DEVICE FOR ARMING AND TIMING A ROCKET FOR AMMUNITION TO BE FIRED BY A LAUNCHER, PARTICULARLY AN AUTOMATIC LAUNCHER

DISPOSITIF D'ARMEMENT ET DE TEMPAGE D'UNE FUSEE POUR UNE MUNITION A TIRER PAR UN LANCEUR, EN PARTICULIER PAR UN LANCEUR AUTOMATIQUE

The device is arranged to provide for a safe and fast timing of an electric ignition rocket deprived of electric generator. The rocket is connected to external contacts on the munition (2), which goes through a timing apparatus (13) associated with the launcher (1). Said apparatus is provided with two contacts by means of which it transmits to the munition a composite signal containing the electric energy for the operation of the rocket, and the timing information. This information is selected by means of manual controls (15, 16) and the selection may be continuously modified during the firing. The composite signal includes a coding signal which opens an electronic lock in the rocket. If the transmitted code is incorrect, the ignition of the rocket is blocked. The device is applicable to all firing weapons which fire timed munitions, particularly to an automatic grenade launcher.

Le dispositif est agencé pour assurer de manière sûre et très rapide un tempage d'une fusée à allumage électrique, dépourvue d'un générateur électrique. La fusée est raccordée à deux contacts extérieurs sur la munition (2), laquelle traverse un appareil de tempage (13) associé au lanceur (1). Cet appareil est pourvu de deux contacts par lesquels il transmet à la munition un signal composite contenant l'énergie électrique pour le fonctionnement de la fusée, et l'information de tempage. Cette information est sélectionnée au moyen de commandes manuelles (15, 16) et la sélection peut être modifiée en continu pendant le tir. Le signal composite comprend un signal de codage qui ouvre un verrou électronique dans la fusée. Si le code transmis est incorrect, l'allumage de la fusée est bloqué. Le dispositif est applicable à toute arme à feu tirant des munitions tempées, notamment à un lance-grenades automatique.
UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les États parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Autriche</th>
<th>ES</th>
<th>Espagne</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australie</td>
<td>FI</td>
<td>Finlande</td>
</tr>
<tr>
<td>BB</td>
<td>Barbade</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
<td>GA</td>
<td>Géorgie</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>Royaume-Uni</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
<td>HU</td>
<td>Hongrie</td>
</tr>
<tr>
<td>BJ</td>
<td>Bénin</td>
<td>IT</td>
<td>Italie</td>
</tr>
<tr>
<td>BR</td>
<td>Brésil</td>
<td>JP</td>
<td>Japon</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>République populaire démocratique de Corée</td>
</tr>
<tr>
<td>CF</td>
<td>République Centrafricaine</td>
<td>KR</td>
<td>République de Corée</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CH</td>
<td>Suisse</td>
<td>LX</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Allemagne, République fédérale d'</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Danemark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>MR</td>
<td>Mauritanie</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>NL</td>
<td>Pays-Bas</td>
</tr>
<tr>
<td>NO</td>
<td>Norvège</td>
<td>RO</td>
<td>Roumanie</td>
</tr>
<tr>
<td>SD</td>
<td>Soudan</td>
<td>SE</td>
<td>Suède</td>
</tr>
<tr>
<td>SN</td>
<td>Sénégal</td>
<td>SJ</td>
<td>Union soviétique</td>
</tr>
<tr>
<td>TD</td>
<td>Tchad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>US</td>
<td>États-Unis d'Amérique</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISPOSITIF D'ARMEMENT ET DE TEMPAGE D'UNE FUSEE POUR UNE MUNITION A TIRER PAR UN LANCEUR, EN PARTICULIER PAR UN LANCEUR AUTOMATIQUE

La présente invention concerne un dispositif d'armement et de tempage d'une fusée pour une munition à tirer par un lanceur, en particulier pour le tempage pendant un tir en rafales par un lanceur automatique, et notamment par un lanceur automatique de grenades, comprenant :
- une fusée comportant une amorce à allumage électrique, des moyens d'allumage pourvus d'au moins un condensateur d'alimentation, et une unité électronique à temporisation pour commander un allumage de l'amorce dans un intervalle de temps sélectionné ou à la fin de cet intervalle,
- un appareil de tempage associé au lanceur ou à un dispositif d'alimentation en munition et raccordé à une source d'énergie électrique, ledit appareil de tempage ayant des moyens de sélection dudit intervalle de temps,
- et des moyens de transmission pour transmettre à la fusée avant le tir, par un circuit de transmission par voie électrique ou magnétique entre l'appareil de tempage et la fusée, un signal composite fournissant à la fusée de l'énergie pour charger le condensateur d'alimentation et au moins un signal pulsé représentant ledit intervalle de temps,

