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AUTOMATED FEATURE ANALYSIS, 
COMPARISON, AND ANOMALY DETECTION 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. The present application claims priority to U.S. Pro 
visional Patent Application No. 61/724,813, filed on Nov. 9. 
2012, the disclosure of which is incorporated herein by ref 
erence in its entirety. 

STATEMENT OF INTEREST 

0002 This invention was made with government support 
under Grant W81XWH-09-1-0266 awarded by Army 
Research Office (ARO). The government has certain rights in 
the invention. 

TECHNICAL FIELD 

0003. The present disclosure relates to automated data 
analysis. More particularly, it relates to Systems, devices and 
methods for automated feature analysis, comparison and 
anomaly detection. 

BRIEF DESCRIPTION OF DRAWINGS 

0004 The accompanying drawings, which are incorpo 
rated into and constitute a part of this specification, illustrate 
one or more embodiments of the present disclosure and, 
together with the description of example embodiments, serve 
to explain the principles and implementations of the disclo 
SUC. 

0005 FIG. 1 illustrates a general workflow for AGFA. 
0006 FIG. 2 illustrates a collection of geometric shapes as 
a schematic example of clustering. 
0007 FIG. 3 illustrates an exemplary sensing and analyz 
ing device. 
0008 FIG. 4 depicts an exemplary embodiment of a target 
hardware for implementation of an embodiment of the 
present disclosure. 

SUMMARY 

0009. In a first aspect of the disclosure, a computer imple 
mented method is described, the computer implemented 
method comprising: providing a sensing and analyzing 
device, the sensing and analyzing device comprising a plu 
rality of sensors configured to detect a plurality of physical 
features describing a plurality of physical objects; generating, 
by the sensing and analyzing device, a plurality of feature 
vectors representing the plurality of objects, based on the 
plurality of physical features, wherein the plurality of feature 
vectors comprises a plurality of components describing the 
plurality of physical features, wherein each component of the 
plurality of components has a numerical range, wherein each 
physical feature of the plurality of physical features is repre 
sented by at least one component within each feature vector; 
converting, by the sensing and analyzing device, the numeri 
cal range of each component to a range between 0 and 1. 
wherein the converting is carried out by formula 

OrigiFi - MinFi 
F1;; = se - 

f Max F. - MinF, 
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(0010) where F1 is a normalized value of i' object andj" 
feature component, OrigF, is an original j" feature compo 
nent value of i' object, MinF, and MaxF, are a minimum 
value and a maximum value of" feature component, thereby 
obtaining a first plurality of normalized feature vectors com 
prising a first plurality of normalized components and further 
comprising a total number of components for each physical 
feature of each first normalized feature vector of the first 
plurality of normalized feature vectors; for each first normal 
ized feature vector of the first plurality of feature vectors, 
dividing, by the sensing and analyzing device, the plurality of 
normalized components for each physical feature of each first 
normalized feature vector by the total number of components 
for each physical feature of the first normalized feature vec 
tor, thereby obtaining a second plurality of normalized fea 
ture vectors; normalizing, by the sensing and analyzing 
device, the second plurality of normalized feature vectors by 
formula 

10011) where F2, is a component of a feature vector of the 
second plurality of normalized feature vectors, and F3, is a 
resultant component for each feature vector of a third plural 
ity of normalized feature vectors; clustering, by the sensing 
and analyzing device, the third plurality of normalized feature 
vectors, thereby obtaining a plurality of clustered normalized 
feature vectors; applying, by the sensing and analyzing 
device, principal component analysis to the plurality of clus 
tered normalized feature vectors, thereby obtaining a distance 
flag value and a first evaluated plurality of normalized feature 
vectors; calculating, by the sensing and analyzing device, a 
number flag value by counting each feature vector of the 
plurality of clustered normalized feature vectors, based on a 
threshold value, thereby obtaining a second evaluated plural 
ity of normalized feature vectors; analyzing, by the sensing 
and analyzing device, the plurality of physical objects, based 
on the first or second evaluated plurality of normalized fea 
ture VectOrS. 

DETAILED DESCRIPTION 

0012. The present disclosure relates to automated data 
analysis that can apply data aggregation and extraction of 
features from a wide variety of application fields. A similar 
technique for the extraction of features from a set of data may 
be applied to different sets of data. For example, a geological 
survey may collect data about a region of Earth, or Mars. Data 
collected may comprise visual images, X-ray images, mass 
spectroscopy, chemical samples, and so on. In the present 
disclosure, methods are described to aggregate Such data in a 
feature space, define mathematical entities which describe 
them, extract features from the data, and output a resulting 
analysis. For example, certain visual features may indicate 
the presence of a certain mineral, while X-ray images or 
hyperspectral images may give a different chance for the 
presence of that mineral. In Such cases, human intervention 
may normally be necessary to determine the relative impor 
tance and reliability of each set of data, Such as visual VSX-ray 
images. In the present disclosure, mathematical entities, that 
is feature vectors, are used to express the information con 
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tained in different sets of data (e.g., visual and X-ray images) 
in a format (the feature vectors) which allows automated 
comparative analysis. The automated systems, devices or 
methods of the present disclosure may therefore perform an 
automated analysis of the features of different sets of data. 
Similar methods may be used for other applications, for 
example medical diagnosis, financial systems and military 
reconnaissance. Therefore, Such methods, devices or systems 
may be termed automated global feature analyzer (AGFA). 
0013 For every application, AGFA can extract and deliver 
features that make up a feature vector. Once feature vectors 
are generated, the AGFA framework can then operate. As a 
result, AGFA can cluster the data, and can find anomalies 
based on the feature space. In other words, the data is trans 
formed in a feature space and can then be analyzed in that 
space. Through this transformation, automatic analysis of the 
data is possible regardless of the origin of the data. Further 
more, AGFA can also allow for objects to be compared to one 
another based on their respective feature vectors. In some 
embodiments, a temporal change analysis may also be carried 
out, by analyzing the difference between feature vectors at 
different times. For example, the same feature vector may be 
compared with itself at time 1 and time 2. 
0014 FIG. 1 illustrates how AGFA (105) can be applied to 
a variety of applications in feature space (110), and can give 
an outcome (115) for each application (110). 
0.015 For example, regarding applications for geology, 
mining, resource allocation, and (military) reconnaissance, 
the features space will contain feature vectors consisting of 
specific features. In some embodiments, a list of features to be 
included in a feature vector may comprise: Color; Albedo 
(brightness); Ellipse fit of circumference of segmented 
object, yielding semi-major and semi-minor axes, the ratio of 
which can be a measure of how circular an object is: Extent; 
Angularity; Compactness; Size; Gabor filters for texture 
assessment; Multi-spectral data: Hyperspectral data; Spec 
troscopic data; Biological contaminate concentrations; 
Chemical contaminate concentrations; Radioactive contami 
nation. 

