wo 2013/106099 A2 || ]I ¥ A1 0O 000 RO AU R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

18 July 2013 (18.07.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/106099 A2

(51
eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification: Not classified

International Application Number:
PCT/US2012/057385

International Filing Date:
26 September 2012 (26.09.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/346,396 9 January 2012 (09.01.2012) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, Mail Stop 50OP7,
Redwood Shores, CA 94065 (US).

Inventors: TEXIER, Emmanuel; 1061 West lowa Aven-
ue, Sunnyvale, CA 94086 (US). MALAKSAMUDRA,
Gireesh; 1637 Albatross Drive, Sunnyvale, CA 94067
(US). KAEMMERER, Jens; 254 Tyrella Avenue, Moun-
tain View, CA 94043 (US). PIRO, Louis (Jr.); 2585
Westgate Avenue, San Jose, CA 95125 (US).

Agents: LEDESMA, Daniel, D. et al; 1 Almaden
Boulevard, Floor 12, San Jose, CA 95113 (US).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: A FUNCTIONAL MODEL FOR RATING EVENTS

(57) Abstract: Techniques are provided for implementing a rating engine that

N

210
RECEIVE AN EVENT THAT INDICATES USAGE BY A
CUSTOMER

220
IDENTIFY A RATING GRAPH THAT REPRESENTS A RATE

230
EXECUTE A FIRST FUNCTOR INDICATED BY THE RATING
GRAPH TO GENERATE A FIRST RESULT

240
USE THE FIRST RESULT TO DETERMINE WHICH FUNCTOR
TOEXECUTE NEXT

Y

230
EXECUTE THE SECOND FUNCTOR TO GENERATE A
SECOND RESULT

260
DETERMINE AN AMOUNT TO CHARGE THE CUSTOMER
BASED ON THE SECOND RESULT

FIG. 2

processes events about usage information regarding a product or service used
by customers of the product/service. The rating engine represents a connected
graph of objects whose function is to accept input (if necessary), perform one
or more operations, and generate a result that is used to determine which oth-
er object to execute. The input might include information about an "event"
that indicates usage information of the product/service by a particular cus-
tomer. Because not all objects need to be executed to determine the appropri-
ate response for some events, many computing resources can be used to pro-
cess subsequent events.



WO 2013/106099 A2 |00V AN ANR SRR AV AR A

Published:

—  without international search report and to be republished
upon receipt of that report (Rule 48.2(g))



WO 2013/106099 PCT/US2012/057385

A FUNCTIONAL MODEL FOR RATING EVENTS
FIELD OF THE INVENTION
[0001] The present invention relates to rating an event that reflects an amount of
usage of a service or product by a customer.
BACKGROUND
[0002] “Rating” generally refers to the process of determining the cost or price of
product or service usage. Rating might also refer to distributing or sharing a charge
and alteration (or discounting). For example, many telecommunication carriers allow
customers (or subscribers) to choose a particular plan, which may be a pre-paid plan
or a post-paid plan, such as a monthly/yearly-based plan. Any usage by the customer
of the service provided by the telecommunication carrier is reported to a rating
engine. The rating engine may be maintained by the carrier or by a third party. The
rating engine calculates, based on the customer’s plan and the customer’s usage, an
amount to charge the customer or how much to report to the customer’s account. The
amount may be deducted from a total remaining usage amount (e.g., in minutes or
gigabyte usage).
[0003] In the telecommunications context, a rating engine may take into account
multiple factors, such as time of the usage (e.g., after 7PM Pacific Standard Time),
duration of the usage (e.g., 5 minute call), destination of a call (e.g., landline,
overseas, friend or family), and origin of call or location of caller (e.g., roaming for
mobile networks). In the Internet context, factors might include the amount of
content downloaded (e.g., 5 gigabytes), the type of streaming content, the quality of
the content, and the time of download.
[0004] Rate plans are becoming increasingly complex and are changing
frequently. Rating engines, therefore, must be configured to process usage
information against such complex and ever-changing rate plans. Typically, a rate plan
designer (e.g., an employee of a telecommunications carrier) provides input at a user
terminal (e.g., desktop computer, laptop computer, or tablet computer) that displays a
user interface. The input reflects a set of rules that are used to calculate an amount
(e.g., in minutes, currency, or data usage) that is used to keep track of a customer’s
usage. The user interface accepts the input and might generate an XML document (or
other document in a tabular format) that reflects all the rules reflected in the input.
One problem with such data-centric representations is that they are not suitable to
express a rate plan. Alone, such representations cannot easily express the functional

aspect of a rate plan, such as an if-then-else condition. As a result, conventional rating

1-



WO 2013/106099 PCT/US2012/057385

engines need to implement additional functional modules to process the data (such as
a set of modules, hard-coded logic, or rule engines), as described later.

[0005] An “event” is data that is generated in response to a customer using a
product or service. For example, an event is created when a customer completes a
telephone call. Additionally, an event may be created when a customer begins the call
and, optionally, at one or more points during the call.

[0006] A rating engine can process events in real-time or offline. Real-time
processing is typically required when a customer, for example, makes a call or
accesses the internet, and the rating engine needs to grant the access in real-time, so
that the customer does not wait to use the service. A product or service provider
(such as a telecommunications carrier) desires to process certain events in real-time
(or as quickly as possible) for at least two reasons: revenue leakage and loss of
opportunity. Revenue leakage refers to allowing more usage to a customer than the
customer is entitled. Loss of opportunity refers to not granting an amount of usage to
a customer when the customer is entitled to that amount. For example, in the prepaid
telephone context, a customer has a limited number of minutes to communicate using
a phone. A telecommunications carrier, with which the customer contracts or
subscribes, does not want the customer to use more minutes than the customer is
entitled to (i.e., based on the customer’s contract). Therefore, if a customer has “used
up” his/her minutes, then the telecommunications carrier does not want to allow the
customer to make another call without first paying for additional minutes. To prevent
customers from over using their minutes, the telecommunications carrier might turn
down a usage request and wait for all events that have not yet rated to be rated.
However, rating all outstanding events may take time and the denial of service to a
customer that is entitled to that service will result in poor customer satisfaction. This
loss of opportunity translates into loss of money for the carrier.

