(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date (10) International Publication Number
2 June 2005 (02.06.2005) PCT WO 2005/050406 A2
(51) International Patent Classification’: GO6F (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
(21) International Application Number: AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
PCT/US2004/038901 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(22) International Filing Date: KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
18 November 2004 (18.11.2004) MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
(25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
(26) Publication Language: English ZW.
(84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
60/520,854 18 November 2003 (18.11.2003) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
10/991,794 17 November 2004 (17.11.2004) US ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
(71) Applicant (for all designated States except US): ESSEX FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE,
RADEZ LLC [US/US]; 440 South LaSalle, Suite 1557, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Chicago, IL 60605 (US). GW, ML, MR, NE, SN, TD, TG).
(72) Inventor; and Published:
(75) Inventor/Applicant (for US only): MUEHLHAUSEN, — without international search report and to be republished
John [US/US]; 1354 S State Street, Chicago, IL 60605 upon receipt of that report
(US).

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agents: SARATHY, Rajiv et al.; PO. Box 1247, Seattle, ance Notes on Codes and Abbreviations" appearing at the begin-
Washington 98111-1247 (US). ning of each regular issue of the PCT Gazette.

(54) Title: SERVER VISUALIZATION AND CONTROL

Client

202 204 207
208 210
Service A Sevice B

Lvmdgeﬂb ‘

Athentication Status [wiagetra

| Widget 22

| Widget 2b j

212 216 214
CORBA 1 Glue H o

i H
i | aseipt H

orRE Pl o Corbascript o | wiget | serpt
1| invokeg 1] Pens | Favory | Wrappers

| H

i | cross-Patiorm

HTIOP lIOP/ete H ':;:;':,;‘; DL H Application Script
i Wrappers P| Framework Engine

i | and Misc H unime

(57) Abstract: Methods and systems for server visualization and control are provided. In various embodiments, multiple clients
connect to a server to receive various services from service providers, including financial services. When a client connects to a
server, it provides authentication credentials to the server. The server, upon authenticating the client, may provide a set of additional
credentials relating to service providers. These additional credentials may be used to receive services from the service providers.
& The client may connect to the services through a server visualization and control library resident on a server that provides a layer
& between clients and services such that an application developer who is developing a service may not need to be aware that multiple
clients may connect to the service or that the service may be instantiated multiple times. A user may use the system in a variety
of operating environments and may not perceive any differences when using the system on these operating environments because a
a server provides representations of a user interface to clients. The system may provide updates to connected clients without further
client input.

5/050406 A2 | IV P00 O T

WO 2005/050406 PCT/US2004/038901

SERVER VISUALIZATION AND CONTROL

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to U.S. Patent Application No.
10/___,___, filed November 17, 2004 (Attorney Docket No. 427588001US1), and
claims the benefit of U.S. Provisional Patent Application No. 60/520,854, filed
November 18, 2003, both of which are hereby incorporated by reference in their

entirety.

TECHNICAL FIELD

[0002] The described technology relates generally to data communications and,
more particularly, to server visualization and control.

BACKGROUND

[0003] Improvements in data communications technology have significantly
affected the financial services industry. Coupled with the Internet, deregulation, and
globalization of financial services, these improvements have enabled traders to
participate in financial markets from virtually anywhere in the world. Technological
improvements have also enabled various service providers to provide services to
these traders, such as stock quotations, customized trading platforms, and automatic

execution of trades based on trading models.

[0004] However, several problems exist despite these technological
improvements. Providers of trading services generally create software programs for
a variety of operating environments, such as MICROSOFT WINDOWS and APPLE
MAC OS. Targeting software development efforts at multiple operating
environments often requires duplicated development efforts, and so may be
inefficient and expensive. Various operating environments or trading platforms may
have different software languages with which developers may need to become
familiar, thereby further increasing costs or delaying schedules. Even when the

[42758-8001-US0100/WO Spec.DOC]

WO 2005/050406 PCT/US2004/038901

same programming language is used in different operating environments, the build
environment for each may be substantially different. Some trading platforms may
use network protocols that do not traverse network devices, such as firewalls or
other security devices. When a cross-platform development tool that enables a
software developer to target multiple operating environments changes its application
program interface (APIl), an updated version of a run-time environment
corresponding to the tool may need to be provided to all users. Moreover, when an
application targets multiple operating environments and needs to be changed due to
a bug fix or a business requirement change, subsequent programming, testing,
building and distributing for each target platform may be an expensive task. A user
may have different authentication credentials with each of several service providers
that the user is receiving services from. Integrating services from these multiple
service providers into a common trading application may require users to key in
multiple credentials (i.e., one for each service provider). Thus, a system that solves

these problems would have significant utility.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Figure 1 is a block diagram illustrating components of a server

visualization and control system in an embodiment.