0016 Some possible outcomes after application of AGFA 
to the above features may comprise: Region-of-interest 
demarcation/delineation; Anomaly detection; Autonomous 
vehicle control; Guidance for exploration equipment. In some 
embodiments, the methods of the present disclosure may be 
applied to asteroid exploitation. 
0017. As another example, for medical diagnosis, possible 
features may comprise: Patient-specific data, Such as: age, 
height, weight, gender, Blood examination results; Urine/ 
stool examination results: X-ray, CT, MRI, fMRI, Ultrasound 
images/results; Multi-spectral data: Hyperspectral data; 
Pulse: Heart rate; Intraocular pressure; Intracranial pressure; 
Blood pressure; Lung Volume. 
0018. Some possible outcomes after application of AGFA 
to the above features may comprise: Medical diagnosis: 
Guidance of Surgical equipment (e.g., laparoscopic Surger 
ies); Region-of-interest demarcation/delineation for tumor 
treatment; Anomaly detection. 
0019. As another example, for financial markets, possible 
features may comprise: Stock values; Opening bid; Closing 
bid; Bids throughout trading period; Gold price: Stock indi 
ces (Dow Jones, S&P 500, etc.); Trading volume (e.g., it of 
stocks). 

Sep. 17, 2015 

0020 Some possible outcomes after application of AGFA 
to the above features may comprise: Buy/Hold/Sell deci 
sions; Anomaly detection in trends. 
0021. Another example for the application of AGFA is 
visual fields. In certain situations, medical diagnosis of visual 
field defects in a human eye may be done on a mass scale (e.g., 
thousands to millions of people worldwide), or it may be only 
done remotely, for example, in remote locations on Earth, or, 
for the case of astronauts, on a space mission to Mars, or for 
human settlement on the Moon. 

0022. In such cases, an automated system for the detection 
of visual field defects may be advantageous. In Such situa 
tions, in the absence of clinical experts, an integrated auto 
characterization system can analyze 3D Computerized 
Threshold Amsler Grid (3D-CTAG) visual field data and 
objectively identify and characterize the occurring visual 
field defects (e.g., Scotomas, as in missing areas of vision) in 
accordance with the following numerical methods: (1) visual 
field data transforms include area and Volume of visual field 
loss, lost and preserved area grades, and slope distribution; 
and (2) Scotoma data transforms include Scotoma perimeter/ 
Scallopedness and Scotoma center location. As it is known to 
the person skilled in the art, the Amsler test is a visual field 
test. The AGFA framework may also be equally applicable to 
other visual field test data, e.g., to Humphrey Visual Field 
Analyzer. 

Visual Field Data Transforms 

Area of Visual Field Loss Calculation Per Contrast Level 

0023 The raw 3D-CTAG data can be systematically 
assessed, first for the number n of distinct contrast sensitivity 
levels present in the data, then for the area (denoted A, where 
0%sis 100% represents the percent contrast level) in number 
of square degrees (e.g., grid points) and percentage of visual 
field lost, 

(sic) tested area ) 

at each contrast level. The percentages and areas thus docu 
ment the visual field loss as a function of contrast sensitivity, 
with the topmost level (100) indicating intact vision at the 
lowest contrast presented. 

Calculation of Lost and Preserved Area Grades: 

0024. The Lost Area Grade (LAG) is calculated by divid 
ing the Scotoma area at the highest tested contrast level (A) 
by the Scotoma area at the lowest tested contrast level (Aoo). 
This area ratio is then multiplied by the contrast sensitivity 
scaling factor, which consists of the scotoma depth (100-h) 
divided by the total depth (100), then squared, to eliminate 
degeneracy: 

(100-h)Y ( 100 |. 
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The complete measure is thus 

()-(''). 
The Preserved Area Grade (PAG) is calculated by dividing the 
preserved visual field area at the lowest tested contrast level 
(A) by the preserved visual field area at the highest tested 
contrast level (A), then multiplying by the contrast sensitiv 
ity Scaling factor as above: 

A 100 (100-h)Y 
(S)-( 100 |. 

Degeneracy in these two measures (i.e., LAG and PAG) can 
occur if the contrast sensitivity Scaling factor is not squared: 
for example, a shallow Scotoma may have such a large area 
ratio that its LAG and PAG match the LAG and PAG of a steep 
Scotoma with a sufficiently Small area ratio. 

Volume Calculation of Visual Field Loss: 

0025. The number of data points at each level of contrast 
sensitivity less than 100 is multiplied by the loss in contrast 
sensitivity at each data point to determine the volume of 
visual field loss (XA,(100-i)). The volume of visual field 
loss is then divided by total tested visual field volume to 
determine the percentage of visual field volume lost. 

Slope Grades of Visual Field Loss (and Histogram of Slope 
Grades): 
0026. The slope grades are independently determined in, 
for example, both the horizontal (x) and vertical (y) direc 
tions. A slope grade is defined as the loss of contrast sensi 
tivity (e.g., 100-i) divided by the number of degrees (Ax or 
Ay) over which the loss occurs: 

100-i 
Ax 

for horizontal slope grade and 

100-i 
Ay 

for vertical slope grade. The slope histogram depicts the 
distribution of slope grades in either vertical or horizontal 
direction. Radial slope grades, calculated from the center of a 
Scotoma, can be treated in the same fashion. 