Il est connu de transmettre à une fusée à retard, au moyen d'une paire de contacts électriques superficiels sur la munition, un signal électrique composite lui fournissant, en même temps ou successivement, l'énergie électrique pour son fonctionnement et l'information de tempage sous une forme numérique. Le principe d'un tel dispositif est décrit notamment dans la demande de brevet français FR-A-2 591 327, prévoyant une liaison électrique entre un appareil extérieur de commande et une fusée chronométrique pour une munition de petit ou moyen calibre. Cette liaison transmet à la fusée un signal composite constitué par addition
d'un signal numérique de tempage et d'une composante continue fournissant l'énergie électrique à emmagasiner dans la fusée pour assurer son fonctionnement. Le brevet US N° 4 424 745 décrit lui aussi une fusée recevant par une seule ligne électrique un signal contenant à la fois l'énergie électrique pour l'allumage et l'information de tempage, mais cette information est transmise sous la forme d'un signal analogique, après la transmission de l'énergie, et elle est numérisée ensuite par une unité électronique appropriée dans la fusée elle-même.

Toutefois, ces dispositifs présentent certains risques, car les fusées de ce genre peuvent être armées ou temporisées de manière incorrecte par des influences électriques ou électromagnétiques perturbatrices.

La présente invention vise à éviter ces inconvénients, en fournissant un dispositif relativement simple et robuste, garantissant un tempage sûr et précis, d'une manière suffisamment rapide pour permettre, si le dispositif est utilisé avec une arme automatique, de modifier le tempage de façon continue pendant le tir.

Dans ce but, l'invention concerne un dispositif du type indiqué plus haut, caractérisé en ce que ledit signal composite comprend un signal de codage, et en ce que ladite unité électronique de la fusée comporte au moins un verrou électronique agencé pour empêcher l'allumage de l'amorce quand il est fermé, et des moyens de décodage contenant un code et agencés pour ouvrir le verrou électronique après réception du signal de codage si celui-ci correspond audit code.

Dans une première forme de réalisation, le circuit de transmission comporte deux paires de contacts électriques, disposées respectivement sur la munition et dans l'appareil de tempage.

Dans une autre forme de réalisation, le circuit de transmission comporte un circuit magnétique traversant une bobine dans l'appareil de tempage et une bobine dans la munition.

De préférence, le signal de codage est un signal numérique. Les moyens
de décodage peuvent comporter une mémoire pour un code numérique et des moyens électroniques de programmation pour enregistrer dans cette mémoire un code numérique de référence transmis par ledit circuit de transmission.

Dans une forme de réalisation avantageuse, ledit signal composite comporte successivement un signal de charge, fournissant l'énergie électrique à la fusée, le signal de codage et au moins un signal pulsé représentatif dudit intervalle de temps. Le signal composite peut comprendre deux signaux pulsés successifs représentatifs du début et de la fin dudit intervalle.

De préférence, l'unité électronique de la fusée comporte un interrupteur électronique commandant l'allumage de l'amorce et asservi au verrou électronique commandé par les moyens de décodage. Dans les cas où l'intervalle de temps est représenté par deux signaux pulsés, l'unité électronique comporte deux compteurs disposés en série et agencés pour recevoir lesdits signaux pulsés, et le verrou électronique peut être interposé entre les compteurs et l'interrupteur électronique. En outre, la fusée comporte habituellement un contacteur d'impact, et le verrou électronique peut être interposé entre le contacteur d'impact et l'interrupteur électronique.

L'appareil de tempage peut comporter deux organes manuels de commande déterminant les valeurs respectives des deux signaux pulsés.

L'invention et ses avantages apparaîtront mieux dans la description suivante de divers exemples de réalisation, en référence aux dessins annexés, dans lesquels :

la fig. 1 est une vue latérale d'une munition pour un lance-grenades automatique pourvu d'un dispositif d'armement et de tempage de fusée selon la présente invention,

la fig. 2 représente schématiquement une trajectoire de cette munition,
la fig. 3 représente schématiquement la partie du dispositif selon l'invention qui est associée au lanceur,

la fig. 4 est un schéma de principe des circuits électriques de la fusée,

la fig. 5 est un diagramme représentant des signaux électriques en fonction du temps, pendant le fonctionnement du circuit de la fig. 4,

la fig. 6 est un schéma représentant un organe de décodage, incorporé à un circuit représenté en fig. 4,

la fig. 7 est un schéma d'un verrou électronique incorporé à un circuit représenté en fig. 4, et

la fig. 8 représente schématiquement un moyen magnétique de transmission dans un dispositif selon l'invention.