[0006] Figure 2 is a block diagram illustrating components of a client of Figure 1

in an embodiment.

[0007] Figure 3 is a block diagram illustrating components of a server in an
embodiment.
[0008] Figure 4 is a block diagram illustrating components of the system in an
embodiment.
[0009] Figure 5 is a flow diagram illustrating a receive_Ul routine in an
embodiment.
[0010] Figure 6 is a flow diagram illustrating a respond_to_event routine in an
embodiment.
[0011] Figure 7 is a flow diagram illustrating a receive_update routine in an
embodiment.

[42758-8001-US0100/WO Spec.DOC] -2-

WO 2005/050406 PCT/US2004/038901

[0012] Figure 8 is a flow diagram illustrating an add_update routine in an
embodiment.
[0013] Figure 9 is a flow diagram illustrating a send_updates routine in an
embodiment.
[0014] Figure 10 is a block diagram illustrating a database associated with a key

chain server in an embodiment.

DETAILED DESCRIPTION

[0015] Methods and systems for server visualization and control are provided.
Server visualization includes displaying on a client a user interface defined at a
server. Server control includes controlling a server to manipulate the user interface
displayed on the client. In various embodiments, multiple clients connect to a server
to receive various services from service providers, including financial services.
When a client connects to a server, it provides authentication credentials to the
server. These authentication credentials may have been received from a user of the
client. The server, upon authenticating the client, may provide a set of additional
credentials relating to service providers. These additional credentials may be used
to receive services from the service providers. In various embodiments, clients may

receive services from multiple service providers, and from multiple servers.

[0016] The client may connect to the services through a server visualization and
control (SEVIC) library resident on a server. SEVIC provides a layer between clients
and services such that an application developer who is developing a service may not
need to be aware that multiple clients may connect to the service or that the service
may be instantiated multiple times. SEVIC exposes an interface to clients through
which the clients connect. SEVIC may also create multiple virtual uéers. Zero or
more clients may map to a virtual user. The virtual user acts on behalf of the
connected users to instantiate and receive services. Thus, SEVIC may act as a

proxy for clients and services.

[0017] A user may use the system in a varie;cy of operating environments
including, e.g., MICROSOFT WINDOWS, APPLE MAC OS, UNIX with X-
WINDOWS, and so on. The user may not perceive any differences when using the

system on these operating environments because a server provides representations

[42758-8001-US0100/WO Spec.DOC] -3-

WO 2005/050406 PCT/US2004/038901

of a user interface (Ul), such as script and data, to clients. Each client that receives
these representations renders the Ul based on the received information using a
common application framework. The common application framework enables a
software developer to target multiple operating environments without modifying

programming logic substantially or at all.

[0018] Moreover, when a user uses the system on one client and then begins
using the system on another client, the user may not perceive that the user has
changed clients. To provide such seamless operation, a server may store various
information received from a user or provided to the user. Then, when the user
connects to the server from another client, the stored information may be provided to .

the newly connected client.

[0019] The system may provide updates to connected clients without further
client input. As an example, when a service or service provider determines that a
user interface element relating to the service needs to change, the service may
automatically update the user interface of connected clients without input from the
clients. This may be done by sending updates to the client, e.g., by invoking a
remote procedure call on the client or scheduling to send the update with other

information scheduled to be sent to clients.

[0020] The system may use a system-independent middle tier to enable
communications between software components, such as a Common Object Request
Broker Architecture (CORBA). The system may also use a cross-platform
application framework, such as Qt. The system may use these components in
combination to enable software developers to provide services and applications to
users that are platform independent. To combine these two frameworks, the system
may use any of various scripting languages, such as CORBA script, ECMA script, or

Qt's scripting language.

[0021] Turning now to the Figures, Figure 1 is a block diagram illustrating
components of a server visualization and control system in an embodiment. The
system may comprise multiple client computing devices 102, a network 104, multiple
servers 106, key chain servers 108, and databases 110 and 112. The servers,
including the key chain servers, may be connected via a network 109. The database
110 may be coupled to the key chain servers and the servers via the network 109.

[42758-8001-US0100/WO Spec.DOC] -4-

WO 2005/050406 PCT/US2004/038901

[0022] The clients and the servers are computing devices, and may have one or
more processors, memory, operating systems, display devices, and associated

peripherals.