Scotoma Data Transforms 

Scotoma Center 

0027. The x-values andy-values of all scotoma data points 
for each tested contrast sensitivity level are averaged to obtain 
the coordinates for the Scotoma center at each tested contrast 
sensitivity level. The respective centers are plotted in 3D 
together with the data points of the entire visual field. The 
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centers are Subsequently averaged to obtain the mean center. 
Then, the mean distance and standard deviation of distances 
from each center to the mean center are calculated. All centers 
and the mean center for each Scotoma are then plotted onto a 
scatterplot. 

Scotoma Perimeter 

0028. The scotoma perimeter points at each tested contrast 
sensitivity level are determined and recorded by scanning the 
list of points in a Scotoma for points that are horizontally 
and/or vertically adjacent to non-Scotoma points at the 
respective level (i.e., with contrast sensitivity levels greater 
than that of the current level). 

Scallopedness 

0029. The scallopedness measure assesses the scotoma 
perimeters at each contrast sensitivity level for the fluctuation 
of curvature. All points on the perimeter are sequentially 
numbered. Starting with the first point (p=1), the Euclidian 
distance is calculated between each point along the perimeter 
(p) and the point that is a user-defined index offset (x) down 
the list (p+x) of perimeter points. All Euclidian distances are 
averaged and Subsequently displayed as a histogram. The 
procedure is performed at each contrast sensitivity level with, 
for example, two different user-defined index offsets. A 
sharply peaked histogram (i.e., one peak) indicates a Scotoma 
with a smooth perimeter (not scalloped); peaks towards the 
left end of the histogram indicate more tightly curved perim 
eters (i.e., small radius of curvature), while peaks towards the 
right end of the histogram indicate perimeters with a large 
radius of curvature. 

General Set of Indices Also Accounting for Metamorphopsia 
0030 To also account for the phenomenon of metamor 
phopsia (i.e., distortion or waviness of straight Amsler grid 
lines instead of missing ones) a more general Superset of 
algorithms can be implemented for the automated character 
ization of both distorted vision (i.e., metamorphopsia) and 
visual field defects (i.e., scotomas) in 3D. The following 
objective characterization indices that describe visual field 
defects can be used: 
Absolute # of Test-Locations Not Seen: Numerical count of 
Amsler grid points not seen regardless of contrast. 
Relative it of Test-Locations Not Seen: Absolute number of 
test locations not seen divided by total number of available 
test-locations in percent regardless of contrast. 
Area of Visual Field Impaired at XX % Contrast: number of 
Amsler grid points marked as not visible at a given Amsler 
grid contrast; 
Relative Area of Visual Field Impaired at XX % Contrast: 
number of Amsler grid points marked as not visible at a given 
Amsler grid contrast divided by the total number of available 
test-locations at that given Amsler grid contrast in percent; 
Absolute Hill-of-Vision “Volume Lost: Sum of areas of 
visual field not seen multiplied by respective, tested contrast 
levels (in%) measured in deg percent). 
Relative Hill-of-Vision “Volume Lost: Absolute Volume 
Lost divided by overall tested Hill-of-Vision measured in 
percent. 
Lost Area Grade (LAG): Existing Scotoma area at highest 
tested contrast level divided by existing Scotoma area at low 
est tested contrast level multiplied by the actual scotoma 
depth measured in percent contrast. 
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Preserved Area Grade (PAG): Existing preserved visual field 
area at lowest tested contrast level divided by existing pre 
served visual field area at highest tested contrast level multi 
plied by the actual Scotoma depth measured in percent con 
traSt. 

Inverse Lost Area Grade (ILAG): existing Scotoma area at 
lowest tested contrast level divided by existing Scotoma area 
at highest tested contrast level multiplied by the actual 
Scotoma depth measured in percent contrast. 
Inverse Preserved Area Grade (IPAG): existing preserved 
visual field area at highest tested contrast level divided by 
existing preserved visual field area at lowest tested contrast 
level multiplied by the actual scotoma depth measured in 
percent contrast. 
0031. The above characterization indices enable the quali 

tative and quantitative analysis of temporal changes of a 
subjects visual field. There are modified embodiments of the 
above listed indices and additional indices known to the per 
son skilled in the art. 
0032. In the following, different characteristics of AGFA 
will be described, using the example of visual field test. The 
person skilled in the art will understand that while the AGFA 
methods are described with a specific example, different 
applications can be envisioned. 
0033. In some embodiments, AGFA may comprise a step 
of Flag Computation. The Flag Computation step may com 
prise Feature Vector Normalization Procedures. 

Feature Vector Normalization Procedures 

0034 AGFA can be used to analyze objects. An object 
may be, for example, a visual field data set, a rock in animage, 
etc. Each object may have a feature (component) vector 
assigned with all the feature component values. In other 
words, a feature vector may comprise different components, 
each component having a specific value. The feature compo 
nent values may have different ranges (in terms of the maxi 
mum and minimum values). Moreover, the feature compo 
nents may have discrete or continuous values. In order to 
compare the objects in an image, it may be necessary to 
normalize them so as to make the feature component value 
independent of range and number of components in a feature. 
0035. In other words, an object can be assigned a feature 
vector. The feature vector may comprise different compo 
nents. Each component may have a certain range, different 
from other components. In order to compare feature vectors, 
it may be advantageous to normalize the range of each com 
ponent to make it possible to compare feature vectors. 
0036. For instance, it is not possible to compare two 
objects based on two features such as color (R,G,B compo 
nents each with integer value range 0.255) and angularity 
(with only one component and real value range 0.1). In this 
example, the color feature has three times the number of 
components, as compared to the angularity feature. There 
fore, if a weight would be assigned based on the number of 
components, the color feature would have three times the 
weight of the angularity feature. Further, each color compo 
nent would have a range 0.255 compared to 0,1 for the 
angularity feature. Therefore, the color components may con 
tribute 255 times more weight than angularity. To overcome 
this issue, a three-stage normalization procedure can be 
implemented, in order to normalize each component to a 
range 0.1. This normalization procedure also renders the 
comparison independent of the number of components in a 
feature. 
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0037. In some embodiments, in the first step of normal 
ization, referred to as Min-Max normalization, the feature 
component values are converted to within a real value range 
0.1 using the formula: 

