22, the method further comprises:

WO 2011/153167 PCT/US2011/038620

sorting the unique hash identifiers to assign a relative reference
value to each system in the mesh network.

24. The medium of claim 23, wherein the relative reference values in
combination generate a player order for each player associated with a
system in the mesh network.

25. The medium of claim 24, wherein each packet is broadcast and
received with an unreliable connectionless protocol.

PCT/US2011/038620

WO 2011/153167

1711

- v - —

BT T - -]33 0T
ERNEL 30IAY3S viva 3DIAY3S
NOILYDIddY INNODOY NOILYLIANI IIMYWHOLYW 1 NoitoannoD | [3AiLveosyTI0D
0L 3DIAM3S Vivd

WO 2011/153167 PCT/US2011/038620

2/11
INITIATE A COLLABORATIVE APPLICATION AND MATCHING 202
OF SYSTEMS INTERACTING TO FORM A MESH NETWORK [
WITH A SYSTEM
y 204
OBTAIN A UNIQUE IDENTIFIER FROM MEMORY OF THE N\
SYSTEM
!

PERFORM A HASH FUNCTION ON THE UNIQUE IDENTIFIER FOR 206
THE SYSTEM IN A NON-REVERSIBLE MANNER TO GENERATE
A UNIQUE HASH IDENTIFIER FOR THE SYSTEM

! 208
WAIT FOR MATCHING TO START TO FORM MESH B
NETWORK WITH AT LEAST ONE SYSTEM
v
BROADCAST PACKETS THAT INCLUDE THE UNIQUE HASH 210

IDENTIFIER FROM THE SYSTEM TO AT LEAST ONE OTHER ad
SYSTEM IN THE MESH NETWORK THAT HAS INITIATED
THE COLLABORATIVE APPLICATION

v

DETERMINE WHEN ALL OF THE OTHER SYSTEMS HAVE 212
RECEIVED PACKETS THAT INCLUDE UNIQUE HASH IDENTIFIERS |~
FROM ALL SYSTEMS IN THE MESH NETWORK

v

DETERMINE WHEN THE SYSTEM HAS RECEIVED PACKETS THAT 214
INCLUDE UNIQUE HASH IDENTIFIERS FROM ALL SYSTEMS e

IN THE MESH NETWORK
v
SORT THE UNIQUE HASH IDENTIFIERS OF THE SYSTEMS IN 216
THE MESH NETWORK TO IDENTIFY EACH SYSTEM IN THE B
MESH NETWORK

FIG. 2

WO 2011/153167

3/11

PCT/US2011/038620

/— 300

302
INITIATE COLLABORATIVE APPLICATION |~_~/
AND MATCHING FOR SYSTEMS
! 304
OBTAIN UNIQUE IDENTIFIER FOR I~/
EACH SYSTEM
: 306
GENERATE HASH IDENTIFIER BASED I~/
ON UNIQUE IDENTIFIER FOR EACH
SYSTEM
y 308
WAIT FOR MATCHING TO START TOFORM |~_/
MESH NETWORK WITH AT LEAST ONE
SYSTEM
: 310
BROADCAST PACKETS TO DETERMINE ~_/
g A COINTOSS
v 312
WAIT TO RECEIVE PACKETS FROM ~_/
OTHER SYSTEMS
y 314
RECEIVE PACKETS FROM AT LEAST ~_/
ONE OTHER SYSTEM IN THE MESH
NETWORK
¥ 316
UPDATE INTERNAL COINTOSS DATA BASED |~/
ON RECEIVED PACKETS

NO

COINTOSS

COMPLETED?

320

SORT UNIQUE HASH |\

IDENTIFIERS TO
IDENTIFY SYSTEMS

FIG. 3

WO 2011/153167

4/11

PCT/US2011/038620

/ 400

SYSTEM 1

IS COINTOSS
COMPLETE FOR OTHER
SYSTEMS (E.G., 2 = N)
IN A MESH NETWORK?

IS COINTOSS
COMPLETE FOR
SYSTEM 1?