[0007] As another example, in the post-paid telephone context, a customer does
not want to find out a day or more later that not only has she “used up” her minutes,
but she also went over her limit by about an hour, which excess is charged at a
significantly higher rate. Therefore, it is imperative that events are processed as
quickly as possible so that a customer does not use more of the product or service to
which the customer is entitled and, similarly, so that a customer is not prevented from
using the product or service to the extent that the customer is entitled.

[0008] Some events can be processed offline (such as monthly billing). Those

events do not need to be processed in real-time. However, a telecom provider needs

R



WO 2013/106099 PCT/US2012/057385

to produce billing in a timely manner. For example, the provider might have to
generate hundreds of millions of bills on the first day of every month. A fast rating
engine will provide better user experience (bills are produced on time) and might
prevent the provider from having to invest in a costly server infrastructure (because
fewer servers are needed to process all the events). For online processing in real-time,
not being able to process events in a timely manner (e.g., in a matter of a few
milliseconds) might cause timeouts, errors, failures, etc. To avoid complete collapse
of the system, providers allow the system to run in a degraded mode when the system
is overloaded. In this mode, and based on some configured policies, the system might
produce either pessimistic denials of service (loss of opportunity), or optimistic
authorizations of service (revenue leakage).

[0009] However, current approaches to processing events are proving deficient.
In one approach, a rating engine comprises a series of multiple (e.g., plug-in)
modules. For each usage event of a customer, each of the modules is configured to
make a certain determination based on the event and the customer’s rate plan and
provide a result to the next module in the series. For example, in rating a telephone
call, one module may be configured to check whether the current date is the
customer’s birthday, another module may be configured to determine if the
destination of the call is within the customer’s “friends and family” group and, if so,
how much to rate the call, and another module is configured to determine the time of
the day and rate the call as if there are no exceptions, such as a birthday or the
destination being certain friends or family. However, there are a number of
disadvantages to using such an approach. For example, a context switch has to be
performed each time a module in the series is finished and another module is
executed. As another example, each module in the series is executed even though
some modules may be unnecessary. Thus, computing resources (e.g., CPU cycles and
memory) that could be used to process subsequent events must be employed to
process a current event. When hundreds of thousands of events are created in a short
window of time, such “wasted” computing resources become extremely valuable.
[0010] In another approach, a rating engine comprises a large set of rules against
which an event is evaluated. In other words, for each event received at the rating
engine, the rating engine evaluates the event against each rule. However, for many
events, the evaluation of each event against each rule may be unnecessary. For
example, if the evaluation of an event against a single rule results in a determination

that the customer will not be charged, then evaluation of the event against each other

3-



WO 2013/106099 PCT/US2012/057385

rule in the set is unnecessary. Again, in this approach, computing resources are
wasted.

[0011] In another approach, instead of using a series of modules or a large set of
rules, a rate plan is “hard-coded” in that the rate plan is reflected in a single software
module. However, service providers desire flexibility in offering different rate plans
in order to respond to changing market conditions. Thus, a hard-coded solution may
only be relevant for a short period of time, after which it may become obsolete.
Providing a hard-coded solution for each new rate plan would be expensive and
tedious. TFurthermore, most product and service providers desire control over creating
and testing the rate plans. However, requiring such providers to write the source code
for each rate plan is undesirable.

[0012] The approaches described in this section are approaches that could be
pursued, but not necessarily approaches that have been previously conceived or
pursued. Therefore, unless otherwise indicated, it should not be assumed that any of
the approaches described in this section qualify as prior art merely by virtue of their
inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] In the drawings:

[0014] FIG. 1 is a block diagram that depicts a rating graph that graphically
represents an example rate plan functor, according to an embodiment of the invention;
[0015] FIG. 2 is a flow diagram that depicts a process for processing an event,
according to an embodiment of the invention;

[0016] FIG. 3 is a block diagram that depicts an example memory representation
of a rate plan functional object that comprises multiple functional objects, according
to an embodiment of the invention; and

[0017] FIG. 4 is a block diagram that illustrates a computer system upon which an
embodiment of the invention may be implemented.

DETAILED DESCRIPTION

[0018] In the following description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the
present invention. It will be apparent, however, that the present invention may be
practiced without these specific details. In other instances, well-known structures and
devices are shown in block diagram form in order to avoid unnecessarily obscuring

the present invention.



WO 2013/106099 PCT/US2012/057385

GENERAL OVERVIEW
[0019] Techniques are provided for rating an event that indicates an amount of
usage by a customer of a service or product. A rate plan is represented by a rate graph
“functor” (or functional object) that comprises a plurality of functional objects. The
logic represented in the rate plan functor may be viewed as a decision (e.g., binary)
tree. Information about an event is input to one of the functional objects (e.g., a
“root” node), which generates a result. The result may dictate which functional object
in the plurality is executed next. The set of functional objects that are executed in
order to generate a final result may be less than all the functional objects in the rate
plan functor. Embodiments offer a functional approach to describing rate plans: DSL
expressions make it easy to represent both the data and functions (such as conditions
and outcomes) that make up a rate plan.
[0020] Although examples provided herein refer to receiving and processing
usage events that are generated in response to a user using an amount of a service or
product, embodiments of the invention are not so limited. For example, events may
be system events, such as a monthly billing cycle event. In response to receiving such
a system event, an event processing system as disclosed herein processes the system
event and might determine and return a charge that corresponds to, for example, a

monthly rate, plus tax and miscellaneous fees.