OrigiFi - MinFi 
F1;; = e 

f Max F. - MinF, 

where F1, is the Min-Max normalized value of i" object and 
j" feature component, OrigF, is the original j" feature com 
ponent value of i' object, MinF, and MaxF, are the minimum 
value and the maximum value ofj" feature component. The 
minimum and the maximum value for each feature compo 
nent may be the theoretical range for that feature within a 
model, for example, 0.255 for a RGB color. In other 
embodiments, the minimum and maximum value may be a 
specific Subset range of the theoretical range, for example 
20,120 for a RGB color in a specific collection of objects 
where the values below 20 or above 120 are absent. In yet 
other embodiments, the minimum and maximum values may 
be user-defined. 
0038. In the second step of normalization, which can also 
be termed feature-dimension normalization, each feature 
component value can be divided by the number of compo 
nents in that feature by the formula: 

where F2, is the feature-dimension normalized value of th 
object and j', feature component and N, is the number of 
dimensions ofi" feature. 
0039. In the third step of normalization, which may also be 
termed absolute normalization, the following formula is 
applied: 

i - T. 
| 3 (F2)? 
i=l 

0040. The above three normalization steps ensure that the 
feature values are in the real value range 0,1 and are inde 
pendent of the number of components. This ensures that each 
feature component value contributes equally in analyzing the 
features of an object, for example to determine whether an 
object is anomalous. 
0041. After Feature Vector Normalization Procedures, the 
Flag Computation step may comprise Sequential Clustering. 

Sequential Clustering 

0042. In some embodiments, the feature component vec 
tor obtained in the previous step can characterize an object in 
an image. A next possible step towards determining if an 
object or objects is or are anomalous is to classify the objects 
into different groups. In one embodiment, a sequential clus 
tering method can be implemented, which groups the incom 
ing vectors into a natural number of clusters in real time. A 
possible advantage of this method over other clustering meth 
ods, like K-means clustering, is that the number of clusters the 
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vectors are to be grouped into does not need to be provided. 
The method not only clusters the vectors but also determines 
the natural number of clusters. 
0043. There are other (supervised or unsupervised) clus 
tering methods which could be used, e.g. Level-Set-Analysis. 
Such algorithms determine automatically the natural number 
of clusters from the data itself and are known to the person 
skilled in the art. 
0044 As known to the person skilled in the art, the basic 
sequential clustering method comprises a single threshold, 
with the vectors having a distance with cluster centers below 
the threshold being grouped into a particular cluster, essen 
tially clustering all vectors in one pass. In some embodiments, 
the sequential clustering method implemented in the present 
disclosure differs from the basic method in the sense that 
there are two thresholds and the number of passes to cluster 
all vectors could be more than one. 
0045. In the basic form of sequential clustering, the first 
incoming vector is binned into the first cluster, which also 
becomes its center. The next incoming vector is binned to one 
of the existing clusters if the distance between the vectors to 
a particular cluster center is below a pre-defined threshold, 
and if not, the vector is binned into a new cluster. A possible 
drawback of this method is that the formation of clusters and 
cluster members depend on the order in which the vectors 
arrive since all the vectors are clustered in one pass. Another 
possible drawback is that the choice of threshold influences 
the results, i.e., changing the threshold value yields a different 
number of clusters or same number of clusters with different 
members. 
0046. In some embodiments of the present disclosure, a 
different method is implemented, which considers the Euclid 
ean distance when calculating the distance between a vector 
and a cluster center. This constitutes an improved version of 
the standard sequential clustering method. In the present dis 
closure, this improved method may be referred to as certainty 
sequential clustering. 
0047. In certainty sequential clustering, two thresholds t 
and t (t-t') are selected such that if the Euclidean distance 
between a vector, F3, and nearest cluster center, C, d(F3, C) 
is below t, the vector belongs to the corresponding cluster. If 
d(F3, C.) is above t, then vector F3, does not belong to 
cluster C. However, if t <d(F3, C.)<t, vector F3, is not 
certain to belong to C, and its binning is postponed. Introduc 
tion of two thresholds overcomes the difficulty of choosing 
the value of only one threshold that best reflects the data. 
Also, postponing the classification of a vector in case of 
uncertainty leads to multiple passes and overcomes possible 
drawbacks due to the order of incoming data or vectors. 
Certainty sequential clustering is described, for example, in 
Trahanias Petal. An efficient sequential clustering method. 
Pattern recognition 22:449-53, 1989, the disclosure of which 
is incorporated herein by reference in its entirety. 
0048. In other embodiments, K-means clustering can also 
be used, however it requires the number of clusters to be 
provided beforehand unlike sequential clustering. 
0049. After Sequential Clustering, the Flag Computation 
step may comprise Principal Component Analysis. 