[0023] The network 104 may be, e.g., an intranet, Internet, a combination of
both, or any other type of network.

[0024] One or more clients may be coupled to the database 112 via a network

(not shown). Alternatively, each client may have its own database (not shown).

[0025] Figure 2 is a block diagram illustrating components of a client of Figure 1
in an embodiment. The client comprises an authentication object 202, status object
204, display component 206, multiple service components 207, such as service
components 208 and 210, CORBA components 212, Qt components 214, and
multiple glue components 216, such as scripts and interface definitions.

[0026] The authentication object may authenticate a user, e.g., by receiving a
user ID and password, and providing the received user ID and password to an
authentication server, such as a key chain server. Upon authenticating the user, the
authentication object may receive additional credentials for the user, e.g., to
authenticate the user with various services. As an example, the authentication
object may receive additional IDs and keys (or passwords) that may be required
when attempting to connect to various services, e.g., to retrieve stock quotation
information. As a further example, a user may have a user ID and password for a
service, such as stock quotations, and may have a separate user ID and password
for use with another service that provides news information. By using a key chain

service, the user may only need to provide credentials once.

[0027] The authentication object may use either a key chain service that is
coupled to the client or may use a key chain service that resides on a server, such
as a key chain server. The user may be able to control a local key chain service
connected to a client, such as to add or remove |Ds and keys. On the other hand, a
key chain service residing on a server may be administered by a system

administrator of the server.

[0028] The status object may collect and provide information relating to latency
and connection status. As an example, the status object may provide an indication
of whether a client is connected to a service and network latency. The network

[42758-8001-US0100/WO Spec.DOC] -5-

WO 2005/050406 PCT/US2004/038901

latency may relate to all services. As an example, the status object may know that
the received data is no older than the time at which the last update was received. In
various embodiments, network latency may relate to a specific service. Thus, for
example, the status object may be used to inform a user about how old a particular
stock quotation is. The status object may also be used, e.g., by an application

program, to connect to or disconnect from a service.

[0029] The display component may be used to provide a Ul to a user. The
display component may provide browser-like functions, such as to provide a Ul to a
user or receive indications from a user relating to the Ul, e.g., to open or close
windows, drag and drop pages between windows, manipulate window sizes and
positions, provide user input, mark windows or pages as "always on top," and so on.
Various such settings indicated by the user may be stored for access in a
subsequent user session. These indications may be stored, e.g., in a key chain
server or a database. In various embodiments, the system may use browser
behavior provided by standard components, such as MICROSOFT INTERNET
EXPLORER.

[0030] In various embodiments, the system may use a middle tier to enable
inter-object communications. The illustrated embodiment uses a CORBA
component 212 as a platform-independent middle-tier object that enables inter-
object communications. CORBA defines an architecture for software components
running on a variety of platforms to communicate with one another. Information
relating to CORBA may be found at www.omg.org. The CORBA component may
have one or more object request brokers (ORBs). An ORB is an agent that
communicates with other agents. An ORB may use a variety of protocols to
communicate with agents. As an example, an ORB may use an Internet Inter-ORB
protocol (IIOP). ORBs may also communicate using a hypertext Inter-ORB protocol
(HTIOP). HTIOP may be used when network devices prevent messages using [IOP
to be sent or received. As an example, firewalls, network address translators, or
other network components may prevent IIOP messages from traversing the network.
As an example, a firewall in a network configuration may prevent a server from
initiating a session with a client. HTIOP is designed to be used with a hypertext
transfer protocol (HTTP), which is in ubiquitous use. Because HTIOP appears to be

HTTP traffic to network devices, it is less likely to be impeded by network devices

[42758-8001-US0100/WO Spec.DOC] -6-

WO 2005/050406 PCT/US2004/038901

that manage network traffic, such as firewalls. Moreover, HTIOP maintains a client-
initiated HTTP request open for as long as possible so that many messages may
flow from the server to the client while being packaged and presented as an HTTP
"response." HTIOP may automatically re-establish sessions whenever they are not
present. This may be done at the ORB protocol layer. CORBA may be a registered
trademark of OBJECT MANAGEMENT GROUP.