En référence aux figures 1 et 2, un lance-grenades automatique 1 est agencé pour tirer, au coup par coup ou en rafale, des munitions 2 qui lui sont délivrées en série sous forme de bandes. Il s'agit d'une arme d'infanterie connue, qui peut se présenter sous différentes formes, soit portable, soit montée sur des véhicules. Une telle arme ne bénéficie pas d'un système de conduite de tir, si bien que la présente invention vise à fournir un dispositif d'armement de fusée assez simple pour pouvoir être commandé manuellement au cours du tir, par le tireur lui-même ou par une autre personne observant l'effet du feu.

La munition 2 comporte une douille métallique 3 à l'avant de laquelle apparaît une ogive 4 qui contient une fusée d'allumage 5. A son extrémité avant, l'ogive 4 est munie d'un contact métallique central 6 isolé par une bague isolante 7. La fusée 5 est reliée électriquement d'une part au contact central 6, qui peut aussi faire partie de la fusée elle-même, et d'autre part à la douille 3 servant de contact de masse. Dans une autre exécution, les contacts 3 et 6 pourraient être remplacés par deux bandes annulaires parallèles, isolées l'une par rapport à l'autre et entourant la partie centrale de la munition.
La trajectoire illustrée par la figure 2 est parcourue par le projectile en trois phases consécutives ayant des durées T_0, T_1 et T_2 jusqu’au point d’allumage souhaité 9. T_0 est un temps de sécurité de bouche qui est constant; l’allumage ne peut pas être donné pendant cette phase. T_1 est une durée variable qu’on sélectionne et qui s’ajoute à T_0 pour étendre la durée du blocage de l’allumage jusqu’à un point 10 au-delà duquel la fusée pourra être allumée par un contacteur d’impact au cours de la phase T_2. Cette phase T_2 est aussi une durée sélectionnée qui, ajoutée à T_0 et T_1, définit le point d’allumage 9 si un impact ne s’est pas produit auparavant. Ce principe de fonctionnement est bien connu et utilisé sur de nombreux types de munitions. T_0 étant défini de manière constante par la construction de la fusée, le tempage consiste à enregistrer dans la fusée les valeurs T_1 et T_2. Le dispositif décrit ci-dessous est conçu pour effectuer cette opération juste avant que la munition entre dans le lanceur, notamment pendant un tir en rafale.

En référence à la figure 3, le lanceur 1 est alimenté en munitions 2 sous la forme d’une bande ou chaîne de support 12 analogue à une bande de mitraillette. Cette bande traverse un appareil de tempage 13 alimenté par une source d’énergie électrique 14, par exemple un générateur autonome, des piles sèches ou une batterie d’accumulateur qui peut être celle d’un véhicule portant l’appareil. L’appareil 13 est agencé pour enregistrer électriquement les valeurs T_1 et T_2 dans les fusées 5 des munitions 2, ces valeurs pouvant varier d’une munition 2 à la suivante dans une même rafale. Ces valeurs sont représentées par un signal composite codé que l’appareil 13 transmet à chaque fusée 5 par un circuit électrique passant par deux organes de contact tels que des lamelles élastiques (non représentées) qui touchent les surfaces de contact 3 et 6 des munitions à leur passage à travers l’appareil 13. Celui-ci est représenté schématiquement sous une forme indépendante du lanceur 1, mais il pourrait évidemment être conçu sous une forme intégrée au lanceur. Sur l’appareil 13, l’opérateur dispose de deux organes manuels 15 et 16 actionnant deux sélecteurs électriques correspondants qui définissent les temps T_1 et T_2 dans une unité électronique numérique. Dans cet exemple, les organes 15, 16 sont des.
boutons rotatifs auxquels sont associées des graduations 17, 18 en temps ou en distance, ou simplement des symboles indiquant simplement quel sens de rotation correspond à une augmentation des valeurs. L'appareil 13 peut aussi comporter un affichage numérique de la valeur totale $T_0 + T_1 + T_2$ ou de la distance approximative correspondante.