Principal Component Analysis 

0050. The clustering of feature component vectors 
explained in the previous section can give information about 
any objects being anomalous from other objects detected in 
an image or data set. The anomaly could be any one of the 
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features or a set or combination of features (e.g., “finger 
print”). However, the method may not necessarily be able to 
determine whether the anomaly is really of interest for further 
study. 
0051 FIG. 2 illustrates a collection of geometric shapes as 
a schematic example of clustering. In FIG. 2, each geometric 
shape represents one object. The objects (201, 202, 203, 204, 
206, 207,208,210, 211, 212, 213) in FIG. 2 can be clustered 
together as they have similar shape, except for object number 
(205), which has a shape similar to the other objects (201. 
202, 203, 204, 206, 207, 208, 210, 211, 212, 213) but has a 
different pattern or texture, and object number (209) which 
has a different shape from the other objects (201, 202, 203, 
204, 206, 207, 208, 210, 211, 212, 213). Therefore, two 
objects (205, 209) should not be clustered with the remaining 
objects (201, 202, 203, 204, 206, 207, 208, 210, 211, 212, 
213). The two objects (205, 209) are anomalous and should be 
clustered on their own. From human visual inspection of FIG. 
2, it is possible to understand that objects (205, 209) have a 
different shape or pattern or texture. However, the automatic 
clustering method, without human visual inspection, does not 
specify to what extent the anomaly is a “true’ anomaly as far 
as significance is concerned. In other words, if the pattern or 
texture anomaly of object (205) or the shape anomaly of 
object (209) is really of any significance for further study, and 
if so to what extent. Therefore, the significance of anomalies 
may not be quantified from the clustering step alone. Such 
quantification of the significance of the anomaly can be car 
ried out through the principal component analysis step. In 
other examples, other differences may be present, such as 
color instead of pattern or textures. 
0.052 Principal component analysis (PCA) can be defined 
as an orthogonal linear transformation that transforms the 
data to a new coordinate system such that the greatest Vari 
ance by any projection of the data comes to lie on the first 
coordinate (called the first principal component), the second 
greatest variance on the second principal component, and so 
on. Such method is known to the person skilled in the art, and 
is described, for example, in Jolliffe I.T., Principal compo 
ment analysis, Wiley Online Library, 2002, the disclosure of 
which is incorporated herein by reference in its entirety. 
0053. The number of principal components is no higher 
than the number of variables or vectors. The idea is to deter 
mine the first principal component of each cluster, which can 
indicate the greatest variance for the constituting component 
or components of the feature vectors along direction of that 
component or these components in the feature vector space. 
0054 The clustering of objects in FIG. 2 is detailed in 
Table 1. 

TABLE 1 

The clusters obtained using certainty sequential clustering and 
corresponding members for the feature component vectors of objects 

in FIG. 2. The threshold values used are t = 0.15 and t = 0.17. 

Cluster Number Object numbers belonging to Cluster 

1 201, 202, 203, 204, 206, 207,208,210, 211, 212, 213 
2 205 
3 209 

0055. In the example of objects in FIG. 2, the aim is to 
determine the first principal component of each cluster. The 
number of feature component values N becomes the dimen 
sion of a feature component vector. If F is an MXN matrix 
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where M is the number of feature component vectors in a 
cluster and each vector forms one row of a matrix, then a 
typical method used to evaluate the principal components is 
to decompose the covariance matrix of F to determine its 
eigenvalues and eigenvectors. An example of this procedure 
can be found, for example, in Press et al., Numerical Recipes 
in C, Cambridge University Press, 1992, the disclosure of 
which is incorporated herein by reference in its entirety. The 
eigenvectors are unit vectors along the principal components 
and the eigenvalues are their corresponding magnitude. 
Single value decomposition can be used to determine the 
eigenvectors and eigenvalues using the formula: 

where CovE is a NxN covariance matrix of matrix F, U is a 
NxN unitary matrix of eigenvectors of matrix CovF. D is a 
NxM rectangular diagonal matrix with the N diagonal values 
being the eigenvalues, and V is a MXN unitary matrix. 
0056. The largest eigenvalue is the magnitude of the first 
principal component of a cluster, which, in other words, quan 
tifies the direction with maximum variance of the vectors 
within that cluster. The eigenvalue is the length of the eigen 
vector, where the eigenvector gives the direction of maximum 
variance of the principal component of a cluster. For example, 
Table 2 gives the largest eigenvalue for the clusters of Table 1 
and FIG. 2. 

TABLE 2 

The largest eigenvalues of each of the clusters determined using certainty 
sequential clustering in Tablel. 

Cluster number Largest Eigenvalue 

1 O.397814 
2 OOOOOOO 
3 OOOOOOO 

0057 To determine if two clusters are disjoint, a compari 
son can be made for the Euclidian distance in feature space 
between the centers of the clusters, with that of the sum of the 
largest eigenvalues of each cluster. If the Euclidian distance is 
Smaller than the Sum, then the two clusters overlap, if not, 
then the two clusters are disjoint in feature space. In another 
embodiment, the corresponding eigenvectors belonging to 
the respective eigenvalues can be projected onto the respec 
tive distance vector between two clusters to get a more accu 
rate distance measurement. If two clusters are disjoint, i.e., 
the Euclidian distance is smaller than the sum of the largest 
eigenvalues, it is likely that the objects belonging to one of the 
clusters are significantly different from the objects belonging 
to the other cluster with respect to their features. If the clusters 
overlap, then there is no anomaly. This property can be quan 
tified by a distance flag; if the clusters are disjoint the distance 
flag can be set as red (numerically, e.g., a value of 1) and if the 
clusters overlap the distance flag can be set as green (numeri 
cally, e.g., a value of 0). Continuing with the example of 
Tables 1 and 2, Table 3 gives the distance flag value for the 
pairwise relation among the three clusters of Table 2. It can be 
seen from Table 3 that all clusters are disjoint respectively, as 
their distance flag has a value of 1. The person skilled in the art 
will understand that different values may be used to indicate 
that clusters are disjoint. For example, in Some embodiments 
the distance flag may be set as 0 to indicate disjoint clusters, 
or, in yet another embodiment, the distance flag can take on 
continuous values, e.g., between 0 and 1, proportional to the 
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degree of overlap or separation. In some embodiments, a 
different type of distance may be employed, instead of an 
Euclidian distance. 

TABLE 3 

The distance flag between a pair of clusters determined using 
certainty sequential clustering in Table 1. 

Cluster number Cluster number Distance flag 

1 2 1 
1 3 1 
2 3 1 

0.058 Whether a cluster is anomalous cannot necessarily 
be determined from the distance flag alone. It can be assumed 
that the cluster with lesser number of objects is anomalous 
and this property can be represented by a number flag. For 
example, if the number of objects in a cluster is less than ten 
percent (e.g., user-defined threshold) of the number of objects 
in the other cluster, the number flag can be set as red (numeri 
cally, e.g., a value of 1), otherwise the number flag can be set 
as green (numerically, e.g., a value of 0). Continuing from the 
example of Table 3, the result of this step is detailed in Table 
4. From Table 4, it can be seen that the number flag for clusters 
1 and 2 is 1, the number flag for clusters 1 and 3 is 1, and the 
number flag for clusters 2 and 3 is 0. In other embodiments, a 
different value for the number flag may be used. In some 
embodiments, a different threshold may be used. For 
example, the threshold may be twenty percent instead often 
percent, or even another chosen value, different from ten or 
twenty percent. In another embodiment, the number flag can 
take on continuous values, e.g., between 0 and 1, reflecting 
the ratio of number of cluster members between one cluster 
and another cluster. 