[0031] In various embodiments, the system may use a platform-independent
application framework that provides a common Ul "look and feel" across various
operating systems. The illustrated embodiment uses a Qt application framework
214. Information about Qt can be found at www.trolltech.com. Qt is an application
framework that enables cross-platform application development. Qt abstracts
operating system functionality to provide a common Ul across a variety of operating
systems. As an example, an application written using Qt may function similarly in
both MICROSOFT WINDOWS and APPLE’s MAC OS. The Qt component may also
provide a common Ul APL. In various embodiments, other cross-platform application
development frameworks may be used. The Qt component comprises plug-ins, a
widget factory, and script wrappers. The plug-ins, widget factory, and script
wrappers utilize the functionality provided by a runtime of the cross-platform
application framework and a script engine. Plug-ins and script extend functionality
provided by the cross-platform application framework. Plug-ins are typically
compiled executables, and scripts are typically interpreted at run-time by a script
engine. The widget factory receives definition relating to how a Ul should appear,
such as in an extensible markup language (XML), and creates the user interface
"widgets" at run-time based on these definitions. The widget factory may use built-in
widgets or widgets provided by plug-ins. The definitions may reference these plug-
ins. Qt may be a registered trademark of TROLLTECH.

[0032] The system may provide "glue" components to enable other components
of the system to function together. As examples, the system provides scripts, such
as scripts of the cross-platform application framework, interface definitions, and
script wrappers for the interface definitions. As an example, an ORB may invoke a
script of the client by calling an execute() method exposed by an interface. In
various embodiments, public methods of the cross-platform application framework

may be accessible by script functions. As an example, when using Qt, public

[42758-8001-US0100/WO Spec.DOC] -7-

WO 2005/050406 PCT/US2004/038901

methods of Qt may be available as "slots," such that scripts can access the public
methods. Slots are a concept of Qt that receives signals from a caller. In other
words, a slot is a recipient's connection point for an inter-object communication. The
public methods may also be available to other components, such as CORBA
components. As an example, a setText () method of a LineEdit widget may have a
CORBA interface definition language definition and may also be a "slot" for access

from a script.

[0033] Services are generally resident on a server that may provide various
services to a client. As an example, a stock quotation service may provide stock
quotes. One or more windows of a Ul may be associated with a service. Each
window may be associated with one or more services. As an example, Service A
may appear in windows A and B. Window B may provide information from Service A
and Service C. Multiple widgets may also be associated with services. A widget is a
Ul control that provides and/or receives information. Multiple widgets may be
associated with a window or service. As an example, a widget may display a stock
quote and another may provide a chart showing historical trading information relating

to the stock. Both widgets may be associated with a stock quotation service.

[0034] Figure 3 is a block diagram illustrating components of a server in an
embodiment. The server 300 comprises an operating system 302, system services
304, administrative components and application services 306, and a libsevic

component 308.

[0035] The operating system may be a standard operating system found in a
variety of computing systems. Examples include, e.g., MICROSOFT WINDOWS,
MAC OS, etc.

[0036] System services 304 may include applications and services that provide
additional functionality beyond that provided by the operating system. As an
example, system services may include cross-platform application frameworks, as
described above in relation to Figure 2. The system services may use facilities
provided by the operating system.

[0037] Administrative components and application services include tools and
applications of the server. Administrative components may be, e.g., tools that may

be used by a system administrator to configure other components of the server, such

[42758-8001-US0100/WO Spec.DOC] -8-

WO 2005/050406 PCT/US2004/038901

as libsevic or system services. Application services comprise functionality provided
by the server to other applications or computing systems. As an example, a stock
quotation application service may use services provided by libsevic and system

services to provide stock quotations to users using client computing devices.

[0038] The libsevic component is described in further detail immediately below
in relation to Figure 4. The libsevic component may utilize functionality provided by

the operating system, system services, and other components of the server.

[0039] Figure 4 is a block diagram illustrating components of the system in an
embodiment.
[0040] The system includes a libsevic component 402. Libsevic is a library for

server visualization and control. It comprises an interface component 404, database
component 406, event compression and dispatch component 408, snapshot
application program interface 410, and multiple "virtual users" 412.

[0041] The interface component provides an interface to clients 414 that may
avail of services of the server. A client may communicate via a network 416 to a
server by calling a method provided by the interface component. As an example, a
client may call a "registerclient” method to register itself. When a client registers, the
system may retrieve information from the database and provide it to the client. As an
example, the system may retrieve information relating to a prior session established
by the client. The system may also store information in the database during a

client's connection or session, such as events dispatched to the client.