DOMAIN SPECIFIC LANGUAGE
[0021] A DSL is s a programming language or specification language that is
dedicated to a particular problem domain. Creating a DSL (with software to support
it) is worthwhile if the language allows a particular type of problem or solution to be
expressed more clearly than pre-existing languages allow. Some goals of creating a
DSL may include that the DSL is expressive, concise, extensible, easy to test, and
optimized specifically for evaluating rating events.
[0022] In contrast, a current technique for expressing a rate plan involves a
system that includes a user interface where a user can enter values in different fields.
The fields and field values reflect the rules of a rate plan. The user interface accepts
the inputs and generates a (relatively) large XML document (or other tabular
representation) that reflects the rate plan. Such a user interface is required for users
because the generic data representations (e.g., XML, or tabular representations) are
not suitable for describing rate plans. Instead, such data representations tend to be

verbose and lack expressiveness. During runtime, one or more modules of a rating



WO 2013/106099 PCT/US2012/057385

engine access the, for example, XML document, analyze the XML data contained
therein, and rate an event in light of the rules reflected in the XML data.
[0023] With a DSL for rating plans, because the DSL is so expressive, a Ul is not
required as a translation layer. Furthermore, a single DSL expression can describe
both the data and rules of a rate plan, which is difficult, if not impossible, with data-
centric representations. Additionally, the runtime model for DSL expressions can
contain both data and function logic, while the runtime model for data-centric
representations often only contains data. The runtime processing of a data-centric
runtime model, on the other hand, is usually slower and un-optimized because such a
model requires an additional system to run the functional logic. The additional
system is usually the same for every rate plan expressed in a data-centric
representation and, therefore, is not optimized.
[0024] According to an embodiment, a domain specific language (DSL) is created
and used to express rate plans. The vocabulary of a DSL may be limited to those
words that capture the core rating concepts. The DSL should be expressive enough
for both programmers and domain experts to quickly learn. An example of a DSL
statement is the following:

(dayOfYear == @birthday) => linearRate(0.00) +

(@calledld <: @friendsAndFamily) => linearRate(0.01) |+

[20:00:00,07:00:00] => linearRate(0.02) |+

linearRate(0.05)
[0025] The vocabulary used in this DSL statement is specific to the rating
domain. For example, “dayofYear” is a singleton that returns the current day of the
current year; “@birthday” is an alias to a more complex DSL expression that
determines the birthday of the customer that is associated with an event that is
currently being processed; and “linearRate” is a function that accepts an input
parameter value (e.g., “0.00”) and generates a value as output, where the value
represents an amount to charge the customer. The “=>" symbol indicates that if the
previous expression is true, then the immediately subsequent expression is evaluated.
The “+” symbol indicates that if the previous condition (e.g., “(dayOfYear =
@birthday)”) is false, then the event is to be processed using a subsequent expression
in the DSL statement. The “H” symbol also indicates that a previous condition could
be partially true and that the event is to be processed by a subsequent expression. For
example, a customer calls a friend at 11:55PM on the customer’s birthday and the call

lasts 10 minutes. According to the rate plan reflected in the example DSL statement

-6-



WO 2013/106099 PCT/US2012/057385

above, the first five minutes of the call is free and the last five minutes will be rated
according to the expressions after the first “i4+” symbol.

[0026] A number of benefits are realized by creating a DSL specifically for
expressing rate plans. One is that a designer or creator of a DSL statement is shielded
from the internals of the event processing system. Another benefit is that the
language is (a) more expressive than composing a XML document that reflects a rate
plan and (b) much more expressive than writing source code (e.g., Java) for a hard-
coded implementation of a rate plan. Another benefit is that testing a DSL statement
is much easier than testing code.

[0027] A DSL statement may be written by a user, such as a designer of rate
plans. Additionally or alternatively, a DSL statement may be automatically generated
based on user input received through a user interface designed to accept input that
reflects a rate plan. The input may be converted directly into a DSL statement or into
an intermediary format, such as XML, and then from the intermediary format to a
DSL statement.

[0028] The following is an example lexicon for a DSL that is created for

expressing rate plans:

Operators: +, -, <, >, ==, |, &&, 3, <., [+, I, |, =>
Singletons: start, end, dayOfYear, dayOfWeek, dayOfMonth, quantity, TRUE,
FALSE

Other Functions: linearRate, fixedRate, fail, localDate, date, getObject,
getBigDecimal, getBoolean
Aliases; @birthday, @dateOfBirth, @qos, @friendsAndFamily, @balance,
@inputValue, @outputVolume, @cellHomelds, @calledld, @cellld
[0029] Operators accept, as input, one or more operands, which may be functions
themselves. Singletons are functions that do not require data from an event to
generate an output. “Other functions” are functions that require, as input, data from
or about an event in order to generate an output.
[0030] In an embodiment, a DSL created for expressing rate plans is extensible.
In other words, additional functions may be supported, as long as a DSL parser for the
DSL is extended to support the new vocabulary. Similarly, a DSL may be extensible
in the creation of aliases. The example DSL statement above includes an alias, which
resolves to a more complex DSL expression. For example, @birthday may be an
alias for “getObject("RatingContext#customer/birthday/toString?MMdd")” where

getObject is an example of an “other function” above. As functions become more



WO 2013/106099 PCT/US2012/057385

complex, an alias may be added to a DSL to simplify the composition of DSL

statements.