TABLE 4 

The number flag between a pair of clusters determined using 
certainty Sequential clustering in Table 1. 

Cluster number Cluster number Number flag 

1 2 1 
1 3 1 
2 3 O 

0059. The distance flags can be set based on the distance 
between each unique pair of clusters and the Sum of the 
largest eigenvalues of corresponding clusters. In other 
embodiments, different flags may be used. 
0060. The number flags can be set based on the number of 
members in the respective clusters. In other embodiments, 
different flags may be used. 
0061. After flag computation, analysis of the feature vec 
tor can be applied to the desired specific application. For 
example, the flag computation can be applied to visual field 
comparisons and temporal change analysis. 

Visual Field Comparison and Temporal Change Analysis 
0062 For visual field classification purposes, the indices 
obtained in the methods described above can be taken 
together to form a feature vector that is characteristic of a 
particular3D-CTAG examination result, i.e., a visual field. As 
a result, visual fields, for example assessed with the Web 
based comprehensive visual field test and diagnosis system, 
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can be compared to each other via their respective feature 
vectors (after proper normalization of the feature vectors), 
and anomalies can be detected. 
0063. The present disclosure comprises the advantage of 
allowing the comparison of feature vectors after Such vectors 
have been determined following the methods described 
above, for example comprising the distance flag and number 
flag indices. 
0064. The comparison between visual fields, and the 
anomaly detection among a set of visual fields, such as a set of 
visual fields for a particular patient obtained over time, can be 
performed by an auto-classification system based on the 
Automated Global Feature Analyzer (AGFA). 
0065. The feature vectors in the case of visual field data 
classification may comprise the relative characterization indi 
ces listed above in the present disclosure: relative it of test 
locations not seen, volume lost relative to hill-of-vision, 
LAG, ILAG, PAG, IPAG. Thereason for the use of the relative 
characterization indices for the feature vectors as opposed to 
the absolute ones is that the resulting feature vectors are 
largely independent from the respective visual field examina 
tion specifications, such as the area of visual field tested and 
contrast levels presented. Otherwise a comparison of differ 
ent visual fields, taken on different test machines with differ 
ent examination parameter settings, can become problematic. 
In other applications, the characterization indices may be 
different from those listed for visual field comparisons. For 
example, indices for features for financial markets and other 
applications have been listed above in the present disclosure. 
0066 For the case of visual field comparisons, the feature 
vectors may enable both qualitative and quantitative analyses 
oftemporal changes of a subject’s visual field. These tempo 
ral changes can be assessed by calculating the following 
comparative quantities amongst different 3D-CTAG exami 
nation results for each Subject: 
0067. Overlap Parameter: defined as the N-dimensional 
Scalar product between two feature vectors, ranging from -1 
to +1, with -1 representing the case that two visual fields are 
completely the opposite/dissimilar from each other, 0 repre 
senting the case that two visual fields are orthogonal to each 
other, and with +1 representing the case that two visual fields 
are the same-and of course all continuous variations in 
between these values. The Overlap Parameter is a measure of 
similarity between two feature vectors. 
0068 Hamming Distance: defined as the sum of squared 
differences between the feature vector components, divided 
by the dimension N of the feature vector. The Hamming 
Distance is always >=0 and is a measure of similarity between 
two feature vectors. 

0069 Euclidian Distance: defined as the square root of the 
sum of squared differences between the feature vector com 
ponents. The Euclidian Distance is always >=0 and is also a 
measure of similarity between two feature vectors. 
0070 Additionally, AGFA can perform sequential cluster 
ing among other clustering techniques to group visual field 
exams of a patient or of several patients into clusters of 
similarity based on the respective feature vectors, and can 
Subsequently perform anomaly analyses based on inter-clus 
ter comparisons. Ananomaly is defined as a particular feature 
vector, or a component of a particular feature vector (e.g., 
relative it of test locations not seen, volume lost relative to 
hill-of-vision, LAG, ILAG, PAG, IPAG), which is signifi 
cantly different from the other feature vectors, or the same 
component in the other feature vectors. Together with the 
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Overlap Parameter, Hamming Distance, and Euclidian dis 
tance, the clustering and anomaly detection can provide a 
means for visual field classification and comparison. More 
over, this tool set, provided by AGFA, can allow for the 
assessment of visual field deterioration or improvement over 
time (i.e., temporal change) by analyzing the underlying fea 
ture vectors that represent the respective visual fields at a 
given time. 
0071. The feature vectors can also serve as inputs to arti 
ficial neural networks, such as single- or multi-layered per 
ceptron systems, as well as Hopfield attractor networks for 
the generation of preliminary diagnoses. In particular, the 
adaptation of Hopfield attractor networks to the respective 
visual field area and geometry being tested on a given exami 
nation station/device is straightforward because no spatial 
arrangement assumption of the neurons of the Hopfield 
attractor network is made with respect to the actual visual 
field geometry for a given examination station/device. 
0072 The objectively derived visual field, scotoma, and 
metamorphopsia characterization data can: 

0.073 1. Probabilistically predict ailments via statistical 
methods and artificial neural networks (see for example, 
3D-CTAG-adapted version of visual field classification 
neural network as described in Fink W., “Neural attrac 
tor network for application in visual field data classifi 
cation”, Phys Med Biol 49(13):2799-2809, 2004; the 
disclosure of which is incorporated herein by reference 
in its entirety). 

0074 2. Indicate both qualitatively and quantitatively 
temporal changes in visual fields of patients over time 
using classification methods derived from autonomous 
planetary exploration (see for example, Automated Glo 
bal Feature Analyzer AGFA, (Fink et al., 2005: Finket 
al., 2008); the disclosure of which is incorporated herein 
by reference in its entirety). 