[0042] Although the connection between the clients 414 and the server may not
be persistent, libsevic maintains a "virtual user" 412 that may have a persistent
connection to one or more services. A software developer providing a service 418 or
424 that uses libsevic to communicate with clients may then only have to provide
application logic relating to providing a service to a single client. Libsevic would then
virtualize this single client, such that multiple clients may access services. As an
example, a service may provide stock quotes to libsevic, and libsevic can duplicate
the stock quotes and provide the duplicated stock quotes to multiple users. Thus,

clients can communicate indirectly with a service via libsevic.

[42758-8001-US0100/WOQ Spec.DOC] -9~

WO 2005/050406 PCT/US2004/038901

[0043] As indicated by the dot dashed line, services may also communicate
directly with connected clients, such as by using CORBA callback functions. As an

example, a service may call a client's setText () relating to a widget.

[0044] When a service is capable of providing information directly to a client
when a client registers, the service may use the snapshot application program
interface to provide the information. The service may use this facility to provide

information rather than, or in addition to, the database.

[0045] The event compression and dispatch component may be used to send
information, such as events, to clients. Services may indicate that various types of
events may be compressed before sending the events to clients. By compressing
events and updates, valuable processing and communications bandwidth can be
saved. The compression feature is described below in further detail.

[0046] Libsevic may interface with multiple services concurrently, such as
services 418 and 424. These services may utilize or be extended by data or
commands residing in XML 420 or in script 422. As an example, XML data and
script corresponding to a Ul relating to a service may be provided by libsevic when a

client requests a connection to the service.

[0047] Figure 5 is a flow diagram illustrating a receive_Ul routine in an

embodiment. The routine may be performed by a client.
[0048] ° The routine begins at block 502.

[0049] At block 504, the routine provides authentication information to a key
chain server. The authentication information that the routine provides to the key
chain server may have been received from a user.

[0050] At block 506, the routine receives additional authentication information
from the key chain server. As an example, upon providing authentication information
to the key chain server, the key chain server may provide authentication information,

such as credentials, that may be used to authenticate the user with services.

[0051] At block 508, the routine provides the received authentication information
to a server providing a service. As an example, at block 506, the routine may

receive authentication information relating to a service that provides stock

[42758-8001-US0100/WO Spec.DOC] -10-

WO 2005/050406 PCT/US2004/038901

quotations. The routine may then provide the received authentication credentials for
the stock quotation service to the server that provides stock quotations.

[0052] At block 510, the routine requests a connection to libsevic. As described
above in relation to Figure 4, when a client requests a connection to libsevic, it may

send a message to register itself.

[0053] At block 512, upon registering itself, the client may receive script and
data files relating to a Ul from the server. The data may include XML data defining a
Ul and user preference. The scripts may include remote procedure calls (RPCs) to
server methods. These RPCs may control (e.g., set or modify) variables stored on
the server. The RPCs may also request updates. The script and data files may be
used to generate the Ul on the client.

[0054] At block 514, the routine may optionally receive “"smart replay"
messages. Smart replay messages may be used, e.g., to display information on a
newly connected client that is similar, if not identical, to information displayed on a
previously connected client. As a further example, a technical support
representative who is helping a user may receive "smart replay" messages such that
the technical support representative sees on his or her screen information that is
identical to that displayed on the user's screen.

[0055] At block 516, the client renders the Ul. Rendering the Ul may include
determining by a widget factory Ul elements that need to be displayed on the screen.

This may involve interpreting the script and data files received at block 512.
[0056] At block 518, the routine returns to its caller.

[0057] Figure 6 is a flow diagram illustrating a respond_to_event routine in an
embodiment. The routine may be performed by a client computing system.

[0058] The routine begins at block 602.

[0059] At block 604, the routine receives an event. Examples of events may
include an event generated by a software component, a user input, or a change in

data.

[0060] At block 606, the routine makes an asynchronous call to the server from

script. Because the client is making an asynchronous call, other routines or

[42758-8001-US0100/WO Spec.DOC] -11-

WO 2005/050406 PCT/US2004/038901

components of the client may not need to be blocked while waiting for the call to

complete.
[0061] At block 608, the routine returns to its caller.

[0062] Figure 7 is a flow diagram illustrating a receive_update routine in an

embodiment. The routine may be performed by a client computing device.
[0063] The routine begins at block 702.

[0064] At block 704, the routine receives a message from a server. The
message may be received using HTIOP. Alternatively, the message may be
received using any data communications protocol. The message may include
updates to data, scripts, Ul, code, or any other aspect of the client system.

[0065] At block 706, the routine takes action on the received message. Actions
that may be taken may include, e.g., displaying received data, updating or adding

script that may be called when an event occurs, storing data, and so on.

