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Sposób wytwarzania bezwodnika maleinowego

Przedmiotem wynalazku jest sposób wytwarza¬
nia bezwodnika maleinowego z n-butanu przy u-
życiu kompleksu katalitycznego fosforowo-wanado-
wo-tlenowego, a zwłaszcza zastosowanie podczas
utleniania niskich stężeń tlenu i zawracanie gazów
wylotowych ze skrubera odcieku z reaktora.

Znane jest i przedstawione w opisie patentowym
Stanów Zjednoczonych Ameryki nr 3 293 268 utle¬
nianie butanu w celu wytworzenia bezwodnika
maleinowego przy użyciu kompleksu katalityczne¬
go fosforowo-wanadowo-tlenowego. Jako czynnik
u^eniający w procesach utleniania korzystnie do¬
prowadza się powietrze ze względu na jego łatwą
dostępność. Na przykład, w wyżej wymienionym
patencie, w każdym z przykładów stosuje się po¬
wietrze.

Jednakże w przypadku doprowadzenia powietrza
do reaktora, powstaje szereg trudności w prowa¬
dzeniu reakcji. A co najważniejsze, ze względu

, na wybuchowość mieszaniny butan-powietrze, ilość
doprowadzonego butanu musi być znacznie ogra¬
niczona. Na przykład w temperaturze 25°C gra¬
nica zapalności dla butanu wynosi l,8°/o, a w tem¬
peraturze 400°C granica zapalności wynosi 1,4%.
Celem zabezpieczenia wystarczającej granicy bez¬
pieczeństwa można stosować w tym sposobie ma¬
ksimum 1,4 do 1,6% butanu. Tego rodzaju niskie
stężenia niekorzystnie wpływają na szybkość re¬
akcji. W celu uzyskania optimum zdolności pro¬
dukcyjnej dyktują one dłuższe czasy reakcji, wyż-
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sze obciążenie katalizatora i wyższe temperatury,
czyli wszystkie warunki, które powodują nega¬
tywne skutki.

W konwencjonalnych sposobach utleniania po¬
wietrzem, obowiązują wysokie stopnie konwersji,
ponieważ nie poddanie butanu konwersji powo¬
duje straty w butanie z powodu opuszczania przez
butan środowiska reakcji. Problem ten może być
rozwiązany przez odzyskiwanie i zawracanie nie-
przereagowanego butanu do środowiska reakcji.
Jednakże, w przypadku ponownego użycia po¬
wietrza, stężenie butanu w gazach wylotowych jest
tak niskie, rozcieńczone głównie dużą ilością azo¬
tu, że koszt odzyskiwania jest wygórowany. Bez¬
pośrednie zawracanie gazu wylotowego nie jest
możliwe, ponieważ nagromadzenie azotu nie może
być tolerowane.

Obecnie stwierdzono, że zgodnie z wynalazkiem
można osiągnąć dużo większą, maksymalną kon¬
wersję n-butanu w bezwodnik maleinowy, przez
doprowadzenie niebogatego w tlen gazu do proce¬
su, utrzymanie stężenia tlenu w strefie reakcyj¬
nej poniżej granicy zapalności, zawrócenie stru¬
mienia gazów z odcieku, zawierającego nieprzere-
agowany n-butan do reaktora po oddzieleniu bez¬
wodnika maleinowego. Maksymalna konwersja
zwiększa się wówczas, ponieważ większe stężenia
butanu biorą udział w reakcji co z kolei zwiększa
zdolność produkcyjną katalizatora. Zmniejszone zo¬
stają koszty inwestycyjne i operacyjne procesu z
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powodu zmniejszonego przepływu gazu przez układ
reakcyjny i układ odzyskiwania. Ponadto zmniej¬
sza się ilość energii stosowanej do sprężania.

Nieoczekiwanie okazało się, że przy prowadze¬
niu sposobu według wynalazku uzyskuje się wyż¬
szą selektywność wytwarzania bezwodnika ma¬
leinowego. Daje to dodatkową korzyść w postaci
możliwości zmniejszenia ciepła czerpanego przez 1
gram poddawanego konwersji butanu, ponieważ
ciepło reakcji niepożądanych produktów ubocznych
CO i C02, jest wyższe niż bezwodnika maleinowe¬
go.