RATE PLAN FUNCTOR
[0031] According to an embodiment, a DSL parser accepts a DSL statement as
input, parses the statement, and generates a rate plan functor, which may be viewed as
a decision tree that conceptually represents the functional logic of the rate plan
defined by the DSL statement. Thus, the DSL statement “modelizes” the rate plan
functor in its own language. Indeed, each logical expression (whether the expression
returns a Boolean value or rates an event) in the decision tree can correspond directly
with an expression in the corresponding DSL statement. Because the DSL syntax is
very similar to how a rate plan functor is viewed, it should be easy for the designer to
use the DSL.
[0032] As a decision tree, a rate plan functor may be viewed as an ordered set of
functions. Each function may be implemented as an object, such as a function object.
A function object, also referred to as a “functor,” is a computer programming
construct that allows an object to be invoked or called as though the object is an
ordinary function, usually with the same syntax. Each function indicated in the
example lexicon above (i.e., operators, singletons, other functions, and aliases) may
be implemented as a functor. For aliases, at parse time, the DSL parser identifies,
based on an alias, one or more functors and input(s) for the alias and generates the one
or more functors.
[0033] In an embodiment, a rate plan functor is a binary tree where each node has
at most two children (referred to herein as a “right-hand child” and a “left-hand
child”). The connection from a parent node to a right-hand child may be modeled by
the "=>" operator functor, and the connection from the parent node to a left-hand
child may be modeled by a “I+” operator functor. The DSL parser generates a functor
that is a combination of all the functors that are part of the DSL statement.
[0034] Non-leaf nodes of a rate plan functor are considered predicate or condition
functors that evaluate to true or false (completely or partially). The conditions
represented by predicate functors may be any condition. Such conditions may be
based on the destination of a call, when the call is made, and how long the call lasts.
For example, a condition may be on all or a part of a quantity to rate, which quantity
may be a duration, such as "([20:00:00,07:00:00])." Non-leaf nodes act as guards to

their respective two children nodes. The right-hand child of a predicate node may



WO 2013/106099 PCT/US2012/057385

receive as input the quantity on which the predicate is true. The left-hand child of a
predicate node may receive as in input the quantity on which the predicate is false.
Each child node of a predicate node is either a leaf node or another non-leaf (or
branch) node, each of which are considered rate functors.

[0035] A leaf node is a rate functor that rates the quantity that is given to the leaf
node as input and returns a result that typically contains the charge for that quantity
(plus, for example, some other information related to the charge such as a general
ledger assignment, tax code, etc.). For example, a rate functor may be generated for
"linearRate(0.01)." A branch node may also be considered a rate functor, albeit a
combination of multiple functors that together act as a rate functor. For example, the
following may be considered a rate functor: "[20:00:00,07:00:00] => linearRate(0.02)
I+ linearRate(0.05)." Furthermore, the rate plan functor as a whole can be considered
as a branch (or a tree), which is also a rate functor. The result of executing a rate plan
functor is the aggregation of all the charges resulting from the evaluation of each
executed leaf node (a list of all single rate functors results), which may be a subset of
all the leaf nodes in the rate plan functor.

[0036] In an embodiment, the connections between nodes are also functors,
referred to herein as operator functors. Non-limiting examples of operator functors
include ‘+°, -, ¥’ ‘=>" and ==. For example, '=>'is a binary operator functor that
takes a left-hand side operand (e.g., a predicate functor) and right-hand side operand
(e.g., arate functor). In other words, if the predicate functor (or left-hand side
operand) is true, then the rate functor (or right-hand side operand) is executed. The
evaluation of the rate functor returns a charge on a quantity (e.g., a duraction) if the
left-hand side operand (or predicate functor) is true.

[0037] As another example, ‘+’ is a binary operator functor that acts as an
aggregator and takes two rate functors: a left-hand side (or simply “left”) rate functor
and a right-hand side (or simply “right”) rate functor. This binary operator functor
evaluates a charge produced by the left rate functor, and, if the quantity is not
completely rated, this binary operator functor adds a charge produced by the right rate
functor. Based on the foregoing, such a functional approach allows combining
functors recursively to make more complex functors. For the purpose of
expressiveness, the DSL parser is designed to accept constructs that look more like
mathematical equations rather than unreadable recursive functions calls.

[0038] In an embodiment, a functor is an immutable object, i.e., whose state is not

modified after its creation. In some cases, an object is considered immutable even if

9.



WO 2013/106099 PCT/US2012/057385

some internally-used attributes change but the object's state appears to be unchanging
from an external point of view. For example, an object that uses memoization to
cache the results of expensive computations may still be considered an immutable
object. Thus, if a particular functor is called with certain input, then the result of
executing the functor with that input may be cached or stored in association with (or
in) the functor. Thus, the next time the functor is called with that input (e.g., in the
context of another event that may be initiated by a different customer), the result is
read without executing the logic of the functor. The result may also be passed as
input to another functor. Other advantages of immutable objects include that
immutable objects are easily shareable and composable and are thread-safe.

[0039] Thus, a rate plan functor is a functional object that contains all the logic
and data (other than data required from the event itself) to rate an event. This feature
of containing all the logic and data is another advantage compared to conventional
runtime approaches, i.e., the functional runtime model makes the rate plan an
executable object. Common approaches only consider the data representation of a
rate plan, and require a separate rating engine to evaluate the rate plan. Such engines
merely use the rate plan as a specification. In embodiments described herein, the rate
plan functor is itself the engine.

[0040] FIG. 1 is a block diagram that depicts an example rating graph 100 that
graphical represents a rate plan functor, according to an embodiment of the invention.
The leaf nodes represent different possible charges that may be calculated for a given
event. Hach node in rating graph 100 corresponds to a functor. Specifically, functor
110 answers the question, “Is today the customer’s birthday?” If the answer to that
question is “Yes,” then functor 120 is executed, which ensures that the customer is not
charged for usage. If the answer to that question is “No,” then functor 130 is
executed.