0075. As such the developed comprehensive visual field 
test and diagnosis system is capable of 

0.076 1. Detecting and diagnosing conditions affecting 
the visual performance early on, allowing for the timely 
application of therapeutic countermeasures; 

0.077 2. Monitoring the efficiency and efficacy of thera 
peutic treatment of the condition over time. 

0078. The methods described in the present disclosure 
may be computer implemented through a hardware device. 
Such hardware device can comprise a processor and a 
memory, and a plurality of sensors. The sensors, as under 
stood by the person skilled in the art, can comprise a wide 
variety of different sensors. For example, camera sensors, 
radioactivity sensors, magnetic sensors, electrical sensors, 
chemical sensors, infrared sensors, spectroscopy analyzers, 
mass spectroscopy sensors, pressure sensors, humidity sen 
sors, blood Sugar sensors, temperature sensors, seismic sen 
sors, salinity sensors, Velocity sensors and accelerometers, 
Voltmeters, magnetometers, etc. 
0079. In some embodiments, the hardware device may be 
termed a sensing and analyzing device. In some embodi 
ments, the device may be a Smartphone or a tablet. 
0080 FIG. 3 illustrates an exemplary sensing and analyz 
ing device, comprising a processor (305), a memory (310) 
and a plurality of sensors (320, 325, 330,335,340, 345). 
I0081 FIG. 4 is an exemplary embodiment of a target hard 
ware (10) (e.g., a computer system) for implementing the 
embodiment of FIGS. 1 and 2. This target hardware com 
prises a processor (15), a memory bank (20), a local interface 
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bus (35) and one or more Input/Output devices (40). The 
processor may execute one or more instructions related to the 
implementation of FIGS. 1 and 2, and as provided by the 
Operating System (25) based on Some executable program 
(30) stored in the memory (20). These instructions are carried 
to the processor (15) via the local interface (35) and as dic 
tated by some data interface protocol specific to the local 
interface and the processor (15). It should be noted that the 
local interface (35) is a symbolic representation of several 
elements such as controllers, buffers (caches), drivers, repeat 
ers and receivers that are generally directed at providing 
address, control, and/or data connections between multiple 
elements of a processor based system. In some embodiments 
the processor (15) may be fitted with some local memory 
(cache) where it can store some of the instructions to be 
performed for some added execution speed. Execution of the 
instructions by the processor may require usage of some 
input/output device (40). Such as inputting data from a file 
stored on a hard disk, inputting commands from a keyboard, 
inputting data and/or commands from a touchscreen, output 
ting data to a display, or outputting data to a USB flash drive. 
In some embodiments, the operating system (25) facilitates 
these tasks by being the central element to gathering the 
various data and instructions required for the execution of the 
program and provide these to the microprocessor. In some 
embodiments the operating system may not exist, and all the 
tasks are under direct control of the processor (15), although 
the basic architecture of the target hardware device (10) will 
remain the same as depicted in FIG. 4. In some embodiments 
a plurality of processors may be used in a parallel configura 
tion for added execution speed. In Such a case, the executable 
program may be specifically tailored to a parallel execution. 
Also, in some embodiments the processor (15) may execute 
part of the implementation of FIGS. 1 and 2, and some other 
part may be implemented using dedicated hardware/firmware 
placed at an Input/Output location accessible by the target 
hardware (10) via local interface (35). The target hardware 
(10) may include a plurality of executable programs (30), 
wherein each may run independently or in combination with 
one another. 

0082. The methods and systems described in the present 
disclosure may be implemented in hardware, Software, firm 
ware or any combination thereof. Features described as 
blocks, modules or components may be implemented 
together (e.g., in a logic device Such as an integrated logic 
device) or separately (e.g., as separate connected logic 
devices). The software portion of the methods of the present 
disclosure may comprise a computer-readable medium which 
comprises instructions that, when executed, perform, at least 
in part, the described methods. The computer-readable 
medium may comprise, for example, a random access 
memory (RAM) and/or a read-only memory (ROM). The 
instructions may be executed by a processor (e.g., a digital 
signal processor (DSP), an application specific integrated 
circuit (ASIC), a field programmable logic array (FPGA), a 
graphic processing unit (GPU) or a general purpose GPU). 
0083. A number of embodiments of the disclosure have 
been described. Nevertheless, it will be understood that vari 
ous modifications may be made without departing from the 
spirit and scope of the present disclosure. Accordingly, other 
embodiments are within the scope of the following claims. 
0084. The examples set forth above are provided to those 
of ordinary skill in the art as a complete disclosure and 
description of how to make and use the embodiments of the 
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disclosure, and are not intended to limit the scope of what the 
inventor/inventors regard as their disclosure. 
0085 Modifications of the above-described modes for 
carrying out the methods and systems herein disclosed that 
are obvious to persons of skill in the art are intended to be 
within the scope of the following claims. All patents and 
publications mentioned in the specification are indicative of 
the levels of skill of those skilled in the art to which the 
disclosure pertains. All references cited in this disclosure are 
incorporated by reference to the same extent as if each refer 
ence had been incorporated by reference in its entirety indi 
vidually. 
0086. It is to be understood that the disclosure is not lim 
ited to particular methods or systems, which can, of course, 
vary. It is also to be understood that the terminology used 
herein is for the purpose of describing particular embodi 
ments only, and is not intended to be limiting. As used in this 
specification and the appended claims, the singular forms 'a. 
“an and “the include plural referents unless the content 
clearly dictates otherwise. The term “plurality” includes two 
or more referents unless the content clearly dictates other 
wise. Unless defined otherwise, all technical and scientific 
terms used herein have the same meaning as commonly 
understood by one of ordinary skill in the art to which the 
disclosure pertains. 
What is claimed is: 
1. A computer implemented method comprising: 
providing a sensing and analyzing device, the sensing and 

analyzing device comprising a plurality of Sensors con 
figured to detect a plurality of physical features describ 
ing a plurality of physical objects; 

generating, by the sensing and analyzing device, a plurality 
of feature vectors representing the plurality of objects, 
based on the plurality of physical features, wherein the 
plurality of feature vectors comprises a plurality of com 
ponents describing the plurality of physical features, 
wherein each component of the plurality of components 
has a numerical range, wherein each physical feature of 
the plurality of physical features is represented by at 
least one component within each feature vector; 

converting, by the sensing and analyzing device, the 
numerical range of each component to a range between 
0 and 1, wherein the converting is carried out by formula 