Na załączonym rysunku przedstawiono bardziej
szczegółowo schemat korzystnego prowadzenia pro¬
cesu według wynalazku.

215 moli butanu na godzinę; 912,51 moli tlenu
na godzinę i 789,79 moli azotu i argonu na godzinę
doprowadza się przewodami 1, 2 i 3 do przewodu
4, podgrzewa się w wymiennikach ciepła 5 i wpro¬
wadza do reaktora 7 przewodem 6. Reaktor 7 skła¬
da się z 15 000 rur o średnicy 2,54 cm i 487,7 cm
długości. Każda z rur jest wypełniona 1.63 kg
kompleksu katalitycznego fosforowo-wanadowo-
-tlenowego aktywowanego cynkiem. Stosunek ato¬
mowy fosfor wanad cynk wynosi odpowiednio 1,5

1,0 0,19. Skład gazu zasilającego wpływającego do
reaktora przewodem 6 podano w tablicy 1.

Tablica 1

C4H10
! o2
co

co2
H20
Bezwodnik
maleinowy
N2+A

Zasilanie reaktora

Mole/godzina % molowe

333,84
1 335,38
1 285,31

963,70
872,56

7 209,96

12 000,75

2,78
11,12
10,71

8,03
7,27

60,09
100,00

Butan utlenia się w reaktorze 7 do bezwodnika
maleinowego w temperaturze wahającej się od
420°C do 490°C, pod ciśnieniem wyższym od atmo¬
sferycznego od 0,70307 do 1,4061 kG/cm2 i w cza¬
sie trwania kontaktu 0,8 sek. Ciepło kontroluje
się za pomocą wymiennika ciepła z systemem sol¬
nym 8.

Eluat z reaktora znajdujący się w przewodzie 9
zawiera składniki przedstawione w tablicy 2.

Tablica 2

C4H10
O*
CO

coft
HeO
Bezwodnik

maleinowy
N2+A

Eluat z

Mole/godzina

133,54
"■ 475,17

1445,55
1: 083,89
1742,79

130,20

7 209,96

12 221,10

reaktora 1

°/o molowe

1,09
3,89

11,83
8,87

14,26

1,06
59,00

100,00
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Eluat chłodzi się w wymiennikach ciepła 10, 11
i 12 i przepuszcza się surowy bezwodnik do roz¬
dzielacza 13. Oziębiony bezwodnik maleinowy
/77,47 moli na godzinę/ odbiera się z rozdzielacza
przewodem 14. Materiał gazowy, odbierany prze¬
wodem 15, zawiera składniki przedstawione w ta¬
blicy 3.

Tablica 3

C4H10
o2
CO

co2
H20
MAN

N2.+A

Zasilanie skrubera

Mole/godzina

133,54
475,17

1 445,55
1 083,89
1 742,79

52,73
7 209,96

12 143,63

% molowe

1,10
3,91

11,90
8,92

14,35
0,43

59,38

100,00
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Materiał ten wprowadza się do skrubera 16, w
którym gaz przemywa się wodą wprowadzaną
przewodem 18 i obiegowym strumieniem 19 roz¬
tworu kwasu maleinowego.

Ze skrubera 16 przewodem 21 odbiera się eluat
i rozdziela się na strumień oczyszczający 22 i stru¬
mień obiegowy 23. Strumień oczyszczający ma
skład przedstawiony w tablicy 4.

Tablica 4

C4H10
o,
CO

co2
H20
MAN

N2+A

Oczyszczanie

Mole/godzina

14,80
52,30

160,20
120,18
108,83
—

799,00

1 255,31

°/o molowe

1,18
4,17

12,76
9,57
8,67
0,00

63,65

100,00

45 Skład strumienia obiegowego przedstawiono w
tablicy 5.

Tablica 5

50

55
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65

C4H10
o2
CO

co2
H20
MAN

,N2+A

Mole/godzinę

118,74
412,87

1 285,31
963,71
872,56
—

6 410,93

10 064,12

% molowe

1,18
4,10

12,78
9,57
8,67
0,00

63,70

100,00

Po sprężeniu w sprężarce obiegowej 24, strumień
obiegowy wprowadza się do reaktora 7, jak to już
uprzednio opisaono. W wyniku zastosowania opi¬
sanego procesu uzyskuje się najwyższą konwersję
rzędu 93,1% przy selektywności 56,5% molowych
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w stosunku do bezwodnika maleinowego. Jak wia¬
domo, konwersja w jednym obiegu wynosi tylko
60Vt. Tego rodzaju niska konwersja pozwala na
uzyskanie wysokiej selektywności, a system obie¬
gowy według wynalazku pozwala na odzyskiwa¬
nie i ponowne użycie nieprzereagowanego n-bu-
tanu.