En référence à la figure 4, l'entrée du réseau des circuits électriques de la fusée 5 ne comporte que deux bornes 21 et 22, raccordées respectivement aux contacts extérieurs 6 et 3 de la munition (fig. 1), de sorte que la borne 22 est à la masse. Le réseau comprend principalement une unité électronique 23 pourvue d'un interrupteur électronique 24 tel qu'un thyristor, commandant l'allumage électrique d'une amorce explosive 25 quand il la relie à un conducteur de masse 26. De manière classique, l'énergie électrique utilisée pour mettre à feu l'amorce 25 est la charge d'un condensateur C_2 délivrée sur un conducteur 27 à travers un interrupteur de sécurité de bouche 28 commandé de manière connue par un mécanisme à inertie qui maintient l'interrupteur 28 ouvert jusqu'au départ du coup, puis fermé définitivement après celui-ci. Le condensateur de mise à feu C_2 est branché entre la masse et une borne 29 reliée à la borne d'entrée 21 à travers deux diodes consécutives 30 et 31. Un second condensateur C_1, destiné à alimenter l'unité électronique 23, est branché entre la masse et une borne 32 située entre les diodes 30 et 31 et raccordée à une borne 33 d'alimentation de l'unité 23. Une autre borne d'entrée 34 de cette unité est reliée directement à la borne 21 par un conducteur 35, pour recevoir des signaux de polarités quelconques. Une résistance 36 est branchée entre le conducteur 35 et la masse pour assurer une décharge progressive des tensions résiduelles. D'autre part, la borne 29 est reliée, à travers une diode 37, à une autre borne d'entrée 38 de l'unité 23, pour permettre à celle-ci de décharger sur commande les condensateurs C_1 et C_2.

Pour commander l'interrupteur électronique 24 en fonction des données de tempage T_0, T_1 et T_2, l'unité électronique 23 comporte un bloc logique d'entrée 40 associé à un bloc de temporisation 41 qui assure la sécurité de bouche pendant la durée fixe T_0. Le bloc logique 40 est relié à un oscillateur interne 42 lui délivrant des impulsions d'horloge, au
conducteur de masse 26, aux bornes d'entrée 34 et 38, ainsi qu'au conducteur 27 par une borne d'entrée 43. Des sorties du bloc 40, 41 sont formées par trois conducteurs 44 à 46 qui sont raccordés, comme l'indique le schéma, à un premier compteur 47 pour le temps T_1, un second compteur 48 pour le temps T_2, et un bloc logique de sortie 49 agencé pour actionner l'interrupteur électronique 24 en délivrant une tension appropriée sur une sortie 50. Dans le bloc logique 49, un verrou électronique bloque la sortie 50 jusqu'à ce qu'il reçoive un signal de déverrouillage par le conducteur 46. Le bloc logique 49 comporte en outre une entrée 51 reliée au conducteur 27 à travers un contacteur 52 qui est un contacteur d'impact dans le cas présent, mais qui pourrait également être un détective de proximité.

Pour décrire le fonctionnement du dispositif selon l'invention, on se référera également à la fig. 5 représentant l'état de différents signaux électriques dans la fusée en fonction du temps T, le point $T = 0$ étant le départ du coup. La ligne supérieure représente le signal composite codé E délivré par l'appareil de tempage 13 sur le contact 6 de la munition, donc sur la borne 21 de la fusée. Le signal E comprend successivement un signal de charge 60 à tension continue, qui transmet l'énergie nécessaire à la fusée 5 en chargeant les condensateurs C1 et C2, un signal de codage 61 qui est un signal pulsé représentant un code, de préférence numérique, et deux signaux pulsés 62 et 63 qui représentent respectivement les valeurs T_1 et T_2 et qui peuvent être constitués chacun par un nombre d'impulsions défini par les positions des organes de commande 15 et 16 de l'appareil 13. De cette façon, la fusée reçoit à la fois son énergie et les informations de tempage dans un même signal, ce qui nécessite seulement deux contacts d'entrée sur la munition, et la fusée a l'avantage d'être dépourvue d'un générateur électrique.

Dans le bloc logique d'entrée 40, le code numérique du signal de codage 61 reçu sur la borne 34 est comparé à un code correspondant enregistré dans le bloc logique, d'une manière qui sera décrite plus loin. Si les deux codes ne concordent pas, le bloc logique 40 décharge immédiatement les condensateurs C1 et C2 en mettant à la terre la borne 38. Dans ce cas, la fusée ne contient plus l'énergie électrique nécessaire à la mise à feu.
de l'amorçage 25. Si les codes concordent, le bloc logique 40 change l'état d'un signal de verrouillage S_v sur le conducteur 46 le reliant au bloc logique de sortie 49, pour ouvrir le verrou électronique autorisant le fonctionnement de ce dernier. Le nombre d'impulsions du signal 62 (T_1) est enregistré dans le compteur 47, et celui du signal 63 (T_2) dans le compteur 48.

Le départ du coup dans le lanceur 1 actionne dans la fusée le mécanisme d'armement qui ferme l'interrupteur 28, ce qui détermine l'origine $T = 0$ de la temporisation. A cet instant, le signal K_s présent sur le conducteur 27 prend sa valeur haute qui est égale à la tension dans le condensateur de mise à feu C_2. Dans le bloc 40, 41, ceci initialise d'une part la temporisation T_0 de la sécurité de bouche, et d'autre part une temporisation classique dite de sécurité, qui déchargera les condensateurs par la borne 38 après un temps relativement long, par exemple une minute, si l'amorçage 25 n'a pas pu être mise à feu normalement.