[0066] At block 708, the routine may indicate the time that the message was
received, when appropriate. As an example, when new stock quotation information
arrives, the routine may store and/or display when the last received quotation
arrived. Thus, a user using the system may immediately know whether data
displayed on a screen is up to date. In various embodiments, an approximate

service delay may be calculated by libsevic and merely reported to the client.
[0067] At block 710, the routine returns to its caller.

[0068] Figure 8 is a flow diagram illustrating an add_update routine in an

embodiment. The routine may be performed by a server computing system.

[0069] The routine begins at block 802, where it receives an update and a flag
as parameters. An update may be an indication of an update to be sent to a client.
The flag may be an indication of whether the update is to be sent in a manner that is
normal, compressed, or complex.

[0070] At block 804, the routine determines whether the flag is indicated to be
complex. An indication of complex may mean that other pending updates may need
to be modified. As an example, when a shape of a table changes, an update relating
to the change may be indicated to be complex. If the flag is indicated to be complex,

the routine continues at block 806. Otherwise, the routine continues at block 810.

[42758-8001-US0100/WO Spec.DOC] -12-

WO 2005/050406 PCT/US2004/038901

[0071] At block 806, the routine transforms pending related compressed
updates to regular updates. Updates may be related when, e.g., they are associated
with the same object. As an example, when an update relates to a table, updates to
other rows, columns, or cells in the table may be related. Compressed updates are

discussed in further detail below in relation to block 810.

[0072] At block 808, the routine adds the update indicated at block 802 to a
queue of updates to be sent to connected clients.

[0073] At block 810, the routine determines whether the received flag indicates
updates to be sent in compressed form. Compressed updates are not guaranteed to
be delivered to clients. As an example, updates to a clock may not need to be sent
to a client in a guaranteed manner. When updates can be compressed, the routine
may remove prior pending updates to the same object or item. Thus, compressed
updates are not guaranteed to be sent to connected clients. If the flag is indicated to
be compressed, the routine continues at block 812. Otherwise, the routine continues
at block 814. At block 812, the routine removes previously enqueued updates for the

same item.

[0074] At block 814, the routine adds the update indicated at block 802 to the

queue of updates to be sent to connected clients.
[0075] At block 816, the routine returns to its caller.

[0076] Figure 9 is a flow diagram illustrating a send_updates routine in an

embodiment. The routine may be performed by a server computing system.
[0077] The routine begins at block 850.

[0078] Between blocks 852 and 862, the routine performs a number of steps in
a loop for each pending update in a queue, e.g., for each connected client. At block
854, the routine determines whether a selected update in the queue is indicated to
be compressed. If it is indicated to be compressed, the routine continues at block
856. Otherwise, the routine continues at block 860.

[0079] At block 856, the routine determines whether an asynchronous call is
also pending. An asynchronous call may be pending when, e.g., a client or the
server are communicating relating to an item.

[42758-8001-US0100/WO Spec.DOC] -13-

WO 2005/050406 PCT/US2004/038901

[0080] At block 858, the routine replaces any pending updates for the same
item from a queue of updates to be sent to connected clients. If any pending
updates are replaced, these replaced updates may be sent to connected clients
upon completion of the illustrated routine. The routine then continues at block 862.

[0081] At block 860, the routine sends the selected update to connected clients.
In various embodiments, updates may be sent to one, some, or all connected clients.

[0082] At block 862, the routine selects the next update in the queue.
[0083] At block 864, the routine returns to its caller.
[0084] The routine may send updates tailored for each connected client.

[0085] Figure 10 is a block diagram illustrating a database associated with a key

chain server in an embodiment. The database 1000 comprises multiple tables.

[0086] A credentials table 1002 may store multiple credentials relating to a user.
The credentials table may include multiple columns including, e.g., a user column,
service column, identifier column, and key column. The user column may store an
identification of the user. The service, identifier, and key columns may store
credentials (e.g., identifier and key) relating to a service.

[0087] A preferences table 1004 may comprise multiple columns, including,
e.g., a user column, object ID column, and a preference column. The preferences
table may store user preferences such as window positions, window sizes,
indications of which services to associate with the window, and so on. The user
column identifies a user. The object ID column identifies an object associated with a
preference indicated in the preference column. As an example, for user A, the

preferences table may have a row for object X with an indication of preference Y.
[0088] The database may also comprise additional tables 1006.

[0089] In various embodiments, a standard generalized markup language may
be used instead of, or in addition to, XML.