Najkorzystniejsze jest stosowanie tlenu z wydaj¬
nych instalacji do oddzielania powietrza. Taki tlen
wykazuje czystość maksimum 99,5°/#. Jednakże
można korzystnie stosować również tlen o niższej
czystości, do minimum 50§/o. Niższy procent zawar¬
tości tlenu nie jest pożądany, ponieważ konieczne
byłoby nadmierne oczyszczanie, rezultatem które¬
go byłaby utrata dodatkowego nieprzereagowane¬
go n-butanu.

Korzystnie tlen otrzymuje się z rurociągu pod
ciśnieniem, nie wymaga on wówczas żadnej obrób¬
ki przed użyciem do procesu. Jest to ważna zale¬
ta w stosunku do stosowania powietrza, przy u-
życiu którego konieczne jest zastosowanie oddziel¬
nego sprężania.

W sposobie według wynalazku konieczne jest
sprężanie jedynie strumienia obiegowego. Ponieważ
strumień ten ma mniejszą objętość zarówno koszt,
jak i proces sprężania są zredukowane do mini¬
mum.

Ponieważ gazy wylotowe ze skrubera zawierają,
oprócz n-butanu, tlenek węgla i dwutlenek węgla
wytworzone w reakcji, konieczne jest oczyszcze¬
nie tej części strumienia, która uchodzi z miejsca
reakcji. Ponieważ składniki te wpływają na stan
równowagi, konieczne jest usuwanie tylko tej u-
tworzonej ilości, która przeszła przez reaktor.

W celu utrzymania stężenia tlenu poniżej dol¬
nej granicy, gaz obojętny dodaje się do miesza*
niny reakcyjnej. Zaleca się stosowanie azotu, jed¬
nakże mogą być użyte również inne gazy obojętne,
takie jak argon, hel lub niższe węglowodory, ta¬
kie jak metan i etan. Najbardziej korzystnie sto¬
suje się gaz obojętny posiadający wysokie ciepło
właściwe, ponieważ sprzyja to zmniejszeniu mak¬
symalnego stężenia tlenu, co pozwala na bezpieczne
prowadzenie reakcji.

W przypadku stosowania azotu, jako rozcieńczal¬
nika, stężenie tlenu wynosi poniżej 13%, taka jest
bowiem granica zapalności dla układu butan-tlen-
-azot. Czysty azot może być łączony z czystym
tlenem, a jak pokazano na załączonym schemacie,
strumień obiegowy lub tlen może być doprowa¬
dzany do sprężarki obiegowej 24 razem z gazem
ze skrubera. W tym ostatnim przypadku należy
dodawać mniej czysty tlen do układu przewodem
2. Mogłoby to wyrównać małą dodatkową ilość
wymaganego sprężenia. Można stosować również i'
inne źródła tlenu i rozcieńczalnika spośród oczy¬
wistych dla fachowca.

Stężenie n-butanu utrzymywane w reaktorze w
sposobie według wynalazku nie jest ograniczone
stopniem niebezpieczeństwa wybuchu; dlatego moż¬
na stosować wyższe stężenia, co sprzyja zwiększe¬
niu stopnia konwersji bez występowania wad nie¬
odłącznych dla wysokich temperatur, wyższych ob¬
ciążeń katalizatora i dłuższego czasu kontaktowania.
Stężenie butanu zależy od dwóch czynników. Po

pierwsze, od ilości ciepła wytworzonego w reakcji.
Po drugie od ilości tlenu zużytego przez 1 mol
butanu, wchodzącego w reakcję. W przypadku roz¬
patrywania normalnego nieruchomego procesu
technologicznego nie więcej niż dwa mole butanu
powinny reagować każdorazowo ze 100 molami
surowca zasilającego reaktor. Większe ilości dają
w rezultacie wytwarzanie ciepła, które nie jest
łatwe do usunięcia.