[0041] Functor 130 answers the question, “Is the customer calling friends or
family?” If the answer to that question is “Yes,” then functor 140 is executed, which
calculates a charge of $0.01 per minute. Thus, if the customer made a call to a
recognized friend or family and the call lasted for 10 minutes, then functor 140
ensures that a charge of $0.10 is reflected on the customer’s account. If the answer to
that question is “No,” then functor 150 is executed.

[0042] Functor 150 answers the question, “Is he calling during peak hours?” If
the answer to that question is “Yes” (for at least a portion of the duration of the call),

then functor 160 is executed, which calculates a charge of $0.05 per minute (for at

-10-



WO 2013/106099 PCT/US2012/057385

least the portion of the duration of the call that during peak hours). If the answer to
that question is “No” (for at least a portion of the duration of the call) then functor
170 is executed, which calculates a charge of $0.02 per minute (for at least the portion
of the duration of the call that was not during peak hours). In either outcome, the
respective function ensures that the appropriate charge is reflected on an account of

the customer.

PROCESSING AN EVENT
[0043] FIG. 2 is a flow diagram that depicts a process 200 for processing an
event, according to an embodiment of the invention. Process 200 is performed by an
event processing engine. Process 200 may be performed by a single process or
different steps of 200 may be performed by different processes or different threads of
the same process.
[0044] At step 210, an event that indicates usage by a customer is received.
[0045] At step 220, a rate plan functor that represents a rate plan is identified. If
there are multiple rate plans, then the appropriate rate plan functor is first selected
from among the multiple rate plans.
[0046] At step 230, a first functor indicated by the rate plan functor is executed to
generate a first result. The first functor may represent the root node in the rate plan
functor.
[0047] At step 240, the first result is to determine which functor to execute next.
There may be two or more functors to call next (depending on the rating plan), after
the result is evaluated. For example, if the result of executing function 110 in rating
graph 100 is a Boolean true, then functor 120 (which does not require input) is
executed. If the result of executing function 110 is a Boolean false, then functor 130
(which requires input about the customer who initiated the event) is executed.
[0048] At step 250, a second functor indicated by the rate plan functor is executed
to generate a second result. The second result may be a Boolean value or, for
example, an integer value. For example, if the second functor corresponds to functor
130, then the second result is a Boolean value. If the second functor corresponds to
functor 120, then the second result is an integer value.
[0049] At step 260, an amount to charge the customer is determined based on the
second result. In example rating graph 100, the result of executing functor 160 or
functor 170 is considered to be “based on” the result of executing functor 130, even

though the result of executing functor 130 is a Boolean value. The execution of

-11-



WO 2013/106099 PCT/US2012/057385

functor 160 or functor 170 depends on the fact that the result of executing functor 130
indicates a false value.
[0050] Although this example only referred to functor evaluations, embodiments
may include many more functor evaluations in response to a single event.
[0051] Advantages of using a rate plan functor (i.e., comprised of a set of
functors) to rate an event (whether a usage event or a system event) include
composability and reduced complexity. Reduced complexity (relative to current
approaches for processing usage events) is achieved due to the “flat” class hierarchy
of objects. In other words, every object in a rate plan functor may be a functor. There
is no inheritance among the different functors.
[0052] With respect to composability, functors may be combined with other
functors to form branches or trees that represent a more complex rule of a particular
rate plan. Thus, a complex rate plan functor may be composed (or made up) of
multiple “simple” functors. Composability is favored over inheritance, which is a
feature of object-oriented programming and increases complexity.
[0053] A rate plan functor leverages mathematical properties, such as
commutativity (i.e., changing the order of operands does not change the end result),
associativity (i.e., changing the order in which the operations are performed does not
change the end result), and distributivity. For example, the following DSL statement
illustrates the distributive property of a rate graph functor that results from parsing the
DSL statement:

(dayOfYear==@birthday) =>

((107:00:00, 20:00:00] => linearRate(0.05))

I+ ([20:00:00, 07:00:00] => linearRate(0.01)))
which is equivalent to (i.e., yields the same result as)

(dayOfYear==@birthday) => (([07:00:00, 20:00:00] => linearRate(0.05))

I+ (dayOfYear==@birthday) =>([20:00:00, 07:00:00] => linearRate(0.01))

MULTIPLE RATE PLANS
[0054] A product or service provider that processes (usage) events may offer, to
potential customers, multiple rate plans from which to choose. Therefore, in an
embodiment, multiple rate plan functors are generated, one for each rate plan. As
indicated above, one source of the rate plan functors may be multiple DSL statements,
composed by a designer of the rate plans. Additionally or alternatively, another

source of rate plan functors may be a user interface through which a user enters rules

-12-



WO 2013/106099 PCT/US2012/057385

(i.e., not in the form of DSL statements) that reflect a rate plan. The entered data is
subsequently transformed into a DSL statement that reflects the rate plan.

[0055] Accordingly, in an embodiment, when an event arrives at an event
processing engine, the event processing engine identifies a rate plan functor from
among a plurality of rate plan functors, each rate plan functor corresponding to a
different rate plan. The event may include rate plan data that indicates a rate plan that
the customer (who initiated the event) previously selected. Alternatively, the event
may simply indicate a customer identifier, which may be associated (e.g., in a
customer-to-rate plan table) with a particular rate plan. Thus, the event processing
engine may identify a rate plan associated with the customer, identify a rate plan
functor associated with the rate plan, and pass the event to the rate plan functor
associated with the rate plan. The rate plan functor may be stored in non-volatile or
persistent memory and loaded into volatile memory. Alternatively, the rate plan
functor may have already been loaded into volatile memory.