Quand le temps T_0 est écoulé, un signal de commande de comptage U/D change d'état sur le conducteur 44 pour activer les compteurs 47, 48 et le bloc logique 49, tandis que le conducteur 45 transmet aux deux compteurs un signal de comptage f_C basé sur les impulsions d'horloge de l'oscillateur 42. Le second compteur 48 est bloqué jusqu'à ce que le premier compteur 47 ait compté le nombre d'impulsions correspondant au temps T_1. Il reçoit alors un signal S_1 qui le met en fonction et qui est également transmis au bloc logique de sortie 49. Dès cet instant, celui-ci pourra fermer l'interrupteur électronique 24 si la munition subit un impact fermant l'interrupteur 52 et délivrant un signal K_1 sur la borne 51. Le bloc logique 49 est agencé pour commander l'allumage par le signal K_1 pendant l'intervalle T_2, c'est-à-dire quand le signal S_1 est à l'état haut et que le signal S_2 provenant du second compteur 48 est à l'état bas. Comme le montre la fig. 5, la fermeture éventuelle de l'interrupteur 24 sous l'effet du signal K_1 se traduit par une intensité de courant I qui traverse l'amorçage 25 et produit son allumage 9.

S'il n'y a pas eu d'impact, le signal de sortie S_2 du compteur 48 passe à
l'état haut à la fin de l'intervalle de temps T_1. Le bloc logique 49 délivre alors sur le conducteur 50 une tension qui rend conducteur l'interrupteur électronique 24 et qui provoque l'allumage voulu 9 de l'amorce 25, donc l'explosion du projectile à l'instant précis défini par le tempage.

La fig. 6 représente schématiquement un organe électronique de décodage 70, constituant une partie du bloc logique d'entrée 40 apparaissant dans la fig. 4. Cet organe comporte un bloc logique de décodage 71 qui reçoit d'une part le signal E arrivant sur la borne 34 et contenant en particulier le signal de codage 61, et d'autre part le signal d'horloge f_0 délivré par l'oscillateur 42. Sur la base de ces signaux, le bloc 71 délivre alors un signal numérique composite 72 représentant un code, à une mémoire 73 reliée à une entrée 74 d'une porte ET 75. L'autre entrée 76 de cette porte est reliée à une mémoire morte (ROM) 77 dans laquelle est enregistré un code de référence auquel doit correspondre le code introduit dans la mémoire 73. Quand les codes correspondent, la porte ET 75 présente un signal de sortie 78 à l'état haut, qui est transmis à une entrée d'une seconde porte ET 79 dont l'autre entrée reçoit un signal 80 provenant d'un compteur 81 qui reçoit le signal d'horloge f_0. Ce compteur joue le rôle de temporisateur pour valider la comparaison seulement après l'introduction du code dans la mémoire 73. Quand les deux signaux 78 et 80 sont hauts, la porte 79 délivre à sa sortie un signal de verrouillage S_v qui est haut, afin d'ouvrir le verrou électronique comme on l'a décrit plus haut.

Au lieu d'être une simple mémoire morte, la mémoire 77 peut être d'un type programmable électriquement (EPROM), dans une variante représentée en traits interrompus dans la fig. 6. La mémoire 77 est alors commandée par un bloc de programmation 88 recevant les signaux d'horloge f_0 et les signaux arrivant sur la borne 34. Ainsi, la mémoire 77 peut être reprogrammée par un signal spécialement codé, délivré simplement sur les contacts d'entrée de la fusée. Ceci offre au fabricant ou à l'utilisateur de la fusée de larges possibilités de réserver certaines fusées à certains usages. On peut également conserver des fusées dépourvues d'un code valable, donc inutilisables directement, et y
enregistrer le code voulu peu de temps avant de les employer.

La fig. 7 montre comment un verrou électronique 82 peut être réalisé d'une manière très simple dans le bloc logique de sortie 49. Une porte ET 83 reçoit sur ses entrées le signal de verrouillage S_v et le signal S_1 provenant du premier compteur 47. Par conséquent, sa sortie 84 n'est à l'état haut qu'après le temps T_1, et seulement si le signal de codage 61 est correct. D'autre part, une porte OU 85 reçoit sur ses entrées le signal K_1 provenant du contacteur d'impact 52, et le signal S_2 provenant du second compteur 48. Ainsi, une sortie 86 de la porte OU 85 passe à l'état haut dès qu'il y a un impact ou dès la fin de l'intervalle de temps T_2. La sortie 50 du verrou électronique est formée par la sortie d'une porte ET 87 dont les entrées sont reliées respectivement aux sorties 84 et 86 des portes 83 et 85. Ainsi, la sortie 50 n'est à l'état haut, de façon à commander l'allumage de la fusée, que lorsque les signaux S_v, S_1 et S_2, ou S_v, S_1 et K_1 sont à l'état haut.