SORT UNIQUE HASH IDENTIFIERS
FORALL SYSTEMS

FIG. 4

NO

406

WO 2011/153167 PCT/US2011/038620

5/11

502 504

FIG. 5

WO 2011/153167 PCT/US2011/038620

6/11

/— 600

612

FIG. 6

PCT/US2011/038620

WO 2011/153167

7111

B ——®

) fvﬁ

)T/m mﬁ

OEOENO

700

781
794

FIG. 7

WO 2011/153167 PCT/US2011/038620

8/11

414414

FIG. 8

WO 2011/153167

9/11

PCT/US2011/038620

900

COMPUTER-READABLE MEDIUM 901 POWER /
e SYSTEM
OPERATING SYSTEM 922 %4
COMMUNICATION MODULE 924
TOUCH PROCESSING MODULE ~ 926
GRAPHICS MODULE 928 EXTERNAL
PORT
APPLICATIONS 930 536
MODULE 938
903-8
%035 Y
904 RF
AW CONTROLLER | |PERIPHERALS| | 9033 | circUITRY SPEAKER
920 INTERFACE [908 950
3116
L 9034
Y
AUDIO
' 232 cireuTRY
PROCESSOR 910 __D
918
MICROPHONE
3 952
903-1
y
/O SUBSYSTEM 906
TOUCH 1/0 OTHER 10
DEVICE CONTROLLER(S)
CONTROLLER 934
932 _
3
903-6 903-7
A\ 4 y
TOUCH 1/Q OTHER IO
DEVICE DEVICES
912 914

FIG. 9

WO 2011/153167

10/11

PCT/US2011/038620

1000

API-CALLING COMPONENT(S)

1030
h
API CALLS, RETURN VALUES,
PARAMETERS PARAMETERS
A
APPLICATION PROGRAMMING
INTERFACE
1020

API-IMPLEMENTING COMPONENT(S)
1010

FIG. 10

WO 2011/153167 PCT/US2011/038620

11/11
/ 1100
APPLICATION 1 APPLICATION 2
i
!
1
!
¢ ‘
SERVICE 1 API | SERVICE 2APL 1 | [SERVICE 2 API 2
SERVICE 1 L SERVICE 2
4 F
\ A 4 J
0S API 1 _I 0S API 2
OPERATING SYSTEM(OS)

FIG. 11

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/038620

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L29/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HOAL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, COMPENDEX, INSPEC, IBM-TDB, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Daal, K: "Link.m - punchball -
Open-source iPhone arcade game revision
Y'3",

Google Project Hosting

3 December 2009 (2009-12-03), pages 1-5,
XPD00002655627 ,

Retrieved from the Internet:
URL:http://code.google.com/p/punchball/sou
rce/browse/trunk/Classes/Link.m

[retrieved on 2011-08-03]

the whole document

1-25

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

invention

which is cited to establish the publication date of ancther
citation or other special reason (as specified)

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

"Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but inthe art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report

3 August 2011 16/08/2011

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,

Name and mailing address of the ISA/ Authorized officer

Fax: (+31-70) 340-3016 Eraso He]guera, J

Form PCT/ISAf210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/038620

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

Apple Inc: "TankViewController.m",
i0S developer library

8 June 2009 (2009-06-08), XP0OOO002655628,
Retrieved from the Internet:
URL:http://developer.apple.com/LIBRARY/IOS
/samplecode/GKTank/GKTank.zip

[retrieved on 2011-08-03]

the whole document

Apple, Inc: "Game Kit Framework
Reference",

26 May 2009 (2009-05-26), XP000002655629,
Retrieved from the Internet:
URL:http://pooh.poly.asu.edu/Cst194/Resour
ces/Docs/system. framework.GameKit _Collecti
on.pdf

[retrieved on 2011-08-03]

the whole document

US 2008/198850 Al (COOPER ERIC [CA] ET AL)
21 August 2008 (2008-08-21)

paragraph [0028]

KNUTSSON B ET AL: "Peer-to-peer support
for massively multiplayer games",

INFOCOM 2004. TWENTY-THIRD ANNUALJOINT
CONFERENCE OF THE IEEE COMPUTER AND
COMMUNICATIONS SOCIETIES, IEEE,
PISCATAWAY, NJ, USA,

vol. 1, 7 March 2004 (2004-03-07), pages
96-107, XP010740794,

DOI: 10.1109/INFCOM.2004.1354485

ISBN: 978-0-7803-8355-5

the whole document

JIANG ET AL: "An approach to achieve
scalability through a structured
peer-to-peer network for massively
multiplayer online role playing games",
COMPUTER COMMUNICATIONS, ELSEVIER SCIENCE
PUBLISHERS BV, AMSTERDAM, NL,

vol. 30, no. 16,

13 October 2007 (2007-10-13), pages
3075-3084, XP022297346,

ISSN: 0140-3664, DOI:

10.1016/J.COMCOM. 2007.05.052

page 3076, right-hand column

1-25

1-25

1-25

1-25

1-25

Form PCT/ISA/210 (continuation of second sheet) [April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/038620
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2008198850 Al 21-08-2008 CN 101309301 A 19-11-2008
DE 102008010145 Al 28-08-2008
GB 2446951 A 27-08-2008
JP 2008206160 A 04-09-2008
KR 20080077915 A 26-08-2008

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - wo-search-report
	Page 51 - wo-search-report
	Page 52 - wo-search-report