Dla typowych przypadków, ze stechiometrii re¬
akcji, zakładając, że 60% butanu ulega przemia¬
nie w bezwodnik maleinowy, 25% w tlenek węgla,
a 15% w dwutlenek węgla wyika, że 4,25 mola
tlenu zużywa się na każdy mol butanu, który
wchodzi w reakcję. W przypadku zasilania o za*
wartości 13% tlenu, nie więcej niż 3 mole butanu
może przereagować, powodując że zużycie jest cał¬
kowite. Ze względu ną rozważaną szybkość reakcji,
reakcję prowadzi się korzystnie przy niskiej do
średniej konwersji na jeden obieg.

W sposobie według wynalazku niskie stężenia w
jednym obiegu są do przyjęcia, ponieważ przewa¬
żająca część nieprzereagowanego butanu zawraca
się, osiągając tym samym wysoką maksymalną
konwersję.

W oparciu o publikowaną literaturę, nie można
było przewidzieć osiągniętych, sposobem według
wynalazku, rezultatów. Na przykład, Joseffe i wsp.
Kinetyka i Kataliza, 3/1962/ str. 267—270, stwier¬
dza, że kiedy stężenie tlenu spada poniżej 10 pro¬
cent objętościowych przy utlenianiu benzenu do
bezwodnika maleinowego w obecności katalizato¬
ra na nośniku wanadowym, szybkość reakcji obni¬
ża się katastrofalnie.

Stwierdzono, że szybkość reakcji jest proporcjo¬
nalna do kwadratu stężenia tlenu. Jeśli to było¬
by prawdą, w układzie reakcyjnym według wy¬
nalazku, nie mogłaby być uzyskana zwiększona
zdolność produkcyjna i konieczne byłoby znaczne
przedłużenie czasu reakcji w odniesieniu do jed¬
nostkowej operacji powietrzem. Faktycznie rezulta¬
ty uzyskane obecnie wskazują, że szybkość reak¬
cji jest proporcjonalna do pierwszej potęgi stęże¬
nia tlenu. Wyjaśnia to również korzystne rezulta¬
ty osiągnięte przy niskich stężeniach tlenu.

Innym nieoczekiwanym efektem, który przynosi
korzyść w wyniku zastosowania sposobu według
wynalazku jest fakt, że CO nie ulega dalszemu
utlenianiu do COs w czasie ponownego przepływu
nad katalizatorem. Jest to szczególnie ważne dla
zmniejszenia obciążenia cieplnego układu i dla po¬
żyteczniejszego wykorzystania doprowadzanego
tlenu. Wybitnie doniosłym zagadnieniem przy
praktycznym wykonywaniu wynalazku jest utrzy¬
manie zawartości tlenu poniżej granicy zapalności
układu. W praktyce granica ta zależy od tempe¬
ratury i pojemności cieplnej gazów w strefie re¬
akcyjnej. Na przykład, w temperaturze reakcji
500°C i zastosowaniu azotu jako rozcieńczalnika,
granica zapalności wynosi około 13%. W przypad¬
ku stosowania szczególnych układów, granicę za¬
palności można określić doświadczalnie.

Granice te są zależne nie tylko od ciśnienia,
temperatury i stężenia, ale również od kształtu
naczynia reakcyjnego. Mimo to, można dokonać
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przybliżonej oceny, ponieważ wiadomym jest, że
wzrastające temperatury i ciśnienie zmierzają do
zwiększenia zakresu zestawu składników, przy któ¬
rym mieszanina wchodzi w strefę mieszanin za¬
palnych.

Utlenianie fazy parowej n-butanu przeprowadza
się w temperaturze 300—650°C, korzystnie od 400
do 550?C. Czasy zetknięcia się z katalizatorem wy¬
noszą od 0,05 do 5 sekund, korzystnie od 0,1 do 1,5
sekundy. Niższe temperatury sprzyjają dłuższemu
życiu katalizatora, lecz wymagany jest wówczas
dłuższy czas reakcji.

Ciśnienie w reaktorze ogólnie rzecz biorąc nie
jest krytyczne i reakcja może być prowadzona za¬
równo w atmosferycznym ciśnieniu, przy nadciś¬
nieniu i pod zmniejszonym ciśnieniem. Wyjściowe
ciśnienie natomiast powinno być przynajmniej
nieznacznie wyższe niż ciśnienie otoczenia, w celu
zapewnienia swobodnego przepływu gazu ze śro¬
dowiska reakcji. Ciśnienie gazów obojętnych musi
być wystarczająco wysokie, aby mogło pokonać
ciśnienie panującego wewnątrz reaktora.