[0056] In a related embodiment, multiple rate plans may be applied to a single
event. Thus, a single event may be passed to two or more rate plan functors for
processing. For example, one rate plan may be for calculating a charge and another

rate plan may be for calculating a discount to be applied to the calculated charge.

“SHARING” FUNCTORS
[0057] Multiple rate plans may have many attributes in common. For example,
multiple rate plans may have a “birthday rule” where, for example, if the day of an
event initiated by a customer is the customer’s birthday, then the customer is not
charged for the corresponding usage. If each rate plan functor included its own
instance of a “birthday” functor, then there may be multiple instances of the birthday
functor. However, instead of generating a different instance of a “birthday” functor
for each rate plan that includes a birthday rule, a single instance of the birthday
functor is stored in memory and “shared” by multiple rate plan functors. Such an
approach reduces the number of functor instances in a system and lowers the memory
footprint of the event processing engine. In addition to singleton functions (such as a
dayOfYear functor), non-singleton functors can also be shared. For example,
TimeRange functors that take a start and end time, might have multiple instances of
those functors shared across a rating system. Typically, many rate plans share the

same peak period and off-peak period and, thus, can share the same instances of

13-



WO 2013/106099 PCT/US2012/057385

TimeRange functors (such as for off-peak represented by [19:00:00,07:00:00] and for
peak represented by [07:00:00,19:00:00].

RUNTIME EXECUTION
[0058] In an embodiment, for each event that an event processing engine receives,
a process or thread that handles the event determines the rate plan that corresponds to
the event, identifies a rate plan functor that corresponds to the rate plan, and causes
the rate plan functor to be executed. If it is determined that multiple rate plans
correspond to the event, then multiple rate plan functors are identified and each rate
plan functor is executed. The process or thread that may perform these steps is
referred to herein as an “event processing thread,” which may be part of a single-
threaded process or a multi-threaded process. In an embodiment where functors are
immutable, it is completely thread-safe to evaluate a rate plan in a multi-threaded
manner.
[0059] Although a binary tree model that represents a rate plan refers to a root
functor, the result of parsing a DSL expression is a unique rate plan functor object.
Once this functor is generated, evaluating the rate plan is as simple as calling F(X)=Y,
where F is the rate plan functor, X is the event, and Y is the result (which may be a
list of applicable charges). The order of invocation of the functors that compose the
rate plan functor "I'" is built-in the rate plan functor implementation. Once the rate
plan functor is identified, the event processor “calls” the rate plan functor.
[0060] Because, in an embodiment, functors do not maintain state, there is no
danger of data corruption or an incorrect result when multiple threads (e.g., that are
involved in processing different events) execute a single instance of a particular
functor.
[0061] In a sense, the event processing thread “blindly” evaluates the “equation”
of the functor. The decision that determines which functor to execute next is
delegated to operator functors that are part of the rate plan functor. Thus, an external
system is not required to decide how to evaluate the rate plan. The functional logic is
built-in in the rate plan functor itself. In other words, the rate plan functor itself
contains the executable code whereas prior implementations of a rating engine rely on
an external system to read data that represents a rate plan and perform operations
based on that data. Thus, the functional rate plan model has a significant advantage

over prior implementations of a rating engine.

-14-



WO 2013/106099 PCT/US2012/057385

MEMORY REPRESENTATION OF A RATE PLAN FUNCTOR
[0062] FIG. 3 is a block diagram that depicts an example memory representation
300 of a rate plan functor that comprises multiple functor, according to an
embodiment of the invention. Representation 300 comprises numerous functors that
represent different types of operations in a rate plan functor that corresponds to an
example rate plan. Specifically, representation 300 includes an aggregator operator
302 (“+7) that is directly connected to four functors: three if-then operators 304A-C
(*“=>") and a rate functor 306 A (“linearRate”) whose input is 0.05. If-then operator
304A is connected to an equality operator 308 A (“= =") and a rate functor 306B
whose input is 0.00. If equality operator 308A is true, then, according to if-then
operator 304 A, rate functor 306B is evaluated. The operands of equality operator
308A are a singleton operator 310 (“DayofYear”) and an alias operator 312A
(“@Birthday”). Equality operator 308 A evaluates to true if the person associated with
an event that is being processed by this rate plan functor has a birthday on the same
day as the day on which the event occurred. Otherwise, equality operator 308 A
evaluates to false.
[0063] If there is an additional amount of time or usage to be rated (as would be
the case in this example if equality operator 308 A evaluates to false), then if-then
operator 304B is evaluated. If-then operator 304B is connected to a “within” operator
308B (“<:”) that has two operands: an alias operator 312B (*“@calledID”) and alias
operator 312C (“@friendsAndFamily”). This “branch” of the rate plan functor
indicates that if the destination of a call is within the caller’s set of friends and family,
then the “then” portion of if-then operator 304B is evaluated. That “then” portion is
rate functor 306C (“linearRate”), whose input is 0.01.
[0064] If there is an additional amount of time or usage to be rated (as would be
the case in this example if within operator 308B evaluates to false), then if-then
operator 304C is evaluated. If-then operator 304C is connected to a time range
functor 314 (*[17), whose input is 20:00:00 and 07:00:00, and rate functor 306D
(“linearRate”) whose input is 0.02. This “branch” of the rate plan functor indicates
that if at least a portion of service usage (e.g., a telephone call) is between the time of
8PM and 7AM, then that portion is rated by rate functor 306D, which rates that
portion at 2 cents per minute.
[0065] If there is an additional amount of time or usage to be rated (which might
be the case if the entire duration of usage was not evaluated by if-then operator 304C),

then rate functor 306 A is evaluated. Rate functor 306A (“linearRate™) takes 0.05 as

-15-



WO 2013/106099 PCT/US2012/057385

input. This “branch” of the rate plan functor is evaluated if (1) the date of the
telephone call is not the caller’s birthday, (2) the destination of the call is not on the
caller’s friends and family list, and (3) at least part of the call occurred after 7AM and

before 8PM.