La fig. 8 illustre une forme de réalisation dans laquelle le signal composite E est transmis de l'appareil de tempage 13 à la munition 2 par voie magnétique, au lieu des contacts électriques mentionnés plus haut. Ce mode de transmission a l'avantage d'être peu sensible à la présence d'humidité ou de saletés sur la munition, grâce à la transmission sans contact. Un circuit magnétique 90 est formé par un noyau magnétique 90a dans l'appareil 13 et un noyau magnétique complémentaire 90b situé de préférence au sommet de l'ogive de la munition, présentant une surface arrondie 91 en regard de laquelle l'appareil 13 présente une surface arrondie concave correspondante 92. La munition peut être placée en regard de cette surface 92 en ménageant un faible entrefer 93 entre les deux noyaux magnétiques 90a et 90b. Chaque noyau a un pôle central 94a, 94b entouré d'une bobine 95a, 95b, et un pôle extérieur annulaire 96a, 96b, de sorte que la munition 2 n'a pas besoin d'être orientée par rotation autour de son axe longitudinal. La bobine 95b est raccordée directement aux deux bornes d'entrée 21 et 22 du circuit électrique de la fusée 5, tel qu'il apparaît à la fig. 4. Le signal composite transmis par voie magnétique peut être similaire au signal E représenté à la fig. 5, sauf que le signal de charge continu 60 est remplacé par un
signal alternatif.

L'exemple décrit ci-dessus montre que la présente invention a pour avantage primordial la possibilité de réaliser, sur une arme automatique tirant des munitions relativement simples et peu coûteuses, un tempage réglable en continu pendant le tir, grâce au fait qu'il est enregistré immédiatement avant le chargement de la munition dans le lanceur. De plus, l'information de tempage est transmise par des moyens extrêmement simples et elle est protégée par un code, ce qui évite des mises à feu intempestives dues à des erreurs de munition ou à des influences électromagnétiques extérieures. Le codage a aussi le grand avantage de permettre de réserver l'emploi de la munition à certaines armes, donc à certains utilisateurs, si bien qu'il n'y a plus de possibilités de détourner la munition vers des utilisateurs non autorisés.

Par ailleurs, il faut noter qu'un dispositif tel que décrit ci-dessus peut être livré séparément et installé facilement sur une arme existante, sans aucune modification de l'arme elle-même. La possibilité d'effectuer un tempage sur des armes d'infanterie peu coûteuses, telles qu'un lance-grenades automatique, ouvre de nouvelles possibilités d'emploi de ces armes, spécialement pour opérer un arrosage du terrain face à un adversaire très supérieur en nombre, ce qui est impossible avec les armes classiques dont la munition explose par impact. Toutefois, l'application de l'invention n'est pas limitée aux armes de ce genre, mais elle s'étend à toutes les armes susceptibles d'employer des munitions "tempées", qu'elles soient automatiques ou non.

Bien entendu, le dispositif décrit plus haut peut faire l'objet de nombreuses modifications ou variantes en fonction des applications particulières. Par exemple, le temps T_1 pourrait être constant et prédéfini par une valeur électrique fixe dans les circuits de la fusée 5, ou simplement être nul, c'est-à-dire que l'appareil de tempage 13 n'aurait qu'une seule manette de sélection pouvant, le cas échéant, être facilement actionnée par le tireur même au cours d'une rafale.
Revendications

1. Dispositif d'armement et de tempage d'une fusée pour une munition à tirer par un lanceur, en particulier pour le tempage pendant le tir en rafale par un lanceur automatique, et notamment par un lanceur automatique de grenades, comprenant :
 - une fusée (5) comportant une amorce à allumage électrique, des moyens d'allumage pourvus d'au moins un condensateur d'alimentation, et une unité électronique à temporisation pour commander un allumage de l'amorce dans un intervalle de temps sélectionné ou à la fin de cet intervalle,
 - un appareil de tempage (13) associé au lanceur ou à un dispositif d'alimentation en munition et raccordé à une source d'énergie électrique, ledit appareil de tempage ayant des moyens de sélection dudit intervalle de temps,
 - et des moyens de transmission pour transmettre à la fusée avant le tir, par un circuit de transmission par voie électrique ou magnétique entre l'appareil de tempage et la fusée, un signal composite fournissant à la fusée de l'énergie pour charger le condensateur d'alimentation et au moins un signal pulsé représentant ledit intervalle de temps (T_1, T_2), caractérisé en ce que ledit signal composite (E) comprend un signal de codage (61), et en ce que ladite unité électronique (23) de la fusée comporte au moins un verrou électronique (82) agencé pour empêcher l'allumage de l'amorce (25) quand il est fermé, et des moyens de décodage (40) contenant un code et agencés pour ouvrir le verrou électronique après réception du signal de codage si celui-ci correspond audit code.