Do reaktora można doprowadzać różne produkty
wyjściowe, będące źródłem butanu. Można wpro*
wadzać czysty butan z powietrzem. Mogą być
również użyte mieszaniny butan-izobutan, butan-
-buten, butan-butadien i ich różne kompozycje.
Materiał wyjściowy korzystnie powinien zawierać
przynajmniej 50% butanu.

Z Opisu patentowego Stanów Zjednoczonych
Ameryki nr 3 293 268 znany jest, opisany w nim
szeroko kompleks katalityczny fosforowo-wanado-
wo-tlenowy i sposób jego wytwarzania, jak rów¬
nież szeroka grupa nasyconych węglowodorów ali¬
fatycznych, która może być utleniana skutecznie
przy użyciu tego katalizatora. Znane jest z opisu
patentowego Stanów Zjednoczonych Ameryki nr
3 156 705 zastosowanie wymienionych katalizatorów
do utleniania nienasyconych węglowodorów alifa¬
tycznych. ;

Najkorzystniejszą odmianą sposobu według wy¬
nalazku jest zastosowanie kompleksu katalityczne¬
go, który zawiera aktywator cynkowy. Tego ro¬
dzaju katalizatory dają niezwykle wysokie wydaj¬
ności bezwodnika maleinowego przy stosunkowo
łagodnych warunkach reakcji.
, Najkorzystniejsze jest przygotowanie katalizato¬
ra przez łączne ogrzewanie pod chłodnicą zwrotną
wszystkich składników, czyli wanadu, fosforu i
.metalu aktywującego. Oczywiście mogą być zasto¬
sowane również i inne metody. Jednakże pożąda¬
nym, jest stosowanie techniki, która sprzyja two¬
rzeniu idę raczej wysokokrystalicznych, a nie bez¬
postaciowych form katalizatora.

Podczas przygotowania aktywnego katalizatora,
stosunek atomowy fosforu do wanadu powinien
być utrzymany w zakresie od około 0,5 do 5, ko¬
rzystnie jeden do dwóch atomów fosforu na je¬
den atom wanadu. Najkorzystniej stosunek ten
wynosi od około 1,1 do 1,6 atomów fosforu na je¬
den atom wanadu. Zawartość aktywatora katali¬
tycznego powinna wynosić od około 0,05 do około
0,35 atomów na jeden atom wanadu, zwłaszcza od
około 0,1 do około 0,25 atomów na jeden atom
wanadu. Aktywator może się składać z jednego lub

więcej metali i może być stosowany z lub bez
promotorów. Korzystnie, jako aktywator stosuje
się cynk, bizmut* miedź lub lit, zarówno w posta¬
ci pierwiastków jak i ich soli. W przypadku cynku,

5 wymieniony powyżej stosunek jest równy około
3,0 do 25ty§ wagowych cynku, korzystnie od około
5,0 do 10% wagowych w stosunku do całkowite-1
go ciężaru wanadu, tlenu i fosforu.

Katalizatory wytwarza się przez połączenie wa-
io nadu ze związkiem fosforu. W przypadku, gdy sól

tlenowa wanadu łączy się ze związkiem fosforu,
wówczas tworzy się kompleks wanadowo-fosforo-
wo-tlenowy. Sól tlenową wanadu można dodawać
jako taką lub też wytwarzać in situ podczas przy-

15 gotowywania kompleksu wanadowo-tlenowo-fosfo-
rowego. Następnie, przykładowo, sól tlenową wa«-
nadu można wstępnie wytworzyć, a następnie do¬
dać związek fosforowy lub też tlenek wanadu,
związek fosforu i tworzący sól kwas zmieszać rów-

20 nocześnie z solą tlenową tworzącą się in situ. Naj¬
korzystniejszym sposobem, jest sposób, w którym
tworzy się wstępnie sól tlenową.