[0090] In various embodiments, script languages may be JavaScript (which may
be a trademark of SUN MICROSYSTEMS), ECMAScript, VBScript (which may be a
trademark of MICROSOFT CORPORATION), QSA (which may be a trademark of
TROLLTECH), or a variety of other scripting languages.

[42758-8001-US0100/WO Spec.DOC] -14-

WO 2005/050406 PCT/US2004/038901

[0091] From the foregoing, it will be appreciated that specific embodiments of
the invention have been described herein for purposes of illustration, but that various
modifications may be made without deviating from the spirit and scope of the
invention. Accordingly, the invention is not limited except as by the appended

claims.

[42758-8001-US0100/WO Spec.DOC] -15-

WO 2005/050406 PCT/US2004/038901

CLAIMS

| claim:

1. A method for generating a graphical user interface on a client
computing device, the graphical user interface having a client component that
communicates with a server component, comprising:

connecting to a server computing device;

requesting the graphical user interface from the server computing device;,

receiving a description of the graphical user interface, the description
indicated by a markup language;

generating the graphical user interface on the client computing device based
on the received description, the generating performed by a cross-
platform application framework;

receiving an update to the graphical user interface without a subsequent
request from the client computing device; and

updating the graphical user interface on the client computing device based on
the received update.

2. The method of claim 1 wherein the markup language is a standard

generalized markup language.

3. The method of claim 1 wherein the markup language is an

extensible markup language.

4, The method of claim 1 wherein the description includes script of a

scripting language.

5. The method of claim 4 wherein the script includes at least one

remote procedure call.

6. The method of claim 5 wherein the at least one remote procedure

call controls at least one variable of the server computing device.

[42758-8001-US0100/WO Spec.DOC] -16-

WO 2005/050406 PCT/US2004/038901

7. The method of claim 5 wherein the at least one remote procedure

call requests an update.

8. The method of claim 7 wherein the update is requested from the
server computing device.

9. The method of claim 7 wherein the update is requested from

another server computing device.

10. The method of claim 1 wherein the cross-platform application

framework is Qt.

11. The method of claim 1 including receiving a communication from

the server component, the communication intended for the client component.

12. The method of claim 11 wherein the communication is handled by

a Common Object Request Broker Architecture.

13. The method of claim 12 wherein the cross-platform application

framework is Qt.

14. The method of claim 1 wherein the graphical user interface relates

to a financial services application.

15. A system for providing a graphical user interface to a client
computing device, the graphical user interface having a client component that
communicates with a server component, comprising:

a component that receives a connection request from the client computing
device, the connection request identifying a user, the user having
authentication credentials;

a component that authenticates the user based on the authentication

credentials;

[42758-8001-US0100/WO Spec.DOC] -17-

WO 2005/050406 PCT/US2004/038901

a component that provides a set of events previously sent to a client
computing device on another connection for the authenticated user:
and

a component that provides to the authenticated user events generated after

receiving the connection request.

16. The system of claim 15 wherein at least one event generated after

receiving the connection request is indicated to be compressed.

17. The system of claim 16 wherein prior to providing the at least one
event indicated to be compressed, pending events related to the at least one event

indicated to be compressed are removed from a queue.

18. The system of claim 15 wherein the at least one event generated

after receiving the connection request is indicated to be complex.

19. The system of claim 18 wherein prior to providing the at least one
event indicated to be complex, pending related events that are indicated to be

compressed are marked to be no longer compressed.

20. The system of claim 15 including a database for storing events.

21. The system of claim 15 wherein another user connects to the

server using a client to receive events sent to the authenticated user.

22. A computer-readable medium having computer-executable
instructions for performing a method for generating a graphical user interface on a
client computing device, the graphical user interface having a client component that
communicates with a server component, the method comprising:

connecting to a server computing device using a CORBA component;
requesting the graphical user interface from the server computing device;
receiving a description of the graphical user interface, the description

indicated by a markup language;

[42758-8001-US0100/WO Spec.DOC] -18-

WO 2005/050406 PCT/US2004/038901

generating the graphical user interface on the client computing device based
on the received description, the generating performed by a Qt
component;

receiving an update to the graphical user interface without a subsequent
request from the client computing device; and

updating the graphical user interface on the client computing device based on
the received update.