2. Dispositif selon la revendication 1, caractérisé en ce que le circuit de transmission comporte deux paires de contacts électriques (3, 6) disposées respectivement sur la munition et dans l'appareil de tempage.

3. Dispositif selon la revendication 1, caractérisé en ce que le circuit de transmission comporte un circuit magnétique (90) traversant une bobine...
(95a) dans l'appareil de tempage et une bobine (95b) dans la munition.

4. Dispositif selon la revendication 1, caractérisé en ce que le signal de codage (61) est un signal numérique.

5. Dispositif selon la revendication 4, caractérisé en ce que les moyens de décodage comportent une mémoire (77) pour un code numérique et des moyens électroniques de programmation (88) pour enregistrer dans cette mémoire un code numérique de référence, transmis par ledit circuit de transmission.

6. Dispositif selon la revendication 1, caractérisé en ce que ledit signal composite (E) comporte successivement un signal de charge (60), fournissant l'énergie électrique à la fusée, le signal de codage (61) et au moins un signal pulsed (62, 63) représentatif dudit intervalle de temps.

7. Dispositif selon la revendication 6, caractérisé en ce que ledit signal composite (E) comprend deux signaux pulsed successifs (62, 63) représentatifs du début (T₁) et de la fin (T₁ + T₂) dudit intervalle.

8. Dispositif selon la revendication 1, caractérisé en ce que l'unité électronique (23) de la fusée comporte un interrupteur électronique (24) commandant l'allumage de l'amorce (25) et asservi au verrou électronique (82) commandé par les moyens de décodage.

9. Dispositif selon les revendications 7 et 8, caractérisé en ce que l'unité électronique (23) comporte deux compteurs (47, 48) disposés en série et agencés pour recevoir lesdits signaux pulsed, et en ce que le verrou électronique (82) est interposé entre les compteurs et l'interrupteur électronique (24).

10. Dispositif selon la revendication 8, caractérisé en ce que la fusée comporte un contacteur d'impact (52), et en ce que le verrou électronique (82) est interposé entre le contacteur d'impact et l'interrupteur électronique (24).
11. Dispositif selon la revendication 7, caractérisé en ce que l'appareil de tempage (13) comporte deux organes manuels de commande (15, 16) déterminant les valeurs respectives des deux signaux pulsés.
FIG. 5
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

| Int.Cl. | F 42 C 17/04 |

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl.</td>
<td>F 42 C</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation

to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR,A,2591327 (ETAT FRANCAIS) 12 June 1987, see claims 1,9; figures 1-7; abstract cited in the application</td>
<td>1,2,4,6</td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2545207 (ETAT FRANCAIS) 02 November 1984, see page 7, line 8- page 7, line 14; claims 1-3; figures 1,2; see page 5, line 1- page 5, line 11</td>
<td>1,3,4,8</td>
</tr>
<tr>
<td>A</td>
<td>EP,A,0252821 (THOMSON-BRANDT ARMEMENTS) 13 January 1988, see figures 1-5; abstract</td>
<td>1,2</td>
</tr>
<tr>
<td>A</td>
<td>US,A,4424745 (MAGORIAN ET AL) 10 January 1984, see column 3, line 1- column 3, line 1; figures 1-3 cited in the application</td>
<td>1,2,6</td>
</tr>
<tr>
<td>A</td>
<td>US,A,47 24766 (V.LABIDDE) 16 February 1988, see figures 7-10; abstract</td>
<td>1,3,4,5,8,9</td>
</tr>
<tr>
<td>A</td>
<td>EP,A,0082445 (BROWN, BOVERI & CIE) 29 June 1983</td>
<td>1,6</td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2461919 (THOMSON-BRANDT SA) 06 February 1981</td>
<td>1,2,4,6</td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2055899 (PIAZZA ET AL) 14 May 1971</td>
<td>1,2,4,6</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 - "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "Z" document member of the same patent family

IV. CERTIFICATION

<table>
<thead>
<tr>
<th>Date of the Actual Completion of the International Search</th>
<th>Date of Mailing of this International Search Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 November 1989 (10.11.89)</td>
<td>29 November 1989 (29.11.89)</td>
</tr>
</tbody>
</table>