Aktywator katalityczny można wprowadzać do
katalizatora różnymi sposobami. Odpowiedni jest

25 każdy sposób,: który w rezultacie daje jednorodne
połączenie dodawanego aktywatora z kompleksem
wanadowo-tlenowo-fosforowym. Aktywator można
dodawać podczas wytwarzania kompleksu wanado-
wo-tlenowo-fosforowego, lub można najpierw przy-

30 gotować kompleks, a aktywator dodać zarówno
przed, w tym samym czasie, lub po dodaniu związ¬
ku wanadowego lub fosforowego. Jeśli dodaje się
również nośnik, aktywator można dodać przed, po
lub w tym samym czasie, co nośnik.

35 Jak zaznaczono uprzednio, kompleksy katalitycz¬
ne korzystnie można przygotowywać metodą roz¬
puszczalnikową lub metodą ogrzewania pod chłod¬
nicą zwrotną. Jeśli stosuje się na przykład tleno¬
chlorek wanadu jako rozpuszczalnik można stoso-

40 wać stężony kwas solny. Roztwór tlenochlorku wa¬
nadu można łatwo otrzymać w wyniku rozpusz¬
czenia pięciotlenku wanadu w stężonym kwasie
solnym. Następnie fosfor może być wprowadzany
przez dodanie związku fosforu, takiego jak kwas

45 fosforowy, P2Os lub POCI, do tlenochlorku wana¬
dowego w celu utworzenia kompleksu wanadowo-
-tlenowo-fosforowego, rozpuszczalnego w kwasie
solnym. Dodawany aktywator katalityczny roz¬
puszcza się zwykle razem z pięciotlenkiem wanadu

50 w kwasie solnym, lub też jeśli tlenochlorek wa¬
nadu jest materiałem wyjściowym, może on być
rozpuszczony w roztworze tego ostatniego przed
dodaniem do związku fosforowego. Szybkość po¬
wstania kompleksu zwiększa się wraz ze wzrostem

55 temperatury.
Sól tlenowa wanadu używana do przygotowy¬

wania katalizatora ewentualnie może zawierać-
jako anion tworzący sól, dowolny anion kwasu,
który jest bardziej lotny od'anionu kwasu fosfo-

oo rowego i który nie jest zwykle stosowany jako
czynnik utleniający wanad, podczas przygotowy¬
wania katalizatora. Kwas poprzednik anionu, mo¬
że być zarówno organicznym, jak i nieorganicz¬
nym kwasem. Jako odpowiedni kwas stosuje się

65 kwas solny, jodowodorowy, bromowodorowy, octo-
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rzystne jest gdy jest on obojętny w stosunku do
osadu roztworu, zawierającego kompleks oraz jest
obojętny również w warunkach utleniania katali¬
tycznego. Podłoże stanowi bowiem nie tylko wy¬
maganą dla katalizatora powierzchnię, lecz rów¬
nież daje materiałowi katalitycznemu wytrzyma¬
łość fizyczną i stabilność. Nośnik lub podłoże mafe
zazwyczaj niewielkie pole powierzchni, to jest mŁ
około 0,001 do około 5 ms/g.

Pożądaną postacią nośnika jest taka która po¬
siada nieabsorbujące zwarte centrum oraz chropo¬
watą powierzchnię pozwalającą na utrzymanie na
niej katalizatora. Nośnik może mieć różne wymia¬
ry, korzystnie od około 2—1/2 mesh do około 10
mesh według rozmiarów sit podanych w Tyler
Standard. Częstki nośnika mniejsze niż 10 do 12
mesh powodują zwykle niepożądany spadek ciś¬
nienia w reaktorze. Można stosować każdy z do¬
wolnych obojętnych nośników o małej powierzchni
właściwej takich jak węgliki krzemu, glinu i żel
krzemionkowy.

Ilość kompleksu katalitycznego na nośniku mo¬
że wahać się od około 10 do około 30Vt wagowych,
a korzystnie od około 14 do 24°/t wagowych w sto¬
sunku do obojętnego nośnika. Tego rodzaju ilości
kompleksu katalitycznego są zazwyczaj wystarcza¬
jące do zasadniczego pokrycia powierzchni nośnika.
W przypadku użycia nośnika, bardziej absorbują¬
cego stosuje się większe ilości materiału w celu
uzyskania całkowitego pokrycia. W przypadku wę¬
glika krzemu, zazwyczaj stosuje się około 25 pro¬
cent katalizatora.