F1 OrigiFi - MinF, 
- Max F. - MinF, 

where F1 is a normalized value of i' object and j', feature 
component. OrigF, is an original j" feature component 
value of i' object. MinF, and MaxF, are a minimum 
value and a maximum value of j" feature component, 
thereby obtaining a first plurality of normalized feature 
vectors comprising a first plurality of normalized com 
ponents and further comprising a total number of com 
ponents for each physical feature of each first normal 
ized feature vector of the first plurality of normalized 
feature vectors; 

for each first normalized feature vector of the first plurality 
of feature vectors, dividing, by the sensing and analyZ 
ing device, the plurality of normalized components for 
each physical feature of each first normalized feature 
vector by the total number of components for each 
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physical feature of the first normalized feature vector, 
thereby obtaining a second plurality of normalized fea 
ture vectors; 

normalizing, by the sensing and analyzing device, the sec 
ond plurality of normalized feature vectors by formula 

where F2, is a component of a feature vector of the second 
plurality of normalized feature vectors, and F3 is a 
resultant component for each feature vector of a third 
plurality of normalized feature vectors; 

clustering, by the sensing and analyzing device, the third 
plurality of normalized feature vectors, thereby obtain 
ing a plurality of clustered normalized feature vectors; 

applying, by the sensing and analyzing device, principal 
component analysis to the plurality of clustered normal 
ized feature vectors, thereby obtaining a distance flag 
value and a first evaluated plurality of normalized fea 
ture vectors; 

calculating, by the sensing and analyzing device, a number 
flag Value by counting each feature vector of the plural 
ity of clustered normalized feature vectors, based on a 
threshold value, thereby obtaining a second evaluated 
plurality of normalized feature vectors; 

analyzing, by the sensing and analyzing device, the plural 
ity of physical objects, based on the first or second 
evaluated plurality of normalized feature vectors. 

2. The computer implemented method of claim 1, wherein 
the clustering comprises: 

defining, by the sensing and analyzing device, a first 
parameter t and a second parameter t, wherein the 
second parameter is greater than the first parameter; 

calculating, by the sensing and analyzing device, a cluster 
center C, for a cluster c, wherein j is a first counting 
parameter; 

calculating, by the sensing and analyzing device, a distance 
d(F3, C.) between each feature vector of the third plu 
rality of normalized feature vectors and the cluster cen 
ter C, wherein each feature vector is termed F3, and 
wherein i is a second counting parameter, 

assigning, by the sensing and analyzing device, each fea 
ture vector F3, of the third plurality of normalized fea 
ture vectors to the cluster c, based on the first parameter 
t and the second parameter t, wherein the assigning 
comprises iterating steps a)-c): 
a) if the distance d(F3, C.) is smaller than the first 

parameter t, the feature vector F3, is assigned to the 
cluster c, with the cluster center C. 

b) if the distance d(F3, C.) is greater than the second 
parameter t, the feature vector F3, is not assigned to 
the cluster c, with the cluster center C. j is incre 
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mented and the feature vector F3, is assigned to the 
cluster c, with the cluster center C. 

c) if the distance d(F3,C) is greater than the first param 
eter t but Smaller than the second parameter t, the 
assigning is postponed; 

wherein the iterating is stopped once a desired condition is 
reached and each feature vector F3, is clustered, thereby 
obtaining a plurality of clustered normalized feature 
VectOrS. 

3. The computer implemented method of claim 1, wherein 
the clustering is by sequential clustering, K-means clustering, 
or level-set-analysis clustering. 

4. The computer implemented method of claim 1, wherein 
the plurality of physical features comprises: color; albedo: 
shape; extent; angularity; compactness; size; texture; multi 
spectral data; hyperspectral data; spectroscopic data; biologi 
cal contaminate concentrations; chemical contaminate con 
centrations; radioactive contamination. 

5. The computer implemented method of claim 1, wherein 
the analyzing is for region-of-interest demarcation or delin 
eation; anomaly detection; autonomous vehicle control; or 
guidance for exploration equipment. 

6. The computer implemented method of claim 1, wherein 
the analyzing is for geology, mining, resource allocation, or 
reconnaissance. 

7. The computer implemented method of claim 1, wherein 
the analyzing is for medical diagnosis and the plurality of 
physical features comprises: patient-specific data; blood 
examination results; urine or stool examination results: X-ray, 
CT, MRI, fMRI, or ultrasound images; multi-spectral data; 
hyperspectral data: pulse; heart rate; intraocular pressure; 
intracranial pressure; blood pressure; lung Volume. 

8. The computer implemented method of claim 1, wherein 
the analyzing is for financial markets and the plurality of 
physical features comprises electric signals sensed on a data 
wire, wherein the electrical signals describe data comprising: 
stock values; opening bid; closing bid; bids throughout trad 
ing period; gold price; stock indices; trading Volume. 

9. The computer implemented method of claim 1, wherein 
the analyzing is for visual fields and the plurality of physical 
features comprises: Scotoma perimeter, Scallopedness, abso 
lute number of test-locations not seen, area of visual field 
impaired, absolute hill-of-vision Volume lost, lost area grade, 
preserved area grade, inverse lost area grade, inverse pre 
served area grade. 

10. The computer implemented method of claim 1, 
wherein MinF, and MaxF, are user-defined. 

11. The computer implemented method of claim 2, 
wherein the distance is a Euclidean distance. 

12. The computer implemented method of claim 1, further 
comprising analyzing, by the sensing and analyzing device, 
the plurality of physical objects, based on temporal changes. 

k k k k k 