HARDWARE OVERVIEW
[0066] According to one embodiment, the techniques described herein are
implemented by one or more special-purpose computing devices. The special-
purpose computing devices may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more application-specific integrated
circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently
programmed to perform the techniques, or may include one or more general purpose
hardware processors programmed to perform the techniques pursuant to program
instructions in firmware, memory, other storage, or a combination. Such special-
purpose computing devices may also combine custom hard-wired logic, ASICs, or
FPGAs with custom programming to accomplish the techniques. The special-purpose
computing devices may be desktop computer systems, portable computer systems,
handheld devices, networking devices or any other device that incorporates hard-
wired and/or program logic to implement the techniques.
[0067] For example, FIG. 4 is a block diagram that illustrates a computer system
400 upon which an embodiment of the invention may be implemented. Computer
system 400 includes a bus 402 or other communication mechanism for
communicating information, and a hardware processor 404 coupled with bus 402 for
processing information. Hardware processor 404 may be, for example, a general
purpose microprocessor.
[0068] Computer system 400 also includes a main memory 406, such as a random
access memory (RAM) or other dynamic storage device, coupled to bus 402 for
storing information and instructions to be executed by processor 404. Main memory
406 also may be used for storing temporary variables or other intermediate
information during execution of instructions to be executed by processor 404. Such
instructions, when stored in non-transitory storage media accessible to processor 404,
render computer system 400 into a special-purpose machine that is customized to
perform the operations specified in the instructions.
[0069] Computer system 400 further includes a read only memory (ROM) 408 or

other static storage device coupled to bus 402 for storing static information and

-16-



WO 2013/106099 PCT/US2012/057385

instructions for processor 404. A storage device 410, such as a magnetic disk or
optical disk, is provided and coupled to bus 402 for storing information and
instructions.

[0070] Computer system 400 may be coupled via bus 402 to a display 412, such
as a cathode ray tube (CRT), for displaying information to a computer user. An input
device 414, including alphanumeric and other keys, is coupled to bus 402 for
communicating information and command selections to processor 404. Another type
of user input device is cursor control 416, such as a mouse, a trackball, or cursor
direction keys for communicating direction information and command selections to
processor 404 and for controlling cursor movement on display 412. This input device
typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second
axis (e.g., y), that allows the device to specify positions in a plane.

[0071] Computer system 400 may implement the techniques described herein
using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or
program logic which in combination with the computer system causes or programs
computer system 400 to be a special-purpose machine. According to one
embodiment, the techniques herein are performed by computer system 400 in
response to processor 404 executing one or more sequences of one or more
instructions contained in main memory 406. Such instructions may be read into main
memory 406 from another storage medium, such as storage device 410. Execution of
the sequences of instructions contained in main memory 406 causes processor 404 to
perform the process steps described herein. In alternative embodiments, hard-wired
circuitry may be used in place of or in combination with software instructions.

[0072] The term “‘storage media” as used herein refers to any non-transitory
media that store data and/or instructions that cause a machine to operation in a
specific fashion. Such storage media may comprise non-volatile media and/or volatile
media. Non-volatile media includes, for example, optical or magnetic disks, such as
storage device 410. Volatile media includes dynamic memory, such as main memory
406. Common forms of storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage medium, any physical medium
with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM,
any other memory chip or cartridge.

[0073] Storage media is distinct from but may be used in conjunction with

transmission media. Transmission media participates in transferring information

-17-



WO 2013/106099 PCT/US2012/057385

between storage media. For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that comprise bus 402. Transmission
media can also take the form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.

[0074] Various forms of media may be involved in carrying one or more
sequences of one or more instructions to processor 404 for execution. For example,
the instructions may initially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the instructions into its dynamic
memory and send the instructions over a telephone line using a modem. A modem
local to computer system 400 can receive the data on the telephone line and use an
infra-red transmitter to convert the data to an infra-red signal. An infra-red detector
can receive the data carried in the infra-red signal and appropriate circuitry can place
the data on bus 402. Bus 402 carries the data to main memory 406, from which
processor 404 retrieves and executes the instructions. The instructions received by
main memory 406 may optionally be stored on storage device 410 either before or
after execution by processor 404.

[0075] Computer system 400 also includes a communication interface 418
coupled to bus 402. Communication interface 418 provides a two-way data
communication coupling to a network link 420 that is connected to a local network
422. For example, communication interface 418 may be an integrated services digital
network (ISDN) card, cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of telephone line. As another
example, communication interface 418 may be a local area network (LLAN) card to
provide a data communication connection to a compatible LAN. Wireless links may
also be implemented. In any such implementation, communication interface 418
sends and receives electrical, electromagnetic or optical signals that carry digital data
streams representing various types of information.

[0076] Network link 420 typically provides data communication through one or
more networks to other data devices. For example, network link 420 may provide a
connection through local network 422 to a host computer 424 or to data equipment
operated by an Internet Service Provider (ISP) 426. ISP 426 in turn provides data
communication services through the world wide packet data communication network
now commonly referred to as the “Internet” 428. Local network 422 and Internet 428
both use electrical, electromagnetic or optical signals that carry digital data streams.

The signals through the various networks and the signals on network link 420 and

18-



WO 2013/106099 PCT/US2012/057385

through communication interface 418, which carry the digital data to and from
computer system 400, are example forms of transmission media.