Nadmiar katalizatora ponad ilość wymaganą do
pokrycia powierzchni nośnika, zazwyczaj ulega
straceniu ze względu na mechaniczne ścieranie.
Korzystnie końcowy wymiar cząsteczek katalitycz¬
nych, pokrywających nośnik, będzie wynosił około
2—1/2 do o koło 10 mesh, Nośniki mogą mieć różne
kształty, korzystnie cylindra lub kuli.

Tablica 6

Godziny
pomiaru

i

340

404

408
428

429

430
433,5
435

454

457
459

Tempe¬
ratura

°C

2

460
450

450

450

452

430

430

430

430
430

Przepływ
w cm8/
/min.

3

81,2
81,2
81,2
81,2
81,2

81,2
81,2
81,2
81,2
81,2

Zasilanie w %
molowych

o2 Butan

4

21,4
21,4
21,4
21,4
21,4

1,33
1,33
1,33
1,33
1,33

Zasilanie zmieni
9,29
9,30

11,0
11,0
11,0

3,40
3,37
3,34
3,38
3,34

Ilość buta¬
nu, który
uległ kon¬
wersji w*
jednym
obiegu

5

90,7
85,9
85,7
84,7
85,7

ono na mieś
38,9
37,3
39,2
40,3
39,9

Ilość moli
butanu,
które u-

legły kon¬
wersji na
100 moli

zasilania

6

1,20
1,14
1,14
1,13
1,14

Selektyw¬
ność w

stosunku

do bezwod¬
nika ma¬
leinowego

W*/i

7

52,7
56,1
56,7
55,1
55,7

Bezwodniki
maleinowy]

r

Butan,
który
uległ

konwersji

~~ *~ 1
0,807
0,814
0,821
0,788
0,807

zaninę o niskiej zawartości Ot J
1,32
1,26
1,31
1,36
1,33

63,4
60,8
61,5
63,2
62,9

1,07
1,03
1,04
1,07

1,06

9

wy, szczawiowy, jabłkowy, cytrynowy, mrówkowy
i ich mieszaniny takie jak mieszanina kwasu sol¬
nego i szczawiowego. Można stosować również,
chociaż to jest mniej korzystne kwasy siarkowy i
fluorowodorowy. Można stosować również inne 5
czynniki redukujące, lecz nie dają one kataliza¬
torów, tak korzystnych.

Jako inne czynniki redukujące stosuje się alde¬
hydy organiczne, takie jak formaldehyd i acetal-
dehyd, alkohole, takie jak pentaerytryt, alkohol 10
dwuacetonowy i dwuetanoloamina, oraz dodatko¬
we czynniki redukujące, takie jak hydroksyloami¬
ny, hydrazyna, dwutlenek siarki i tlenek azotu.
Nie stosuje się kwasu azotowego i podobnych kwa¬
sów utleniających, które podczas przygotowywa- 15
nia katalizatora mogłyby utlenić wanad z wartoś¬
ciowości IV do V.

Doskonałe rezultaty daje wytwarzanie soli tle¬
nowych wanadu przy użyciu kwasów nieorganicz¬
nych. Najlepsze rezultaty uzyskuje się przy użyciu 20
soli powstających w kwasie solnym, czyli przy
użyciu tlenochlorku wanadu.

Chociaż katalizator można oddzielnie formować
i używać w postaci tabletek, bardziej ekonomicz¬
nym i praktycznym jest osadzenie go na nośniku.. 25
Przed połączeniem nośnika z katalizatorem ko¬
rzystnie roztwór katalizatora zatęża się tak, aby
zawierał od około 30 do 80*/t substancji lotnych.
Lepsze rezultaty uzyskuje się, gdy zawartość skład¬
ników lotnych wynosi od około 50 do 70i/« wago- 30
wych. Nośnik można dodawać do roztworu katali¬
zatora lub można zalać nośnik roztworem katali¬
zatora. Nośnik może być obecny podczas całego
przebiegu reakcji otrzymywania pożądanego kom¬
pleksu wanadowo-tlenowo-fosforowego, lecz jest to M
mniej korzystne.

W przypadku obecności podłoża lub nośnika dla
kompleksu wanadowo-tlenowo-fosforowego, ko-
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ilości moli butanu, które uległy konwersji w jed¬
nym obiegu na 100 moli zasilania dla mieszanin
zasilania o niskiej zawartości tlenu jest 10—20%
większa, niż dla zasilania powietrzem.