International Searching Authority:

EUROPEAN PATENT OFFICE

Signature of Authorized Officer: [Signature]
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR, A, 2036058 (PIAZZA ET AL) 24 December 1970</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 0228766 (A/S KONGSBERG VAENEFABRIKK) 15 July 1987</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3500746 (AMBROSINI) 17 March 1970</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR, A, 2308082 (FRATELLI BORLETTI S.P.A.) 12 November 1976</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 1375691 (TELEFUNKEN PATENTVERWERTUNGSGESELLSCHAFT M.B.H.) 27 November 1974</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR-A-2591327</td>
<td>12-06-87</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>FR-A-2545207</td>
<td>02-11-84</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US-A-4424745</td>
<td>10-01-84</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US-A-4724766</td>
<td>16-02-88</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>FR-A-2461919</td>
<td>06-02-81</td>
<td>FR-A, B, 2431673</td>
<td>15-02-80</td>
</tr>
<tr>
<td>US-A-3500746</td>
<td>17-03-70</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>FR-A-2308082</td>
<td>12-11-76</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
Rapport de recherche internationale

Demande Internationale No PCT/CH 89/00170

I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous)

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

| CIB | F42C17/04 |

II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

<table>
<thead>
<tr>
<th>SYSTÈME DE CLASSIFICATION</th>
<th>SYMBOLES DE CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIB 5</td>
<td>F42C</td>
</tr>
</tbody>
</table>

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté.

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire, des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR, A, 2591327 (ÉTAT FRANÇAIS) 12 juin 1987 voir revendications 1, 9; figures 1-7; résumé (cité dans la demande)</td>
<td>1, 2, 4, 6</td>
</tr>
<tr>
<td>A</td>
<td>FR, A, 2545207 (ÉTAT FRANÇAIS) 02 novembre 1984 voir page 7, ligne 8 - page 7, ligne 14; revendications 1-3; figures 1, 2 voir page 5, ligne 1 - page 5, ligne 11</td>
<td>1, 3, 4, 8</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 0252821 (THOMSON-BRANDT ARMEMENTS) 13 janvier 1988 voir figures 1-5; résumé</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4424745 (MAGORIAN ET AL) 10 janvier 1984 voir colonne 3, ligne 1 - colonne 3, ligne 11; figures 1-3 (cité dans la demande)</td>
<td>1, 2, 6</td>
</tr>
</tbody>
</table>

Catégories spéciales de documents cités:

- **A** document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- **E** document antérieur, mais publié à la date de dépôt international ou après cette date
- **L** document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- **O** document se référant à une divulgation orale, à un usage, à une exposition ou pour tout autre moyen
- **P** document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée
- **T** document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- **X** document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive
- **Y** document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- **Z** document qui fait partie de la même famille de brevets

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée: 10 NOVEMBRE 1989

Date d'expédition du présent rapport de recherche internationale: 29.11.89

Administration chargée de la recherche internationale:

OFFICE EUROPÉEN DES BREVETS

Signature du fonctionnaire autorisé: THIBO F.
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US,A,4724766 (V.LABUDDDE) 16 février 1988 voir figures 7-10; résumé</td>
<td>1, 3, 4, 5, 8, 9</td>
</tr>
<tr>
<td>A</td>
<td>EP,A,0082445 (BROWN,BOVERI&CIE) 29 juin 1983</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2461919 (THOMSON-BRANDT SA) 06 février 1981</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2055899 (PIAZZA ET AL) 14 mai 1971</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2036058 (PIAZZA ET AL) 24 décembre 1970</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP,A,0228766 (A/S KONGSBERG VAEPENFABRIKK) 15 juillet 1987</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US,A,3500746 (AMBROSINI) 17 mars 1970</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2308082 (FRATELLI BORLETTI S.P.A.) 12 novembre 1976</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB,A,1375691 (TELEFUNKEN PATENTVERWERTUNGSGESELLSCHAFT M.B.H.) 27 novembre 1974</td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE RELATIF À LA DEMANDE INTERNATIONALE No. PCT/CH 89/00170

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.
Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 10/11/89.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR-A-2591327</td>
<td>12-06-87</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>FR-A-2545207</td>
<td>02-11-84</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>US-A-4424745</td>
<td>10-01-84</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>US-A-4724766</td>
<td>16-02-88</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>FR-A-2461919</td>
<td>06-02-81</td>
<td>FR-A, B 2431673</td>
<td>15-02-80</td>
</tr>
<tr>
<td>US-A-3500746</td>
<td>17-03-70</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>FR-A-2308082</td>
<td>12-11-76</td>
<td>Aucun</td>
<td></td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82.