[42758-8001-US0100/WO Spec.DOC] -19-

PCT/US2004/038901

WO 2005/050406

1/9

601}

1 IDATDS

901

oL

U JUSTLD)

0l

T ToAIRS

[I2AI0S

901

901

IOATSS UTBYDADY

80}

2RI

[10910

(493

PCT/US2004/038901

2/9

WO 2005/050406

prTTTTeTnmmmommoooooosooeooe R T 7
1] i] t

“ L L

1 swinuny i ' S| u i ,

" suibug }IoMaWEl m || sieddein Mm.u__v__owxw N

" 1duog uonesyddy o glel ‘oeLIE] P q8/dOll dOLLH

: WIOpe|d-ss01) | “ . m !

1]

“ L Lo

] ! ' ! t

“ o Lo

| sieddeipy | Alojor4 surBhid ! " ()asoAu; | ! i

! jduos 196pIM : ! 1| 1duogeqion na b 40

“ b Jduoso |+ !

" b b

1 !) ! 1

¥ ! o ! 1

1 !)] 1

1 ! 1 ! 1

i “ ' P

“ 10 o anio Lo V8400
g b e e m e ———————— J R o o e e o e o e s o e e o o i e =

1454 o] ¥4 [A X4
qz 19B6pim €2 196pIM
al 1ebpis e}, 196pIAA snjejs uoiesnusyiny
PRI R AT Ty g 8oIAIsS Y ®dneg
i 0lz 80z
10¢ ¥0¢ A4

90¢ UENTe)

00¢ .\»

WO 2005/050406 PCT/US2004/038901
3/9

300
/"

306
Administrative Components and Application Services
308
Libsevic
304
System Services
302
Operating System

FIG. 3

PCT/US2004/038901

WO 2005/050406

4/9

v OIA

rTTTEEEET T (I bt B FeTTTE TS) reTTTsTTTT]
“ b “ “ b u
D oaduos | TAX | i duog 1 TAX |
! I : ! P :
K42 (0147 4 2 (074 20N
g @ouejsu| || e @ouejsyj q souesu)] || e souejsuy)
geoines || g eoimeg Vv 90lAeS || ¥ @o1M8es
vmv\. e » m:q\ gy /
N A Y. omesql -~ ¥___ X
\\\\l o ll/— _ \\\\l\\l I/\lllll/ \\ Iw \\\\ll " Il\z
~. Josnjenuin, <X . Josn [enun, < - JOSN JenUIA, <\ N, J9sn [enuiA, <,
N Sre TS =" (1081D) ZLE - Eom e T N
iy xR @ ._..E Y £X A
\ /] coﬁmw_o pue co_wmmEEoo\w:gm \ /
80¥ 1 ! [/ | \
!
E2! ﬁi.w : \ \m%o_ﬁmo\ /
1134 [! i 907 | 7 _ N
A A A
]] 7 I
Z0% |] /] \
oLy ;
Vol /] \ .
jusijo jusi1o usiio 3D jusiio jusio sl
7T Vv 7Y 757 Py 152 157

WO 2005/050406

5/9

Client: Receive Ul

502
(s)

504

Provide authentication info.
to keychain server

506

Receive authentication info.
from keychain server

508

Provide received
authentication info. to server

510

Request connection to
Libsevic

512

Receive script and data files
for Ul

Fmm——— -
| Receive “smart replay” :
: messages :
516
Render Ul

PCT/US2004/038901

WO 2005/050406
6/9

Client: Respond_to_Event

602
(s)

604

[Receive event]

606

Make asynch. call to server

from script

608
(Return)

FIG. 6

Client: Receive_Update

702
< Start)

704

(Receive message]

706

Take action on received
message

708

Indicate time of message,
if appropriate

(Return) 710

FIG. 7

PCT/US2004/038901

WO 2005/050406 PCT/US2004/038901
7/9

Server: Add_Update
(osar)7 (opdate, flag

804

Flag ==

complex Y
? 806
‘Transform pending related
compressed updates to

regular updates
v Flag == 808
comp;essed Add update and transformed

. 812 ! updates to queue

Remove previously
enqueued updates for same
item
| 814
Add update to queue
-

816
C Return)

FIG. 8

WO 2005/050406

Server: Send_Updates

850
< Start)

852
(For each update in queue 7

854
Compressed
update ?

PCT/US2004/038901
8/9

856
Asynch call
pending ?

860

Send update to connected
clients

-t

858

Remove any pending
updates for same item

862

Next update in queue
/

864
C Return)

FIG. 9

WO 2005/050406 PCT/US2004/038901

9/9
1000
1002
Credentials
User Sve 1D Key e
1004
Preferences
User Obj-ID Pref e
1006 1006 1006

FIG. 10

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