Katalizator może zawierać obojętne rozcieńczal¬
niki, takie jak krzemionka, lecz połączone ciężary
wanadu, tlenu, fosforu i aktywatora katalityczne¬
go powinny korzystnie stanowić przynajmniej 50%
wagowych mieszaniny, którą jest pokryty nośnik.
Korzystnie związki te stanowią przynajmniej oko¬
ło 75°/o wagowych mieszaniny, którą jest pokryty
nośnik zwłaszcza przynajmniej około 95% wago¬
wych.

Chociaż na nośniku nieruchomym uzyskuje się
lepsze pod względem ekonomicznym rezultaty w
wyniku zastosowania katalizatora, katalizator ten
może być stosowany również w układzie złoża
fluidalnego. Oczywiście, rozmiar cząstki kataliza¬
tora używanego w złożu fluidalnym jest bardzo
mały, waha się od około 10 do około 150 mikro¬
nów. Zazwyczaj w tego rodzaju układach kata¬
lizator stosuje się bez nośnika, tylko uzyskuje się
go z roztworu w cząstkach o pożądanych wymia¬
rach po wysuszeniu.

Poniższe przykłady ilustrują sposób według wy¬
nalazku.

Przykład. W reaktorze o objętości 3,96 cm8
i zawierającego 3,87 g kompleksu katalitycznego
fosforowo-wanadowo-tlenowego aktywowanego
cynkiem, przy czym stosunek P:V:Zn wynosi
1,15:1,0:0,19, poddaje się utlenianiu n-butan w tem¬
peraturach, szybkości przepływu i stosunkach za¬
silania podanych poniżej. Pięć pierwszych cykli
ilustruje zastosowanie zasilania powietrzem, pod¬
czas gdy pięć ostatnich ilustrują wyniki uzyskane
przy użyciu niskotlenowego zasilania sposobem we¬
dług wynalazku.

Wyżej wymienione porównanie bezspornie wy-
•kazuje, że sposobem według wynalazku uzyskuje
się zwiększoną wydajność i zdolność produkcyjną
bezwodnika maleinowego. W przypadku zasilania
powietrzem, przeciętna ilość gramów bezwodnika
maleinowego na gram butanu jest mniejsza od 0,81
podczas gdy wydajność uzyskiwana sposobem we¬
dług wynalazku wynoszą powyżej 1,65 gramów na
gram. Również w temperaturze o 20°C niższej

Zastrzeżenia patentowe

1. Sposób wytwarzania bezwodnika maleinowego
przez utlenianie n-butanu w strefie reakcyjnej w
obecności kompleksowego katalizatora fosforo-wa-
nadowo-tlenowego, znamienny tym, że w miesza¬
ninie doprowadzanej do strefy reakcyjnej utrzy¬
muje się stężenie n-butanu powyżej 1,7%, stęże¬
nie tlenu 3—13% i stężenie gazu obojętnego 70—
—95% i w strefie reakcyjnej przeprowadza kon¬
wersję 30—70% n-butanu, odprowadza ze strefy
reakcyjnej mieszaninę zawierającą bezwodnik ma¬
leinowy, tlenki węgla i nie przereagowany n-bu¬
tan, oddziela z tej mieszaniny bezwodnik maleino¬
wy i główną część pozostałości zawraca do stre¬
fy reakcyjnej.

2. Sposób według zastrz. 1, znamienny tym, że
jako obojętny gaz stosuje się azot.

3. Sposób według zastrz. 1, znamienny tym, że
mieszaninę zawracaną do strefy reakcyjnej pod¬
daje się oczyszczaniu tak, aby utrzymać w ukła¬
dzie równowagę stężenia tlenków węgla.

4. Sposób według zastrz. 1, znamienny tym, że
do układu reakcyjnego wprowadza się czysty tlen
i miesza go z obojętnym gazem i zawracaną mie¬
szaniną.

5. Sposób według zastrz. 1, znamienny tym, że
do układu reakcyjnego wprowadza się mieszaninę
czystego ttlenu z powietrzem i miesza ją z zawra¬
caną mieszaniną.

6. Sposób według zastrz. 1, znamienny tym, że
reakcję prowadzi się pod ciśnieniem 1,05—7,03
kG/cm2.

7. Sposób według zastrz. 1, znamienny tym, że
stosuje się katalizator zawierający na 1 atom wa¬
nadu 0,05—0,35 atomu aktywatora.
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