[0077] Computer system 400 can send messages and receive data, including
program code, through the network(s), network link 420 and communication interface
418. In the Internet example, a server 430 might transmit a requested code for an
application program through Internet 428, ISP 426, local network 422 and
communication interface 418.

[0078] The received code may be executed by processor 404 as it is received,
and/or stored in storage device 410, or other non-volatile storage for later execution.
[0079] In the foregoing specification, embodiments of the invention have been
described with reference to numerous specific details that may vary from
implementation to implementation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive sense. The sole and exclusive
indicator of the scope of the invention, and what is intended by the applicants to be
the scope of the invention, is the literal and equivalent scope of the set of claims that
issue from this application, in the specific form in which such claims issue, including

any subsequent correction.

-19-



WO 2013/106099 PCT/US2012/057385

CLAIMS
What is claimed is:
1. A computer-implemented method comprising:
receiving an event, associated with a customer, at an event processing system;
in response to receiving the event:
identifying a rate plan functional object that comprises a plurality of
functional objects;
executing the rate plan functional object, wherein executing the rate plan
function object comprises:
executing a first functional object of the plurality of functional
objects to generate a first result;
identifying, based on the first result, a second functional object of
the plurality of functional objects;
executing the second functional object to generate a second result;
and
based on the second result, determining an amount to charge the
customer; and
updating, based on the amount, an account associated with the customer;

wherein the method is performed by one or more computing devices.

2. The method of Claim 1, wherein less than all functional objects of the plurality of

functional objects are executed to determine the amount.

3. The method of Claim 1, wherein the steps of executing, identifying, and

determining are performed by a single process.

4. The method of Claim 1, wherein:
identifying a rate plan function object comprises identifying the rate plan
functional object from among a plurality of rate plan functional objects;
each rate plan functional object of the plurality of rate plan functional objects

corresponds to a different rate plan of a plurality of rate plans.
5. The method of Claim 1, wherein:

the plurality of rate plan functional objects comprises a first rate plan functional

object and a second rate plan functional object;

-20-



WO 2013/106099 PCT/US2012/057385

10.

11.

12.

the first rate plan functional object comprises a first plurality of functional objects
that includes a particular functional object;

the second rate plan functional object comprises a second plurality of functional
objects that includes the particular functional object;

an instance of the particular functional object is shared by the first rate plan

functional object and the second rate plan functional object.

The method of Claim 1, further comprising:
receiving a statement that conforms to a domain specific language (DSL); and

processing the statement to generate the rate plan functional object.

The method of Claim 6, further comprising:
receiving rule data that reflects a plurality of rules established by a user;

processing the rule data to generate the statement.

The method of Claim 6, wherein the statement is reflected in input from a user.

The method of Claim 1, wherein none of the functional objects in the rate plan

functional object store state information after the account is updated.

The method of Claim 1, further comprising:

storing, in association with a particular functional object in the rate plan functional
object, a result of executing the particular functional object based on
particular input to the particular functional object;

receiving a second event that is associated with a second customer; and

in response to receiving the second event, reading the result instead executing the

particular functional object to generate the result.

The method of Claim 1, wherein the event is a system event or a usage event that

comprises usage data that indicates usage by the customer.
One or more storage media storing instructions which, when executed by one or

more processors, cause performance of the method recited in any one of Claims 1-

11.

21-



WO 2013/106099 PCT/US2012/057385

13. An apparatus comprising:
one or more processors; and
on or more storage media storing instructions which, when executed by the one or
more processors, cause performance of the method recited in any one of

Claims 1-11.

29



PCT/US2012/057385

1/4

WO 2013/106099

} "Ol4

[j23
uwy1.0'0$

091
uiw/S0°0$

oSt
{SHNOH Mv3d ONI|INd
ONITIVO ¥3NOLSND FHL SI

0cT
¢ATINYA HO SANTHA
ONITIVO ¥3JWOLSND FHL SI

ort
SAVAHLHIE

SHINOLSND FHL AVAOL Sl

0Z1
uiw/z0'0$



WO 2013/106099 2/4 PCT/US2012/057385

210
RECEIVE AN EVENT THAT INDICATES USAGE BY A
CUSTOMER

|

220
IDENTIFY A RATING GRAPH THAT REPRESENTS A RATE
PLAN

|

230
EXECUTE A FIRST FUNCTOR INDICATED BY THE RATING
GRAPH TO GENERATE A FIRST RESULT

|

240
USE THE FIRST RESULT TO DETERMINE WHICH FUNCTOR
TO EXECUTE NEXT

|

250
EXECUTE THE SECOND FUNCTOR TO GENERATE A
SECOND RESULT

|

260
DETERMINE AN AMOUNT TO CHARGE THE CUSTOMER
BASED ON THE SECOND RESULT

FIG. 2



PCT/US2012/057385

3/4

WO 2013/106099

£ O

Aiwe4puyspusii©) alpa||[eo®)

acle

Repyuig®@

(10°0)e1ey.BBUI|

é
0l€

[00:00:20
'00:00:0¢]

(20°0)e1ey.E8UI|

(G0'0)s1eE8UI|



PCT/US2012/057385

4/4

WO 2013/106099

f f
,oov !
f [1%7% |
7 EOVAREIN 704 7 152
7 NOILVOINNWINOD d08§3004d 7 H__v TOHLINOD
7 | HOSHND
| |
| |
| f
| f
| |
ey , 0% EaR
7 sng 7 30IA3A 1NN
ds| | |
| f
| |
LANYALNI | |
| f
B 5 30% 907 | Y457
82 — | 301A30 AYOWIW 1 wasia
! JOVHOLS !
NELYED | Nod . |
Lo f



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings

