DEMANDE DE BREVET D'INVENTION

Date de dépôt : 12.06.03.
Priorité : 13.09.02 FR 00211416; 13.09.02 FR 00211415.

Demandeur(s) : LABORATOIRE FRANÇAIS DU FRACTIONNEMENT ET DES BIOTECHNOLOGIES Groupement d'intérêt public — FR.
Inventeur(s) : DE ROMEUF CHRISTOPHE, GAUCHE CHRISTINE, GLACET ARNAUD, DHAINAUT FREDERIC et BOUREL DOMINIQUE.
Titulaire(s) :
Mandataire(s) : REGIMBEAU.

TRAITEMENT DES PATHOLOGIES ECHAPPANT A LA REPONSE IMMUNE PAR DES ANTICORPS OPTIMISES.

La présente invention concerne l'utilisation d'anticorps monoclonaux chimériques ou humains optimisés qui sont produits dans des lignées cellulaires sélectionnées, lesdits anticorps présentant une forte affinité pour le récepteur CD16 des cellules effectrices du système immunitaire mais également la propriété d'induire la sécrétion de cytokines et d'interleukines, en particulier l'IFNγ ou l'IL2 pour le traitement de pathologies pour lesquelles les cellules cibles n'expriment qu'une faible densité antigénique et dans lesquelles les cellules effectrices ne peuvent être recrutées qu'en faible quantité.
La présente invention concerne l'utilisation d'anticorps monoclonaux chimériques humanisés ou humains optimisés qui sont produits dans des lignées cellulaires sélectionnées, lesdits anticorps présentant une forte affinité pour le récepteur CD16 des cellules effectrices du système immunitaire mais également la propriété d'induire la sécrétion de cytokines et d'interleukines, en particulier l'IFNγ ou l'IL2, pour le traitement de pathologies pour lesquelles les cellules cibles n'expriment qu'une faible densité antigénique et dans lesquelles les cellules effectrices ne peuvent être recrutées qu'en faible quantité.

L'immunothérapie au moyen d'anticorps monoclonaux est en passe de devenir un des aspects les plus importants de la médecine. En revanche, les résultats obtenus lors d'essais cliniques apparaissent contrastés. En effet, il peut s'avérer que l'anticorps monoclonal ne soit pas suffisamment efficace. De nombreux essais cliniques sont arrêtés pour diverses causes telles que le manque d'efficacité et des effets secondaires incompatibles avec une utilisation en thérapie clinique. Ces deux aspects sont étroitement liés sachant que des anticorps peu actifs sont administrés à forte dose pour compenser et obtenir une réponse thérapeutique. L'administration de forte dose induit non seulement des effets secondaires mais est économiquement peu viable.

Ces problèmes sont majeurs dans l'industrie des anticorps monoclonaux chimériques humanisés ou humains.

Or, ce problème est exacerbé pour un certain nombre de pathologies pour lesquelles la densité antigénique exprimée par les cellules cibles est faible et/ou le faible nombre de cellules effectrices disponibles et activées rend techniquement impossible l'utilisation d'anticorps à visée thérapeutique avec les anticorps actuellement disponibles. Par exemple, dans le Syndrome de Sézary, l'antigène spécifique, KIR3DL2, est très faiblement exprimé (seulement environ 10 000 copies). L'expression des antigènes
tumoraux peut également être régulée négativement, comme HER2Neu dans le cancer du sein. Par ailleurs, lorsque l'on cherche à inhiber l'angiogénèse via le ciblage du VEGFR2, peu de cibles sont effectivement accessibles car le récepteur est internalisé. En outre, les peptides spécifiques d'antigènes de tumeurs présentés par les molécules HLA de classe 1 ou classe 2, par exemple carcinome, mélanome, cancer ovarien, cancer de la prostate sont généralement peu exprimés à la surface des cellules cibles tumorales. Enfin, une autre situation peut se trouver lors d'infections virales dans lesquelles les cellules infectées par certains virus (VHB, VIH) n'expriment que peu de molécules virales sur leur membrane.

Ainsi, l'objectif est d'obtenir de nouveaux anticorps présentant une meilleure efficacité comparée aux anticorps actuels, ce qui permettrait d'envisager leur utilisation en thérapie pour les pathologies présentant peu de cibles ou une faible densité antigénique ainsi qu'un nombre limité de cellules effectrices capables d'être activées.

Nous avions montré dans notre demande WO 01/77181 (LFB) l'importance de sélectionner des lignées cellulaires permettant de produire des anticorps présentant une forte activité ADCC du type FcγRIII (CD16). Nous avions trouvé que la modification de la glycosylation du fragment constant des anticorps produits dans des lignées de myélomes de rat telle que YB2/0 conduisait à améliorer l'activité ADCC. Les structures glycaniques desdits anticorps sont de type bianennées, avec des chaînes courtes, une faible sialylation, des mannoses et GlcNAc du point d'attache terminaux non intercalaires, et une faible fucosylation.

Or, dans le cadre de la présente invention, nous avons découvert que l'avantage de présenter une forte affinité pour le CD16 peut encore être renforcé par des conditions supplémentaires visant à produire des anticorps qui induisent également la production de cytokines, notamment la production d'IFNγ ou l'IL2.

Les deux caractéristiques précitées se complémentent. En effet, la production d'IFNγ ou l'IL2 induite par les anticorps sélectionnés par le procédé de l'invention peut renforcer l'activité ADCC. Le mécanisme d'action d'une telle activation tient probablement à une régulation positive autocrine des cellules effectrices. On peut postuler que les anticorps se lient au CD16 provoquant une activité cytotoxique mais également induisent la production de l'IFNγ ou l'IL2 qui au final conduit à augmenter encore davantage l'activité cytotoxique.

Nous montrons ici que les anticorps optimisés de l'invention conservent une bonne efficacité même lorsque l'on diminue la densité antigénique ou le nombre de cellules effectrices. Ainsi, à des doses compatibles avec une utilisation en thérapie clinique, il
est désormais possible de traiter des pathologies pour lesquelles un traitement par anticorps n'était pas envisageable à ce jour.

5 Description

Ainsi, l'invention concerne l'utilisation d'un anticorps monoclonal chimérique humanisé ou humain optimisé caractérisé en ce que :

a) il est produit dans une lignée cellulaire sélectionnée pour ses propriétés de glycosylation du fragment Fc d'un anticorps, ou

b) la structure glycannique du Fcgamma a été modifiée ex vivo, et/ou

c) sa séquence primaire a été modifiée de façon à augmenter sa réactivité vis à vis des récepteurs Fc ;

ledit anticorps présentant i) un taux ADCC de type FcγRIII (CD16) supérieur à 50 %, de préférence supérieur à 100 % pour un ratio E/T (cellules effectrices/cellules cibles) inférieur à 5/1, de préférence inférieur à 2/1, comparé au même anticorps produit dans une lignée CHO ; et ii) un taux de production d'au moins une cytokine par une cellule effectrice du système immunitaire exprimant le récepteur CD16 supérieur à 50 %, 100 % ou de préférence supérieur à 200 % comparé au même anticorps produit dans une lignée CHO ;

pour la préparation d'un médicament destiné au traitement de pathologies pour lesquelles le nombre de sites antigéniques ou la densité antigénique est faible, les antigènes sont peu accessibles aux anticorps, ou encore pour lesquelles le nombre de cellules effectrices activées ou recrutées est faible.

Avantageusement, le nombre de sites antigéniques est inférieur à 250 000, de préférence inférieur à 100 000 ou 50 000 par cellule cible.

Lesdites cytokines libérées par les anticorps optimisés sont choisies parmi des interleukines, des interférons et des facteurs de nécrose tissulaire (TNF).
Ainsi, l’anticorps est sélectionné pour sa capacité d’induire la sécrétion d’au moins une cytokine choisie parmi IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10,… TNFa, TGFβ, IP10 et IFNγ par les cellules effectrices du système immunitaire exprimant le récepteur CD16.

De préférence, l’anticorps sélectionné présente la capacité d’induire la sécrétion d’IFNγ ou d’IL2 par les cellules effectrices du système immunitaire exprimant le récepteur CD16 ou de l’IL2 par la cellule Jurkat CD16 pour un faible nombre de sites antigéniques présents à la surface des cellules cibles, pour un faible nombre d’antigènes accessibles aux anticorps ou pour un faible nombre de cellules effectrices. Le taux IFNγ ou d’IL2 sécrétée reflète la qualité de l’anticorps fixé par le récepteur CD16 quant à son intégrité (fonction FC) et à son efficacité (site antigénique) de liaison à l’antigène. En outre, la sécrétion d’IFNγ ou d’IL2 par les cellules du système immunitaire peut activer l’activité cytotoxique des cellules effectrices. Ainsi, les anticorps de l’invention sont également utiles pour le traitement de pathologies pour lesquelles le nombre de cellules effectrices activées ou recrutées est faible.

Les cellules effectrices peuvent exprimer un CD16 endogène ou être transformées. On entend par cellule transformée, une cellule modifiée génétiquement de sorte à exprimer un récepteur, en particulier le récepteur CD16.

Dans un mode de réalisation particulier, l’anticorps de l’invention est capable d’induire la sécrétion d’au moins une cytokine par une cellule leucocytaire, en particulier de la famille des NK (natural killer) ou par des cellules du groupe monocytes-macrophages. De préférence, on utilise pour la sélection des anticorps une lignée Jurkat transfecée avec un vecteur d’expression codant pour le récepteur CD16 comme cellule effectrice. Cette lignée est particulièrement avantageuse car elle est immortalisée et se développe indéfiniment dans des milieux cultures. Le taux d’interleukine IL2 sécrétée reflète la
qualité de l'anticorps fixé par le récepteur CD16 quant à son intégrité (fonction FC) et à son efficacité (site antigénique) de liaison à l'antigène.

Dans un autre mode de réalisation, l'anticorps optimisé peut être préparé après avoir été purifié et/ou modifié ex vivo par modification de la structure glycanique du fragment Fc. A cet effet, on peut utiliser tout moyen chimique, chromatographique ou enzymatique approprié pour modifié la structure glycanique des anticorps.

Dans un autre mode de réalisation, l'anticorps peut être produit par des cellules de lignées de myélomes de rat, en particulier YB2/0 et ses dérivées. D'autres lignées peuvent être sélectionnées pour leurs propriétés de produire les anticorps définis ci-dessus. On pourra tester par exemple les cellules lymphoblastoïdes humaines, les cellules d'insectes et les cellules de myélomes murines. La sélection peut également être appliquée à l'évaluation des anticorps produits par des plantes transgéniques ou de mammifères transgéniques. A cet effet, la production dans CHO sert de référence (CHO étant employée pour la production d'anticorps médicamenteux) pour comparer et sélectionner les systèmes de production conduisant aux anticorps selon l'invention.

La structure glycanique générale de l'anticorps correspond à un type bi-antennés, avec des chaînes courtes, une faible sialylation, des mannoses et GlcNAc du point d'attache terminaux non intercalaires, et une faible fucosylation. Dans ces anticorps, le taux de GlcNac intermédiaire est non nul.

Ainsi, l'invention vise l'utilisation d'un anticorps décrit ci-dessus pour la préparation d'un médicament destiné au traitement d'une pathologie échappant à la réponse immune notamment choisie parmi la maladie hémolytique du nouveau né, le Syndrome de Sezary, les leucémies myéloïdes chroniques, les cancers dont les cibles antigéniques sont faiblement exprimées, notamment le cancer du sein, les pathologies liées à l'environnement visant notamment les personnes exposées aux biphenyles polychlorinés, les maladies infectieuses, notamment la tuberculose, le syndrome de la
fatigue chronique (CFS), les infections parasitaires comme par exemple les schistosomules.

Exemple 1 : anti-Rhésus/ADCC en fonction du nombre de sites antigéniques.

La même séquence codant pour une IgG1 spécifique de l'antigène Rhésus D est transfectée dans CHO et YB2/0. L'activité cytotoxique des anticorps est comparée vis à vis des hématies rhésus positif exprimant à leur surface différentes quantités d'antigène Rhésus, c'est à dire : hématies O+ normales (10-20 000 sites), hématies D faibles sous- exprimant l'antigène Rhésus (<5000 sites) et hématies sur-exprimant l'antigène rhésus (>60000 sites).

La différence d'activité ADCC entre l'anticorps exprimé dans CHO et l'anticorps exprimé dans YB2/0 est moindre sur les hématies sur-exprimant l'antigène Rhésus surtout aux fortes quantités d'anticorps et augmente au fur et à mesure que le nombre de site antigénique décroît.

Les résultats sont présentés à la Figure 1 :
L'activité ADCC des anticorps exprimés dans CHO (triangle) ou YB2/0 (carré) sur des hématies normales (N, vide) ou sur-exprimant l'antigène Rhésus (GR6, plein) sont comparées.

Exemple 2 : anti-HLA DR/ADCC en fonction de la quantité d'effector

La même séquence codant pour une IgG1 spécifique de l'antigène HLA-DR est transfectée dans CHO et YB2/0. L'activité cytotoxique des anticorps est comparée vis à vis de la cellule Raji en présence de différents ratios effecteurs/cible (voir Figure 2).

La différence d'activité cytotoxique entre l'anticorps optimisé exprimé par YB2/0 et CHO s'accroît au fur et à mesure que le ratio E/T diminue. Ainsi, pour les ratios suivants, 20/1 ; 10/1 ; 5/1 ; et 2/1, le pourcentage relatif de lyse induit par l'anticorps
exprimé dans CHO (100% étant la valeur de l’anticorps exprimé dans YB2/0 pour chaque ratio) est de 61%, 52%, 48% et 36% respectivement.

L’anticorps exprimé dans YB2/0 s’avère plus cytotoxique que CHO dans des conditions de faibles quantités d’effeteurs.

Exemple 3 : anti-HLA DR/ADCC en fonction de la quantité d’antigènes accessibles

La même séquence codant pour une IgG1 spécifique de l’antigène HLA-DR est transfecée dans CHO et YB2/0. L’activité cytotoxique des anticorps est comparée vis à vis de la cellule Raji en présence de différents ratios effecteurs/cible (ratio E/T).

L’activité cytotoxique des anticorps est comparée vis à vis de cellules Raji dont les sites antigéniques ont été préalablement bloqués avec des quantités croissantes d’un anticorps murin inactif anti-HLA-DR, de façon à avoir un nombre décroissant d’antigène HLA-DR disponible vis à vis des anticorps à évaluer (voir Figure 3).

Moins il y a de sites antigéniques disponibles, plus la différence entre l’anticorps optimisé (YB2/0) et l’anticorps produit dans CHO augmente. Cela indique qu’une des applications de l’anticorps optimisé peut concermer des cellules exprimant à leur surface un antigène peu exprimé reconnu par l’anticorps thérapeutique. Ceci procure un net avantage vis à vis d’un anticorps exprimé dans une cellule de type CHO.

Exemple 4 : anti-HLA DR/Jurkat, production d’IL2 en fonction de la quantité d’antigènes accessibles

La même séquence codant pour une IgG1 spécifique de l’antigène HLA-DR est transfecée dans CHO et YB2/0. L’activation de la cellule efféctrice (sécéretion d’IL2 par Jurkat CD16) induite par les anticorps est comparée vis à vis de cellules Raji dont les sites antigéniques ont été préalablement bloqué avec des quantités croissantes d’un
anticorps murin anti-CD20, de façon à avoir un nombre décroissant d’antigène HLA-DR disponible vis à vis des anticorps à évaluer (voir Figure 4).

Ces résultats montrent également que moins il y a de sites antigéniques disponibles, plus la différence entre l’anticorps optimisé (YB2/0) et l’anticorps produit dans CHO augmente.

Exemple 5 : anti-CD20/ADCC en fonction de la quantité d'antigènes.

Les résultats obtenus avec l’anti-CD20 en ADCC confirment ceux obtenus avec les anti-HLADR, c’est à dire que moins il y a de sites antigéniques disponibles, plus la différence entre l’anticorps optimisé (YB2/0) et l’anticorps produit dans CHO augmente.

Exemple 6 : anti-CD20/Jurkat, production d'IL2 en fonction de la quantité d'antigènes accessibles

La même séquence codant pour une IgG1 spécifique de l’antigène CD20 est transfectée dans CHO et YB2/0. L’activation de la cellule effectrice (sécrétion d’IL2 par Jurkat CD16) induite par les anticorps est comparée vis à vis de cellules Raji dont les sites antigéniques ont été préalablement bloqué avec des quantités croissantes d’un anticorps murin inactif anti-CD20, de façon à avoir un nombre décroissant d’antigène CD20 disponible vis à vis des anticorps à évaluer (voir Figure 5).

Moins il y a de sites antigéniques disponibles, plus la différence entre l’anticorps optimisé (YB2/0) et l’anticorps produit dans CHO augmente. Cela indique qu’une cellule exprimant une faible densité antigénique peut néanmoins activer une cellule effectrice via un anticorps optimisé. Cette fonction est beaucoup plus restreinte voire nulle avec un anticorps exprimé dans CHO.
Les applications thérapeutiques de l’anticorps optimisé peuvent ainsi concerner des cellules exprimant à leur surface un antigène peu exprimé.

En conclusion, les anticorps optimisés s'avèrent particulièrement utiles pour des applications thérapeutiques liées à des cellules cibles qui expriment à leur surface peu d'antigène, quel que soit l'antigène utilisé.
REVENDICATIONS

1. Utilisation d'un anticorps monoclonal chimérique humanisé ou humain optimisé, l'édit anticorps présentant une structure glycanique générale de type biantennés, avec des chaînes courtes, une faible sialylation, des mannoses et GlcNAc du point d'attache terminaux non intercalaires, une faible fucosylation et un taux de GlcNac intermédiaire non nul, pour la préparation d'un médicament destiné au traitement de pathologies pour lesquelles le nombre de sites antigéniques, la densité antigénique est faible ou les antigènes sont peu accessibles aux anticorps, ou encore pour lesquelles le nombre de cellules effectrices activées ou recrutées est faible.

2. Utilisation selon la revendication 1 caractérisée en ce que le nombre de sites antigéniques est inférieur à 250 000, de préférence inférieur à 100 000 ou 50 000 par cellule cible.

3. Utilisation selon l'une des revendications 1 et 2, caractérisée en ce que l'anticorps optimisé induit une activité ADCC de type FcγRIII (CD16) renforcée avec un taux supérieur à 50% pour un ratio cellules effectrices / cellules cibles inférieur à 5/1, de préférence à 2/1, comparé au même anticorps produit dans CHO ou à un anticorps homologue disponible dans le commerce.

4. Utilisation selon l'une des revendications 1 à 3, caractérisée en ce que l'anticorps optimisé induit une activité ADCC de type FcγRIII (CD16) renforcée avec un taux supérieur à 100% pour un ratio cellules effectrices / cellules cibles inférieur à 5/1, de préférence à 2/1, comparé au même anticorps produit dans CHO ou à un anticorps homologue disponible dans le commerce.
5. Utilisation selon l'une des revendications 1 à 4, caractérisée en ce que l'anticorps optimisé induit la sécrétion d'interleukines, d'interférons et des facteurs de nécrose tissulaire (TNF) par les cellules effectrices du système immunitaire exprimant le récepteur CD16.

6. Utilisation selon l'une des revendications 1 à 5, caractérisée en ce que l'anticorps optimisé induit la sécrétion d'au moins une cytokine choisie parmi IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, TNFα, TGFβ, IP10 et IFNγ par les cellules effectrices du système immunitaire exprimant le récepteur CD16.

7. Utilisation selon l'une des revendications 1 à 6, caractérisée en ce que l'anticorps induit la sécrétion d'IL-2 par la cellule Jurkat CD16 ou d'IFNγ et d'IL2 par les cellules effectrices du système immunitaire exprimant le récepteur CD16 pour un faible nombre de sites antigéniques présents à la surface des cellules cibles ou pour un faible nombre d'antigènes accessibles aux anticorps ou pour un faible nombre de cellules effectrices.

8. Utilisation selon l'une des revendications 1 à 7, caractérisée en ce que la cellule effectrice est une cellule leucocytaire, en particulier de la famille des NK (natural killer) ou une cellule du groupe monocytes-macrophages.

9. Utilisation selon l'une des revendications 1 à 8, caractérisée en ce que la cellule effectrice est une cellule Jurkat transfectée avec un vecteur d'expression codant pour le récepteur CD16.

10. Utilisation selon l'une des revendications 1 à 9, caractérisée en ce que l'anticorps optimisé est préparé après avoir été purifié et/ou modifié ex vivo par modification de la structure glycanique du fragment Fc.
11. Utilisation selon l'une des revendications 1 à 10, caractérisée en ce que l'anticorps optimisé est produit par des cellules de lignées de myélomes de rat, en particulier YB2/0 et ses dérivées.

12. Utilisation d'un anticorps selon l'une des revendications 1 à 11 pour la préparation d'un médicament destiné au traitement d'une pathologie choisie parmi la maladie hémolytique du nouveau-né, le Syndrome de Sézary, les leucémies myéloïdes chroniques, les cancers dont les cibles antigéniques sont faiblement exprimées, notamment le cancer du sein, les pathologies liées à l'environnement visant notamment les personnes exposées aux biphényles polychlorinés, les maladies infectieuses, notamment la tuberculose, le syndrome de la fatigue chronique (CFS), les infections parasitaires comme par exemple schistosomules.
ADCC sur hématies : comparaison hématies normales(N) versus hématies sur-exprimant l'antigène Rhésus (GR6).
(Teg 500µg/puits, ADC 375 03 017)

FIGURE 1

ADCC CHO versus YB2/0 anti-HLA DR purifiés à 10ng/p (170502, 150502)

FIGURE 2
Influence du nombre d'antigène HLA-DR exprimés sur Raji (blocage par Lym-1) sur l'activation de Jurkat CD16 Tox 324 02 034

FIGURE 5