Title: USE OF 1-[2-FLUORO-4-METHYL-5-(2,2,2-TRIFLUOROETHYLSULFINYL)PHENYL]-5-AMINO-3-TRIFLUOROMETHYL]-1H-1,2,4 THIA ZOLE FOR CONTROLLING NEMATODES IN NEMATODE-RESISTANT CROPS

Abstract: The present invention relates generally to the use of the compound of the formula (I)-(I-A), (I-B) or a mixture of compounds of the formula (I-A) and (I-B). The present invention relates generally to the use of the compound of the formula (I)-(I-A), (I-B) or a mixture of compounds of the formula (I-A) and (I-B) for controlling nematodes in nematode resistant crops and to methods particularly useful for controlling nematodes and/or increasing crop yield in those crops.
USE OF 1-[2-FLUORO-4-METHYL-5-(2,2,2-TRIFLUOROETHYLSULFINYL)PHENYL]-5-AMINO-3-TRIFLUOROMETHYL)-1 H-1,2,4 TFIA ZOLE FOR CONTROLLING NEMATODES IN NEMATODE-RESISTANT CROPS

Field of the Invention

The present invention relates generally to the use of the compound of the formula (I) for controlling nematodes in nematode resistant crops and to methods particularly useful for controlling nematodes and/or increasing crop yield in those crops.

Description of the Current Technology

The compound of the formula (I) is defined to be the compound of the formula (I)

![Compound Diagram](image)

The compound of the formula (I) has a chiral sulphoxide group so that it forms two enantiomers having R or S configuration at the sulphur:

![Enantiomer A Diagram](image)

(I-A), R enantiomer,

![Enantiomer B Diagram](image)

(I-B), S enantiomer

In the synthesis from achiral starting materials the two enantiomers are formed in equal amounts so that a racemate is present. The separation of the racemate known from the literature (cf. WO 1999/055668 and WO 2006/043635) into the individual enantiomers can be carried out by preparative HPLC on a chiral stationary phase. The separation may take place, for example, on a Daical Chiralpak AD-H 250 mm x 30 mm column using a mobile phase of n-heptane/ethanol/methanol 60:20:20 (v/v/V), a flow rate of 30 ml/min and UV detection at 220 nm. The two enantiomers can then be characterized by methods known from the literature, for example by X-ray structural analysis or by determining the optical
rotation. Further, the two enantiomers can be synthesized in enantiomerically pure form as well as in enantiomerically enriched form by the process as described in WO 2011/006646.

Accordingly, the present invention relates generally to the use of the racemate or the R enantiomer (compound (I-A)) or S enantiomer (compound (I-B)), or a mixture of R- and S-enantiomer of the compound of the formula (I) for controlling nematodes in nematode resistant crops and to methods particularly useful for controlling nematodes and/or increasing crop yield in those crops. If a mixture of R- and S-enantiomer is present, the ratio of the two enantiomers can range from 50.5:49.5 to 99.5:0.5 (R):(S)enantiomer. Accordingly, the present invention further relates to the use of a mixture ranging from 50.5:49.5 to 99.5:0.5 (R):(S)enantiomer for controlling nematodes in nematode resistant crops.

The compound of the formula (I) is already known (see WO 1999/055668, WO 2006/043635, WO 2011/006605, WO 2011/006603, WO 2011/006646, WO 2011/006646). Its insecticidal and acaricidal and nematicidal activity as well as its manufacturing process already have been described.

However, it has now been found, that the compound of the formula (I), as well as the compounds of formula (I-A), (I-B) or a mixture thereof are particularly useful in controlling nematodes in nematode resistant crops.

Nematodes are tiny, worm-like, multicellular animals adapted to living in water. The number of nematode species is estimated at half a million. An important part of the soil fauna, nematodes live in a maze of interconnected channels, called pores, that are formed by soil processes. They move in the films of water that cling to soil particles. Plant nematodes encompass plant parasitic nematodes and nematodes living in the soil. Plant-parasitic nematodes, a majority of which are root feeders, are found in association with most plants. Some are endoparasitic, living and feeding within the tissue of the roots, tubers, buds, seeds, etc. Others are ectoparasitic, feeding externally through plant walls. A single endoparasitic nematode can kill a plant or reduce its productivity. Endoparasitic root feeders include such economically important pests as the root-knot nematodes (Meloidogyne species), the reniform nematodes (Rotylenchulus species), the cyst nematodes (Heterodera species), and the root-lesion nematodes (Pratylenchus species). Direct feeding by nematodes can drastically decrease a plant’s uptake of nutrients and water. Nematodes have the greatest impact on crop productivity when they attack the roots of seedlings immediately after seed germination. Nematode feeding also creates open wounds that provide entry to a wide variety of plant-pathogenic fungi and bacteria. These microbial infections are often more economically damaging than the direct effects of nematode feeding.

Generally nematode resistance is characterized by host plant cell death at or nearby the feeding site of the parasitic nematode. Particular resistance genes and nematode interaction influence the timing and localization of the resistance response. Williamson et al. (Trends in Genetics, Vol. 22, No. 7, July 2006) describes the nature and mechanisms of plant-nematode interactions with respect to resistance in plants.
Nematode-resistant plants can be related to three main approaches being nematode targets, nematode-crop interface and plant response. Antifeedant or nematicidal proteins, disruption of essential nematode gene expression by RNA interference, disruption of sensory function by RNA interference, peptides or plantibodies or nematicidal metabolites are examples for nematode targets; disruption of nematode pathogenicity factors regarding migration and invasion or regarding feeding site induction and maintenance by RNA interference, peptides or plantibodies, stealth or repellant plants; or the conversion of host plants to non-host plants are examples for nematode-crop interface while plant resistance gene or hypersensitive response activation by nematode invasion; Induced cell death or other site incompatibility by feeding site specific promoters or conversion of crops to tolerance are examples for plant response.

Although nematode-resistant plants are described to be resistant towards specific nematodes, there is still some interactions between the nematode and the crop which, due to the different defense reactions of the plant, might lead to a partially impaired plant. One example of these defense reactions is the hypersensitive response. One consequence might result in impaired roots and loss of vigor of the affected plants.

Current nematode control focuses essentially on the prevention of nematode attack on the plant. Once a plant is parasitized it is virtually impossible to kill the nematode without also destroying the plant. Therefore, it would be advantageous to provide enhanced nematode control compounds and methods of treating nematode resistant plants to prevent or reduce nematode damage.

A large part of the damage to crop plants which is caused by pests occurs as early as when the seed is attacked during storage and after the seed is introduced into the soil, during and immediately after germination of the plants. This phase is particularly critical since the roots and shoots of the growing plant are particularly sensitive and even minor damage can lead to the death of the whole plant. Thus, it is desirable to develop methods for protecting the seed and the germinating plant which dispense with the additional application of crop protection agents after sowing or after the emergence of the plants. It is furthermore desirable to optimize the amount of active compound employed in such a way as to provide maximum protection for the seed and the germinating plant from attack by pests, but without damaging the plant itself by the active compound employed. In particular, methods for the treatment of seed should also take into consideration the intrinsic insecticidal properties of transgenic plants in order to achieve optimum protection of the seed and also the germinating plant with a minimum of crop protection agents being employed.
SUMMARY OF THE INVENTION

This invention now provides advantageous uses of the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) for controlling nematodes infesting nematode resistant crops and/or increasing yield.

Accordingly, the present invention also relates to the use of compositions comprising

the compound of the formula (I) for controlling nematodes infesting nematode resistant crops and/or increasing yield.

Accordingly, the present invention also relates to the use of compositions comprising

the compound of formula (I-A) for controlling nematodes infesting insect resistant crops.

Accordingly, the present invention also relates to the use of compositions comprising

the compound of formula (I-B) for controlling nematodes infesting insect resistant crops.

Accordingly, the present invention also relates to the use of compositions comprising a mixture of the compounds of formula (I-A) and (I-B) for controlling nematodes infesting insect resistant crops ranging from 50.5:49.5 to 99.5:0.5.

Accordingly, the present invention also relates to the use of compositions comprising

A) the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) and

B) at least further one agrochemically active compound and/or

C) at least one nematicidal biological control agent

for controlling nematodes infesting nematode resistant crops and/or increasing yield.

An exemplary method of the invention comprises applying a the compound of the formula (I), formula (I-A), (I-B) or of a mixture of the compounds of formula (I-A) and (I-B) of the invention to either soil or a plant (e.g., seeds or foliarly) to control nematode damage and/or increase crop yield.

The present invention is drawn to compositions and methods for regulating pest resistance or tolerance in plants or plant cells. By "resistance" is intended that the pest (e.g., insect or nematode) is killed upon ingestion or other contact with the plant or parts thereof. By "tolerance" is intended an impairment or reduction in the movement, feeding, reproduction, or other functions of the pest. Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang (1990) J.
In conjunction with the present invention "controlling" denotes a preventive or curative reduction of the insect or nematode infestation in comparison to the untreated crop, more preferably the infestation is essentially repelled, most preferably the infestation is totally suppressed.

By "pesticidally-effective amount" is intended an amount of the pesticide that is able to bring about death to at least one pest, or to noticeably reduce pest growth, feeding, or normal physiological development e.g. (retarding the growth or reproduction of nematodes, reducing a nematode population) and/or reducing damage to plants caused by nematodes. This amount will vary depending on such factors as, for example, the specific target pests to be controlled, the specific environment, location, plant, crop, or agricultural site to be treated, the environmental conditions, and the method, rate, concentration, stability, and quantity of application of the pesticidally-effective polypeptide composition, the specific nematicide used including the different fungi or bacteria species and the seriousness of the nematode infection or damage to the plant(s). The present invention also relates to a method for the protection of seed and germinating plants, or plant from attack by pests, by selectively applying pesticidal agents to the seed of a transgenic plant. Pesticidal agents include chemical or biological control agents compositions applied to the seed of the transgenic plant, wherein the agent is intended to provide protection of the plant or seed thereof against damage caused by one or more plant pests. Furthermore, the invention relates to seed which has been treated with a pesticidal agent as described herein. Application of a pesticidal agent to the seed of a transgenic plant results in an improved resistance or tolerance to one or more plant pests and/or improved yield or vigor compared to a transgenic plant cultivated from a seed not treated with a pesticidal agent as described herein, or a plant of the same species as the referenced transgenic plant that has been cultivated from a seed treated with a pesticidal agent as described herein but that lacks the transgene (either of which may be herein referred to as a "control" plant).

In some embodiments, treatment of the seed with these agents not only protects the seed itself, but also the resulting plants after emergence, from pests. In this manner, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In a preferred embodiment, a mixture of compounds (I-A) and (I-B) can range from 50.5:49.5 to 99.5:0.5 (I-A): (I-B). In a further preferred embodiment, a mixture of compounds (I-A) and (I-B) can range from 60:40 to 95:5 (I-A): (I-B). In an even further preferred embodiment, a mixture of compounds (I-A) and (I-B) can range from 75:25 to 90:10 (I-A): (I-B).
The methods according to the present invention have been found to provide a greater degree of plant
vigor and yield in nematode, insect and fungal infested environments than would be expected from
application of a biological or chemical control agent or the presence of an insect or nematode control
gene alone. At least some of the insect control agents within the scope of the present invention have
been shown to provide increased root mass even in the absence of insect pressure which increased root
mass leads to improved establishment of the beneficial bacteria within the rhizosphere which, in turn,
reduces overall losses in crop vigor and yields caused by either plant parasitic nematodes, insects or
fungi. Along with the physical combination of these components while treating plants and plant
material, in one preferred embodiment of this invention, the compositions of the present invention have
been formulated to provide a stable environment for living biological control agents such as spore-
forming, root-colonizing bacteria. Various additives may be added to each inventive composition
depending on the desired properties for a final formulation which has the necessary physical and
chemical stability to produce a commercially viable product.

Nematode resistant/tolerant plants

Nematode resistant/tolerant plants can be plants obtained by breeding and conventional propagation
methods which can be assisted or supplemented e.g. by one or more of the following methods use of
double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or
by bioengineering and genetic engineering methods, including transgenic plants and including the plant
varieties.

Plants of the plant cultivar/varieties or hybrids which are in each case commercially available or in use
can be treated according to the invention.

In one embodiment, plant species and plant cultivars/varieties, obtained by breeding, such as crossing or
protoplast fusion or marker-assistant molecular breeding, and parts thereof are treated. Nematode
resistance or tolerance can be introduced into plants by various technologies known to a person skilled
in the art. An additional possibility is to support breeding by the use of markers, RAPDs (Randomly
Amplified Polymorphic DNA), AFLPs (Amplified Fragment Length Polymorphisms), or SSRs (Simple
Sequence Repeats) that are associated with a fragment of DNA that co-segregates with the resistance
trait in crosses of plants comprising a nematode resistance or tolerance. The mapped endogenous
nematode resistant genes can be introgressed in other plants by e.g. crossing and back-crossing.

A further possibility is to introduce nematode resistance or tolerance by genetic engineering leading to
nematode resistant or tolerant transgenic plants and plant cultivars. If appropriate genetic engineering
can be used in combination with conventional breeding methods. Genetically modified plants (or
transgenic plants) are plants in which a foreign nucleic acid molecule or foreign nucleic acid molecules
has/have been integrated into the genome. A foreign nucleic acid molecule means a nucleic acid
molecule provided or assembled outside the plant and when introduced into the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new properties by e.g. expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant: Methods for downregulating genes in a plant are known to a person skilled in the art and comprise but are not limited to antisense technology, cosuppression technology or RNA interference - RNAi - technology.

The method of treatment according to the invention can be used in the treatment of transgenic plants or seeds. The transgenic plants or plant cultivars (i.e. those obtained by genetic engineering) which can be treated according to the invention can be any plant, preferably it is a cultivated plant, which can be cultivated for use as food, feed or industrial processes.

RNA interference (RNAi), also referred to as gene silencing, has been proposed as a method for controlling nematodes. Use of RNAi to target essential nematode genes has been proposed, for example, in PCT Publication WO 01/96584, WO 01/17654, US 2004/0098761, US 2005/0091713, US 2005/0188438, US 2006/0037101, US 2006/0080749, US 2007/0199100, and US 2007/0250947. A number of models have been proposed for the action of RNAi. U.S. Pat. No. 6,506,559 discloses that in nematodes, the length of the (ds) RNA corresponding to the target gene sequence may be at least 25, 50, 100, 200, 300, or 400 bases, and that even larger dsRNAs were effective at inducing RNAi in C. elegans. When a dsRNA is expressed in a plant, a nematode feeding on this plant will incorporate the dsRNA. If this dsRNA will block the expression of an essential nematode gene then the nematode is expected to suffer and die. A plant expressing such dsRNA interfering with a nematode gene is also understood in connection with the present invention to be a nematode resistant or tolerant plant.

Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).

Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).

The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) is particularly useful in controlling plant-parasitic nematodes in plants carrying one or more of the genes listed in Table 1. The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in combination with at least one agrochemically active compound is particularly useful in controlling plant-parasitic nematodes in plants carrying one or more of the genes listed in Table 1. The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in combination with nematicidal biological control agent is
particularly useful in controlling plant-parasitic nematodes in plants carrying one or more of the genes listed in Table 1.

The nucleotide and amino acid sequence information for each of these genes are represented by the SEQ ID NOs listed in columns 4 and 5 of Table 1 with respect to the United States Patent Application Serial No. listed in column 2 of Table 1. Specifically, compound (I) is particularly useful in controlling plant-parasitic nematodes in plants carrying one or more of the genes listed in Table 1.

Further, compound (I-A) is particularly useful in controlling plant-parasitic nematodes in plants carrying one or more of the genes listed in Table 1.

Further, Compound (I-B) is particularly useful in controlling plant-parasitic nematodes in plants carrying one or more of the genes listed in Table 1.

Further, a mixture of the compounds of formula (I-A) and (I-B) is particularly useful in controlling plant-parasitic nematodes in plants carrying one or more of the genes listed in Table 1.

<table>
<thead>
<tr>
<th>GENE NAME</th>
<th>U.S. APPLICATION SERIAL NO.</th>
<th>FILING DATE</th>
<th>NUCLEOTIDE SEQ ID NO</th>
<th>AMINO ACID SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axmi031</td>
<td>11/762,886</td>
<td>14 Jun 2007</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Axn2</td>
<td>12/638,591</td>
<td>15 Dec 2009</td>
<td>7, 10</td>
<td>8</td>
</tr>
<tr>
<td>Axn1</td>
<td>12/638,591</td>
<td>15 Dec 2009</td>
<td>3, 6</td>
<td>4, 5</td>
</tr>
<tr>
<td>Axn8</td>
<td>12/638,591</td>
<td>15 Dec 2009</td>
<td>12, 15</td>
<td>13, 14</td>
</tr>
<tr>
<td>Axn9</td>
<td>12/638,591</td>
<td>15 Dec 2009</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>Axmi196</td>
<td>20110030096</td>
<td>30 Jul 2010</td>
<td>7</td>
<td>34, 35</td>
</tr>
<tr>
<td>Axmi277</td>
<td>PCT/US2012/044751</td>
<td>29 Jun 2012</td>
<td>1</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

The compound of the formula (I) formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in combination with at least one agrochemically active compound is particularly useful in controlling plant-parasitic nematodes in plants carrying one or more of the genes listed in Table 1.

The compound of the formula (I), (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) or the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in combination with at least one agrochemically active compound or a nematicidal biological control agent is particularly useful in controlling plant-parasitic nematodes in plants carrying one or more of the genes as described in the following documents/patent applications: WO 2012135501A2, WO2012109430A2, WO2012/094529A2, WO2012018489A2.
WO2010084756A1, WO2012078949A2, WO2012001626A1, WO2011004153A1,
WO2010060162A1, WO201108227A2, WO2010027804A1, WO2011027793A1,
WO2011108227A2, WO2010027804A3, WO2011027793A1, WO2010023186A1,

And the following US patents/patent applications

11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964,
12/192,904, 11/396,808, 12/1/65253, 12/1/66,239, 12/1/66,124, 12/1/66,209, 11/762,886, 12/364,335,
11/763,947, 12/252,453, 12/209,354, 12/491,396 or 12/497,221 12/644,632, 12/646,004, 12/701,058,
US201010239324, US20110214208, US20110214209, US20111239334,
20 US2012815722, US2009012029,

The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A)
and (I-B) - or the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of
formula (I-A) and (I-B) - in combination with at least one biochemically active compound and/or a
nematicidal biological control agent is particularly useful in controlling plant-parasitic nematodes in
plants carrying one or more of the following genes Hsl †, Hs2, Mi-1, Mi-1.2, Hero A, Gpa2, Grol,
Grol-4, Rhgl, Rhg4, Mi-3, Mi-9, Crel, Crel, Cre2, Cre3, Cre4, Cre5,Cre6, Cre7, Cre8, CreR, Maa,
Mag, Hla, Ha2, Hs4, Hsa-l † † †, Me3, Rmcl. CLAVAT A3-like peptides (e.g. SYV46), cry5, cry6,
cry12, cry13, cry14, cry21, cry5B, cry6A, cry12A, cry14A, cry21A, Cry55, GmBAG6, GmAP2,
CLAVAT A3/ESR .

The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A)
and (I-B) - or the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of
formula (I-A) and (I-B) - in combination with at least one biochemically active compound and/or a
nematicidal biological control agent is particularly useful in controlling plant-parasitic nematodes in
plants containing natural nematode resistant/tolerant genes. Examples for such plant are varieties of
soybean have been bred to express a characteristic in the plant which reduces damage due to the
soybean cyst nematode (SCN). Soybean genetic resistance to SCN have been found in various resistant sources, for example, Plant Introduction (PI) lines PI88788, PI548402, PI437654, PI90763, PI209332, PI89882 and PI548316. These indictor lines are suitable for use as the source of resistance in breeding programs against SCN. Further example are varieties of soybean expressing characteristics associated with resistance to Southern Root Knot Nematode (SRKN, US2009064354) or are cotton plants comprising root knot nematode resistance as described in US201 1173713.

A preferred embodiment comprises the nematode-resistant plant as described above treated with the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B).

A preferred embodiment comprises the nematode-resistant plant as described above treated with the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in combination with at least one agrochemically active compound and/or nematicidal biological control agent.

In various embodiments, the compositions and methods of the present invention comprise treatment of a transgenic plant comprising one or more of the genes listed in Table 1 with the compound of the formula (I), formula (I-A), (I-B) or of a mixture of the compounds of formula (I-A) and (I-B) - or the compound of the formula (I) formula (I-A), (I-B) or of a mixture of the compounds of formula (I-A) and (I-B) in combination with at least one agrochemically active compound and/or nematicidal biological control agent.

In particular embodiments, the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or the compound of the formula (I) formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in combination with at least one agrochemically active compound and/or nematicidal biological control agent - is applied to the seed of the transgenic plant comprising one or more of the genes listed in Table 1, including biologically-active variants and fragments thereof.

An exemplary method of the invention comprises applying the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in combination with at least one agrochemically active compound and/or nematicidal biological control agent of the invention to propagation material (e.g. seeds) of plants to combat nematode damage and/or increase crop yield.

A further exemplary method of the invention comprises applying the compound of the formula (I) formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or the compound of the formula (I) formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in
combination with at least one agrochemically active compound and/or nematicidal biological control
agent to either soil or a plant (e.g. foliarly) to combat nematode damage and/or increase crop yield.

In various embodiments, the nematicidal active ingredient is the compound of the formula (I), formula
(I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) and the nematode resistant crop
comprises a transgenic plant comprising Axmi03 1 or Axn2 (Table 1).

In a preferred embodiment of the invention the transgenic plant is homozygous with respect to the
exogeneous gene of Table 1.

In another preferred embodiment of the invention the transgenic plant is hemizygous with respect to the
exogeneous gene of Table 1.

The nucleotide and amino acid SEQ ID NOs listed in Table 1 are exemplary sequences and do not limit
the scope of the invention. The invention encompasses plants and plant parts, including plant cells and
seed, comprising one or more of the genes listed in column 1 of Table 1. In some embodiments, the
invention encompasses plants and plant parts, including plant cells and seed, comprising one or more
nucleotide sequences listed in column 4 of Table 1. In some embodiments, the invention encompasses
plants and plant parts, including plant cells and seed, comprising one or more nucleotide sequences
encoding one or more of the polypeptides listed in column 5 of Table 1.

In yet another embodiment, the invention encompasses plants and plant parts, including plant cells and
seed, comprising one or more nucleotide sequences encoding a biologically-active variant or fragment
of the amino acid sequence(s) listed in column 5 of Table 1.

A fragment of a nucleotide sequence that encodes a biologically active portion of a pesticidal protein
of the invention will encode at least about 15, 25, 30, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350,
400, 450 contiguous amino acids, or up to the total number of amino acids present in a full-length
pesticidal protein listed in Table 2 herein. Such biologically active portions can be prepared by
recombinant techniques and evaluated for pesticidal activity. Methods for measuring pesticidal
activity are well known in the art. See, for example, Czapla and Lang (1990) J. Econ. Entomol.
Entomology 78:290-293; and U.S. Patent No. 5,743,477, all of which are herein incorporated by
reference in their entirety.

In some embodiments, the fragment is a proteolytic cleavage fragment. For example, the proteolytic
cleavage fragment may have an N-terminal or a C-terminal truncation of at least about 100 amino
acids, about 120, about 130, about 140, about 150, or about 160 amino acids relative to the amino acid
sequence listed in Table 2. In some embodiments, the fragments encompassed herein result from the
removal of the C-terminal crystallization domain, e.g., by proteolysis or by insertion of a stop codon in the coding sequence.

Preferred pesticidal proteins of the present invention are encoded by a nucleotide sequence sufficiently identical to the nucleotide sequence(s) listed in Table 2, or are pesticidal proteins that are sufficiently identical to the amino acid sequence(s) listed in Table 2. By "sufficiently identical" is intended an amino acid or nucleotide sequence that has at least about 60% or 65% sequence identity, about 70% or 75% sequence identity, about 80% or 85% sequence identity, about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity compared to a reference sequence using one of the alignment programs described herein using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like.

To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., percent identity = number of identical positions/total number of positions (e.g., overlapping positions) x 100). In one embodiment, the two sequences are the same length. In another embodiment, the percent identity is calculated across the entirety of the reference sequence (e.g., a sequence listed in Table 2). The percent identity between two sequences can be determined using techniques similar to those described below, with or without allowing gaps. In calculating percent identity, typically exact matches are counted. A gap, i.e. a position in an alignment where a residue is present in one sequence but not in the other, is regarded as a position with non-identical residues.

The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A nonlimiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the BLASTN and BLASTX programs of Altschul et al. (1990) J. Mol. Biol. 215:403. BLAST nucleotide searches can be performed with the BLASTN program, score = 100, wordlength = 12, to obtain nucleotide sequences homologous to pesticidal-like nucleic acid molecules of the invention. BLAST protein searches can be performed with the BLASTX program, score = 50, wordlength = 3, to obtain amino acid sequences homologous to pesticidal protein molecules of the invention. To obtain gapped alignments for comparison purposes. Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-Blast can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, and
PSI-Blast programs, the default parameters of the respective programs (e.g., BLASTX and BLASTN) can be used. Alignment may also be performed manually by inspection.

Another non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the ClustalW algorithm (Higgins et al. (1994) Nucleic Acids Res. 22:4673-4680). ClustalW compares sequences and aligns the entirety of the amino acid or DNA sequence, and thus can provide data about the sequence conservation of the entire amino acid sequence. The ClustalW algorithm is used in several commercially available DNA/amino acid analysis software packages, such as the ALIGNX module of the Vector NTI Program Suite (Invitrogen Corporation, Carlsbad, CA). After alignment of amino acid sequences with ClustalW, the percent amino acid identity can be assessed. A non-limiting example of a software program useful for analysis of ClustalW alignments is GENEDOC™. GENEDOC™ (Karl Nicholas) allows assessment of amino acid (or DNA) similarity and identity between multiple proteins. Another non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller (1988) CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0), which is part of the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys, Inc., 9685 Scranton Rd., San Diego, CA, USA). When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.

Unless otherwise stated, GAP Version 10, which uses the algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48(3):443-453, will be used to determine sequence identity or similarity using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity or % similarity for an amino acid sequence using GAP weight of 8 and length weight of 2, and the BLOSUM62 scoring program. Equivalent programs may also be used. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.

“Variants” of the amino acid sequences listed in Table 2 include those sequences that encode the pesticidal proteins disclosed herein but that differ conservatively because of the degeneracy of the genetic code as well as those that are sufficiently identical as discussed above. Naturally occurring allelic variants can be identified with the use of well-known molecular biology techniques, such as polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleotide sequences also include synthetically derived nucleotide sequences that have been generated, for example, by using site-directed mutagenesis but which still encode the pesticidal proteins disclosed in the present invention as discussed below.
The skilled artisan will further appreciate that changes can be introduced by mutation of the nucleotide sequences of the invention thereby leading to changes in the amino acid sequence of the encoded pesticidal proteins, without altering the biological activity of the proteins. Thus, variant isolated nucleic acid molecules can be created by introducing one or more nucleotide substitutions, additions, or deletions into the corresponding nucleotide sequence disclosed herein, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Such variant nucleotide sequences are also encompassed by the present invention.

For example, conservative amino acid substitutions may be made at one or more, predicted, nonessential amino acid residues. A "nonessential" amino acid residue is a residue that can be altered from the wild-type sequence of a pesticidal protein without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).

Amino acid substitutions may be made in nonconserved regions that retain function. In general, such substitutions would not be made for conserved amino acid residues, or for amino acid residues residing within a conserved motif, where such residues are essential for protein activity. Examples of residues that are conserved and that may be essential for protein activity include, for example, residues that are identical between all proteins contained in an alignment of similar or related toxins to the sequences of the invention (e.g., residues that are identical in an alignment of homologous proteins). Examples of residues that are conserved but that may allow conservative amino acid substitutions and still retain activity include, for example, residues that have only conservative substitutions between all proteins contained in an alignment of similar or related toxins to the sequences of the invention (e.g., residues that have only conservative substitutions between all proteins contained in the alignment homologous proteins). However, one of skill in the art would understand that functional variants may have minor conserved or nonconserved alterations in the conserved residues.

Alternatively, variant nucleotide sequences can be made by introducing mutations randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for ability to confer pesticidal activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined using standard assay techniques.

Variant nucleotide and amino acid sequences of the present invention also encompass sequences derived from mutagenic and recombinogenic procedures such as DNA shuffling. With such a procedure, one or more different pesticidal protein coding regions can be used to create a new pesticidal protein possessing the desired properties, in this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between a pesticidal gene of the invention and other known pesticidal genes to obtain a new gene coding for a protein with an improved property of interest, such as an increased insecticidal activity. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Patent Nos. 5,605,793 and 5,837,458.

Variants and fragments of the proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, that is, pesticidal activity. By "retains activity" is intended that the variant will have at least about 30%, at least about 50%, at least about 70%, or at least about 80% of the pesticidal activity of the native protein. Methods for measuring pesticidal activity are well known in the art. See, for example, C/apa and Lang (1990) J. Econ. Entomol. 83: 2480-2485; Andrews et al. (1988) Biochem. J. 252: 199-206; Marrone et al. (1985) J. of Economic Entomology 78:290-293; and U.S. Patent No. 5,743,477, all of which are herein incorporated by reference in their entirety.

In the present context, agrochemically active compounds are to be understood as meaning all substances
which are or may be customarily used for treating plants. Fungicides, bactericides, insecticides, acaricides, nematicides, molluscsides, safeners, plant growth regulators and plant nutrients as well as biological control agents may be mentioned as being preferred.

According to the invention all plants and plant parts can be treated. By plants is meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods. By plant parts is meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, tubers, corms and rhizomes are listed. Crops and vegetative and generative propagating material, for example cuttings, corms, rhizomes, tubers, runners and seeds also belong to plant parts.

The transgenic plants or plant cultivars (i.e. those obtained by genetic engineering) which can be treated according to the invention include also all plants which - besides nematode resistant / tolerant traits – contain other genetic modifications, received genetic material which imparted particularly other advantageous useful traits to these plants.

Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention may also result in superadditive ("synergistic") effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, higher harvest yields, bigger fruits, larger plant height, greener leaf color, higher quality higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.

At certain application rates, the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted microorganisms. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi. Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted microorganisms, the treated plants display a substantial degree of resistance to these microorganisms. In the present case, unwanted microorganisms are to be understood as meaning phytopathogenic fungi.
bacteria and viruses. Thus, the substances according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment. The period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.

Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).

Plants and plant cultivars which are also preferably to be treated according to the invention are - besides nematode resistance / tolerance – resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.

Plants and plant cultivars which may also be treated according to the invention are those plants which are - besides nematode resistance / tolerance – resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.

Plants and plant cultivars which may also be treated according to the invention, are those plants characterized - besides nematode resistance / tolerance – by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.

Plants and plant cultivars which may also be treated according to the invention, are those plants characterized besides nematode resistance / tolerance – by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can furthermore be
affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.

Examples of plants with the above-mentioned traits are non-exhaustively listed in Table A.

Table A:

<table>
<thead>
<tr>
<th>Event</th>
<th>Company</th>
<th>Description</th>
<th>Crop</th>
<th>Patent Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>ASR-368</td>
<td>Glyphosate tolerance derived by inserting a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from Agrobacterium tumefaciens, parent line B99061</td>
<td>Agrostis stolonifera Creeping Bentgrass</td>
<td>US 2006-162007</td>
</tr>
<tr>
<td>A-2</td>
<td>GM RZ13</td>
<td>Beet Necrotic Yellow Vein Virus (BNYV) resistance</td>
<td>Beta vulgaris (sugar beet)</td>
<td>WO20 10076 212</td>
</tr>
<tr>
<td>A-3</td>
<td>GTSB77</td>
<td>Glyphosate herbicide tolerant sugar beet produced by inserting a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from the CP4 strain of Agrobacterium tumefaciens.</td>
<td>Beta vulgaris (sugar beet)</td>
<td></td>
</tr>
<tr>
<td>A-4</td>
<td>H7-1</td>
<td>Glyphosate herbicide tolerant sugar beet produced by inserting a gene encoding the enzyme 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) from the CP4 strain of Agrobacterium tumefaciens</td>
<td>Beta vulgaris (sugar beet)</td>
<td>WO 2004-074492</td>
</tr>
<tr>
<td>A-5</td>
<td>T120-7</td>
<td>Introduction of the PPT-acetyltransferase (PAT) encoding gene from Streptomyces viridochromogenes, an</td>
<td>Beta vulgaris (sugar beet)</td>
<td></td>
</tr>
</tbody>
</table>

Non-exclusive list of transgenic plants and events for the design of experiments with the compound of formula (I) related to the invention (source: AGBIOS, P.O. Box 475, 106 St. John St. Merrickville, Ontario K0G1N0, CANADA) accessible under: http://www.agbios.com/dbase.php.
<table>
<thead>
<tr>
<th>A-6</th>
<th>T227-1</th>
<th>WYENS G; BARNES S; ROSQUIN I; SES EUROPE N.V./S.A</th>
<th>Glyphosate tolerance</th>
<th>Beta vulgaris (sugar beet)</th>
<th>US 2004-117870</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7</td>
<td>23-1 8-17, 23-1 98</td>
<td>Monsanto Company (formerly Calgene)</td>
<td>High laurate (12:0) and myristate (14:0) canola produced by inserting a thioesterase encoding gene from the California bay laurel (Umbellularia californica).</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-8</td>
<td>45A37, 46A40</td>
<td>Pioneer Hi-Bred International Inc.</td>
<td>High oleic acid and low linolenic acid canola produced through a combination of chemical mutagenesis to select for a fatty acid desaturase mutant with elevated oleic acid, and traditional back-crossing to introduce the low linolenic acid trait.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-9</td>
<td>46A12, 46A16</td>
<td>Pioneer Hi-Bred International Inc.</td>
<td>Combination of chemical mutagenesis, to achieve the high oleic acid trait, and traditional breeding with registered canola varieties.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-10</td>
<td>GT200</td>
<td>Monsanto Company</td>
<td>Glyphosate herbicide tolerant canola produced by inserting genes encoding the enzymes 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from the CP4 strain of Agrobacterium tumefaciens and glyphosate oxidase from Ochrobactrum anthropi.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-11</td>
<td>GT73, RT73</td>
<td>Monsanto Company</td>
<td>Glyphosate herbicide tolerant canola produced by inserting genes encoding the enzymes 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from the CP4 strain of Agrobacterium tumefaciens and glyphosate oxidase from Ochrobactrum anthropi.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-12</td>
<td>HCN1O</td>
<td>Aventis CropScience</td>
<td>Introduction of the PPT-acetyltransferase (PAT) encoding gene from Streptomyces viridochromogenes, an aerobic soil bacteria. PPT normally acts to inhibit glutamine synthetase, causing a fatal accumulation of ammonia. Acetylated PPT is inactive.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-13</td>
<td>HCN92</td>
<td>Bayer CropScience (Aventis (CropScience AgrEvo))</td>
<td>Introduction of the PPT-acetyltransferase (PAT) encoding gene from Streptomyces viridochromogenes, an aerobic soil bacteria. PPT normally acts to inhibit glutamine synthetase, causing a fatal accumulation of ammonia. Acetylated PPT is inactive.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-14</td>
<td>MSI, RF! =>PGSI</td>
<td>Aventis CropScience (formerly Plant Genetic Systems)</td>
<td>Male-sterility, fertility restoration, pollination control system displaying glufosinate herbicide tolerance. MS lines contained the barnase gene from Bacillus amyloliquefaciens, RF lines contained the baxstar gene from the same bacteria, and both lines contained the phosphinothricin N-acetyltransferase (PAT) encoding gene from Streptomyces hygroscopicus.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-15</td>
<td>MSI, RF2 =>PGS2</td>
<td>Aventis CropScience (formerly Plant Genetic Systems)</td>
<td>Male-sterility, fertility restoration, pollination control system displaying glufosinate herbicide tolerance. MS lines contained the barnase gene from Bacillus amyloliquefaciens, RF lines contained the baxstar gene from the same bacteria, and both lines contained the phosphinothricin N-acetyltransferase (PAT) encoding gene from Streptomyces hygroscopicus.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-16</td>
<td>MSSxFRF 3</td>
<td>Bayer CropScience (Aventis CropScience)</td>
<td>Male-sterility, fertility restoration, pollination control system displaying glufosinate herbicide</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-17</td>
<td>MS-B2</td>
<td>AVENTIS CROPSCIENCE N.V.</td>
<td>Male sterility</td>
<td>Brassica napus (Argentine Canola)</td>
<td>WO 01/31042</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>A-18</td>
<td>MS-BNI/RF-BN1</td>
<td>AVENTIS CROPSCIENCE N.V.</td>
<td>Male sterility/restoration</td>
<td>Brassica napus (Argentine Canola)</td>
<td>WO 01/41558</td>
</tr>
<tr>
<td>A-19</td>
<td>NS738, NS1471, NS1473</td>
<td>Pioneer Hi-Bred International Inc.</td>
<td>Selection of somaclonal variants with altered acetolactate synthase (ALS) enzymes, following chemical mutagenesis. Two lines (P1,P2) were initially selected with modifications at different unlinked loci. NS738 contains the P2 mutation only.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-20</td>
<td>OXY-235</td>
<td>Aventis CropScience (formerly Rhone Poulenc Inc.)</td>
<td>Tolerance to the herbicides bromoxynil and ioxynil by incorporation of the nitrilase gene from Klebsiella pneumoniae.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-21</td>
<td>PHY14, PHY35</td>
<td>Aventis CropScience (formerly Plant Genetic Systems)</td>
<td>Male sterility was via insertion of the barnase ribonuclease gene from Bacillus amyloliquefaciens; fertility restoration by insertion of the barstar RNase inhibitor; PPT resistance was via PPT-acetyltransferase (PAT) from Streptomyces hygroscopicus.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-22</td>
<td>PHY36</td>
<td>Aventis CropScience (formerly Plant Genetic Systems)</td>
<td>Male sterility was via insertion of the barnase ribonuclease gene from Bacillus amyloliquefaciens; fertility restoration by insertion of the barstar RNase inhibitor; PPT resistance was via PPT-acetyltransferase (PAT) from Streptomyces hygroscopicus.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-23</td>
<td>RT73</td>
<td>MONSANT</td>
<td>Glyphosate resistance</td>
<td>Brassica</td>
<td>WO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A-24</td>
<td>T45 (HCN28)</td>
<td>Bayer CropScience (Aventis CropScience (AgrEvo))</td>
<td>Introduction of the PPT-acetyltransferase (PAT) encoding gene from Streptomyces viridochromogenes, an aerobic soil bacteria. PPT normally acts to inhibit glutamine synthetase, causing a fatal accumulation of ammonia. Acetylated PPT is inactive.</td>
<td>Brassica napus (Argentine Canola)</td>
<td></td>
</tr>
<tr>
<td>A-25</td>
<td>HCR-1</td>
<td>Bayer CropScience (Aventis CropScience (AgrEvo))</td>
<td>Introduction of the glufosinate ammonium herbicide tolerance trait from transgenic B. napus line T45. This trait is mediated by the phosphinothricin acetyltransferase (PAT) encoding gene from S. viridochromogenes.</td>
<td>Brassica rapa (Polish Canola)</td>
<td></td>
</tr>
<tr>
<td>A-26</td>
<td>ZSR500/502</td>
<td>Monsanto Company</td>
<td>Introduction of a modified 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) and a gene from Achromobacter sp that degrades glyphosate by conversion to aminomethylphosphonic acid (AMPA) and glyoxylate by interspecific crossing with GT73.</td>
<td>Brassica rapa (Polish Canola)</td>
<td></td>
</tr>
<tr>
<td>A-27</td>
<td>EE-1</td>
<td>MAHARAS HTRA HYBRID SEEDS COMPANY LIMITED (MAHYCO)</td>
<td>Insect resistance (Cry 1Ac)</td>
<td>Brinjal (WO 2007/091277)</td>
<td></td>
</tr>
<tr>
<td>A-28</td>
<td>55-1/63-1</td>
<td>Cornell University</td>
<td>Papaya ringspot virus (PRSV) resistant papaya produced by inserting the coat protein (CP) encoding sequences from this plant potyvirus.</td>
<td>Carica papaya (Papa ya)</td>
<td></td>
</tr>
<tr>
<td>A-29</td>
<td>X17-2</td>
<td>University of Florida</td>
<td>Papaya ringspot virus (PRSV) resistant papaya produced by inserting the coat protein (CP) encoding sequences from PRSV isolate H1K with a thymidine</td>
<td>Carica papaya (Papa ya)</td>
<td></td>
</tr>
</tbody>
</table>
inserted after the initiation codon to yield a frameshift. Also contains nptII as a selectable marker.

<p>| A-30 | RM3-3, RM3-4, RM3-6 | Bejo Zaden BV | Male sterility was via insertion of the barnase ribonuclease gene from Bacillus amyloliquefaciens; PPT resistance was via the bar gene from S. hygroscopicus, which encodes the PAT enzyme. | Cichorium intybus (Chicory) |
| A-31 | A, B | Agriote inc. | Reduced accumulation of S-adenosylmethionine (SAM), and consequently reduced ethylene synthesis, by introduction of the gene encoding S-adenosylmethionine hydrolase. | Cucumis melo (Melon) | | |
| A-32 | CZW-3 | Asgrow (USA); Seminis Vegetable Inc. (Canada) | Cucumber mosaic virus (CMV), zucchini yellows mosaic (ZYMV) and watermelon mosaic virus (WMV) 2 resistant squash (Cucurbita pepo) produced by inserting the coat protein (CP) encoding sequences from each of these plant potyviruses into the host genome. | Cucurbita pepo (Squash) |
| A-33 | ZW20 | Upjohn (USA); Seminis Vegetable Inc. (Canada) | Zucchini yellows mosaic (ZYMV) and watermelon mosaic virus (WMV) 2 resistant squash (Cucurbita pepo) produced by inserting the coat protein (CP) encoding sequences from each of these plant potyviruses into the host genome. | Cucurbita pepo (Squash) |
| A-34 | 66 | Florigene Pty Ltd. | Delayed senescence and sulfonylurea herbicide tolerant carnations produced by inserting a truncated copy of the carnation aminocyclopropane cyclase (ACC) synthase encoding gene in order to suppress expression of the endogenous unmodified gene, which is required for normal ethylene biosynthesis. Tolerance to sulfonyl urea herbicides was | Dianthus caryophyllus (Carnation) |
| A-35 | 4, 11, 15, 16 | Florigene Pty Ltd. | Modified colour and sulfonyleurea herbicide tolerant carnations produced by inserting two anthocyanin biosynthetic genes whose expression results in a violet/mauve colouration. Tolerance to sulfonyleurea herbicides was via the introduction of a chlorsulfuron tolerant version of the acetolactate synthase (ALS) encoding gene from tobacco. | Dianthus caryophyllus (Carnation) |
| A-36 | 959A, 988A, 1226A, 1351A, 1363A, 1400A | Florigene Pty Ltd. | Introduction of two anthocyanin biosynthetic genes to result in a violet/mauve colouration; Introduction of a variant form of acetolactate synthase (ALS). | Dianthus caryophyllus (Carnation) |
| A-37 | 127 | BASF AGROCHEMICAL PRODUCTS B.V. | ALS/AHAS inhibitor-tolerance | Glycine max L. (Soybean) | WO2010080829 |
| A-38 | 3560.4.3.5 | PIONEER HI-BRED INTERNATIONAL, INC | Glyphosate/ALS inhibitor-tolerance | Glycine max L. (Soybean) | WO 2008002872, US2010184079 |
| A-39 | A2704-12, A2704-21 | Bayer CropScience (Aventis CropScience(AgrEvo)) | Glufosinate ammonium herbicide tolerant soybean produced by inserting a modified phosphinothricin acetyltransferase (PAT) encoding gene from the soil bacterium Streptomyces viridochromogenes | Glycine max L. (Soybean) | WO 2006/108674 |
| A-40 | A5547-127 | Bayer CropScience (Aventis CropScience(AgrEvo)) | Glufosinate ammonium herbicide tolerant soybean produced by inserting a modified phosphinothricin acetyltransferase (PAT) encoding gene from the soil bacterium Streptomyces viridochromogenes. | Glycine max L. (Soybean) |
| A-41 | A5547- | Bayer | Glufosinate tolerance | Glycine max | WO |
| A-42 | DP-305423-1 | Pioneer Hi-Bred International Inc. | High oleic acid / ALS inhibitor tolerance | Glycine max | L. (Soybean) | WO 2008/054747 |
| A-43 | DP356043 | Pioneer Hi-Bred International Inc. | Soybean event with two herbicide tolerance genes: glyphosate N-acetyltransferase, which detoxifies glyphosate, and a modified acetolactate synthase (A) | Glycine max | L. (Soybean) |
| A-44 | G94-1, G94-19, G168 | DuPont Canada Agricultural Products | High oleic acid soybean produced by inserting a second copy of the fatty acid desaturase (GmFad2-1) encoding gene from soybean, which resulted in "silencing" of the endogenous host gene. | Glycine max | L. (Soybean) |
| A-45 | GTS 40-3-2 | Monsanto Company | Glyphosate tolerant soybean variety produced by inserting a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from the soil bacterium Agrobacterium tumefaciens. | Glycine max | L. (Soybean) |
| A-46 | GU262 | Bayer CropScience (Aventis CropScience(AgrEvo)) | Glufosinate ammonium herbicide tolerant soybean produced by inserting a modified phosphinothricin acetyltransferase (PAT) encoding gene from the soil bacterium Streptomyces viridochromogenes. | Glycine max | L. (Soybean) |
| A-47 | MON87701 | Monsanto Company | insect resistance (Crylac) | Glycine max | L. (Soybean) | WO 2009064652 |
| A-48 | MON87705 | Monsanto Company | altered fatty acid levels (mid-oleic and low saturate) | Glycine max | L. (Soybean) | WO 2010037016 |
| A-49 | MON87754 | Monsanto Company | increased oil content | Glycine max | L. (Soybean) | WO 2010024976 |
| A-50 | MON87769 | Monsanto Company | stearidonic acid (SDA) comprising oil | Glycine max | L. (Soybean) | WO 2009102873 |
| A-51 | MON89788 | Monsanto Company | Glyphosate-tolerant soybean produced by inserting a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) | Glycine max | L. (Soybean) | WO2006130436 |</p>
<table>
<thead>
<tr>
<th>A-52</th>
<th>MON1 97 88</th>
<th>Monsanto Company</th>
<th>Glyphosate tolerance</th>
<th>Glycine max L. (Soybean)</th>
<th>WO2006130436</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-53</td>
<td>OT96-15</td>
<td>Agriculture & Agri-Food Canada</td>
<td>Low linolenic acid soybean produced through traditional cross-breeding to incorporate the novel trait from a naturally occurring fabi gene mutant that was selected for low linolenic acid.</td>
<td>Glycine max L. (Soybean)</td>
<td></td>
</tr>
<tr>
<td>A-54</td>
<td>W62, W98</td>
<td>Bayer CropScience (Aventis CropScience (AgriEvo))</td>
<td>Glufosinate ammonium herbicide tolerant soybean produced by inserting a modified phosphinothricin acetyltransferase (PAT) encoding gene from the soil bacterium Streptomyces hygroscopicus.</td>
<td>Glycine max L. (Soybean)</td>
<td></td>
</tr>
<tr>
<td>A-55</td>
<td>MON87708</td>
<td>MONSANTO TECHNOLOGY LLC</td>
<td>Dicamba herbicide tolerance, transformation vector PV-LGHT4355 1) DMO: full length transcript (Peanut Chlorotic Streak Virus) promoter > tobacco Etch Virus leader > ribulose 1,5-biphosphate carboxylase small subunit (Pisum sativum) chloroplast transit peptide > dicamba mono-oxygenase (Stenotrophomonas maltophilia) coding sequence > ribulose-1,5-bisphosphate carboxylase small subunit E9 (Pisum sativum) 3'-untranslated region. A CP4 epsps chimeric gene contained within a second T-DNA on the transformation vector used was segregated away.</td>
<td>Glycine max L. (Soybean)</td>
<td>WO 2011034704</td>
</tr>
<tr>
<td>A-56</td>
<td>EE-GM3 / FG72</td>
<td>BAYER BIOSCIENCES NV [BE]; MS TECHNOLOGIES LLC [US]</td>
<td>1) Ph4a748 ABBC: sequence including the promoter region of the histone H4 gene of Arabidopsis thaliana, containing an internal duplication>5tev: sequence including the leader sequence of the tobacco etch virus>TPotp Y: coding</td>
<td>Glycine max L. (Soybean)</td>
<td>WO 2011063411</td>
</tr>
</tbody>
</table>
sequence of an optimized transit peptide derivative (position 55 changed into Tyrosine), containing sequence of the RuBisCO small subunit genes of Zea mays (corn) and Helianthus annuus (sunflower) >hppdPf W336: the coding sequence of the 4-hydroxyphenylpyruvate dioxygenase of Pseudomonas fluorescens strain A32 modified by the replacement of the amino acid Glycine 336 with a Tryptophane >3 ‘nos: sequence including the 3’ untranslated region of the nopaline synthase gene from the T-DNA of pTiT37 of Agrobacterium tumefaciens. 2) Ph4a748: sequence including the promoter region of the histone H4 gene of Arabidopsis thaliana >intronl h3At: first intron of gene H3.111 variant of Arabidopsis thaliana >T Potp C : coding sequence of the optimized transit peptide, containing sequence of

| A-57 | 416 / pDAB4468-0416 | DOW AGRO SCIENCE LLC | A novel aad-12 transformation event for herbicide tolerance in soybean plants - referred to herein as pDAB4468-0416. The aad-12 gene (originally from Delftia acidovorans) encodes the aryloxyalkanoate dioxygenase (AAD-12) protein. The trait confers tolerance to 2,4-dichlorophenoxyacetic acid, for example, and to pyridyloxyacetate herbicides. The aad-12 gene, itself, for herbicide tolerance in plants |
| A-58 | 15985 | Monsanto Company | Insect resistant cotton derived by transformation of the DP50B parent variety, which contained event 531 (expressing Cry 1Ac protein), with purified plasmid DNA containing the cry2Ab gene |

Glycine max L. (Soybean) WO 201 1066384, WO 2007/03482

Gossypium hirsutum L. (Cotton)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>from B. thuringiensis subsp. kurstaki.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-59</td>
<td>1143-14A</td>
<td>SYNGENTA PARTICIPA TiONS AG</td>
<td>Insect resistance (CrylAb)</td>
</tr>
<tr>
<td>A-60</td>
<td>1143-51B</td>
<td>SYNGENTA PARTICIPA TIONS AG</td>
<td>Insect resistance (CrylAb)</td>
</tr>
<tr>
<td>A-61</td>
<td>19-51A</td>
<td>DuPont Canada Agricultural Products</td>
<td>Introduction of a variant form of acetolactate synthase (ALS)</td>
</tr>
<tr>
<td>A-62</td>
<td>281-24-236</td>
<td>DOW AgroScience s LLC</td>
<td>Insect-resistant cotton produced by inserting the cry1F gene from Bacillus thuringiensis var. aizawai. The PAT encoding gene from Streptomyces viridochromogenes was introduced as a selectable marker.</td>
</tr>
<tr>
<td>A-63</td>
<td>3006-210-23</td>
<td>DOW AgroScience s LLC</td>
<td>Insect-resistant cotton produced by inserting the cry1Ac gene from Bacillus thuringiensis subsp. kurstaki. The PAT encoding gene from Streptomyces viridochromogenes was introduced as a selectable marker.</td>
</tr>
<tr>
<td>A-64</td>
<td>31807/3 1808</td>
<td>Calgene Inc.</td>
<td>Insect-resistant and bromoxynil herbicide tolerant cotton produced by inserting the cry1Ac gene from Bacillus thuringiensis and a nitrilase encoding gene from Klebsiella pneumoniae.</td>
</tr>
<tr>
<td>A-66</td>
<td>CE43-67B</td>
<td>SYNGENTA PARTICIPA TIONS AG</td>
<td>Insect resistance (CrylAb)</td>
</tr>
<tr>
<td>A-67</td>
<td>CE44-69D</td>
<td>SYNGENTA PARTICIPA TIONS AG</td>
<td>Insect resistance (Cryl Ab)</td>
</tr>
<tr>
<td>A-68</td>
<td>CE46-</td>
<td>SYNGENTA PARTICIPA</td>
<td>Insect resistance (CrylAb)</td>
</tr>
<tr>
<td>A-69</td>
<td>Cot02</td>
<td>Syngenta Seeds, Inc.</td>
<td>Insect-resistant cotton produced by inserting the vip3A(a) gene from Bacillus thuringiensis AB88. The APH4 encoding gene from E. coli was introduced as a selectable marker.</td>
</tr>
<tr>
<td>A-70</td>
<td>COT202</td>
<td>Syngenta Seeds, Inc.</td>
<td>Insect resistance (VIP3A)</td>
</tr>
<tr>
<td>A-72</td>
<td>Cot67B</td>
<td>Syngenta Seeds, Inc.</td>
<td>Insect-resistant cotton produced by inserting a full-length crylAb gene from Bacillus thuringiensis. The APH4 encoding gene from E. coli was introduced as a selectable marker.</td>
</tr>
<tr>
<td>A-73</td>
<td>DAS-21023-5 x DAS-24236-5</td>
<td>DOW AgroScience s LLC</td>
<td>WideStrike™, a stacked insect-resistant cotton derived from conventional cross-breeding of parental lines 3006-210-23 (OECD identifier: DAS-2 I023-5) and 281-24-236 (OECD identifier: DAS-24236-5).</td>
</tr>
<tr>
<td>A-74</td>
<td>DAS-21023-5 x DAS-24236-5 x MON88913</td>
<td>DOW AgroScience s LLC and Pioneer Hi-Bred International Inc.</td>
<td>Stacked insect-resistant and glyphosate-tolerant cotton derived from conventional cross-breeding of WideStrike cotton (OECD identifier: DAS-2 I023-5 x DAS-24236-5) with MON88913, known as RoundupReady Flex (OECD identifier: MON-88913-8).</td>
</tr>
<tr>
<td>A-76</td>
<td>EE-GH3</td>
<td>BAYER BIOSCIENC</td>
<td>Glyphosate tolerance</td>
</tr>
<tr>
<td>Event</td>
<td>E.N.V.</td>
<td>Description</td>
<td>L. (Cotton)</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>A-77</td>
<td>EE-GH5</td>
<td>BAYER BIOSCIENCE N.V.</td>
<td>Insect resistance (Cry1Ab)</td>
</tr>
<tr>
<td>A-78</td>
<td>EE-GH6</td>
<td>BAYER BIOSCIENCE N.V.</td>
<td>Insect resistance (cry2Ae)</td>
</tr>
<tr>
<td>A-79</td>
<td>event 281-24-236</td>
<td>DOW AGROSCIENCES LLC</td>
<td>Insect resistance (CryIF)</td>
</tr>
<tr>
<td>A-80</td>
<td>Event-1</td>
<td>JKAgri Genetics Ltd (India)</td>
<td>Insect-resistant cotton produced by inserting the cry1Ac gene from Bacillus thuringiensis subsp. kurstaki HD-73 (B.t.k.).</td>
</tr>
<tr>
<td>A-81</td>
<td>event300 6-210-23</td>
<td>DOW AGROSCIENCES LLC</td>
<td>Insect resistance (Cry1Ac)</td>
</tr>
<tr>
<td>A-82</td>
<td>GBH614</td>
<td>Bayer CropScience (Aventis CropScience(AgrEvo))</td>
<td>Glyphosate herbicide tolerant cotton produced by inserting 2mepps gene into variety Coker312 by Agrobacterium under the control of Ph4a748At and TPotC</td>
</tr>
<tr>
<td>A-84</td>
<td>LL Cotto n25 x MON159 85</td>
<td>Bayer CropScience (Aventis CropScience(AgrEvo))</td>
<td>Stacked herbicide tolerant and insect resistant cotton combining tolerance to glufosinate ammonium herbicide from LL Cotton25 (OECD identifier: ACS-GH001-3) with resistance to insects from MON15985 (OECD identifier: MON-15985-7)</td>
</tr>
<tr>
<td>A-85</td>
<td>MON 15985</td>
<td>MONSANTO TECHNOLOGY LLC</td>
<td>Insect resistance (Cry1Ac/Cry2Ab)</td>
</tr>
<tr>
<td>A-86</td>
<td>MON 144 5/1698</td>
<td>Monsanto Company</td>
<td>Glyphosate herbicide tolerant cotton produced by inserting a naturally glyphosate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A-87</td>
<td>MON15985 x MON88913</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and glyphosate tolerant cotton produced by conventional cross-breeding of the parental lines MON88913 (OECD identifier: MON-88913-8) and 15985 (OECD identifier: MON-1 5985-7). Glyphosate tolerance is derived from MON88913 which contains two genes encoding the enzyme 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) from the CP4 strain of Agrobacterium tumefaciens. Insect resistance is derived MON15985 which was produced by transformation of the DP50B parent variety, which contained event 53 1 (expressing Cry IAc protein), with purified plasmid DNA containing the cry2Ab gene from B. thuringiensis subsp. kurstaki.</td>
</tr>
<tr>
<td>A-88</td>
<td>MON-15985-7 x MON-01445-2</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant cotton derived from conventional cross-breeding of the parental lines 15985 (OECD identifier: MON-1 5985-7) and MON1445 (OECD identifier: MON-0 1445-2).</td>
</tr>
<tr>
<td>A-89</td>
<td>MON531 /757/1076</td>
<td>Monsanto Company</td>
<td>Insect-resistant cotton produced by inserting the cry IAc gene from Bacillus thuringiensis subsp. kurstaki HD-73 (B.t.k.).</td>
</tr>
<tr>
<td>A-90</td>
<td>MON531 /757/1076</td>
<td>Monsanto Company</td>
<td>Insect-resistant cotton produced by inserting the cry IAc gene from Bacillus thuringiensis subsp. kurstaki HD-73 (B.t.k.).</td>
</tr>
</tbody>
</table>
| A-91 | MON88913 | Monsanto Company | Glyphosate herbicide tolerant cotton produced by inserting two genes encoding the enzyme 5-
<table>
<thead>
<tr>
<th>No.</th>
<th>Accession Number</th>
<th>Applicant</th>
<th>Description</th>
<th>Breed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-92</td>
<td>MON-0053 1-6 x MON-01445-2</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant cotton derived from conventional cross-breeding of the parental lines MON53 1 (OECD identifier: MON-0053 1-6) and MON1445 (OECD identifier: MON-0 1445-2).</td>
<td>Gossypium hirsutum L. (Cotton)</td>
<td>WO 2004/072235</td>
</tr>
<tr>
<td>A-93</td>
<td>PV-GHGT07 (1445)</td>
<td>MONSANTO TECHNOLOGY LLC</td>
<td>Glyphosate tolerance</td>
<td>Gossypium hirsutum L. (Cotton)</td>
<td>US 2004-148666</td>
</tr>
<tr>
<td>A-94</td>
<td>T304-40</td>
<td>BAYER BIOSCIENCE NV</td>
<td>Insect-resistance (Cry1Ab)</td>
<td>Gossypium hirsutum L. (Cotton)</td>
<td>WO2008/122</td>
</tr>
<tr>
<td>A-95</td>
<td>T342-142</td>
<td>SYNGENTA PARTICIPATIONS AG</td>
<td>Insect resistance (Cry1Ab)</td>
<td>Gossypium hirsutum L. (Cotton)</td>
<td>WO 2006/128568</td>
</tr>
<tr>
<td>A-96</td>
<td>LLcotton 25</td>
<td>BAYER BIOSCIENCE N.V.</td>
<td>Glufosinate resistance</td>
<td>Gossypium hirsutum L. (Cotton)</td>
<td>WO 2003013224</td>
</tr>
<tr>
<td>A-97</td>
<td>X81 359</td>
<td>BASF Inc.</td>
<td>Tolerance to imidazolinone herbicides by selection of a naturally occurring mutant.</td>
<td>Helianthus annuus (Sunflower)</td>
<td></td>
</tr>
<tr>
<td>A-98</td>
<td>RH44</td>
<td>BASF Inc.</td>
<td>Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate-lyase.</td>
<td>Lens culinaris (Lentil)</td>
<td></td>
</tr>
<tr>
<td>A-99</td>
<td>FP967</td>
<td>University of Saskatchewan, Crop Dev. Centre</td>
<td>A variant form of acetolactate synthase (ALS) was obtained from a chlorosulfuron tolerant line of A. thaliana and used to transform flax.</td>
<td>Linum usitatissimum L. (Flax, Linseed)</td>
<td></td>
</tr>
<tr>
<td>A-100</td>
<td>5345</td>
<td>Monsanto Company</td>
<td>Resistance to lepidopteran pests through the introduction of the cry1Ac gene from Bacillus thuringiensis subsp. Kurstaki.</td>
<td>Lycopersicon esculentum (Tomato)</td>
<td></td>
</tr>
<tr>
<td>A-101</td>
<td>8338</td>
<td>Monsanto Company</td>
<td>Introduction of a gene sequence encoding the enzyme 1-amino-cyclopropane-1-carboxylic</td>
<td>Lycopersicon esculentum (Tomato)</td>
<td></td>
</tr>
<tr>
<td>A-102</td>
<td>1345-4</td>
<td>DNA Plant Technology Corporation</td>
<td>Delayed ripening tomatoes produced by inserting an additional copy of a truncated gene encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, which resulted in downregulation of the endogenous ACC synthase and reduced ethylene accumulation.</td>
<td>Lycopersicon esculentum (Tomato)</td>
<td></td>
</tr>
<tr>
<td>A-103</td>
<td>35 1N</td>
<td>Agritope Inc.</td>
<td>Introduction of a gene sequence encoding the enzyme S-adenosylmethionine hydrolase that metabolizes the precursor of the fruit ripening hormone ethylene</td>
<td>Lycopersicon esculentum (Tomato)</td>
<td></td>
</tr>
<tr>
<td>A-104</td>
<td>B, Da. F</td>
<td>Zeneca Seeds</td>
<td>Delayed softening tomatoes produced by inserting a truncated version of the polygalacturonase (PG) encoding gene in the sense or anti-sense orientation in order to reduce expression of the endogenous PG gene, and thus reduce pectin degradation.</td>
<td>Lycopersicon esculentum (Tomato)</td>
<td></td>
</tr>
<tr>
<td>A-105</td>
<td>FLAVR SAVR</td>
<td>Calgene Inc.</td>
<td>Delayed softening tomatoes produced by inserting an additional copy of the polygalacturonase (PG) encoding gene in the anti-sense orientation in order to reduce expression of the endogenous PG gene and thus reduce pectin degradation.</td>
<td>Lycopersicon esculentum (Tomato)</td>
<td></td>
</tr>
<tr>
<td>A-106</td>
<td>J101, J163</td>
<td>Monsanto Company and Forage Genetics International</td>
<td>Glyphosate herbicide tolerant alfalfa (lucerne) produced by inserting a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from the CP4 strain of Agrobacterium tumefaciens.</td>
<td>Medicago sativa (Alfalfa)</td>
<td></td>
</tr>
<tr>
<td>A-107</td>
<td>C/F/93/08-02</td>
<td>Societe National d'Exploitation des Tabacs</td>
<td>Tolerance to the herbicides bromoxynil and ioxynil by incorporation of the nitrilase gene from Klebsiella</td>
<td>Nicotiana tabacum L. (Tobacco)</td>
<td></td>
</tr>
<tr>
<td>A-108</td>
<td>Vector 21-41</td>
<td>Reduced nicotine content through introduction of a second copy of the tobacco quinolinic acid phosphoribosyltransferase (QTPase) in the antisense orientation. The NPTII encoding gene from E. coli was introduced as a selectable marker to identify transformants.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-109</td>
<td>MONSANTO TECHNOLOGY LLC</td>
<td>Glyphosate tolerance, Oryza sativa (Rice)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-110</td>
<td>MONSANTO TECHNOLOGY LLC</td>
<td>Glyphosate tolerance, Oryza sativa (Rice)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-111</td>
<td>BASF Inc.</td>
<td>Tolerance to the imidazolinone herbicide, imazethapyr, induced by chemical mutagenesis of the acetolactate synthase (ALS) enzyme using ethyl methanesulfonate (EMS).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-112</td>
<td>CiAT-OS2</td>
<td>Glufosinate tolerance, Oryza sativa (Rice)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-113</td>
<td>BAYER BIOSCIENCE</td>
<td>Glufosinate tolerance, Oryza sativa (Rice)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-114</td>
<td>BASF Inc.</td>
<td>Tolerance to imidazolinone herbicides induced by chemical mutagenesis of the acetolactate synthase (ALS) enzyme using sodium azide.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-115</td>
<td>Aventis CropScience</td>
<td>Glufosinate ammonium herbicide tolerant rice produced by inserting a modified phosphinothricin acetyltransferase (PAT) encoding gene from the soil bacterium Streptomyces hygroscopicus.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-116</td>
<td>Bayer CropScience (Aventis CropScience(AgrEvo))</td>
<td>Glufosinate ammonium herbicide tolerant rice produced by inserting a modified phosphinothricin acetyltransferase (PAT)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nicotiana tabacum

L. (Tobacco)
<table>
<thead>
<tr>
<th>A-117</th>
<th>PE-7</th>
<th>MAHARAS HTRA HYBRID SEEDS COMPANY LIMITED</th>
<th>Insect resistance (Cry 1Ac)</th>
<th>Oryza sativa (Rice)</th>
<th>WO 2008/114282</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-118</td>
<td>PWC16</td>
<td>BASF Inc.</td>
<td>Tolerance to the imidazolinone herbicide, ima/ethapyr, induced by chemical mutagenesis of the acetolactate synthase (ALS) enzyme using ethyl methanesulfonate (EMS).</td>
<td>Oryza sativa (Rice)</td>
<td></td>
</tr>
<tr>
<td>A-119</td>
<td>TT51</td>
<td>UNIV ZHEJIANG</td>
<td>Insect resistance (Cry1Ab/Cry1Ac)</td>
<td>Oryza sativa (Rice)</td>
<td>CN1840655</td>
</tr>
<tr>
<td>A-120</td>
<td>Kefeng No. 6</td>
<td>CHINA NAT RICE RES INST</td>
<td>Transgenic rice Kefeng 6 is a transformation event containing two insect-resistant genes, cry 1Ac and SCK (modified CpTI gene) in China.</td>
<td>Oryza sativa (Rice)</td>
<td>CN 101824411</td>
</tr>
<tr>
<td>A-121</td>
<td>C5</td>
<td>United States Department of Agriculture - Agricultural Research Service</td>
<td>Plum pox virus (PPV) resistant plum tree produced through Agrobacterium-mediated transformation with a coat protein (CP) gene from the virus.</td>
<td>Prunus domestica (Plum)</td>
<td></td>
</tr>
<tr>
<td>A-122</td>
<td>ATBT04-6, ATBT04-27, ATBT04-30, ATBT04-31, ATBT04-36, SPBT02-5, SPBT02-7</td>
<td>Monsanto Company</td>
<td>Colorado potato beetle resistant potatoes produced by inserting the cry3A gene from Bacillus thuringiensis (subsp. Tenebrionis).</td>
<td>Solarium tuberosum L. (Potato)</td>
<td></td>
</tr>
<tr>
<td>A-123</td>
<td>BT6, BT10, BT12, BT16, BT17, BT18, BT23</td>
<td>Monsanto Company</td>
<td>Colorado potato beetle resistant potatoes produced by inserting the cry3A gene from Bacillus thuringiensis (subsp. Tenebrionis).</td>
<td>Solarium tuberosum L. (Potato)</td>
<td></td>
</tr>
<tr>
<td>A-124</td>
<td>RBMT15-101, SEMT15-02, SEMT15-15</td>
<td>Monsanto Company</td>
<td>Colorado potato beetle and potato virus Y (PVY) resistant potatoes produced by inserting the cry3A gene from Bacillus thuringiensis (subsp. Tenebrionis) and the coat protein encoding gene from PVY.</td>
<td>Solanum tuberosum L. (Potato)</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------</td>
<td>------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>A-125</td>
<td>RBMT21-129, RBMT21-350, RBMT22-082</td>
<td>Monsanto Company</td>
<td>Colorado potato beetle and potato leafroll virus (PLRV) resistant potatoes produced by inserting the cry3A gene from Bacillus thuringiensis (subsp. Tenebrionis) and the replicase encoding gene from PLRV.</td>
<td>Solarium tuberosum L. (Potato)</td>
<td></td>
</tr>
<tr>
<td>A-126</td>
<td>EH92-527</td>
<td>BASF Plant Science</td>
<td>Crop composition; Amflora; Unique EU identifier: BPS-25271-9</td>
<td>Solanum tuberosum L. (Potato)</td>
<td></td>
</tr>
<tr>
<td>A-127</td>
<td>AP205C</td>
<td>BASF Inc.</td>
<td>Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate-lyase.</td>
<td>Triticum aestivum (W heat)</td>
<td></td>
</tr>
<tr>
<td>A-128</td>
<td>AP602C</td>
<td>BASF Inc.</td>
<td>Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate-lyase.</td>
<td>Triticum aestivum (W heat)</td>
<td></td>
</tr>
<tr>
<td>A-129</td>
<td>BW255-2, BW238-3</td>
<td>BASF Inc.</td>
<td>Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate-lyase.</td>
<td>Triticum aestivum (W heat)</td>
<td></td>
</tr>
<tr>
<td>A-130</td>
<td>BW7</td>
<td>BASF Inc.</td>
<td>Tolerance to imidazolinone herbicides induced by chemical mutagenesis of the acetohydroxyacid synthase (AHAS) gene using sodium azide.</td>
<td>Triticum aestivum (W heat)</td>
<td></td>
</tr>
<tr>
<td>A-131</td>
<td>Event 1</td>
<td>SYNGENTA PARTICIPATIONS AG</td>
<td>Fusarium resistance (trichothecene 3-0-acetyltransferase)</td>
<td>Triticum aestivum (W heat)</td>
<td></td>
</tr>
<tr>
<td>A-132</td>
<td>JOPLIN1</td>
<td>SYNGENTA PARTICIPATION</td>
<td>Disease (fungal) resistance (trichothecene 3-0-</td>
<td>Triticum aestivum (W APS 2008064032</td>
<td></td>
</tr>
<tr>
<td>TiONS AG</td>
<td>acetyltransferase</td>
<td>heat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-133 MON71800</td>
<td>Glyphosate tolerant wheat variety produced by inserting a modified 5-enolpyruvylylshikimate-3-phosphate synthase (EPSPS) encoding gene from the soil bacterium Agrobacterium tumefaciens, strain CP4.</td>
<td>Triticum aestivum (W heat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-134 SWP965001</td>
<td>Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also known as acetylactate synthase (ALS) or acetylactate pyruvate-lyase.</td>
<td>Triticum aestivum (W heat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-135 Teal 11A</td>
<td>Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also known as acetylactate synthase (ALS) or acetylactate pyruvate-lyase.</td>
<td>Triticum aestivum (W heat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-136 176</td>
<td>Insect-resistant maize produced by inserting the cry1Ab gene from Bacillus thuringiensis subsp. kurstaki. The genetic modification affords resistance to attack by the European corn borer (ECB).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-138 5307 SYNGENTA PARTICIPATIONS AG</td>
<td>Insect (corn rootworm) resistance (FR8a)</td>
<td>Zea mays L. (Maize) WO 2010077816</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-139 375MR Pioneer Hi-Bred International Inc.</td>
<td>Selection of somaclonal variants by culture of embryos on imidazolinone containing media.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-140 676, 678, 680 Pioneer Hi-Bred International Inc.</td>
<td>Male-sterile and glufosinate ammonium herbicide tolerant maize produced by inserting genes encoding DNA adenine methylase and phosphinothricin acetyltransferase (PAT) from Escherichia coli and Streptomyces viridochromogenes.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-141</td>
<td>ACS-ZM003-2 x MON-008 10-6</td>
<td>Bayer CropScience (Aventis CropScience(AgrEvo))</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the parental lines T25 (OECD identifier: ACS-ZM003-2) and MON810 (OECD identifier:MON-008 10-6).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-142</td>
<td>B16</td>
<td>DEKALB GENETICS CORP</td>
<td>Glufosinate resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zea mays L. (Maize)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 2003-126634</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-143</td>
<td>B16 (DLL25)</td>
<td>Dekalb Genetics Coφoration</td>
<td>Glufosinate ammonium herbicide tolerant maize produced by inserting the gene encoding phosphinothricin acetyltransferase (PAT) from Streptomyces hygroscopicus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zea mays L. (Maize)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-144</td>
<td>BT11 (X4334C BR, X4734C BR)</td>
<td>Syngenta Seeds, Inc.</td>
<td>Insect-resistant and herbicide tolerant maize produced by inserting the crylAb gene from Bacillus thuringiensis subsp. kurstaki, and the phosphinothricin N-acetyltransferase (PAT) encoding gene from S. viridochromogenes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zea mays L. (Maize)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WO 201 0148268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-145</td>
<td>BT11 x GA21</td>
<td>Syngenta Seeds, Inc.</td>
<td>Stacked insect resistant and herbicide tolerant maize produced by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN-BT01 1-1) and GA21 (OECD unique identifier: MON-00021-9).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zea mays L. (Maize)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-146</td>
<td>BT11 x MIR62</td>
<td>Syngenta Seeds, Inc.</td>
<td>Stacked insect resistant and herbicide tolerant maize produced by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN-BT01 1-1) and MIR62 (OECD unique identifier: SYN-IR62-4). Resistance to the European Corn Borer and tolerance to the herbicide glufosinate ammonium (Liberty) is derived from BT11, which contains the crylAb gene from Bacillus thuringiensis subsp. kurstaki, and the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zea mays L. (Maize)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-147</td>
<td>Syngenta Seeds, Inc.</td>
<td>Bacillus thiiringiensis Cry1Ab delta-endotoxin protein and the genetic material necessary for its production (via elements of vector pZO1502) in Event BT11 corn (OECD Unique Identifier: SYN-BT01 1-1) x Bacillus thiiringiensis Vip3Aa20 insecticidal protein and the genetic material necessary for its production (via elements of vector pNOV1300) in Event MIR162 maize (OECD Unique Identifier: SYN-IR62-4) x modified Cry3A protein and the genetic material necessary for its production (via elements of vector pZM26) in Event MIR604 corn (OECD Unique Identifier: SYN-IR604-5).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A-148</td>
<td>BT11 x MIR604</td>
<td>Stacked insect resistant and herbicide tolerant maize produced by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN-BT01 1-1) and MIR604 (OECD unique identifier: SYN-IR605-5). Resistance to the European Corn Borer and tolerance to the herbicide glufosinate ammonium (Liberty) is derived from BT11, which contains the cry1Ab gene from Bacillus thiiringiensis subsp. kurstaki, and the phosphinothricin N-acetyltransferase (PAT) encoding gene from S. viridochromogenes. Corn</td>
<td>Zea mays L. (Maize)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rootworm-Resistance</td>
<td>Herbicide Tolerant</td>
<td>Insect-Resistant</td>
<td>Lepidopteran Insect-Resistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIR604</td>
<td>GA21</td>
<td>BT11 x MIR604 x GA21</td>
<td>CBH-351 x DAS-06275-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derived from</td>
<td>Produced by</td>
<td>Syngenta Seeds, Inc.</td>
<td>DOW AgroSciences LLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I604 which contains mcry3A gene from Bacillus thuringiensis.</td>
<td>Conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN-BT01 1-1), MIR604 (OECD unique identifier: SYN-IR605-5) and GA21 (OECD unique identifier: MON-00021-9). Resistance to the European Corn Borer and tolerance to the herbicide glufosinate ammonium (Liberty) is derived from BT11, which contains the cry1Ab gene from Bacillus thuringiensis subsp. kurstaki, and the phosphinothricin N-acetyltransferase (PAT) encoding gene from S. viridochromogenes. Corn rootworm-resistance is derived from MIR604 which contains the mcry3A gene from Bacillus thuringiensis. Tolerance to glyphosate herbicide is derived from GA21 which contains a modified EPSPS gene from maize.</td>
<td>Derived by inserting genes encoding Cry9C protein from Bacillus thuringiensis subsp tolworthi and phosphinothricin acetyltransferase (PAT) from Streptomyces hygroscopicus.</td>
<td>Developed by inserting the cry9F gene from Bacillus thuringiensis var aizawai and the phosphinothricin acetyltransferase (PAT) from S. hygroscopicus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistance to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>glufosinate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ammonium (Liberty)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. mays</td>
<td>Z. mays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. (Maize)</td>
<td>L. (Maize)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-152</td>
<td>DAS-59122-7</td>
<td>DOW AgroScience s LLC and Pioneer Hi-Bred International Inc.</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid produced by conventional cross breeding of parental lines DAS-59122-7 (OECD unique identifier: DAS-59122-7) and TC1507 (OECD unique identifier: DAS-0 1507-1) with NK603 (OECD unique identifier: MON-00603-6). Corn rootworm-resistance is derived from DAS-59122-7 which contains the cry34Abl and cry35Abl genes from Bacillus thuringiensis strain PS149B1. Lepidopteran resistance and tolerance to glufosinate ammonium herbicide is derived from TC1507. Tolerance to glyphosate herbicide is derived from NK603.</td>
<td>Zea mays L. (Maize)</td>
<td>US 2006-070139, US 2011030086</td>
</tr>
<tr>
<td>A-153</td>
<td>DAS-59122-7 x NK603</td>
<td>DOW AgroScience s LLC and Pioneer Hi-Bred International Inc.</td>
<td>Stacked insect resistant and herbicide tolerant maize produced by conventional cross breeding of parental lines DAS-59122-7 (OECD unique identifier: DAS-59122-7) with NK603 (OECD unique identifier: MON-00603-6). Corn rootworm-resistance is derived from DAS-59122-7 which contains the cry34Abl and cry35Abl genes from Bacillus thuringiensis strain PS149B1. The PAT encoding gene from Streptomyces viridochromogenes was introduced as a selectable marker.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-154</td>
<td>DAS-59122-7 x TC1507 x NK603</td>
<td>DOW AgroScience s LLC and Pioneer Hi-Bred International Inc.</td>
<td>Stacked insect resistant and herbicide tolerant maize produced by conventional cross breeding of parental lines DAS-59122-7 (OECD unique identifier: DAS-59122-7) and TC1507 (OECD unique identifier: DAS-0 1507-1) with NK603 (OECD unique identifier: MON-00603-6). Corn rootworm-resistance is derived from DAS-59122-7 which contains the cry34Abl and cry35Abl genes from Bacillus thuringiensis strain PS149B1. Lepidopteran resistance and tolerance to glufosinate ammonium herbicide is derived from TC1507. Tolerance to glyphosate herbicide is derived from NK603.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-155</td>
<td>DAS-Θ 1507-1</td>
<td>DOW AgroScience</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x MON-00603-6</td>
<td>Derived from conventional cross-breeding of the parental lines 1507 (OECD identifier: DAS-01507-1) and NK603 (OECD identifier: MON-00603-6).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-156</td>
<td>DBT418 Dekalb Genetics Corporation</td>
<td>Insect-resistant and glufosinate ammonium herbicide tolerant maize developed by inserting genes encoding Cry IAC protein from Bacillus thuringiensis subsp kurstaki and phosphinotricin acetyltransferase (PAT) from Streptomyces hygroscopicus.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-157</td>
<td>DK404S R BASF Inc.</td>
<td>Somaclonal variants with a modified acetyl-CoA carboxylase (ACCase) were selected by culture of embryos on sethoxydim enriched medium.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-158</td>
<td>DP-098140-6 PIONEER Hl-BRED INTERNATIONAL</td>
<td>Glyphosate tolerance / ALS inhibitor tolerance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-159</td>
<td>DP-098140-6 (Event 98140) Pioneer Hi-Bred International Inc.</td>
<td>Corn line 98140 was genetically engineered to express the GAT4621 (glyphosate acetyltransferase) and ZM-HRA (modified version of a maize acetolactate synthase) proteins. The GAT4621 protein, encoded by the gat4621 gene, confers tolerance to glyphosate-containing herbicides by acetylatig glyphosate and thereby rendering it non-phytotoxic. The ZM-HRA protein, encoded by the zm-lia gene, confers tolerance to the ALS-inhibiting class of herbicides.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-160</td>
<td>Event 3272 Syngenta Seeds, Inc.</td>
<td>Maize line expressing a heat stable alpha-amylase gene amy797E for use in the dry-grind ethanol process. The phosphomannose isomerase gene from E.coli was used as a selectable marker.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zea mays L. (Maize)
<p>| A-162 | EXP1910 IT | Syngenta Seeds, Inc. (formerly Zeneca Seeds) | Tolerance to the imidazolinone herbicide, imazethapyr, induced by chemical mutagenesis of the acetolactate synthase (ALS) enzyme using ethyl methanesulfonate (EMS). | Zea mays L. (Maize) |
| A-163 | F1117 | DEKALB GENETICS CORP | Glyphosate resistance | Zea mays L. (Maize) |
| A-164 | GA21 | Monsanto Company | Introduction, by particle bombardment, of a modified 5-enolpyruwi shikimate-3-phosphate synthase (EPSPS), an enzyme involved in the shikimate biochemical pathway for the production of the aromatic amino acids | Zea mays L. (Maize) |
| A-165 | GA21 x MON810 | Monsanto Company | Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the parental lines GA21 (OECD identifier: MON-00021 -9) and MON810 (OECD identifier: MON-008 10-6). | Zea mays L. (Maize) |
| A-166 | GAT-ZM1 | BAYER CROPSCIENCE N.V. | Glufosinate tolerance | Zea mays L. (Maize) |
| A-167 | GG25 | DEKALB GENETICS CORP | Glyphosate resistance | Zea mays L. (Maize) |
| A-168 | GJ11 | DEKALB GENETICS CORP | Glyphosate resistance | Zea mays L. (Maize) |
| A-169 | JT | Pioneer Hi-Bred International Inc. | Tolerance to the imidazolinone herbicide, imazethapyr, was obtained by in vitro selection of somaclonal variants. | Zea mays L. (Maize) |</p>
<table>
<thead>
<tr>
<th>A-170</th>
<th>LY038</th>
<th>Monsanto Company</th>
<th>Altered amino acid composition, specifically elevated levels of lysine, through the introduction of the cordapA gene, derived from Corynebacterium glutamicum, encoding the enzyme dihydrolipicolinate synthase (cDHDPS)</th>
<th>Zea mays L. (Maize)</th>
<th>US 7,157,281, US2010212051, US 2007028322</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-171</td>
<td>MIR162</td>
<td>SYNGENTA PARTICIPATIONS AG</td>
<td>Insect resistance</td>
<td>Zea mays L. (Maize)</td>
<td>WO 2007142840</td>
</tr>
<tr>
<td>A-172</td>
<td>MIR604</td>
<td>Syngenta Seeds, Inc.</td>
<td>Corn rootworm resistant maize produced by transformation with a modified cry3A gene. The phosphomannose isomerase gene from E.coli was used as a selectable marker; (Cry3a055)</td>
<td>Zea mays L. (Maize)</td>
<td>EP 1 737 290</td>
</tr>
<tr>
<td>A-174</td>
<td>MON80100</td>
<td>Monsanto Company</td>
<td>Insect-resistant maize produced by inserting the cry1Ab gene from Bacillus thuringiensis subsp. kurstaki. The genetic modification affords resistance to attack by the European corn borer (ECB).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-175</td>
<td>MON802</td>
<td>Monsanto Company</td>
<td>Insect-resistant and glyphosate herbicide tolerant maize produced by inserting the genes encoding the Cry1Ab protein from Bacillus thuringiensis and the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from A. tumefaciens strain CP4.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-177</td>
<td>MON810</td>
<td>Monsanto Company</td>
<td>Insect-resistant maize produced by inserting a truncated form of the crylAb gene from Bacillus thuringiensis subsp. kurstaki HD-1. The genetic modification affords resistance to attack by the European corn borer (ECB)</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-178</td>
<td>MON810 x MON88017</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and glyphosate tolerant maize derived from conventional cross-breeding of the parental lines MON810 (OECD identifier: MON-008 10-6) and MON88017 (OECD identifier:MON-88017-3). European corn borer (ECB) resistance is derived from a truncated form of the crylAb gene from Bacillus thuringiensis subsp. kurstaki HD-1 present in MON810. Corn rootworm resistance is derived from the cry3Bb1 gene from Bacillus thuringiensis subspecies kumamotoensis strain EG4691 present in MON88017. Glyphosate tolerance is derived from a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from Agrobacterium tumefaciens strain CP4 present in MON88017.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-179</td>
<td>MON832</td>
<td>Monsanto Company</td>
<td>Introduction, by particle bombardment, of glyphosate oxidase (GOX) and a modified 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS), an enzyme involved in the shikimate biochemical pathway for the</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-180</td>
<td>MON863</td>
<td>Monsanto Company</td>
<td>Corn root worm resistant maize produced by inserting the cry3Bb1 gene from Bacillus thuringiensis subspecies kumamotoensis.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>------------------</td>
<td>---</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>A-181</td>
<td>MON863 x MON810</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant corn hybrid derived from conventional cross-breeding of the parental lines MON863 (OECD identifier: MON-00863-5) and MON810 (OECD identifier: MON-00810-6)</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-182</td>
<td>MON863 x MON810 x NK603</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the stacked hybrid MON-00863-5 x MON-00810-6 and NK603 (OECD identifier: MON-00603-6).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-183</td>
<td>MON863 x NK603</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the parental lines MON863 (OECD identifier: MON-00863-5) and NK603 (OECD identifier: MON-00603-6).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-184</td>
<td>MON874 60</td>
<td>Monsanto Company</td>
<td>Drought tolerance; Water deficit tolerance</td>
<td>Zea mays L. (Maize) WO 2009111263</td>
<td></td>
</tr>
<tr>
<td>A-185</td>
<td>MON880 17</td>
<td>Monsanto Company</td>
<td>Corn rootworm-resistant maize produced by inserting the cry3Bb1 gene from Bacillus thuringiensis subspecies kumamotoensis strain EG4691. Glyphosate tolerance derived by inserting a 5-enoipyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from Agrobacterium tumefaciens strain CP4</td>
<td>Zea mays L. (Maize) WO2005059 103</td>
<td></td>
</tr>
<tr>
<td>A-186</td>
<td>MON890 34</td>
<td>Monsanto Company</td>
<td>Maize event expressing two different insecticidal proteins from Bacillus thuringiensis providing resistance to number of lepidopteran pests; insect resistance (Lepidoptera -Cry1A.105- Cry2Ab)</td>
<td>Zea mays L. (Maize) WO 2007140256</td>
<td></td>
</tr>
<tr>
<td>A-187</td>
<td>MON890 34 x MON880 17</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and glyphosate tolerant maize derived from conventional cross-breeding of the parental lines MON89034 (OECD identifier: MON-89034-3) and MON88017 (OECD identifier: MON-88017-3). Resistance to Lepidopteran insects is derived from two cry genes present in MON89043. Corn rootworm resistance is derived from a single cry gene and glyphosate tolerance is derived from the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from Agrobacterium tumefaciens present in MON88017.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-188</td>
<td>MON890 34 x NK603</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant maize produced by conventional cross breeding of parental lines MON89034 (OECD identifier: MON-89034-3) with NK603 (OECD unique identifier: MON-00603-6). Resistance to Lepidopteran insects is derived from two cry genes present in MON89043. Tolerance to glyphosate herbicide is derived from NK603.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-189</td>
<td>MON890 34 x TC1507 x MON880 17 x DAS-59122-7</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant maize produced by conventional cross breeding of parental lines: MON89034, TC1507, MON88017, and DAS-59122. Resistance to the above-ground and below-ground insect pests and tolerance to glyphosate and glufosinate-ammonium containing herbicides.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-190</td>
<td>MON-00603-6 x MON-00810-6</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the parental lines NK603 (OECD identifier: MON-00603-6) and MON810 (OECD</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-191</td>
<td>MON-00810-6 x LY038</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and enhanced lysine content maize derived from conventional cross-breeding of the parental lines MON810 (OECD identifier: MON-00810-6) and LY038 (OECD identifier: REN-00038-3).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-192</td>
<td>MON-00863-5 x MON-00603-6</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the parental lines MON863 (OECD identifier: MON-00863-5) and NK603 (OECD identifier: MON-00603-6).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-193</td>
<td>MON-00863-5 x MON-00810-6</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant corn hybrid derived from conventional cross-breeding of the parental lines MON863 (OECD identifier: MON-00863-5) and MON810 (OECD identifier: MON-00810-6)</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-194</td>
<td>MON-00863-5 x MON-00810-6 x MON-00603-6</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the stacked hybrid MON-00863-5 x MON-00810-6 and NK603 (OECD identifier: MON-00603-6).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-195</td>
<td>MON-00021-9 x MON-00810-6</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the parental lines GA21 (OECD identifier: MON-00021-9) and MON810 (OECD identifier: MON-00810-6).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-196</td>
<td>MS3</td>
<td>Bayer CropScience (Aventis CropScience (AgrEvo))</td>
<td>Male sterility caused by expression of the barnase ribonuclease gene from Bacillus amyloliquefaciens; PPT resistance was via PPT-acetyltransferase (PAT).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-197</td>
<td>MS6</td>
<td>Bayer CropScience (Aventis)</td>
<td>Male sterility caused by expression of the barnase ribonuclease gene from</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-198</td>
<td>NK603</td>
<td>Monsanto Company</td>
<td>Introduction, by particle bombardment, of a modified 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS), an enzyme involved in the shikimate biochemical pathway for the production of the aromatic amino acids.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-199</td>
<td>NK603 x MON810</td>
<td>Monsanto Company</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the parental lines NK603 (OECD identifier: MON-00603-6) and MON810 (OECD identifier: MON-00810-6).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-200</td>
<td>NK603 x T25</td>
<td>Monsanto Company</td>
<td>Stacked glufosinate ammonium and glyphosate herbicide tolerant maize hybrid derived from conventional cross-breeding of the parental lines NK603 (OECD identifier: MON-00603-6) and T25 (OECD identifier: ACS-ZM003-2).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-201</td>
<td>PV-ZMGT32 (NK603)</td>
<td>MONSANTO TECHNOLOGY LLC</td>
<td>Glyphosate tolerance</td>
<td>Zea mays L. (Maize)</td>
<td>US 2007-056056</td>
</tr>
<tr>
<td>A-202</td>
<td>PV-ZMGT32 (nk603)</td>
<td>MONSANTO TECHNOLOGY LLC</td>
<td>Glyphosate tolerance</td>
<td>Zea mays L. (Maize)</td>
<td>US 2007292854</td>
</tr>
<tr>
<td>A-203</td>
<td>PV-ZMIR13 (MON863)</td>
<td>MONSANTO TECHNOLOGY LLC</td>
<td>Insect resistance (Cry3Bb)</td>
<td>Zea mays L. (Maize)</td>
<td>US 2006-095986</td>
</tr>
<tr>
<td>A-204</td>
<td>SYN-BT011-1 x MON-00021-9</td>
<td>Syngenta Seeds, Inc.</td>
<td>Stacked insect resistant and herbicide tolerant maize produced by conventional cross breeding of parental lines BT1 1 (OECD unique identifier: SYN-BT011-1) and GA21 (OECD unique identifier: MON-00021-9).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-205</td>
<td>T14</td>
<td>Bayer CropScience (Aventis CropScience)</td>
<td>Glufosinate herbicide tolerant maize produced by inserting the phosphinothricin N-acetyltransferase (PAT)</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-206</td>
<td>T14, T25</td>
<td>Bayer CropScience (Aventis CropScience(AgrEvo))</td>
<td>Glufosinate herbicide tolerant maize produced by inserting the phosphinothricin N-acetyltransferase (PAT) encoding gene from the aerobic actinomycete Streptomyces viridochromogenes.</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>A-207</td>
<td>T25 x MON810</td>
<td>Bayer CropScience (Aventis CropScience(AgrEvo))</td>
<td>Stacked insect resistant and herbicide tolerant corn hybrid derived from conventional cross-breeding of the parental lines T25 (OECD identifier: ACS-ZM003-2) and MON810 (OECD identifier:MON-008 10-6).</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-208</td>
<td>TC1507</td>
<td>Mycogen (c/o Dow AgroScience s); Pioneer (c/o Dupont)</td>
<td>Insect-resistant and glufosinate ammonium herbicide tolerant maize produced by inserting the cry IF gene from Bacillus thuringiensis var. aizawai and the phosphinothricin N-acetyltransferase encoding gene from Streptomyces viridochromogenes; Insect resistance (Cry IF)</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
<tr>
<td>A-209</td>
<td>TCI 507 x DAS-59122-7</td>
<td>DOW AgroScience s LLC and Pioneer Hi-Bred International Inc.</td>
<td>Stacked insect resistant and herbicide tolerant maize produced by conventional cross breeding of parental lines TC1507 (OECD unique identifier: DAS-0 1507-1) with DAS-59122-7 (OECD unique identifier: DAS-59122-7). Resistance to lepidopteran insects is derived from TC1507 due the presence of the cry1F gene from Bacillus thuringiensis var. aizawai. Corn rootworm-resistance is derived from DAS-59 122-7 which contains the cry34Ab1 and cry35Ab1 genes from Bacillus thuringiensis strain PS i49B1. Tolerance to glufosinate ammonium herbicide is derived from TCI 507 from the phosphinothricin N-</td>
<td>Zea mays L. (Maize)</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table entries are simplified representations of the text provided. The full text contains detailed descriptions of each entry.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-211</td>
<td>E6611.32 .1.38 / DP-32138-1 / 32138</td>
<td>Pioneer Hi-Bred International Inc.</td>
<td>1) MS45: anther-specific 5126 (Zea mays) promoter > fertility restoration Ms45 (Zea mays) coding sequence > fertility restoration Ms45 (Zea mays) 3'-untranslated region 2) ZM-AA1: polygalacturonase 47 (Zea mays) promoter > brittle-1 (Zea mays) chloroplast transit peptide > alpha-amylase-1 (Zea mays) truncated coding sequence > >ln2-1 (Zea mays) 3'-untranslated region 3) DSRED2: 35S (Cauliflower Mosaic Virus) enhancer > lipid transfer protein-2 (Hordeum vulgare) promoter > red fluorescent protein (Dicosoma sp.) variant coding sequence > protein inhibitor II (Solanum tuberosum) 3'-untranslated region</td>
<td>zea mays L. (Maize)</td>
<td>WO 2009103049, MX 2010008977</td>
</tr>
<tr>
<td>A-212</td>
<td>DAS-40278-9</td>
<td>DOW AgroSciences LLC</td>
<td>RB7 MARv3>zmUbiquitin 1 promoter>aad > zmPER5 3'UTR>RB 7 MARv4. The aad-1 gene confers tolerance to 2,4- dichlorophenoxyacetic acid and aryloxyphenoxypropionate (commonly referred to as "fop" herbicides such as quizalofop) herbicides</td>
<td>Zea mays L. (Maize)</td>
<td>WO 2011022469</td>
</tr>
<tr>
<td>A-213</td>
<td>MIR604</td>
<td>Syngenta Participations AG</td>
<td>1) CRY3A: metallotionin-like gene (Zea mays) promoter > delta-endotoxin cry3a (Bacillus thuringiensis subsp. tenebrionis) coding sequence, modified to include a cathepsin-G protease recognition site and maize codon optimized > nopaline synthase (Agrobacterium tumefaciens) 3'-untranslated</td>
<td>Zea mays L. (Maize)</td>
<td>US 2005216970, US 2008167456, US 201111420</td>
</tr>
<tr>
<td>A-214</td>
<td>MON 87427</td>
<td>MONSANTO TECHNOLOGY LLC</td>
<td>The transgene insert and expression cassette of MON 87427 comprises the promoter and leader from the cauliflower mosaic virus (CaMV) 35 S containing a duplicated enhancer region (P-e35S); operably linked to a DNA molecule encoding an N-terminal chloroplast transit peptide from the shkG gene from Arabidopsis thaliana. EPSPS (Ts-CTP2); operably linked to a DNA molecule derived from the aroA gene from the Agrobacterium sp. strain CP4 and encoding the CP4 EPSPS protein; operably linked to a 3' UTR DNA molecule derived from the nopaiine synthase (T-NOS) gene from Agrobacterium tumefaciens.</td>
<td>Zea mays L. (Maize)</td>
<td>WO 2011062904</td>
</tr>
<tr>
<td>A-215</td>
<td>DP-0041 14-3</td>
<td>Pioneer Hi-Bred International Inc.</td>
<td>Cry1F, cry34Abl, cry35Abl, and pat: resistance to certain lepidopteran and coleopteran pests, as well as tolerance to phosphinothricin</td>
<td>Zea mays L. (Maize)</td>
<td>US 2011 1545 23</td>
</tr>
<tr>
<td>A-216</td>
<td>DP-032316-8</td>
<td>Pioneer Hi-Bred International Inc.</td>
<td>Cry1F, cry34Abl, cry35Abl, pat: resistance to certain lepidopteran and coleopteran pests, as well as tolerance to phosphinothricin</td>
<td>Zea mays L. (Maize)</td>
<td>US 20111545 24</td>
</tr>
<tr>
<td>A-217</td>
<td>DP-040416-8 a</td>
<td>Pioneer Hi-Bred International Inc.</td>
<td>Cry1F, cry34Abl, cry35Abl, pat: resistance to certain lepidopteran and coleopteran pests, as well as tolerance to phosphinothricin</td>
<td>Zea mays L. (Maize)</td>
<td>US 2010154525</td>
</tr>
<tr>
<td>A-218</td>
<td>DP-043A47-3</td>
<td>Pioneer Hi-Bred International</td>
<td>Cry1F, cry34Abl, cry35Abl, pat: resistance to certain lepidopteran and coleopteran pests, as well as tolerance to phosphinothricin</td>
<td>Zea mays L. (Maize)</td>
<td>US201 10154 526</td>
</tr>
<tr>
<td>Code</td>
<td>Accession or Name</td>
<td>Inc.</td>
<td>Characteristic</td>
<td>Specificity</td>
<td>Publication Date</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>A219</td>
<td>33391</td>
<td>Monsanto Technology LLC</td>
<td>Herbicide tolerance</td>
<td>Triticum aestivinm (wheat)</td>
<td>WO2002/027 004</td>
</tr>
<tr>
<td>A220</td>
<td>531/ PV-GHBK04 / MON-00531-6</td>
<td>Monsanto Technology LLC</td>
<td>Cry 1Ac, lepidopteran resistance</td>
<td>Gossypium hirsutum L. (Cotton)</td>
<td>WO2002/040 677</td>
</tr>
<tr>
<td>A221</td>
<td>BLR1</td>
<td>SYNGENTA PARTICIPA TiONS AG</td>
<td>Improved fertility restoration for Ogura cytoplasmic male sterile brassica</td>
<td>Brassica napus (oilseed rape)</td>
<td>WO2005/074 671</td>
</tr>
<tr>
<td>A222</td>
<td>FG72</td>
<td>Bayer Bioscience N.V. / MS Technologies</td>
<td>Glyphosate and isoxaflutole tolerance</td>
<td>Glycine max L (soybean)</td>
<td>WO2011/063 413</td>
</tr>
<tr>
<td>A-223</td>
<td>MON883 02</td>
<td>Monsanto Technology LLC</td>
<td>Glyphosate tolerance</td>
<td>Brassica napus</td>
<td>WO2011/153 186</td>
</tr>
<tr>
<td>A-224</td>
<td>1606 / DAS-21606-3</td>
<td>Dow AgroScience LLC</td>
<td>aad-12; tolerance to phenoxy auxin herbicides</td>
<td>Glycine max L (soybean)</td>
<td>WO2012/033 794</td>
</tr>
<tr>
<td>A-225</td>
<td>MON877 12</td>
<td>Monsanto Technology LLC</td>
<td>BBX32 gene, yield</td>
<td>Glycine max L (soybean)</td>
<td>WO2012/051 199</td>
</tr>
<tr>
<td>A-226</td>
<td>pDAB82 64.44.06.1 / DAS-44406-6</td>
<td>Dow AgroScience LLC</td>
<td>Multiple traits conferring resistance to glyphosate, aryloxyalkanoate and glufosinate herbicides</td>
<td>Glycine max L (soybean)</td>
<td>WO2012/075 426</td>
</tr>
<tr>
<td>A-227</td>
<td>pDAB82 91.45.36.2 / DAS-14536-7</td>
<td>Dow AgroScience LLC</td>
<td>Multiple traits conferring resistance to glyphosate, aryloxyalkanoate and glufosinate herbicides</td>
<td>Glycine max L (soybean)</td>
<td>WO2012/075 429</td>
</tr>
<tr>
<td>A-228</td>
<td>SYHTOH 2 / SYN-000H2-5</td>
<td>SYNGENTA PARTICIPATIONS AG</td>
<td>Herbicide resistance</td>
<td>Glycine max L (soybean)</td>
<td>WO2012/082 548</td>
</tr>
<tr>
<td>A-229</td>
<td>MON887 01</td>
<td>Monsanto Technology LLC</td>
<td>Tolerance to dicamba and glufosinate herbicides</td>
<td>Gossypium hirsutum L. (Cotton)</td>
<td>WO2012/134 808</td>
</tr>
</tbody>
</table>

Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or a combination of transformation events, and that are listed for example in the databases for various national or regional regulatory agencies including Event 1143-14A (cotton, insect control, not deposited, described in WO2006/128569); Event 1143-5 1B (cotton, insect control, not deposited, described in WO2006/128570); Event 1445 (cotton, herbicide tolerance, not deposited, described in US2002/120964 or WO2002/034946); Event 17053 (rice, herbicide tolerance,
deposited as PTA-9843, described in WO2010/117737); Event 17314 (rice, herbicide tolerance, deposited as PTA-9844, described in WO2010/117735); Event 281-24-236 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in WO2005/103266 or US20052 16969); Event 3006-210-23 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in US2007143876 or WO2005/103266); Event 3272 (corn, quality trait, deposited as PTA-9972, described in WO2006098952 or US2006230473); Event 40416 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-11508, described in WO2011/075593); Event 43A47 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-11509, described in WO2011/075595); Event 5307 (corn, insect control, deposited as ATCC PTA-9561, described in WO2010/077816); Event ASR-368 (bent grass, herbicide tolerance, deposited as ATCC PTA-4816, described in US2006162007 or WO2004053062); Event B16 (corn, herbicide tolerance, not deposited, described in US2003126634); Event BPS-CV 127-9 (soybean, herbicide tolerance, deposited as NCIMB No. 41603, described in WO2011/080829); Event CE43-67B (cotton, insect control, deposited as DSM ACC2724, described in US2009217423 or WO2006/128573); Event CE44-69D (cotton, insect control, not deposited, described in US2011/00024077); Event CE44-69D (cotton, insect control, not deposited, described in WO2006/128571); Event CE46-02A (cotton, insect control, not deposited, described in WO2006/128572); Event COT 102 (cotton, insect control, not deposited, described in US2006130175 or WO2004039986); Event COT202 (cotton, insect control, not deposited, described in US2007067868 or WO2005054479); Event COT203 (cotton, insect control, not deposited, described in WO2005/054480); Event DAS40278 (corn, herbicide tolerance, deposited as ATCC PTA-10244, described in WO2011/022469); Event DAS-591 22-7 (corn, insect control - herbicide tolerance, deposited as ATCC PTA 11384 , described in US2006070139); Event DAS-59132 (corn, insect control - herbicide tolerance, not deposited, described in WO2009/100188); Event DAS68416 (soybean, herbicide tolerance, deposited as ATCC PTA-10442, described in WO2011/066384 or WO2011/066360); Event DP-098140-6 (corn, herbicide tolerance, deposited as ATCC PTA-8296, described in US2009137395 or WO2008/12019); Event DP-305423-1. (soybean, quality trait, not deposited, described in US2008312082 or WO2008/054747); Event DP-32 138-1 (corn, hybridization system, deposited as ATCC PTA-9158, described in US20090210970 or WO2009/103049); Event DP-356043-5 (soybean, herbicide tolerance, deposited as ATCC PTA-8287, described in US2011/084079 or WO2008/002872); Event EE-1 (brinjal, insect control, not deposited, described in WO2007/091277); Event FII117 (corn, herbicide tolerance, deposited as ATCC 209031, described in US2006059581 or WO1998/044140); Event GA21 (corn, herbicide tolerance, deposited as ATCC 209033, described in US2005086719 or WO1998/044140); Event GG25 (corn, herbicide tolerance, deposited as ATCC 209032, described in US2005188434 or WO1998/044140); Event GHB119 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8398, described in WO2008/151780); Event GHB614 (cotton, herbicide tolerance, deposited as ATCC; PTA-6878, described in US2010050282 or WO2007/017186); Event GJ11 (corn, herbicide tolerance, deposited as ATCC 209030, described in US2005188434 or
WO1 998/044140); Event GM RZ13 (sugar beet, virus resistance, deposited as NCIMB-41 601, described in WO2010/076212); Event H7-1 (sugar beet, herbicide tolerance, deposited as NCIMB 41 158 or NO MB 41 159, described in US20041 72669 or WO2004/074492); Event JOPLIN1 (wheat, disease tolerance, not deposited, described in US2008064032); Event L.L.27 (soybean, herbicide tolerance, deposited as NCIMB41 658, described in WO2006/1 08674 or US200832061 6); Event I.1.55 (soybean, herbicide tolerance, deposited as NCIMB 41 660, described in WO2006/1 08675 or US2008196127); Event LLcotton25 (cotton, herbicide tolerance, deposited as ATCC PTA-3343, described in WO200301 3224 or US2003097687); Event LLPJCE06 (rice, herbicide tolerance, deposited as ATCC-23352, described in US6468747 or WO2000/026345); Event LLPJCE601 (rice, herbicide tolerance, deposited as ATCC PTA-2600, described in US2008289060 or WO2000/026356); Event LY038 (corn, quality trait, deposited as ATCC PTA-5623, described in US2007028322 or WO2005061720); Event MIR162 (corn, insect control, deposited as PTA-8 166, described in US2009300784 or WO2007/142840); Event MIR604 (corn, insect control, not deposited, described in US2008 167456 or WO2005 103301); Event MON15985 (cotton, insect control, deposited as ATCC PTA-2516, described in US2004-2503 17 or WO2002/1 00163); Event MON810 (corn, insect control, not deposited, described in US20021 02582); Event MON863 (corn, insect control, deposited as ATCC PTA-2605, described in WO2004/0 11601 or US2006095986); Event MON87427 (corn, pollination control, deposited as ATCC PTA-7899, described in WO201 1/062904); Event MON87460 (corn, stress tolerance, deposited as ATCC PTA-8910, described in WO2009/1 11263 or US201 1038504); Event MON87701 (soybean, insect control, deposited as ATCC PTA-8 194, described in US2009130071 or WO2009/064652); Event MON87705 (soybean, quality trait - herbicide tolerance, deposited as ATCC PTA-924 1, described in US201 00080887 or WO201 003701 6); Event MON87708 (soybean, herbicide tolerance, deposited as ATCC PTA9670, described in WO201 1/034704); Event MON87754 (soybean, quality trait, deposited as ATCC PTA-9385, described in WO2010/024976); Event MON87769 (soybean, quality trait, deposited as ATCC PTA-8911, described in US201 10067141 or WO2009/1 02873); Event MON8801 7 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-5582, described in US2008028482 or WO2005/0591 03); Event MON88913 (cotton, herbicide tolerance, deposited as ATCC PTA-4854, described in WO2004/072235 or US2006059590); Event MON89034 (corn, insect control, deposited as ATCC PTA-7455, described in WO2007/1 40256 or US2008260932); Event MON89788 (soybean, herbicide tolerance, deposited as ATCC PTA-6708, described in US200628291 5 or WO2006/130436); Event MS11 (oileseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-850 or PTA-2485, described in WO2001/03 1042); Event MS8 (oileseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO2001/041 558 or US2003 188347); Event NK603 (corn, herbicide tolerance, deposited as ATCC PTA-2478, described in US2007-292854); Event PE-7 (rice, insect control, not deposited, described in WO2008/1 14282); Event RF3 (oileseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO2001/041 558 or US2003 188347); Event RT73 (oileseed rape,
herbicide tolerance, not deposited, described in WO2002/036831 or US2008070260; Event T227-I (sugar beet, herbicide tolerance, not deposited, described in WO2002/44407 or US2009265817); Event T25 (corn, herbicide tolerance, not deposited, described in US200 1029014 or WO200 1/05 1654); Event T304-40 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8171, described in US2010077501 or WO2008/122406); Event T342-142 (cotton, insect control, not deposited, described in WO2006/128568); Event TC1507 (corn, insect control - herbicide tolerance, not deposited, described in US2005039226 or WO2004/099447); Event VIP1034 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-3925., described in WO2003/052073), Event 32316 (corn, insect control-herbicide tolerance, deposited as PTA-11507, described in WO201/1/084632), Event 4114 (corn, insect control-herbicide tolerance, deposited as PTA-11506, described in WO201/1/084621), Event MON88302 (oilseed rape, herbicide tolerance, deposited as PTA-10955, described in WO201/1/153186), Event 1606 (soybean, herbicide tolerance, deposited as PTA-11028, described in WO2012/033794), Event MON87712 (soybean, yield, deposited as PTA-10296, described in WO2012/051199), Event pDAB8264.44.06.1 / DAS-44406-6 (soybean, herbicide tolerance, deposited as PTA-11336, described in WO2012/075426), Event pDAB8291.45.36.2 / DAS-14536-7 (soybean, herbicide tolerance, deposited as PTA-11335, described in WO2012/075429), Event SYHTOH2 / SVN-0002H-5 (soybean, herbicide tolerance, deposited as PTA-11226, described in WO2012/082548), Event MON88701 (cotton, herbicide tolerance, deposited as PTA-11754, described in WO2012/134808), Event FG72 (soybean, herbicide tolerance, deposited as PTA-11041, described in WO201/1/063413), Event BLR1 (oilseed rape, restoration of male sterility, deposited as NCIMB 41193, described in WO2005/074671), Event F531/ PV-GHKBK04 (cotton, insect resistance, described in WO2002/040677), Event 33391 (wheat, herbicide tolerance, deposited as PTA-2347, described in WO2002/027004).

Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants it is typically useful to ensure that male fertility in the hybrid plants is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility restorer genes which are capable of restoring the male fertility in hybrid plants that contain the genetic determinants responsible for male-sterility. Genetic determinants for male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in Brassica species (WO 92/05251, WO 95/09910, WO 98/27806, WO 05/002324, WO 06/021972 and US 6,229,072). However, genetic determinants for male sterility can also be located in the nuclear genome.
Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering. A particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barnase (e.g. WO 91/02069).

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are plants containing the nematode resistance/tolerance genes and are in addition herbicide-tolerant, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance. Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), the genes encoding a Petunia EPSPS (Shah et al., 1986, Science 233, 478-481), a Tomato EPSPS (Gasser et al., 1988, J. Biol. Chem. 263, 4280-4289), or an Eleusine EPSPS (WO 01/66704). It can also be a mutated EPSPS as described in for example EP 0837944, WO 00/66746, WO 00/66747 or WO92/26995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxidoreductase enzyme as described in U.S. Patent Nos. 5,776,760 and 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 02/36782, WO 03/092360, WO 05/012515 and WO 07/024782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described in for example WO 01/024615 or WO 03/013226. Plants expressing EPSPS genes that confer glyphosate tolerance are described in e.g. US Patent Application Nos 11/517,991, 10/739,610, 12/139,408, 12/352,532, 11/312,866, 11/315,678, 12/421,292, 11/400,598, 11/651,752, 11/681,285, 1/605,824, 12/468,205, 11/760,570, 1/762,526, 11/769,327, 11/769,255, 11/943801 or 12/362,774. Plants comprising other genes that confer glyphosate tolerance, such as decarboxylase genes, are described in e.g. US patent applications 11/588,811, 1/185,342, 12/364,724, 1/185,560 or 12/423,926.

Other herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate. Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition, e.g. described in US Patent Application No 1/760,602. One such efficient detoxifying enzyme is an enzyme encoding a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase are for example described in U.S. Patent Nos. 5,561,236; 5,648,477; 5,646,024; 5,273,894; 5,637,489; 5,276,268; 5,739,082; 5,908,810 and
Further herbicide-tolerant plants are also plants that are made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). Hydroxyphenylpyruvatedioxygenases HPPD is an are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate.

Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO 99/24585, and WO 99/24586, WO 2009/144079, WO 2002/046387, or US 6,768,044. Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having prephenate deshydrogenase (PDH) activity in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928. Further, plants can be made more tolerant to HPPD-inhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 2007/103567 and WO 2008/150473.

Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinylx(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetoxyacid synthase, AHAS) are known to confer tolerance to different herbicides and groups of herbicides, as described for example in Tanel and Wright (2002, Weed Science 50:700-712), but also, in U.S. Patent No. 5,605,011, 5,378,824, 5,141,870, and 5,013,659. The production of sulfonylurea-tolerant plants and imidazolinone-tolerant plants is described in U.S. Patent Nos. 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,731,180; 5,304,732; 4,761,373; 5,331,107; 5,928,937; and 5,378,824; and international publication WO 96/33270. Other imidazolinone-tolerant plants are also described in for example WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351, and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 07/024782 and US Patent Application No 61/288958.

Other plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in U.S. Patent 5,084,082, for rice in WO 97/41218, for sugar beet in U.S. Patent 5,773,702 and WO 99/057965, for lettuce in U.S. Patent 5,198,599, or for sunflower in WO 01/065922.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are - besides nematode resistance / tolerance - insect-resistant, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation,
or by selection of plants containing a mutation imparting such insect resistance.

An "insect-resistant transgenic plant", as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:

1) an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof, such as the insecticidal crystal proteins listed by Crickmore et al. (1998, Microbiology and Molecular Biology Reviews, 62: 807-813), updated by Crickmore et al. (2005) at the Bacillus thuringiensis toxin nomenclature, online at:

http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bi/[^], or insecticidal portions thereof, e.g., proteins of the Cry protein classes Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1D, Cry1F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof (e.g. EP 1999141 and WO 2007/107302), or such proteins encoded by synthetic genes as e.g. described in and US Patent Application No 12/249,016; or

2) a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (Moellenbeck et al. 2001, Nat. Biotechnol. 19: 668-72; Schnepf et al. 2006, Applied Environm. Microbiol. 71, 1765-1774) or the binary toxin made up of the Cry1A or Cry1F proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (US Patent Appl. No. 12/214,022 and EP 08010791.5); or

3) a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g., the Cry1A. 105 protein produced by corn event MON89034 (WO 2007/027777); or

4) a protein of any one of 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation, such as the Cry3Bb1 protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604; or

5) an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus, or an insecticidal portion thereof, such as the vegetative insecticidal (VIP) proteins listed at:

http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, e.g., proteins from the VIP3Aa protein class; or

6) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 94/21795); or
7) a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or

8) a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102; or

9) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a crystal protein from Bacillus thuringiensis, such as the binary toxin made up of VIP3 and Cry1A or Cry1F (US Patent Appl. No. 61/126083 and 61/195019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (US Patent Appl. No. 12/214,022 and EP 08010791.5).

10) a protein of 9) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein)

Of course, an insect-resistant transgenic plant, as used herein, also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10. In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 10, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.

An "insect-resistant transgenic plant", as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded RNA which upon ingestion by a plant insect pest inhibits the growth of this insect pest, as described e.g. in WO 2007/080126, WO 2006/129204, WO 2007/074405, WO 2007/080127 and WO 2007/035650.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are - besides nematode resistance / tolerance – tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:

1) plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP-ribose) polymerase (PARP) gene in the plant cells or plants as described in WO 00/04173, WO/2006/04563, EP 04077984.5, or EP 06009836.5.
2) plants which contain a stress tolerance enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plant cells, as described e.g. in WO 2004/090140.

3) plants which contain a stress tolerance enhancing transgene coding for a plant-functional enzyme of the nicotinamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphoribosyltransferase as described e.g. in EP 04077624.7, WO 2006/133827, PCT/EP07/002433, EP 1999263, or WO 2007/107326.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are nematode resistant / tolerant plants showing in addition altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as:

2) transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification. Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP 0663956, WO 96/01904, WO 96/21023, WO 98/39460, and WO 99/24593, plants producing alpha-1,4-glucans as disclosed in WO 95/31553, US 2002031826, US 6,284,479, US 5,712,107, WO 97/47806, WO 97/47807, WO 97/47808 and WO 00/14249, plants producing alpha-1,6 branched alpha-1,4-glucans, as disclosed in WO 00/73422, plants producing alternan, as disclosed in e.g. WO 00/47727, WO 00/73422, EP

4) transgenic plants or hybrid plants, such as onions with characteristics such as 'high soluble solids content', 'low pungency' (LP) and/or 'long storage' (LS), as described in US Patent Appl. No. 12/020,360 and 61/054,026.

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, which are nematode resistant / tolerant and showing in addition altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include:

a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 98/00549

b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO 2004/053219

c) Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 01/17333

d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO 02/45485

e) Plants, such as cotton plants, wherein the timing of the plasmodesmata gating at the basis of the fiber cell is altered, e.g. through downregulation of fiber-selective P-1,3-glucanase as described in WO 2005/017157, or as described in EP 08075514.3 or US Patent Appl. No. 61/128,938

f) Plants, such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acetylglicosaminetransferase gene including nodC and chitin synthase genes as described in WO 2006/136351

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, which are nematode resistant / tolerant and showing in addition altered oil profile characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics and include:

a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content as described e.g. in
b) Plants such as oilseed rape plants, producing oil having a low linolenic acid content as described in US 6,270,828, US 6,169,190, or US 5,965,755

c) Plant such as oilseed rape plants, producing oil having a low level of saturated fatty acids as described e.g. in US Patent No. 5,434,283 or US Patent Application No 12/668303

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as potatoes which are nematode resistant / tolerant and in addition virus-resistant, e.g. against potato virus Y (event SY230 and SY233 from Tecnoplant, Argentina), which are disease resistant, e.g. against potato late blight (e.g. RB gene), which show a reduction in cold-induced sweetening (carrying the Nt-Inhh, HR-INV gene) or which possess a dwarf phenotype (Gene A-20 oxidase).

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, which are nematode resistant / tolerant and showing in addition altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering as described in US Patent Appl. No. 61/135,230, and EP 08075648.9, WO09/068313 and WO10/006732.

Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are the subject of petitions for non-regulated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such petitions are granted or are still pending. At any time this information is readily available from APHIS (4700 River Road, Riverdale, MD 20737, USA), for instance on its internet site (URL http://www.aphis.usda.gov/brs/not__reg.html). On the filing date of this application the petitions for nonregulated status that were pending with APHIS or granted by APHIS were those listed in table B which contains the following information:

- Petition : the identification number of the petition. Technical descriptions of the transformation events can be found in the individual petition documents which are obtainable from APHIS, for example on the APHIS website, by reference to this petition number. These descriptions are herein incorporated by reference.

- Extension of Petition : reference to a previous petition for which an extension is requested.

- Institution : the name of the entity submitting the petition.
Regulated article: the plant species concerned.

Transgenic phenotype: the trait conferred to the plants by the transformation event.

Transformation event or line: the name of the event or events (sometimes also designated as lines or lines) for which nonregulated status is requested.

APHIS documents: various documents published by APHIS in relation to the Petition and which can be requested with APHIS.

Mixing Partners

In one embodiment, the present invention relates to the use of a composition comprising A) the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) and B) at least one further agrochemically active compound and/or at least one nematicidal biological control agent.

In another embodiment, the present invention relates to the use of a composition comprising A) the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) and B) at least one further agrochemically active compound.

The agrochemically active compound described under B) are the following active ingredients being fungicides which may be mentioned are:

1) Inhibitors of the ergosterol biosynthesis, for example (1.1) aldimorph, (1.2) azaconazole, (1.3) bitertanol, (1.4) bromuconazole, (1.5) cyproconazole, (1.6) diclobutrazole, (1.7) difenoconazole, (1.8) diniconazole, (1.9) diniconazole-M, (1.10) dodemorph, (1.11) dodemorph acetate, (1.12) epoxiconazole, (1.13) etaconazole, (1.14) fenarimol, (1.15) fenbuconazole, (1.16) fenhexamid, (1.17) fenpropidin, (1.18) fenpropimorph, (1.19) fluquinconazole, (1.20) flurprimidol, (1.21) flusilazole, (1.22) flutriafol, (1.23) furconazole, (1.24) furconazole-cis, (1.25) hexaconazole, (1.26) imazalil, (1.27) imazalil sulfate, (1.28) imibenconazole, (1.29) ipconazole, (1.30) metconazole, (1.31) myclobutanil, (1.32) naftifine, (1.33) naurimol, (1.34) oxpoconazole, (1.35) paclobutrazol, (1.36) pefurazoate, (1.37) penconazole, (1.38) piperalim, (1.39) prochloraz, (1.40) propiconazole, (1.41) prothioconazole, (1.42) pyributicarb, (1.43) pyrifluox, (1.44) quinconazole, (1.45) simeconazole, (1.46) spiroxamine, (1.47) tebuconazole, (1.48) terbinafme, (1.49) tetraconazole, (1.50) triadimefon, (1.51) triadimenol, (1.52) tridemorph, (1.53) triflumizole, (1.54) triforine, (1.55) triforconazole, (1.56) uniconazole, (1.57) uniconazole-p, (1.58) vinconazole, (1.59) voriconazole, (1.60) 1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)cycloheptan, (1.61) methyl 1-(2,2-dimethyl-2,3-dihydro-1H-inden-1-yl)-1H-imidazole-5-carboxylate, (1.62) N'-[5-(difluoromethyl)-2-methy]-[3-(trimethylsilyl)propoxy]phenyl]-N-ethyl-N-methylimidooformamid, (1.63) N-ethyl-N-methyl-N'-[2-methyl-5-(trifluoromethyl)-4-3-
(trimethylsilyl)propoxy[phenyl]imidofomamide, (1.64) O-[1-(4-methoxyphenoxy)-3,3-dimethylbutan-2-yl] 1H-imidazole-1-carbothioate, (1.65) Pyrisoazole.

2) Inhibitors of the respiratory chain at complex I or II, for example (2.1) bixafen, (2.2) boscalid, (2.3) carboxin, (2.4) diflumetorim, (2.5) fenfuram, (2.6) fluopyram, (2.7) flutolanil, (2.8) fluropyroxad, (2.9) furanetpyr, (2.10) furmecyclov, (2.11) isopyrazam (mixture of syn-epimeric racemate 1RS,4SR,9RS and anti-epimeric racemate 1RS,4SR,9SR), (2.12) isopyrazam (anti-epimeric racemate 1RS,4SR,9SR), (2.13) isopyrazam (anti-epimeric enantiomer 1R,4S,9S), (2.14) isopyrazam (anti-epimeric enantiomer 1S,4R,9R), (2.15) isopyrazam (syn-epimeric racemate 1RS,4SR,9RS), (2.16) isopyrazam (syn-epimeric enantiomer 1R,4S,9R), (2.17) isopyrazam (syn-epimeric enantiomer 1S,4R,9S), (2.18) mepronil, (2.19) oxycarboxin, (2.20) penflufen, (2.21) penthiopyrad, (2.22) sedaxane, (2.23) thifluzamide, (2.24) 1-methyl-N-[2-(1,2,2-tetrafluoroethoxy)phenyl]-3-(trifluoromethyl)-IH-pyrazone-4-carboxamide, (2.25) 3-(difluoromethyl)- 1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-1 H-pyrazole-4-carboxamide, (2.26) 3-(difluoromethyl)-N-[4-fluoro-2-(1,1,2,3,3-hexafluoroproxy)phenyl] -1-methyl-1H-pyrazole-4-carboxamide, (2.27) N-[1-(2,4-dichlorophenyl)-1-methoxypropan-2-yl] -3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.28) 5,8-difluoro-N-[2-(2-fluoro-4-{[4-(trifluoromethyl)pyridin-2-yl]oxy}phenyl)ethyl]quinazolin-4-amine, (2.29) benzovindiflupyr, (2.30) N-[1(S,4R)-9-(dichloromethylene)-2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.31) N-[1(R,4S)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.32) 3-(difluoromethyl)-1-methyl-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1H-pyrazole-4-carboxamide, (2.33) 1,3,5-trimethyl-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1H-pyrazole-4-carboxamide, (2.34) 1-methyl-3-(trifluoromethyl)-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1H-pyrazole-4-carboxamide, (2.35) 1-methyl-3-(trifluoromethyl)-N-(1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1H-pyrazole-4-carboxamide, (2.36) 1-methyl-3-(trifluoromethyl)-N-(1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1H-pyrazole-4-carboxamide, (2.37) 3-(difluoromethyl)-1-methyl-N-[1(S)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]j-1H-pyraole-4-carboxamiile, (2.38) 3-(difluoromethyl)-1-methyl-N-[1(3R)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, (2.39) 1,3,5-trimethyl-N-[1(3R)-1,1,3-trimethyl-2,3-dihydiO-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, (2.40) 1,3,5-trimethyl-N-[1(3S)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, (2.41) benodanil, (2.42) 2-chloro-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)pyridine-3-carboxamide, (2.43) N-[1-(4-isopropoxy-2-methylphenyl)-2-methyl-1-oxopropan-2-yl]-3-methylthiophene-2-carboxamide.

3) Inhibitors of the respiratory chain at complex III, for example (3.1) ametoctradin, (3.2) amisulbrom, (3.3) aoxystrobin, (3.4) cyazofamid, (3.5) coumethoxystrobin, (3.6) coumoxystrobin, (3.7) dimoxystrobin, (3.8) enoxastrob, (3.9) famoxadone, (3.10) fenamidone, (3.11) flufenoxystrobin, (3.12) fluoxastrob, (3.13) kresoxim-methyl, (3.14) metominostrobin, (3.15) orysastrob, (3.16)

4) Inhibitors of the mitosis and cell division, for example (4.1) benomyl, (4.2) carbendazim, (4.3) chlorfenazole, (4.4) diethofencarb, (4.5) ethaboxam, (4.6) fluopicolide, (4.7) fuberidazole, (4.8) pencurion, (4.9) thiabendazole, (4.10) thiophanate-methyl, (4.11) thiophanate, (4.12) zoamide, (4.13) 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine, (4.14) 3-chloro-5-(6-chloropyridin-3-yl)-6-methyl-4-(2,4,6-trifluorophenyl)pyiidazine.

5) Compounds capable of having a multisite action, for example (5.1) bordeaux mixture, (5.2) captan, (5.3) captan, (5.4) chlorothalonil, (5.5) copper hydroxide, (5.6) copper naphthenate, (5.7) copper oxide, (5.8) copper oxychloride, (5.9) copper(2+) sulfate, (5.10) dichlofluanid, (5.11) dithianon, (5.12) cadime, (5.13) didime free base, (5.14) ferbam, (5.15) fluorofolep, (5.16) folpet, (5.17) guazatine, (5.18) guazatine acetate, (5.19) iminoctadine, (5.20) iminoctadine albesilate, (5.21) iminoctadine tricetate, (5.22) mancozeb, (5.23) mancozeb, (5.24) mane, (5.25) metiram, (5.26) metiram zinc, (5.27) oxime-copper, (5.28) propamidine, (5.29) propineb, (5.30) sulfur and sulfur preparations including calcium polysulfide, (5.31) thiram, (5.32) tolylfluanid, (5.33) zineb, (5.34) ziram, (5.35) anilazine.

6) Compounds capable of inducing a host defence, for example (6.1) acibenzolar-S-methyl, (6.2) isothianil, (6.3) probenazole, (6.4) tiadinil, (6.5) laminarin.

7) Inhibitors of the amino acid and/or protein biosynthesis, for example (7.1) andoprim, (7.2) blasticidin-S, (7.3) cyprodinil, (7.4) kasugamycin, (7.5) kasugamycin hydrochloride hydrate, (7.6) mepanipyrim, (7.7) pyrimethanil, (7.8) 3-(5-fluro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline, (7.9) oxytetracycline, (7.10) streptomycin.
8) Inhibitors of the ATP production, for example (8.1) fentin acetate, (8.2) fentin chloride, (8.3) fentin hydroxide, (8.4) silthiofam.

9) Inhibitors of the cell wall synthesis, for example (9.1) bentiavaicarb, (9.2) dimethomorph, (9.3) flumorph, (9.4) iprovalicarb, (9.5) mandipropamid, (9.6) polyoxins, (9.7) polyoxorim, (9.8) validamycin A, (9.9) valifenalate, (9.10) polyoxin B.

10) Inhibitors of the lipid and membrane synthesis, for example (10.1) bifenyl, (10.2) chloroneb, (10.3) dicyclohexyldimethylamine, (10.4) edifenphos, (10.5) etridiazole, (10.6) iodocarb, (10.7) iprobenfos, (10.8) isoprothiolane, (10.9) propamocarb, (10.10) propamocarb hydrochloride, (10.11) prothiocarb, (10.12) pyra/ophos, (10.13) quintozene, (10.14) tecnaeze, (10.15) toclofos-methyl.

11) Inhibitors of the melanin biosynthesis, for example (11.1) carpropamid, (11.2) diclocymet, (11.3) fenoxanil, (11.4) phthalide, (11.5) pyroquilon, (11.6) tricyclazole, (11.7) 2,2,2-trifluoroethyl [3-methyl-1-[(4-methylbenzoyl)amino]butan-2-yl] carbamate.

12) Inhibitors of the nucleic acid synthesis, for example (12.1) benalaxyl, (12.2) benalaxyl-M (kiralaxyl), (12.3) bupirimate, (12.4) clozolacon, (12.5) dimethirimol, (12.6) ethirimol, (12.7) furalaxyl, (12.8) hymexazol, (12.9) metalaxyl, (12.10) metalaxyl-M (mefenoxam), (12.11) ofurace, (12.12) oxadixyl, (12.13) oxolinic acid, (12.14) ochthelinone.

13) Inhibitors of the signal transduction, for example (13.1) chlozolinate, (13.2) fenpiclonil, (13.3) fludioxonil, (13.4) iprodione, (13.5) procymidone, (13.6) quinoxyfen, (13.7) vinclozolin, (13.8) proquinazid.

14) Compounds capable to act as an uncoupler, for example (14.1) binapacryl, (14.2) dinocap, (14.3) ferimzone, (14.4) fluazinam, (14.5) meptyldinocap.

15) Further compounds, for example (15.1) benthiazole, (15.2) bethoxazin, (15.3) capsimycin, (15.4) carbone, (15.5) chinomethionat, (15.6) pyriofenone (chlazafone), (15.7) cufraneb, (15.8) cyflufenamid, (15.9) cymoxanil, (15.10) cyproconazole, (15.11) dazomet, (15.12) debacarb, (15.13) dichlorophen, (15.14) diclozezine, (15.15) difenzoquat, (15.16) difenzoquat metilsulfate, (15.17) diphenylamine, (15.18) ecomate, (15.19) fenpyrazamine, (15.20) ilumetoever, (15.21) Iluoroimide, (15.22) flusulfamide, (15.23) flutianil, (15.24) fosetyl-aluminium, (15.25) fosetyl-calcium, (15.26) fosetyl-sodium, (15.27) hexachlorobenzene, (15.28) irumamycin, (15.29) methasulfocarb, (15.30) methyl isothiocyanate, (15.31) metrafenone, (15.32) methylchlorothiolate, (15.33) natamycin, (15.34) nickel dimethylthiocarbamate, (15.35) nitrothal-isopropyl, (15.37) oxamocarb, (15.38) oxyfenthiuim, (15.39) pentachlorophenoi and salts, (15.40) phenothrin, (15.41) phosphorous acid and its salts, (15.42) propamocarb-fosetyl, (15.43) propanosine-sodium, (15.44) pyrimorph, (15.45) (2E)-3-(4-tert-butylphenyl)-3-(2-chloroOpyridin-4-yl)-1-(morphoiin-4-yl)prop-2-en-l-one, (15.46) (2Z)-3-(4-tert-
butylphenyl)-3-(2-chloropiperdin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one, (15.47) pyrrolnitrine, (15.48) tebuflququin, (15.49) tecloftalam, (15.50) tolufanide, (15.51) triazoxide, (15.52) trichlamide, (15.53) zarilamid, (15.54) (3S,6S,7R,8R)-8-benzyl-3-[(3-[(isobutyryloxy)methoxy]-4-methoxypyridin-2-yl)carbonylamino]-6-methyl-4,9-dioxo-1,5-dioxan-7-yl 2-methylpropaanoate, (15.55) 1-(4-[(5R)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl) Piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, (15.56) 1-(4-{4-[(5S)-5-(2,6-difluorophenyl)-4,5-dihydro-1,3-thiazol-2-yl]piperidin-1-yl})ethanone, (15.57) 1-c4-[4-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl)piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-IH-pyrazol-1-yl]ethanone, (15.58) 1-(4-methylprop-2-en-1-yl) IH-imidazole-1-carboxylate, (15.59) 2,3,5,6-tetracloro-4-(methylsulfonyl)pyridine, (15.60) 2,3-dibutyl-6-chiorothieno[2,3-d]pyrimidin-4(3H)-one, (15.61) 2,6-dimethyl-lH,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone, (15.62) 2-[5-methyl-3-(trifluoromethyl)-IH-pyrazol-1-yl]-1-(4-[(5R)-5-phenyl-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl)piperidin-1-yl)ethanone, (15.63) 2-[5-methyl-3-(trifluoromethyl)-IH-pyrazol-1-yl]-1-(4-[(5S)-5-phenyl-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl)piperidin-1-yl)ethanone, (15.64) 2-[5-methyl-3-(trifluoromethyl)-IH-pyrazol-1-yl]-1-(4-{4-(4-chlorophenyl)4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl)piperidin-1-yl)ethanone, (15.65) 2-butoxy-6-iodo-3-propyl-4H-chromene-4-one, (15.66) 2-chloro-5-[2-chloro-1,2-difluoro-4-methoxyphenyl]-4-methyl-IH-imidazol-5-yl)pyridine, (15.67) 2-phenylphenol and salts, (15.68) 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolinol-1-yl)quinoline, (15.69) 3,4,5-trichloropyridine-2,6-dicarbonitrile, (15.70) 3-chloro-5-(4-chlorophenyl)-4-(2,6-difluorophenyl)-6-methylpyridazine, (15.71) 4-(4-chlorophenyl)-5-(2,6-difluoropyridazine, (15.72) 5-amino-1,3,4-thiadiazole-2-thiol, (15.73) 5-chloro-N-phenyl-N'(prop-2-yn-1-yl)thiophene-2-sulfonohydrazide, (15.74) 5-fluoro-2-[(4-fluorobenzyl)oxy]pyrimidin-4-amine, (15.75) 5-fluoro-2-[(4-methylbenzyl)oxy]pyrimidin-4-amine, (15.76) 5-methyl-6-octyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine, (15.77) ethyl (2Z)-3-amino-2-cyano-3-phenylacrylate, (15.78) N'-(4-{3-(4-chlorobenzyl)-1,2,4-thiadiazol-5-yl}oxy)-2,5-dimethylphenyl)-N-ethyl-N-methylimidofomarnide, (15.79) N-(4-chlorobenzyl)-3-[3-methoxy-4-(prop-2-yn-1-yloxy)phenyl]propanamide, (15.80) N-[4-chloropyridinyl(cyano)methyl]-3-[3-methoxy-4-(prop-2-yn-1-yloxy)phenyl]propanamide, (15.81) N-[5-bromo-3-chloropyridin-2-yl]methyl-2,4-dichloronicotinamid, (15.82) N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2,4-dichloronicotinamid, (15.83) N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2-fluoro-4-iodonicotinamid, (15.84) N-{[E]-[(cyclopropylmethoxy)imino][6-(difluoromethoxy)-2,3-difluoropyridinyl]methyl}-2-phenylacetamide, (15.85) N-{(Z)-[(cyclopropylmethoxy)imino][6-(difluoromethoxy)-2,3-difluoropyridinyl]methyl}-2-phenylacetamide, (15.86) N'-(4-[3-tert-butyl-4-cyano-1,2-thiazol-5-yl]oxy)-2-chloro-5-methylphenyl)-N-ethyl-N-methylimidofomarnide, (15.87) N-methyl-2-[(5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)acetetyl]piperidin-4-yl)-N-{[1R]-1,2,3,4-tetrahydrophthalen-1-yl]-1,3-thiazole-4-carboxamide, (15.88) N-methyl-2-[(5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)acetetyl]piperidin-4-yl)-N-{[1R]-1,2,3,4-
tetrahydronaphthalen-1-yl],3-thiazole-4-carboxamide, (15.89) N-methyl-2-\{(5-methyl-3 (trifluoromethyl) -IH-pyrazol-1-yl)acetyl\} \{piperidin-4-yl\}-N-[(1S)-1,2,3,4-tetrahydronaphthalen-1-yl]-1,3-thiazole-4-carboxamide, (15.90) pentyl \{6-\{(1-methyl-IH-tetrazol-5-y1)phenyl\}methylene[amino]oxy\}methyl|pyridin-2-yl| carbamate, (15.91) phenazine-1-carboxylic acid, (15.92) quinolin-8-ol, (15.93) quinolin-8-ol sulfate \{2:1\}, (15.94) tert-butyl \{6-\{(1-methyl-IH-tetrazol-5-yl)phenyl\}methylene[amino]oxy\}methyl|pyridin-2-yl| carbamate, (15.95) 1-methyl-3 (trifluoromethyl)-N-[2'(trifluoromethyl)biphenyl-2-yl]-IH-pyrazole-4-carboxamide, (15.96) N-(4'-chlorobiphenyl-2-yl)-3'(difluoromethyl)-1-methyl-IH-pyrazole-4-carboxamide, (15.97) N-(2',4'-dichlorobiphenyl-2-yl)-3'(difluoromethyl)-1-methyl-IH-pyrazole-4-carboxamide, (15.98) 3-(difluoromethyl)-1-methyl-N-[4'(trifluoromethyl)biphenyl-2-yl]-IH-pyrazole-4-carboxamide, (15.99) N-(2',5'-difluorobiphenyl-2-yl)-1-methyl-3-(trifluoromethyl)-IH-pyrazole-4-carboxamide, (15.100) 3-(difluoromethyl)-1-methyl-N-[4'-(prop-1-yn-1-yl)biphenyl-2-yl]-IH-pyrazole-4-carboxamide, (15.101) 5-fluoro-1,3-dimethyl-N-[4'-(prop-1-yn-1-yl)biphenyl-2-yl]-IH-pyrazole-4-carboxamide, (15.102) 2-chloro-N-[4'-(prop-1-yn-1-yl)biphenyl-2-yl]|nicotinamide, (15.103) 3-(difluoromethyl)-N-[4'(3,3 dimethylbut-1-yn-1-yl)biphenyl-2-yl]-1-methyl-IH-pyrazole-4-carboxamide, (15.104) N-[4'(3,3 dimethylbut-1-yn-1-yl)biphenyl-2-yl]-5-fluoro-1,3-dimethyl-IH-pyrazole-4-carboxamide, (15.105) 3-(difluoromethyl)-N-[4'(3-ethylbiphenyl-2-yl)-1-methyl-IH-pyrazole-4-carboxamide, (15.106) N-[4'(3 ethylbiphenyl-2-yl)-5-fluoro-1,3-dimethyl-IH-pyrazole-4-carboxamide, (15.107) 2-chloro-N-[4'(3 ethylbiphenyl-2-yl]|nicotinamide, (15.108) 2-chloro-N-[4'(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]|nicotinamide, (15.109) 4-(difluoromethyl)-2-methyl-N-[4'(trifluoromethyl)biphenyl-2-yl]-1,3 thiazole-5-carboxamide, (15.110) 5-fluoro-N-[4'(3-hydroxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1,3 dimethyl-IH-pyrazole-4-carboxamide, (15.111) 2-chloro-N-[4'(3-hydroxy-3-methylbut-1-yn-1-yl) biphenyl-2-yl]|nicotinamide, (15.112) 3-(difluoromethyl)-N-[4'(3-methoxy-3-methylbut-1-yn-1-yl) biphenyl-2-yl]-1-methyl-IH-pyrazole-4-carboxamide, (15.113) 5-fluoro-N-[4'(3-methoxy-3 methylbut-1-yn-1-yl)biphenyl-2-yl]-1,3-dimethyl-IH-pyrazole-4-carboxamide, (15.114) 2-chloro-N-[4'(3 methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]|nicotinamide, (15.115) 5-bromo-2-methoxy-4 methylpyridin-3-yl)(2,3,4-trimethoxy-6-methylphenyl)methanone, (15.116) N-[2-(4-[3-(3 chlorophenyl)prop-2-yn-1-yl]oxy)3-methoxyphenyl)ethyl]-N2-(methylsulfonyl)valinamide, (15.117) 4 oxo-4-(2-phenylethyl)amino]butanoic acid, (15.118) but-3-yn-1-yl \{6-\{(1Z)-(1-methyl-IH-tetrazol-5 yl)phenyl\}methylene[amino]oxy\}methyl|pyridin-2-yl| carbamate, (15.119) 4-amino-5-fluoropyrimidin 2-oi (mesomeric form: 4-amino-5-fluoropyrimidin-2(1H)-one), (15.120) propyl 3,4,5 trihydroxybenzoate, (15.121) 1,3-dimethyli-N-(1,1,3-trimethyl-2,3-dihydro-IH-inden-4-yl)-IH-pyrazole4-carboxamide, (15.122) 1,3-dimethyl-N-[(3R)-1,1,3-trimethyl-2,3-dihydro-IH-inden-4-yl]-IH pyrazole-4-carboxamide, (15.123) 1,3-dimethyl-N-[(3S)-1,1,3-trimethyl-2,3-dihydro-IH-inden-4-yl]-IH pyrazole-4-carboxamide, (15.124) [3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2 oxazol-4-yl]pyridin-3-yl)methanol, (15.125) (S)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2 oxazol-4-yl]pyridin-3-yl)methanol, (15.126) (R)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-}
1,2-oxazol-4-yl] (pyridin-3-yl)methanol, (15.127) 2-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.128) 1-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-IH-1,2,4-triazol-5-yl thiocyanate, (15.129) 5-(allylsulfonyl)-l-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-IH-1,2,4-triazole, (15.130) 2-[1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione. (15.131) 2-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.132) 2- {[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.133) 1- {[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-IH-1,2,4-triazol-5-yl thiocyanate, (15.134) 1- {[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-IH-1,2,4-triazole. (15.135) 5-(allylsulfonyl)-1- {[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-IH-1,2,4-triazole, (15.136) 5-(allylsulfonyl)-1- {[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-IH-1,2,4-triazole, (15.137) 2-{[2S,4S,5S]-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydroO-3H-1,2,4-triazolo-3-thione, (15.138) 2-{[2R,4S,5S]-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.139) 2-{[2R,4R,5R]-1-(2,4-dichloroisonaphenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.140) 2-{[2S,4R,5R]-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.141) 2-{[2S,4S,5S]-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.142) 2-{[2R,4S,5R]-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.143) 2-{[2R,4R,5S]-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.144) 2-{[2S,4R,5S]-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (15.145) 2-fluoro-6-(trifluoromethyl)-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)benzamid, (15.146) 2-(6-benzypyridin-2-yl)quinazoline, (15.147) 2-[6-(3-fluoro-4-methoxyphenyl)-5-methylpyridin-2-yl]quinazoline, (15.148) 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline, (15.149) Abscisic acid.

All named mixing partners of the classes (1) to (15) can, if their functional groups enable this, optionally form salts with suitable bases or acids.

Wherein all named mixing partners of the classes (1) to (15) can, if their functional groups enable this, optionally form salts with suitable bases or acids;

Being bactericides which may be mentioned are:

bronopol, dichlorophen, nitrpyrin, nickel dimethyldithiocarbamate, kasugamycin, oethilnone, furancarboxylic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, copper sulphate and other copper preparations.
being insecticides, acaricides and nematicides which may be mentioned are:

2. GABA-gated chloride channel antagonists, for example cyclodiene organochlorines, e.g. Chlordane and Endosulfan; or phenylpyrazoles (fiproles), e.g. Ethiprole and Fipronil.

3. Sodium channel modulators / voltage-dependent sodium channel blockers, for example pyrethroids, e.g. Acrinathrin, Allethrin, d-cis-trans Allethrin, d-trans Allethrin, Bifenthion, Bioallethrin, Bioallethrin S-cyclopenenyl isomer, Biocresmethrin, Cycloprothrin, Cyfluthrin, beta-Cyfluthrin, Cyhalothrin, lambda-Cyhalothrin, gamma-Cyhalothrin. Cypemethrin, alpha-Cyphenriethrin, beta-Cypermethrin, theta-Cypermethrin, zeta-Cypermethrin, Cyphenothrin [(IR)-trans isomers], Deltamethrin, Empenthrin [(EZ)-(IR) isomers], Esfenvalerate, Etofenprox, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, tau-Fluvalinate, Halfenprox, Imiprothrin, Kadethrin, Pemethrin, Phenotherin [(IR)-trans isomer], Prallethrin, Pyrethrine (pyrethrum), Resmethrin, Silafluofen, Tetluthrin, Tetramethrin, Tetramethrin [(IR isomers)], Tralomethrin, and Transfluthrin; or DDT; or Methoxychlor.

4. Nicotinic acetylcholine receptor (nAChR) agonists, for example
neonicotinoids, e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam; or
Nicotine; or
Sulfoxaflor.

(5) Nicotinic acetylcholine receptor (nAChR) allosteric activators, for example
spinosyns, e.g. Spinetoram and Spinosad.

(6) Chloride channel activators, for example
avermectins/milbemycins, e.g. Abamectin, Emamectin benzoate, Lepimectin, and Milbemectin.

(7) Juvenile hormone mimics, for example
juvenile hormone analogues, e.g. Hydroprene, Kinoprene, and Methoprene; or
Fenoxycarb; or Pyriproxyfen.

(8) Miscellaneous non-specific (multi-site) inhibitors, for example
alkyl halides, e.g. Methyl bromide and other alkyl halides; or
Chloropicrin; or Sulfuryl fluoride; or Borax; or Tartar emetic.

(9) Selective homopteran feeding blockers, e.g. Pymetrozine; or Flonicamid.

(10) Mite growth inhibitors, e.g. Clofentezine, Hexythiazox, and Diflubenzuron; or
Etoxazole.

(11) Microbial disrupters of insect midgut membranes, e.g. Bacillus thuringiensis subspecies israelensis, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and B.t. crop proteins: Cry1Ab, Cry1Ac, Cry1Fa, Cry1A. 105, Cry2Ab, Vip3A, mCry3A, Cry3Ab, Cry3Bb, Cry34 Abl/35Abl ; or
Bacillus sphaericus.

(12) Inhibitors of mitochondrial ATP synthase, for example Diafenthiuron; or
organotin miticides, e.g. Azocyclotin, Cyhexatin, and Fenbutatin oxide; or
Propargite; or Tetradifon.
(13) Uncouplers of oxidative phosphorylation via disruption of the proton gradient, for example Chlorfenapyr, DNOC, and Sulfuramid.

(14) Nicotinic acetylcholine receptor (nAChR) channel blockers, for example Bensultap, Cartap hydrochloride, Thiocyclam, and Thiosultap-sodium.

(15) Inhibitors of chitin biosynthesis, type 0, for example Bistrifluron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Teflubenzuron, and Triflumuron.

(16) Inhibitors of chitin biosynthesis, type 1, for example Buprofezin.

(17) Moulting disrupters, for example Cyromazine.

(18) Ecdysone receptor agonists, for example Chromafenozide, Halofenozone, Methoxyfenozide, and Tebufenozide.

(19) Octopamine receptor agonists, for example Amitraz.

(20) Mitochondrial complex I electron transport inhibitors, for example Hydramethylnon; or Acequinocyl; or Fluacrypyrim.

(21) Mitochondrial complex I electron transport inhibitors, for example MET1 acaricides, e.g. Fenazaquin, Fenchloprimate, Pyrimidifen, Pyridaben, Tebufenpyrad, and Tolfenpyrad; or Rotenone (Derris).

(22) Voltage-dependent sodium channel blockers, e.g. Indoxacarb; or Metaflumizone.

(23) Inhibitors of acetyl CoA carboxylase, for example tetronic and tetramic acid derivatives, e.g. Spirodiclofen, Spiromesifen, and Spirotetramat.

(24) Mitochondrial complex IV electron transport inhibitors, for example phosphines, e.g. Aluminium phosphide, Calcium phosphide, Phosphine, and Zinc phosphide; or Cyanide.

(25) Mitochondrial complex II electron transport inhibitors, for example beta-ketonitrile derivatives, e.g. Cyenopyrafen and Cyflumetofen.
(28) Ryanodine receptor modulators, for example
diamides, e.g. Chlorantraniliprole, Cyantraniliprole, and Flubendiamide.

Further active ingredients with unknown or uncertain mode of action, for example Amidoflumet, Azadirachtin, Benclothia, Benzoiximate, Bifenazate, Bromopropylate, Chinomethionat, Cryolite, Dicofol, Ditloodina, Fluensulfone, Flufofiprole, Fluopyram, Fufenizode, Imadaclothiz, Iprodione, Meperfluthrin, Pyridalyl, Pirifluquinazon, Tetramethyllumthrin, and iodomethane; furthermore products based on Bacillus firmus (including but not limited to strain CNCM 1-1582, such as, for example, VOTiVO™, BioNem) or one of the following known active compounds: 3-bromo-N-
{[2-bromo-4-chloro-6-[(1-cyclopropylethyl)carbamoyl]phenyl]-l-(3-chloropyridin-2-yl)-IH-pyrazole-5-
carboxamide (known from EP-A-05646), 4-[(6-bromopyridin-3-yl)methyl](2fluoroethyl)amino]furan-(2H)-one (known from WO2007/15644), 4-[(6-fluoropyridin-3-
Flupyradifurone, 4-[(6-chloro-5-fluoropyridin-3-yl)methyl][(methyl)amino]furan-2(5H)-one (known from WO2007/15643), 4-[(5,6-dichloropyridin-3-yl)methyl](2-fluoroethyl)amino]furan-2(5H)-one (known from WO2007/15646), 4-[(6-chloro-5-fluoropyridin-3-yl)methyl] (cyclopropyl)amino]furan-
2(5H)-one (known from WO2007/15644),

Flupyradifurone, 4-[(6-chloro-5-fluoropyridin-3-yl)methyl][(methyl)amino]furan-2(5H)-one (known from WO2007/15643), 4-[(5,6-dichloropyridin-3-yl)methyl](2-fluoroethyl)amino]furan-2(5H)-one (known from WO2007/15646), 4-[(6-chloro-5-fluoropyridin-3-yl)methyl](cyclopropyl)amino]furan-2(5H)-one (known from WO2007/15644),
Flupyradifurone, 4-[(6-chloro-5-fluoropyridin-3-yl)methyl][(methyl)amino]furan-2(5H)-one (known from WO2007/15643), 4-[(5,6-dichloropyridin-3-yl)methyl](2-fluoroethyl)amino]furan-2(5H)-one (known from WO2007/15646), 4-[(6-chloro-5-fluoropyridin-3-yl)methyl](cyclopropyl)amino]furan-2(5H)-one (known from WO2007/15644),

Flupyradifurone, 4-[(6-chloro-5-fluoropyridin-3-yl)methyl][(methyl)amino]furan-2(5H)-one (known from WO2007/15643), 4-[(5,6-dichloropyridin-3-yl)methyl](2-fluoroethyl)amino]furan-2(5H)-one (known from WO2007/15646), 4-[(6-chloro-5-fluoropyridin-3-yl)methyl](cyclopropyl)amino]furan-2(5H)-one (known from WO2007/15644),

Flupyradifurone, 4-[(6-chloro-5-fluoropyridin-3-yl)methyl][(methyl)amino]furan-2(5H)-one (known from WO2007/15643), 4-[(5,6-dichloropyridin-3-yl)methyl](2-fluoroethyl)amino]furan-2(5H)-one (known from WO2007/15646), 4-[(6-chloro-5-fluoropyridin-3-yl)methyl](cyclopropyl)amino]furan-2(5H)-one (known from WO2007/15644),
(methylcarbamoyl)phenyl)-3-[[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl]-1H-pyrazole-5-carboxamide (known from WO20 10/069502), N-[2-(tert-butyldifluoroethyl)ethanamidamid]e (known from WO2008/009360), N-[2-(5-amino-1,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (known from CN102057925), methyl 2-[3,5-dibromo-2-((3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl) carbonyl)amino]benzoyl]-2-ethyl-1-methylhydrazinecarboxylate (known from WO201 1/049233), Heptafluthrin, Pyriminostrobin, Flufenoxystrobin, and 3-chloro-N2-(2-cyanopropan-2-yl)-Nl-[4-(1,1,2,3,3-heptafluoropropan-2-yl)-2-methylphenyl]phthalamide (known from WO20 12/034472), Cycloxaprid (120 379 1-4 1-6).

being molluscicides which may be mentioned are metaldehyde and methiocarb.

being safeners which may be mentioned are:

SI) compounds of the formula (SI)

\[(R_A^1)_{n_A}^n\]

where the symbols and indices have the following meanings:

\(n_A\) is a natural number from 0 to 5, preferably from 0 to 3;

\(R_A^1\) is halogen, (C\(_1\)-C\(_4\))-alkyl, (G-C\(_4\))-alkoxy, nitro or (C\(_1\)-C\(_4\))-haloalkyl;

\(W_A\) is an unsubstituted or substituted divalent heterocyclic radical from the group consisting of partially unsaturated or aromatic five-membered heterocycles having 1 to 3 hetero ring atoms from the group consisting of N and O, where at least one nitrogen atom and at most one oxygen atom is present in the ring, preferably a radical from the group consisting of (\(W_A^1\)) to (\(W_A^4\)),

\((W_A^1)\) \((W_A^2)\) \((W_A^3)\) \((W_A^4)\)
mₐ is 0 or 1;

Rₐ² is ORA³, SRA³ or ORA³Rₐ⁴ or a saturated or unsaturated 3- to 7-membered heterocycle having at least one nitrogen atom and up to 3 heteroatoms, preferably from the group consisting of O and S, which is attached via the nitrogen atom to the carbonyl group in (Sl) and which is unsubstituted or substituted by radicals from the group consisting of (Ci-C₄)-alkyl, (Ci-C₄)-alkoxy and optionally substituted phenyl, preferably a radical of the formula ORA³, NHRA⁴ or N(C₃H₂)₂, in particular of the formula ORA³;

Rₐ¹ is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical having preferably a total of 1 to 18 C-atoms;

Rₐ⁴ is hydrogen, (Ci-C₉)-alkyl, (Ci-Ce)-alkoxy or substituted or unsubstituted phenyl;

Rₐ³ is H, (Ci-Cs)-alkyl, (Ci-C₉)-haloalkyl, (Ci-C₄)-alkoxy-(Ci-C₆)-alkyl, cyano or COORₐ⁹ where Rₐ³ is hydrogen, (Ci-Cs)-alkyl, (Ci-C₈)-haloalkyl, (C₁-C₄)-alkoxy-(C₁-C₄)-alkyl, (C₁-C₄)-hydroxyalkyl, (C₃-C₁₀)-cycloalkyl or tri-(Ci-C₄)-alkylisilyl;

Rₐ⁹, Rₐ¹, Rₐ³ are identical or different and are hydrogen, (Ci-Cs)-alkyl, (Ci-Cs)-haloalkyl, (C₃-C₁₂)-cycloalkyl or substituted or unsubstituted phenyl;

preferably:

a) compounds of the type of the dichlorophenylpyrazoline-3-carboxylic acid (Sl⁹), preferably compounds such as 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylic acid, ethyl 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylate (Sl-1) ("mefenpyr-(diethyl")", and related compounds, as described in WO-A-91/07874;

b) derivatives of dichlorophenylpyrazolecarboxylic acid (Sl⁹), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-methylpyrazole-3-carboxylate (Sl-2), ethyl 1-(2,4-dichlorophenyl)-5-isopropylpyrazole-3-carboxylate (Sl-3), ethyl 1-(2,4-dichlorophenyl)-5-(1,1-dimethylethyl)pyrazole-3-carboxylate (Sl-4) and related compounds, as described in EP-A-333 131 and EP-A-269 806;

c) derivatives of 1,5-diphenylpyrazole-3-carboxylic acid (Sl⁹), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-phenylpyrazole-3-carboxylate (Sl-5), methyl 1-(2-chlorophenyl)-5-phenylpyrazole-3-carboxylate (Sl-6) and related compounds, as described, for example, in EP-A-268554;
Compounds of the type of the triazolecarboxylic acids (SI d), preferably compounds such as fenchlorazole(-ethyl), i.e. ethyl 1-(2,4-dichlorophenyl)-5-trichloromethyl-(1H)-1,2,4-triazole-3-carboxylate (SI-7), and related compounds, as described in EP-A-174 562 and EP-A-346 620;

Compounds of the type of the 5-benzyl- or 5-phenyl-2-isoxazoline-3-carboxylic acid or the 5,5-diphenyl-2-isoxazoline-3-carboxylic acid (SI e), preferably compounds such as ethyl 5-(2,4-dichlorobenzyl)-2-isoxazoline-3-carboxylate (SI-8) or ethyl 5-phenyl-2-isoxa/ole-3-carboxylate (SI-9) and related compounds, as described in WO-A-91/08202, or 5,5-diphenyl-2-isoxazolinecarboxylic acid (SI-10) or ethyl 5,5-diphenyl-2-isoxazolinecarboxylate (SI-11) ("isoxadifen-ethyl") or n-propyl 5,5-diphenyl-2-isoxazolinecarboxylate (SI-12) or ethyl 5-(4-fluorophenyl)-5-phenyl-2-isoxazoline-3-carboxylate (SI-13), as described in the patent application WO-A-95/07897.

S2) Quinoiine derivatives of the formula (S2)

\[
\begin{align*}
\text{(S2)} & \quad \begin{array}{c}
\text{O} \\
\text{R}^2 \\
\text{B} \\
\text{R}^1 \\
\text{B} \\
\text{O}
\end{array}
\end{align*}
\]

where the symbols and indices have the following meanings:

- \(R^B' \) is halogen, (C\(_1\)-C\(_2\))-alkyl, (C\(_1\)-C\(_2\))-alkoxy, nitro or (C\(_1\)-C\(_2\))-haloalkyl;
- \(n_B \) is a natural number from 0 to 5, preferably from 0 to 3;
- \(R^B \) is OR\(_B\), SR\(_B\)\(^3\) or N\(_B\)R\(_B\)\(_B\)\(^4\) or a saturated or unsaturated 3- to 7-membered heterocycle having at least one nitrogen atom and up to 3 heteroatoms, preferably from the group consisting of O and S, which is attached via the nitrogen atom to the carbonyl group in (S2) and which is unsubstituted or substituted by radicals from the group consisting of (G-C\(_4\))-alkyl, (C\(_1\)-C\(_4\))-alkoxy and optionally substituted phenyl, preferably a radical of the formula OR\(_B\)\(^3\), NR\(_B\)\(_B\)\(_B\)\(^4\) or N(C\(_1\)-C\(_4\)))\(_2\), in particular of the formula OR\(_B\)\(^3\);
- \(R^B \) is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical having preferably a total of 1 to 18 carbon atoms;
- \(R^B \) is hydrogen, (C\(_1\)-C\(_6\))-alkyl, (G-C\(_6\))-alkoxy or substituted or unsubstituted phenyl;
- \(T_B \) is a (C\(_1\)-or C\(_2\))-alkanediyl chain which is unsubstituted or substituted by one or two (G-G)-alkyl radicals or by [(C\(_1\)-C\(_3\))-alkoxy]carbonyl;
preferably:

a) compounds of the type of the 8-quinolinoxyacetic acid (S2\(^+\)), preferably
1-methylhexyl (5-chloro-8-quinolinoxy)acetate (common name "cloquintocet-mexyl" (S2-1),
1,3-dimethyl-but-1-yl (5-chloro-8-quinolinoxy)acetate (S2-2),
4-allyloxybutyl (5-chloro-8-quinolinoxy)acetate (S2-3),
1-allyloxyprop-2-yl (5-chloro-8-quinolinoxy)acetate (S2-4),
etyl (5-chloro-8-quinolinoxy)acetate (S2-5),
methyl (5-chloro-8-quinolinoxy)acetate (S2-6),
allyl (5-chloro-8-quinolinoxy)acetate (S2-7),
2-(2-propylideneiminoxy)-1-ethyl (5-chloro-8-quinolinoxy)acetate (S2-8),
2-oxo-prop-1-yl (5-chloro-8-quinolinoxy)acetate (S2-9) and related compounds,
(5-chloro-8-quinolinoxy)acetic acid (S2-10), its hydrates and salts, for example its lithium, sodium, potassium, calcium,
magnesium, aluminium, iron, ammonium, quaternary ammonium, sulphonium or phosphonium
salts, as described in WO-A-2002/34048;

b) compounds of the type of the (5-chloro-8-quinolinoxy)malonic acid (S2\(^+\)), preferably
compounds such as diethyl (5-chloro-8-quinolinoxy)malonate, diallyl (5-chloro-8-
quinolinoxy)malonate, methyl ethyl (5-chloro-8-quinolinoxy)malonate and related compounds,
as described in EP-A-0 582 198.

S3) Compounds of the formula (S3)

\[\text{R}_c^1 \text{R}_c^2 \text{R}_c^3 \]

(S3)

where the symbols and indices have the following meanings:

\(\text{R}_c^1 \) is (\(\text{C}_1-\text{C}_4 \))-alkyl, (\(\text{G}-\text{C}_4 \))-haloalkyl, (\(\text{C}_2-\text{C}_4 \))-alkenyl, (\(\text{C}_2-\text{C}_4 \))-haloalkenyi, (\(\text{C}_3-\text{C}_7 \))-cycloalkyl,
preferably dichloromethyl;

\(\text{R}_c^2, \text{R}_c^3 \) are identical or different and are hydrogen, (\(\text{C}_1-\text{C}_4 \))-alkyl, (\(\text{C}_2-\text{C}_4 \))-aisenyl, (\(\text{C}_2-\text{C}_4 \))-alkynyl, (\(\text{G}-\text{C}_3 \))-haloalkyl, (\(\text{C}_2-\text{C}_4 \))-haloalkenyi, (\(\text{C}_3-\text{C}_7 \))-alkenylcarbamoil-(\(\text{C}_1-\text{C}_4 \))-alkyl, (\(\text{C}_2-\text{C}_4 \))-alkenylicarbamoil-(\(\text{C}_1-\text{C}_4 \))-alkyl, (\(\text{C}_2-\text{C}_4 \))-alkoxy-(\(\text{C}_1-\text{C}_4 \))-alkyl, dioxolanyl-(\(\text{C}_2-\text{C}_4 \))-alkyl,
thiazolyl, furyl, furylalkyl, thienyl, piperidyi, substituted or unsubstituted phenyl, or \(\text{R}_c^2 \) and
\(\text{R}_c^3 \) together form a substituted or unsubstituted heterocyclic ring, preferably an oxazolidine,
thiazolidine, piperidine, morpholine, hexahydropyrimidine or benzoxazine ring;
preferably:

active compounds of the type of the dichloroacetamides which are frequently used as pre-emergence safeners (soil-acting safeners), such as, for example, "dichlormid" (N,N-diaryl-2,2-dichloroacetamide) (S3-1),

"R-29148" (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from Stauffer (S3-2),

"R-28725" (3-dichloroacetyl-2,2-dimethyl-1,3-oxazolidine) from Stauffer (S3-3),

"benoxacor" (4-dichloroacetetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4),

"PPG-1292" (N-allyl-N-[1,3-dioxolan-2-yl]methyl)dichloroacetamide) from PPG Industries (S3-5),

"DKA-24" (N-allyl-N-[(allylaminocarbonyl)methyl]dichloroacetamide) from SagiO-Chem (S3-6),

"AD-67" or "MON 4660" (3-dichloroacetyl-1-oxa-3-aza-spiro[4,5]decane) from Nitrokemia or Monsanto (S3-7),

"TI-35" (1-dichloroacetylatedazepane) from TRI-Chemical RT (S3-8)

"diconnon" (dicyclonon) or "BAS145 138" or "LAB 145 138" (S3-9) (3-dichloroacetyi-2,5,5-trimethyl-1,3-diazabicyclo[4.3.0]nonane) from BASF,

"furilazole" or "MON 13900" ((RS)-1-dichloroacetyl-3,3,8a-trimethylperhydropyrrolo[1,2-a]pyrimidin-6-one) (S3-10) and also its (R)-isomer (S3-11).

S4) N-Acylsulphonamides of the formula (S4) and their salts

where the symbols and indices have the following meanings:

A_D is S0₂-NR_D^3-CO or CO-NR_D^3-S0₂;

X_D is CH or N;

RD^1 is CO-NR_D^3-RD^6 or NHCO-R_D^7;

RD^2 is halogen, (Ci-C_D)-haloalkyl, (Ci-C_D)-haloalkoxy, nitro, (Ci-C_D)-alkyl, (Ci-C_D)-alkoxy, (Ci-C_D)-alkylsulphonyl, (Ci-C_D)-alkoxycarbonyl or (Ci-C_D)-alkylcarbonyl;

RD^3 is hydrogen, (Ci-C_D)-alkyl, (C₂-C_D)-alkenyl or (C₂-C_D)-alkynyl;
R\text{D}^4 is halogen, nitro, (Ci-C\textsubscript{4})-alkyl, (Ci-C\textsubscript{4})-haloalkyl, (Ci-C\textsubscript{4})-haloalkoxy, (C\textsubscript{3}-C\textsubscript{4})-cycloalkyl, phenyl, (G-G)-alkoxy, cyano, (Ci-C\textsubscript{3})-alkylthio, (Ci-C\textsubscript{3})-alkylsulphynil, (G-G)-alkylsulphonyl, (G-G)-alkoxycarbonyl or (Ci-C\textsubscript{4})-alkylcarbonyl;

R\text{D}^5 is hydrogen, (G-G)-alkyl, (G-G)cycloalkyl, (C\textsubscript{2}-C\textsubscript{3})-alkenyl, (C\textsubscript{2}-C\textsubscript{3})-alkynyl, (G-G)-cycloalkenyl, phenyl or 3-6-membered heterocyclyl which contains \(\text{VD}\) heteroatoms from the group consisting of nitrogen, oxygen and sulphur, where the seven last-mentioned radicals are substituted by \(\text{VD}\) substituents from the group consisting of halogen, (G-G)-alkoxy, (G-G)-haloalkoxy, (Ci-C\textsubscript{2})-alkylsulphynil, (Ci-C\textsubscript{2})-alkylsulphonyl, (C\textsubscript{3}-C\textsubscript{6})-cycloalkyl, (G-G)-alkoxycarbonyl, (Ci-C\textsubscript{3})-alkylcarbonyl and phenyl and, in the case of cyclic radicals, also (G-C\textsubscript{4})-alkyl and (G-C\textsubscript{4})-haloalkyl;

R\text{D}^6 is hydrogen, (G-G)-alkyl, (G-G)-alkenyl or (G-G)-alkynyl, where the three last-mentioned radicals are substituted by \(\text{VD}\) radicals from the group consisting of halogen, hydroxy, (G-G)-alkyl, (G-C\textsubscript{4})-alkoxy and (G-C\textsubscript{4})-alkylthio, or

R\text{D}^7 and **R\text{D}^6** together with the nitrogen atom carrying them form a pyrrolidinyl or piperidinyl radical;

R\text{D}^7 is hydrogen, (Ci-C\textsubscript{4})-alkylamino, di-(G-G)-alkylamino, (G-G)-alkyl, (C\textsubscript{3}-C\textsubscript{6})-cycloalkyl, where the 2 last-mentioned radicals are substituted by \(\text{VD}\) substituents from the group consisting of halogen, (G-C\textsubscript{4})-alkoxy, halo-(C\textsubscript{i}-C\textsubscript{6})-alkoxy and (G-G)-alkylthio and, in the case of cyclic radicals, also (G-C\textsubscript{4})-alkyl and (G-C\textsubscript{4})-haloalkyl;

\(n\text{D}\) is 0, 1 or 2;

\(m\text{D}\) is 1 or 2;

\(v\text{D}\) is 0, 1, 2 or 3;

From among these, preference is given to compounds of the type of the N-acylsulphonamides, for example of the formula (S4) below, which are known, for example, from WO-A-97/45016

![Formula](S4)

in which

R\text{D}^7 is (G-C\textsubscript{6})-alkyl, (C\textsubscript{3}-C\textsubscript{6})-cycloalkyl, where the 2 last-mentioned radicals are substituted by \(\text{VD}\) substituents from the group consisting of halogen, (G-C\textsubscript{4})-alkoxy, halo-(C\textsubscript{i}-C\textsubscript{6})-alkoxy and (G-
c₄)-alkylthio and, in the case of cyclic radicals, also (Ci-C₄)-alkyl and (Ci-C₄)-haloalkyl;

RD⁴ is halogen, (Ci-C₄)-alkyl, (Ci-C₄)-alkoxy, CF₃,

m₃ is 1 or 2;

vD is 0, 1, 2 or 3;

and also

acylsulphamoylbenzamides, for example of the formula (S4ᵇ) below, which are known, for example, from WO-A-99/16744,

![Chemical Structure](image)

for example those in which

RD⁶ = cyclopropyl and (RD⁴) = 2-OMe ("cyprosulphamide", S4-1),

RD⁶ = cyclopropyl and (RD⁴) = 5-Cl-2-OMe (S4-2),

RD⁶ = ethyl and (RD⁴) = 2-OMe (S4-3),

RD⁶ = isopropyl and (RD⁴) = 5-Cl-2-OMe (S4-4) and

RD⁶ = isopropyl and (RD⁴) = 2-OMe (S4-5)

and also

compounds of the type of the N-acylsulphamoylphenylureas of the formula (S4ᶜ), which are known, for example, from EP-A-365484,

![Chemical Structure](image)

in which

RD⁸ and RD⁹ independently of one another are hydrogen, (Ci-Cs)-alkyl, (C₃-C₆)-cycloalkyl, (C₃-C₆)-alkenyl, (C₃-C₆)-alkynyl,
R4i is halogen, (C\text{ii}-C\text{iv})-alkyl, (C\text{ii}-C\text{iv})-alkoxy, CF\text{iii};

m\textsubscript{D} is 1 or 2;

for example

1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3-methylurea,

5 1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3,3-dimethylurea,

1-[4-(N-4,5-dimethylbenzoylsulphamoyl)phenyl]-3-methylurea,

and also

N-phenyl sulphonylterephthalamides of the formula (S4d), which are known, for example, from CN 101838227,

$$\text{(S}^{4}\text{d})$$

e.g. such compounds in which

RD4 is halogen, (C\text{ii}-C\text{iv})-alkyl, (C\text{ii}-C\text{iv})-alkoxy, CF\text{iii};

m\textsubscript{D} is 1 or 2;

RD5 is hydrogen, (C\text{v}-C\text{v})-alkyl, (C\text{v}-C\text{v})-cycloalkyl, (C\text{v}-C\text{v})-alkenyl, (C\text{v}-C\text{v})-alkynyl, (C\text{v}-C\text{v})-cycloalkenyl.

55) Active compounds from the class of the hydroxyaromatics and aromatic-aliphatic carboxylic acid derivatives (S5), for example

56) Active compounds from the class of the 1,2-dihydroquinoxalin-2-ones (S6), for example

- 1-methyl-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, 1-methyl-3-(2-thienyl)-1,2-dihydroquinoxaline-2-thione, 1-(2-aminoethyl)-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one hydrochloride, 1-(2-methylsulphonylaminoethyl)-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, as described in WO-A-2005/112630.
Compounds of the formula (S7), as described in WO-A-1998/38856,

\[
\begin{align*}
&\text{H}_2\text{C}^A\text{E} \\
&\text{(O)}_{n_{E_1}} \\
&\text{(R}_{E_1})_{n_{E_2}}\text{H} \quad \text{O} \\
&\text{(R}_{E_2})_{n_{E_3}}
\end{align*}
\]

(S7)

where the symbols and indices have the following meanings:

- \(R_{E_1}, R_{E_2} \) independently of one another are halogen, (C1-C4)-alkyl, (G-C4)-alkoxy, (C1-C4)-haloalkyl, (C1-C4)-alkylamino, di-(C1-C4)-alkylamino, nitro;
- \(A_{E_i} \) is COORE\(^3\) or COSRE\(^4\);
- \(R_{E_3}, R_{E_4} \) independently of one another are hydrogen, (G-C4)-alkyl, (C2-C6)-alkenyl, (C2-C4)-alkynyl, cyanoalkyl, (C1-C4)-haloalkyl, phenyl, nitrophenyl, benzyl, halobenzyl, pyridinylalkyl or alkylammonium;
- \(n_{E_1} \) is 0 or 1;
- \(n_{E_2}^1, n_{E_3} \) independently of one another are 0, 1 or 2;
- preferably:
 - diphenylmethoxyacetic acid,
 - ethyl diphenylmethoxyacetate,
 - methyl diphenylmethoxyacetate (CAS Reg. No.: 41858-19-9) (S7-1);

Compounds of the formula (S8), as described in WO-A-98/27049,

\[
\begin{align*}
&\text{(R}_{F_1})_{n_F} \\
&\text{X}_F \quad \text{F} \\
&\text{F} \quad \text{K}
\end{align*}
\]

(S8)

in which

- \(X_F \) is CH or N,
- \(n_F \) is, if \(X_F = N \), an integer from 0 to 4 and
- is, if \(X_F = \text{CH} \), an integer from 0 to 5,
RF¹ is halogen, (Ci-C₄)-alkyl, (Ci-C₄)-haloalkyl, (Ci-C₄)-alkoxy, (Ci-C₄)-haloalkoxy, nitro, (G-C₄)-alkythio, (Ci-C₄)-alkylsulphonyl, (Ci-C₄)-alkoxycarbonyl, optionally substituted phenyl, optionally substituted phenoxy,

RF² is hydrogen or (C₄)-alkyl,

RF³ is hydrogen, (Ci-Cs)-alkyl, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl or aryl, where each of the carbon-containing radicals mentioned above is unsubstituted or substituted by one or more, preferably by up to three, identical or different radicals from the group consisting of halogen and alkoxy; or salts thereof,

preferably compounds in which

X_F is CH,

n_F is an integer from 0 to 2,

RF⁴ is halogen, (Ci-C₄)-alkyl, (Ci-C₄)-haloalkyl, (Ci-C₄)-alkoxy, (Ci-C₄)-haloalkoxy,

RF⁵ is hydrogen or (C₄)-alkyl,

RF⁶ is hydrogen, (Ci-Cs)-alkyi, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl or aryl, where each of the carbon-containing radicals mentioned above is unsubstituted or substituted by one or more, preferably by up to three, identical or different radicals from the group consisting of halogen and alkoxy; or salts thereof,

S9) Active compounds from the class of the 3-(5-tetrazoiylcarbonyl)-2-quinolones (S9), for example 1,2-dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolycarbonyl)-2-quinolone (CAS Reg. No.: 219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolycarbonyl)-2-quinolone (CAS Reg. No.: 95855-00-8), as described in WO-A-1999/000020.

S10) Compounds of the formula (S10^a) or (S10^b) as described in WO-A-2007/023719 and WO-A-2007/023764
in which

\(R_G^1 \) is halogen, \((C_1-C_4)\)-alkyl, methoxy, nitro, cyano, CF\(_3\), OCF\(_3\)

\(Y_G, Z_G \) independently of one another are O or S.

\(n_G \) is an integer from 0 to 4.

\(R_G^2 \) is \((C_1-C_6)\)-alkyl, \((C_2-C_6)\)-alkenyl, \((C_3-C_6)\)-cycloalkyl, aryl; benzyl, halobenzyl,

\(R_G^3 \) is hydrogen or \((C-G)-aikyi.

SI1) Active compounds of the type of the oxyimino compounds (SI 1), which are known as seed dressings, such as, for example, "oxabetrinil" ((Z)-l,3-dioxolan-2-ylmethoxyimino(phenyl)acetonitrile) (SI 1-1), which is known as seed dressing safener for millet against metolachlor damage,

"fluxofenim" (1-(4-chlorophenyl)-2,2,2-trifluoro-1-ethanone 0-(1,3-dioxoan-2-ylmethyloxime) (SI 1-2), which is known as seed dressing safener for millet against metolachlor damage, and

"cyometrinil" or "CGA-43089" ((Z)-cyanomethoxyimino(phenyl)acetonitrile) (SI 1-3), which is known as seed dressing safener for millet against metolachlor damage.

SI2) Active compounds from the class of the isothiochromanones (SI 2), such as, for example, methyl [(3-oxo-1H-2-benzothiopyran-4(3H)-yiidene)methoxy]acetate (CAS Reg. No.: 205 121-04-6) (S12-1) and related compounds from WO-A-1 998/13361.

SI3) One or more compounds from group (SI 3):

"naphthalic anhydrid" (1,8-naphthalenedicarboxylic anhydride) (S1 3-1), which is known as seed dressing safener for corn against thiocarbamate herbicide damage,

"fenclorim" (4,6-dichloro-2-phenylpyrimidine) (S1 3-2), which is known as safener for pretilachlor in sown rice,
"flurazole" (benzyl 2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S1 3-3), which is known as seed dressing safener for millet against alachlor and metolachlor damage,

"CL 304415" (CAS Reg. No.: 31541-57-8)
(4-carboxy-3,4-dihydro-2H-1-benzopyran-4-acetic acid) (S1 3-4) from American Cyanamid, which is known as safener for corn against imidazolinone damage,

"MG 191" (CAS Reg. No.: 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S1 3-5) from Nitrokemia, which is known as safener for corn,

"MG 838" (CAS Reg. No.: 133993-74-5)
(2-propenyl 1-oxa-4-azaspiro[4.5]decane-4-carbodithioate) (S1 3-6) from Nitrokemia,

"disulphoton" (O,O-diethyl S-2-ethylthioethyl phosphorodithioate) (S1 3-7),

"dietholate" (O.O-diethyl O-phenyl phosphorothioate) (S1 3-8),

"mephenate" (4-chlorophenyl methylcarbamate) (S1 3-9).

Active compounds which, besides a herbicidal effect against harmful plants, also have a safener effect on crop plants such as rice, such as, for example,

"dimepiperate" or "MY-93" (S-1-methyl-1-phenylethyl piperidine-1-carbothioate), which is known as safener for rice against molinate herbicide damage,

"daimuron" or "SK 23" (1-(1-methyl-1-phenylethyl)-3-p-tolylurea), which is known as safener for rice against imazosulphuron herbicide damage,

"cumyluron" = "JC-940" (3-(2-chlorophenylmethyl)-1-(1-methyl-1-phenylethyl)urea, see JP-A-60087254), which is known as safener for rice against some herbicide damage,

"methoxyphenone" or "NK 049" (3,3’-dimethyl-4-methoxybenzophenone), which is known as safener for rice against some herbicide damage,

"CSB" (1-bromo-4-(chloromethylsulphonyl)benzene) from Kumiai, (CAS Reg. No. 54091-06-4), which is known as safener against some herbicide damage in rice.
Compounds of the formula (SI 5) or its tautomers, which are known, for example, from WO-A-2008/131861 and WO-A-2008/131860,

in which

\[R_{H}^{1} \] is (Ci-C_{6})-haloalkyl,

\[R_{H}^{2} \] is hydrogen or halogen,

\[R_{H}^{3}, R_{H}^{4} \] independently of one another are hydrogen, (Ci-Ci6)-alkyl, (C2-Cie)-alkenyl or (C_{2}-C_{10})-alkynyl,

where each of the 3 last-mentioned radicals is unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy, cyano, (G-C4)-alkoxy, (Ci-C_{4})-haloalkoxy, (Ci-C_{4})-alkylthio, (Ci-C_{4})-alkylamino, di-[Ci-C_{4}]-alkylamino, [(Ci-C_{4})-alkoxy]-carbonyl, [(Ci-C_{4})-haloalkoxy]-carbonyl, unsubstituted or substituted (C3-C6)-cycloalkyl, unsubstituted or substituted phenyl, and unsubstituted or substituted heterocyclyl;

or (C_{5}-C_{9})-cycloalkyl, (C_{6}-C_{8})-cycloalkenyl, (C1-C6)-cycloalkyl which is at one site of the ring condensed with a 4 to 6-membered saturated or unsaturated carbocyclic ring, or (C_{4}-C_{8})-cycloalkenyl which is at one site of the ring condensed with a 4 to 6-membered saturated or unsaturated carbocyclic ring.

where each of the 4 last-mentioned radicals is unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy, cyano, (C_{7}-C_{9})-alkyl, (Ci-C_{4})-haloalkyl, (Ci-C_{4})-alkoxy, (C_{1}-C_{4})-haloalkoxy, (G-C_{4})-alkylthio, (G-C_{4})-alkylamino, di-(C_{1}-C_{4})-alkyl]-amino, [(C_{1}-C_{4})-alkoxy]-carbonyl, [(C_{1}-C_{4})-haloalkoxy]-carbonyl, unsubstituted or substituted (C3-C8)-cycloalkyl, unsubstituted or substituted phenyl, and unsubstituted or substituted heterocyclyl; or

\[R_{H}^{3} \] is (G-C_{4})-alkoxy, (C2-C_{4})-alkenyloxy, (C2-C_{6})-alkynyloxy or (C2-C_{6})-haloalkoxy, and
$\text{R}_{\text{H}^4}\text{ is hydrogen or } (\text{G-C }_4)-\text{alkyl, or}$

R_{H^4} and R_{H^4} together with the directly bound N-atom are a 4 to 8-membered heterocyclic ring, which can contain further hetero ring atoms besides the N-atom, preferably up to two further hetero ring atoms from the group consisting of N, O and S, and which is unsubstituted or substituted by one or more radicals from the group consisting of halogen, cyano, nitro, (Cl-C_4)-alkyl, (Cl-C_4)-haloalkyl, (Cl-C_4)-alkoxy, (Cl-C_4)-haloalkoxy, and (Cl-C_4)-alkylthio.

$\text{S16) Active compounds which are primarily used as herbicides, but also have safener effect on crop plants, for example}$

- (2,4-dichlorophenoxy)acetic acid (2,4-D),
- (4-chlorophenoxy)acetic acid,
- (R,S)-2-(4-chloro-o-tolyl)oxy)propionic acid (mecoprop),
- 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB),
- (4-chloro-o-tolyl)oxy)acetic acid (MCPA),
- 4-(4-chloro-o-tolyl)oxy)butyric acid,
- 4-(4-chlorophenoxy)butyric acid,
- 3,6-dichloro-2-methoxybenzoic acid (dicamba),
- 1-(ethoxycarbonyl)ethyl 3,6-dichloro-2-methoxybenzoate (lactidichlor-ethyl).

being plant growth regulators which may be mentioned are chlorocholine chloride and ethephon.

Examples of plant nutrients which may be mentioned are customary inorganic or organic fertilizers for supplying plants with macro- and/or micronutrients.

In a preferred embodiment the present invention relates to the use of a composition comprising A) the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) and B) one or more of the following insecticides:

- Nicotinic acetylcholine receptor agonists, preferably Acetamiprid, Dinetofuran, Imidacloprid, Clothianidin, Thiacloprid, Thiamethoxam, Sulfoxaflor and Sodium channel modulators, preferably Cypermethrin, Alpha-Cypermethrin, Lambda-Cyhalothrin, Gamma-Cyhalothrin, Beta-Cyfluthrin, Cyfluthrin, Tefluthrin, Transfluthrin, Deltamethrin, Bifenthrin, Acrinathrin
Ryanodine receptor modulators, preferably Chorantraniliprole, Cyantraniliprole, Flubendiamide
Chloride channel activator, preferably Abamectin, Emamectin - (benzoate), Milbemectin
Nicotinic acetylcholine receptor allosteric activators, preferably Spinosad, Spinetoram
GABA-gated chloride channel antagonists, preferably Fipronil and Ethiprole
Voltage-dependent sodium channel blockers, preferably Indoxacarb, Metaflumizone
Mitochondrial complex I electron transport inhibitors, preferably Tebufenpyrad, Fenpyroximate
Mitochondrial complex II electron transport inhibitors, preferably Cyenopyrafen, Cyflumentofen
Inhibitor of mitochondrial ATP synthase, preferably Diafenthiuron,
Uncoupler of oxidative phosphorylation, preferably Chlofenapyr
Inhibitor of chitinbiosynthesis, preferably Lufenuron, Methoxyfenozide, Triflumuron, Buprofezin
Selective homopteran feeding blockes, preferably Pymetrozine, Flonicamid
Additional nematicides, preferably Oxamyl, Fiupyr, Fluensulfone,
Inhibitors of Acetyl CoAc carboxylase, preferably Spirotetramate, Spirodiclofen and Spiromesifen
4-[(2,2-difluoroethyl)amino]furan-2(5H)-one - 2-chloro-5-Ethylpyridin (1:1), Flupyradifurone,
Pyrifluquinazon, Flomentoquin, Pyflubumide, Cycloxaprid
And
Fumigants.

In another embodiment, the present invention relates to the use of a composition comprising A) the
compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and
(I-B) and B) at least one nematicidal biological control agent.

A further exemplary method of the invention comprises applying the compound of the formula (I),
formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or the compound of the
formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in
combination with at least one biological control agent - to either soil or a plant (e.g. foliarly) to combat
nematode damage and/or increase crop yield.

Nematicidal biological control agents (e.g. as designated under B)) suitable for use in the present
invention include nematophagous bacteria and nematophagous fungi.
Nematophagous bacteria useful herein include, but are not limited to, obligate parasitic bacteria, opportunistic parasitic bacteria, rhizobacteria, parasporal Cry protein-forming bacteria, endophytic bacteria and symbiotic bacteria.

In particular embodiments, the biological control agent for a mixture of the compounds of formula (I-A) and (I-B) can be a bacteria species selected from *Actinomycetes* spp., *Agrobacterium* spp., *Arthrobacter* spp., *Alcaligenes* spp., *Aureobacterium* spp., *Azobacter* spp., *Bacillus* spp., for example *Bacillus agri*, *Bacillus aizawai*, *Bacillus albolactic*, *Bacillus amyoliouquefaciens*, in particular strain IN973a or strain B3 or strain FZB42, *Bacillus cereus*, in particular strain CNCM 1-1562, *Bacillus chitinosporus*, *Bacillus circulans*, *Bacillus coagulans*, *Bacillus endoparasiticus*, *Bacillus endorhythmos*, *Bacillus firmus*, in particular strain CNCM 1-1582 (products known as Votivo, Flocter, Bionem), *Bacillus kurstaki*, *Bacillus lacticola*, *Bacillus lactimorbus*, *Bacillus lactis*, *Bacillus laterosporus*, *Bacillus lentimorbus*, *Bacillus licheniformis*, *Bacillus megaterium*, *Bacillus medusa*, *Bacillus metiens*, *Bacillus natto*, *Bacillus nematocida*, *Bacillus nigrificans*, *Bacillus papillae*, *Bacillus pumilus*, in particular strain GB34 or strain QST2808, *Bacillus siamensis*, *Bacillus spaerica*, *Bacillus spp.*, *Bacillus subtilis*, *Bacillus sp* B16; *Bacillus thuringiensis* (including those forming Cry proteins toxic to nematodes and/or nematode larvae such as Cry5, Cry6, Cry12, Cry13, Cry14 and Cry21), *Bacillus thuringiensis israelensis*; *Bacillus thuringiensis kurstaki*; *Bacillus thuringiensis* strain ATCC 55273; *Bacillus thuringiensis var aegyptii*; *Bacillus thuringiensis subspec aizawai* in particular strain ABTS-1 857; *Bacillus thuringiensis var colmeri*; *Bacillus thuringiensis var darmstadiensis*; *Bacillus thuringiensis var dendrolimus*; *Bacillus thuringiensis var galleria*; *Bacillus thuringiensis var japonensis*; *Bacillus thuringiensis subspe. morrisoni*; *Bacillus thuringiensis var San Diego*; *Bacillus thuringiensis var tenebrionis*, in particular strain NB176; *Bacillus uniflagellates*, plus those listed in the category of Bacillus Genus in the "Bergey's Manual of Systematic Bacteriology, First Ed. (1986)"; *Beijerinckia* spp., *Brevibacillus* spp., for example *Brevibacillus brevis*, *Brevibacillus laterosporus*, in particular strain G4, *Burkholderia* spp., for example *Burkholderia cepacia*, *Chromobacterium* spp., *Clavibacter* spp., *Clostridium* spp., *Comomonas* spp., *Corynebacterium* spp., for example *Corynebacterium paurometabolum*, *Corynebacterium pauroinetabolum*, *Curtobacterium* spp., *Desulforibibio* spp.; *Enterobacter* spp., *Flavobacterium* spp., *Glucobacter* spp., *Hydrogenophage* spp., *Klebsiella* spp., *Lysobacter enzymogenes*, *Methylobacterium* spp., *Pasteuria* spp., for example *Pasteuria penetrans* (products known as EcoNem), *Pasteuria thornei*, *Pasteuria nishizawai*, in particular strain Pn1 (product known as Soyacyst LF/ST) , *Pasteuria reniformis*, in particular strain Pr3; *Pasteuria ramosa*, *Candidatus Pasteuria usgae* sp. nov., *Pseudomonas* spp., for example *Pseudomonas aeruginosa*, *Pseudomonas aureofaciens*, *Pseudomonas cepacia*, *Pseudomonas chlororaphis*, *Pseudomonas fluorescens*, *Pseudomonas putida*, and *Paenibacillus* spp., for example *Paenibacillus macerans* and *Paenibacillus alvei*, *Phyllobacterium* spp., *Phingobacterium* spp., *Photorrhudas* spp., *Rhizobacteria*, *Rhizobium* spp., *Serratia* spp., *Stenotrophomonas* spp., *Xenorhabdus* spp. *Variivorax* spp.,
In a particularly preferred embodiment, the nematicidal biological control agent for a mixture of the compounds of formula (I-A) and (I-B) is at least one *Bacillus firmus* CNCM 1-1582 spore and/or *Bacillus cereus* strain CNCM 1-1562 spore as disclosed in U.S. Patent No. 6,406,690, which is incorporated herein by reference in its entirety.

In other preferred embodiments, the bacteria for a mixture of the compounds of formula (I-A) and (I-B) is at least one *B. amyloliquefaciens* IN937a, at least one *Bacillus subtilis* strain designation GB03, or at least one *B. pumilus* strain designation GB34. Combinations of the four species of above-listed bacteria, as well as other spore-forming, root-colonizing bacteria known to exhibit agriculturally beneficial properties are within the scope and spirit of the present invention.

Particularly preferred embodiments according to the invention are also those compositions that comprise mutants of *B. firmus* CNCM 1-1582 spore and/or *B. cereus* strain CNCM 1-1562 spore. Very particularly preferred are those mutants that have a nematicidal activity.

The present technology also provides embodiments in which the nematode-antagonistic biocontrol agent includes a nematophagous fungi, such as, but not limited to, ARF18 (Arkansas Fungus 18); *Arthrobotrys* spp., for example, *Arthrobotrys oligospora*, *Arthrobotrys superba* and *Arthrobotrys dactyloides*; *Chaetomium* spp., for example, *Chaetomium globosum*; *Cylindrocarpon* spp., for example, *Cylindrocarpon heteronema*; *Dactylaria* spp., for example, *Dactylaria Candida*; *Exophila* spp., for example, *Exophiala jeanselmei* and *Exophiala piscipilha*; *Fusarium* spp., for example *Fusarium solani*; *Gliocladium* spp., for example, *Gliocladium catenulatum*, *Gliocladium roseum* and *Gliocladium virens*; *Harposporium* spp., such as *Harposporium anguillulae*; *Hirsutella* spp., for example, *Hirsutella rhossiliensis*, *Hirsutella minnesotensis* and *Hirsutella thompsonii*, *Lecanicillium* spp., for example, *Lecanicillium lecanii* (= *Verticillium lecanii*); *Meristacrum* spp., for example, *Meristacrum asterospermum*; *Monacrosporium* spp., for example, *Monacrosporium drechsleri*, *Monacrosporium gephypopagum* and *Monacrosporium cionopagum*; *Myrothecium* spp., for example, *Myrothecium verrucaria*, in particular strain AARC0255 (products known as Dierea 90 WG); *Nematoctonus* spp., for example, *Nematoctonus geogenius*, *Nematoctonus leiosporus*; *Neocosmospora* spp., for example, *Neocosmospora vasinfecta*; *Paecilomyces* spp., such as, *Paecilomyces lilacinus* and *Paecilomyces variotii*; *Pochonia* spp., such as *Pochonia chlamydosporia* (= *Vercillum chlamydosporium*; products known as KlamiC); *Stagonospora* spp., for example, *Stagonospora heteroderae* and *Stagonospora phaseoli*; *Streptomyces* spp. for example *Streptomyces saraceticus* and *Streptomyces venezuelae*, and vesicular-arbuscular mycorrhizal fungi, *Trichoderma* spp., for example *Trichoderma asperellum*, *Trichoderma brevicompactum*, *Trichoderma harzianum*, *Tsukamurella paurometabola*, *Verticillium chlamydosporium*

Nematodes
The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in combination with the biological control agent Bacillus firmus strain CNCM I-1582 - or the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) in combination with at least one agrochemically active compound is particularly useful in controlling plant-parasitic nematodes in nematode-resistant plants wherein the nematodes are of the following species:

Aglenchus agricola, Anguina tritici, Aphelenchoides arachidis, Aphelenchoides fragaria and the stem and leaf endoparasites Aphelenchoides spp. in general, Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Bursaphelenchus eremus, Bursaphelenchus xylophilus, Bursaphelenchus cocophilus and Bursaphelenchus spp. in general, Cacopaurus pestis, Criconemella curvata, Criconemella onoensis, Criconemella ornata, Criconemella rasium, Criconemella xenoplax (= Mesocricnema xenoplax) and Criconemella spp. in general, Criconemoides ferniae, Criconemoides onoense, Criconemoides ornatum and Criconemoides spp. in general, Ditylenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliaphagus and the stem and leaf endoparasites Ditylenchus spp. in general, Dolichodorus heterocephalus, Globodera pallida (=Heterodera pallida), Globodera rostochiensis (potato cyst nematode), Globodera solanacearum, Globodera tabacum, Globodera Virginia and the sedentary, cyst forming parasites Globodera spp. in general, Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus erythrine, Helicotylenchus multicinctus, Helicotylenchus nannus, Helicotylenchus pseudorobustus and Helicotylenchus spp. in general, Hemicriconemoides, Hemicycliophora arenaria, Hemicycliophora nudata, Hemicycliophora parvana, Heterodera avenae, Heterodera cruciferae, Heterodera glycines (soybean cyst nematode), Heterodera oryzae, Heterodera schachtii, Heterodera zeae and the sedentary, cyst forming parasites Heterodera spp. in general, Hirschmaniella gracilis, Hirschmaniella oryzae Hirschmaniella spinicaudata and the stem and leaf endoparasites Hirschmaniella spp. in general, Hoplolaimus aegyptii, Hoplolaimus Californicus, Hoplolaimus columbus, Hoplolaimus galeatus, Hoplolaimus indicus, Hoplolaimus magnistylus, Hoplolaimus pararobustus, Longidorus africanus, Longidorus brevianulatus, Longidorus elongatus, Longidorus laevicapitatus, Longidorus vineacola and the ectoparasites Longidorus spp. in general, Meloidogyne acronea, Meloidogyne africana, Meloidogyne arenaria, Meloidogyne arenaria thamesi, Meloidogyne artiella, Meloidogyne chitwoodi, Meloidogyne coffeicola, Meloidogyne ethiopica, Meloidogyne exigua, Meloidogyne fallax, Meloidogyne graminicola, Meloidogyne graminis, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Meloidogyne kikuyensis, Meloidogyne minor, Meloidogyne naasi, Meloidogyne paranaensis, Meloidogyne thamesi and the sedentary parasites Meloidogyne spp. in general, Meloinema spp., Nacobbus aberrans, Neolythlenchus vigissi, Paraphelenchus pseudoparietinus, Paratrichodorus allius, Paratrichodorus lobatus, Paratrichodorus minor, Paratrichodorus nanus, Paratrichodorus porosus, Paratrichodorus teres and Paratrichodorus spp. in general, Paratylenchus hamatus, Paratylenchus
minutus, Paratylenchus projectus and Paratylenchus spp. in general. Pratylenchus agilis, Pratylenchus alleni, Pratylenchus andinus, Pratylenchus brachyurus, Pratylenchus cerealis, Pratylenchus coffeae, Pratylenchus crenatus, Pratylenchus delattrei, Pratylenchus giibbicaudatus, Pratylenchus goodeyi, Pratylenchus hamatus, Pratylenchus hevincicus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus pretannis, Pratylenchus scribneri, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Pratylenchus zeae and the migratory endoparasites Pratylenchus spp. in general, Pseudohalrenchus minutus, Psilenchus magnidentis, Psilenchus tumidus, Punctodera chalcoensis, Quinisulcius acutus, Radopholus citrophilus, Radopholus similis, and the migratory endoparasites Radopholus spp. in general, Rotylenchulus borealis, Rotylenchulus parvus, Rotylenchulus reniformis and Rotylenchulus spp. in general, Rotylenchus laurantinus, Rotylenchus macrodoratus, Rotylenchus robustus, Rotylenchus uniformis and Rotylenchus spp. in general, Scutellonema brachyurarum, Scutellonema bradyis, Scutellonema clathriacaudatum and the migratory endoparasites Scutellonema spp. in general, Subanguina radicola, Tetylenchus nicotianae, Trichodorus cylindricus, Trichodorus minor, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus and the ectoparasites Trichodorus spp. in general, Tylenchorhynchus agri, Tylenchorhynchus brassicae, Tylenchorhynchus clarus, Tylenchorhynchus claytoni, Tylenchorhynchus digitatus, Tylenchorhynchus ebiensis, Tylenchorhynchus maximus, Tylenchorhynchus nudus, Tylenchorhynchus vulgaris and Tylenchorhynchus spp. in general, Tylenchiilus semipenetrans and the semiparasites Tylenchulus spp. in general, Xiphinema americanum, Xiphinema brevicolle, Xiphinema dimorphicaudatum, Xiphinema index and the ectoparasites Xiphinema spp. in general.

Examples of nematodes to which a nematicide of the present invention is applicable include, but are not limited to, nematodes of the genus Meloidogyne such as the southern root-knot nematode (Meloidogyne incognita), Javanese root-knot nematode (Meloidogyne javanica), northern root-knot nematode (Meloidogyne hapla), and peanut root-knot nematode (Meloidogyne arenaria); nematodes of the genus Ditylenchus such as the potato rot nematode (Ditylenchus destructor) and bulb and stem nematode (Ditylenchus dipsaci); nematodes of the genus Pratylenchus such as the cob root-lesion nematode (Pratylenchus penetrans), chrysanthemum root-lesion nematode (Pratylenchus fallax), coffee root-lesion nematode (Pratylenchus coffeae), tea root-lesion nematode (Pratylenchus loosi), and walnut root-lesion nematode (Pratylenchus vulnus); nematodes of the genus Globodera such as the golden nematode (Globodera rostochiensis) and potato cyst nematode (Globodera pallida); nematodes of the genus Heterodera such as the soybean cyst nematode (Heterodera glycines) and sugar beet cyst nematode (Heterodera schachtii); nematodes of the genus Aphelenchoides such as the rice white-tip nematode (Aphelenchoides besseyi), chrysanthemum foliar nematode (Aphelenchoides ritzemabosi), and strawberry nematode (Aphelenchoides fragariae); nematodes of the genus Aphelenchus such as the mycophagous nematode (Aphelenchus avenae); nematodes of the genus Radopholus such as the burrowing nematode (Radopholus similis); nematodes of the genus Tylenchulus such as the citrus nematode (Tylenchulus semipenetrans); nematodes of the genus Rotylenchulus such as the rei
nematode (*Rotylenchulus reniformis*); nematodes that occur in trees, such as the pine wood nematode (*Bursaphelenchus xylophilus*), and the like.

Plants for which a nematicide of the present invention can be used are not particularly limited; for example, plants such as cereals (for example, rice, barley, wheat, rye, oat, corn, and the like), beans (soybeans, azuki beans, broad beans, peas, peanuts and the like), fruit trees/fruits (apples, citrus species, pears, grapes, peaches, Japanese apricots, cherries, walnuts, almonds, bananas, strawberries, pineapples and the like), vegetables (cabbage, tomato, spinach, broccoli, lettuce, onion, Welsh onion, pepper and the like), root crops (carrot, potato, sweet potato, radish, lotus root, turnip and the like), industrial crops (cotton, hemp, paper mulberry, mitsumata, rape, beet, hop, sugarcane, sugar beet, olive, rubber, palms, coffee, tobacco, tea and the like), pepos (pumpkin, cucumber, watermelon, melon and the like), pasture plants (orchard grass, sorghum, thimosy, clover, alfalfa and the like), lawn grasses (mascarene grass, bent grass and the like), crops for flavorings etc. (lavender, rosemary, thyme, parsley, pepper, ginger and the like), and flower plants (chrysanthemum, rose, orchids and the like) can be mentioned.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in coffee belonging to at least one species selected from the group of the phytoparasitic nematodes comprising *Pratylenchus brachyurus*, *Pratylenchus coffeae*, *Meloidogyne exigua*, *Meloidogyne incognita*, *Meloidogyne coffeicola*, *Helicotylenchus* spp. and also consisting of *Meloidogyne paraensis*, *Rotylenchus* spp., *Xiphinema* spp., *Tyienchorhynchus* spp., *Scutellonema* spp.

Compound(s) and compositions comprising compound(s) of the present invention is/are particularly useful in controlling nematodes in potato belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of *Pratylenchus brachyurus*, *Pratylenchus pratensis*, *Pratylenchus scribneri*, *Pratylenchus penetrans*, *Pratylenchus coffeae*, *Ditylenchus dipsaci* and also consisting of *Pratylenchus alleni*, *Pratylenchus andinus*, *Pratylenchus cerealis*, *Pratylenchus crenatus*, *Pratylenchus hexincisus*, *Pratylenchus loosi*, *Pratylenchus neglectus*, *Pratylenchus teres*, *Pratylenchus thornei*, *Pratylenchus vulnus*, *Belonolaimus longicaudatus*, *Trichodorus cylindricus*, *Trichodorus primitius*, *Trichodorus proximus*, *Trichodorus similis*, *Trichodorus sparsus*, *Paratrichodorus minor*, *Paratrichodorus allius*, *Paratrichodorus nanus*, *Paratrichodorus teres*, *Meloidogyne armaria*, *Meloidogyne fallax*, *Meloidogyne hapla*, *Meloidogyne thamesi*, *Meloidogyne incognita*, *Meloidogyne chitwoodi*, *Meloidogyne javanica*, *Nacobbus aberrans*, *Globodera rostochiensis*, *Globodera pallida*, *Ditylenchus destructor*, *Radopholus similis*, *Rotylenchulus reniformis*, *Neotylenchus vigissi*, *Paraphelenchus pseudoparietinus*, *Aphelenchoides fragariae*, *Meloinema* spp.

Compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in tomato belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of *Meloidogyne arenaria*, *Meloidogyne hapla*, *Meloidogyne
The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in cucurbits belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Meloidogyne javanica, Meloidogyne incognita, Pratylenchus penetrans and also consisting of Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus scribneri, Pratylenchus valunus, Paratrichodorus minor, Meloidogyne exigua, Nacobbus aberrans, Globodera solanacearum, Dolichodorus heterocephalus, Rotylenchulus reniformis.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in cotton belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Belonolaimus longicaudatus, Meloidogyne incognita, Hoploaimus columbus, Hoploaimus galeatus, Rotylenchulus reniformis.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in corn belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Belonolaimus longicaudatus, Paratrichodorus minor and also consisting of Pratylenchus brachyurus, Pratylenchus delattrei, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus zeae, (Belonolaimus gracilis), Belonolaimus nortoni, Longidorus brevianulatus, Meloidogyne armaria, Meloidogyne arenaria thamesi, Meloidogyne graminis, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Meloidogyne naasi, Heteroder aavenae, Heteroder aoryzae, Heteroder azeae, Punctodera chalcoensis, Ditylenchus dipsaci, Hoploaimus aegyptii, Hoploaimus magnistylus, Hoploaimus galeatus, Hoploaimus indicus, Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus pseudorobustus, Xiphinema americanum, Dolichodorus heterocephalus, Criconemella ornata, Criconemella onoeensis, Radopholus similis, Rotylenchulus borealis, Rotylenchulus parvus, Tylencylorhynchus agri, Tylencylorhynchus clarus, Tylencylorhynchus claytoni, Tylencylorhynchus maximus, Tylencylorhynchus nudus, Tylencylorhynchus vulgaris, Quinsequcius acutus, Paratylenchus minutus, Hemicicliophora parvana, Agenchus agricola, Anguina tritici, Aphelenchoides arachidis, Scutellonema brachyurum, Subanguina radiciola.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in soybean belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus penetrans, Pratylenchus scribneri, Belonolaimus longicaudatus, Heteroder a glycines, Hoploaimus columbus and also consisting of Pratylenchus coffeae, Pratylenchus hexincisus, Pratylenchus neglectus, Pratylenchus crenatus, Pratylenchus alleni, Pratylenchus agilis,
Pratylenchus zeae, Pratylenchus vulnus, (Belonolaimus gracilis), Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne hapla, Hoplolaimus columbus, Hoplolaimus galeatus, Rotylenchulus reniformis.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in tobacco belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Meloidogyne incognita, Meloidogyne javanica and also consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus neglectus, Pratylenchus crenatus, Pratylenchus thornei, Pratylenchus vulnus, Pratylenchus zeae, Longidorus elongatus, Pararichodorus lobatus, Trichodorus spp., Meloidogyne arenaria, Meloidogyne hapla, Globodera tabacum, Globodera solanacearum, Globodera virginiae, Ditylenchus dipsaci, Rotylenchus spp., Helicotylenchus spp., Xiphinema americanum, Criconemella spp., Rotylenchulus reniformis, Tylenchorhynchus claytoni, Paratylenchus spp., Tetylenchus nicotianae.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in citrus belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus coffeae and also consisting of Pratylenchus brachyurus, Pratylenchus vulnus, Belonolaimus longicaudatus, Paratrichodorus minor, Pararichodorus porosus, Trichodorus , Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Rotylenchus macrodoratus, Xiphinema americanum, Xiphinema brevicolle, Xiphinema index, Criconemella spp., Hemicricrioceroides, Radophorus similis TeseptivelyRadopholus citrophilus, Hemicycliophora arenaria, Hemicycliophora nudata, Tylenchulus semipenetrans.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in banana belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus coffeae, Radopholus similis and also consisting of Pratylenchus gibbicaudatus, Pratylenchus loosi, Meloidogyne spp., Helicotylenchus multicinctus, Helicotylenchus dihystera, Rotylenchulus spp.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in pine apple belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus zeae, Pratylenchus pratensis, Pratylenchus brachyurus, Pratylenchus goodeyi, Meloidogyne spp., Rotylenchulus reniformis and also consisting of Longidorus elongatus, Longidorus laevicapitatus, Trichodorus primitivus, Trichodorus minor, Heteroderida spp., Ditylenchus myceliophagus, Hoplolaimus Californicus, Hoplolaimus pararobustus, Hoplolaimus indicus, Helicotylenchus dihystera, Helicotylenchus nannus, Helicotylenchus multicinctus, Helicotylenchus erythrine, Xiphinema dimorphicaudatum, Radopholus similis, Tylenchorhynchus digitatus, Tylenchorhynchus ebriensis, Paratylenchus minutus, Scutellonema
The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in grapes belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of *Pratylenchus vulnus*, *Meloidogyne arenaria*, *Meloidogyne incognita*, *Meloidogyne javanica*, *Xiphinema americanum*, *Xiphinema index* and also consisting of *Pratylenchus pratensis*, *Pratylenchus scribneri*, *Pratylenchus neglectus*, *Pratylenchus brachyurus*, *Pratylenchus thornei*, *Tylenchulus semipenetrans*.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in tree crops – pome fruits, belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of *Pratylenchus penetrans* and also consisting of *Pratylenchus vulnus*, *Longidorus elongatus*, *Meloidogyne incognita*, *Meloidogyne hapla*.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in tree crops – stone fruits, belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of *Pratylenchus penetrans*, *Pratylenchus vulnus*, *Meloidogyne arenaria*, *Meloidogyne hapla*, *Meloidogyne javanica*, *Meloidogyne incognita*, *Criconemella xenoplax* and also consisting of *Pratylenchus brachyurus*, *Pratylenchus coffeae*, *Pratylenchus scribneri*, *Pratylenchus zeae*, *Beolonolaimus longicaudatus*, *Helicotylenchus dihystera*, *Xiphinema americanum*, *Criconemella curvata*, *Tylenchorhynchus claytoni*, *Paratylenchus hamatus*, *Paratylenchus projectus*, *Scutellonema brachyurum*, *Hoplolaimus galeatus*.

The compound(s) and compositions comprising the compound(s) of the present invention is/are particularly useful in controlling nematodes in tree crops - nuts, belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of *Trichodorus spp.*, *Criconemella rustia* and also consisting of *Pratylenchus vulnus*, *Paratrichodorus spp.*, *Meloidogyne incognita*, *Helicotylenchus spp.*, *Tylenchorhynchus spp.*, *Cacopaurus pestis*.

Formulations

Suitable extenders and/or surfactants which may be contained in the compositions according to the invention are all formulation auxiliaries which can customarily be used in plant treatment compositions.

In the compositions according to the invention the ratio of the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) to an agrochemically active compound of group (B) can be varied within a relatively wide range. In general, between 0.02 and 2.0
parts by weight, preferably between 0.05 and 1.0 part by weight, of the compound of the formula (I) is employed per part by weight of agrochemically active compound.

When employing the active compounds of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) which can be used according to the invention, the application rates can be varied within a certain range, depending on the type of application. In the treatment of seed, the application rates of active compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) are generally between 10 and 10000 mg per kilogram of seed, preferably between 10 and 300 mg per kilogram of seed. When used in solid formulations, the application rates of active compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) are generally between 20 and 800 mg per kilogram of formulation, preferably between 30 and 700 mg per kilogram of formulation.

According to the invention, carrier is to be understood as meaning a natural or synthetic, organic or inorganic substance which is mixed or combined with the active compounds for better applicability, in particular for application to plants or plant parts or seeds. The carrier, which may be solid or liquid, is generally inert and should be suitable for use in agriculture.

Suitable solid carriers are: for example ammonium salts and natural ground minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral oils and vegetable oils, and also derivatives thereof. It is also possible to use mixtures of such carriers. Solid carriers suitable for granules are: for example crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals and also granules of organic material, such as sawdust, coconut shells, maize cobs and tobacco stalks. Suitable emulsifiers and/or foam-formers are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, and also protein hydrolysates. Suitable dispersants are: for example lignosulphite waste liquors and methylcellulose.

Suitable liquefied gaseous extenders or carriers are liquids which are gaseous at ambient temperature and under atmospheric pressure, for example aerosol propellants, such as butane, propane, nitrogen and carbon dioxide.

Tackifiers, such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules and latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, or else natural phospholipids, such as cephalins and lecithins and synthetic phospholipids can be used in the formulations. Other possible additives are mineral and vegetable oils.
If the extender used is water, it is also possible for example, to use organic solvents as auxiliary solvents. Suitable liquid solvents are essentially: aromatic compounds, such as xylene, toluene or alkynaphthalenes, chlorinated aromatic compounds or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols, such as butanol or glycol, and also ethers and esters thereof, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulphoxide, and also water.

The compositions according to the invention may comprise additional further components, such as, for example, surfactants. Suitable surfactants are emulsifiers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surfactants. Examples of these are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alklyphenols or arylyphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyltaurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates. The presence of a surfactant is required if one of the active compounds and/or one of the inert carriers is insoluble in water and when the application takes place in water. The proportion of surfactants is between 5 and 40 per cent by weight of the composition according to the invention.

It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide, Prussian blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

If appropriate, other additional components may also be present, for example protective colloids, binders, adhesives, thickeners, thixotropic substances, penetants, stabilizers, sequestering agents, complex formers. In general, the active compounds can be combined with any solid or liquid additive customarily used for formulation purposes.

In general, the compositions according to the invention comprise between 0.05 and 99 per cent by weight of the active compound combination according to the invention, preferably between 10 and 70 per cent by weight, particularly preferably between 20 and 50 per cent by weight, most preferably 25 per cent by weight.

The active compound combinations or compositions according to the invention can be used as such or, depending on their respective physical and/or chemical properties, in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold-fogging concentrates, warm-fogging concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions,
macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, foams, pastes, pesticide-coated seed, suspension concentrates, suspension concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for the treatment of seed, wettable powders, natural products and synthetic substances impregnated with active compound, and also microencapsulations in polymeric substances and in coating materials for seed, and also ULV cold-fogging and warm-fogging formulations.

The formulations mentioned can be prepared in a manner known per se, for example by mixing the active compounds or the active compound combinations with at least one additive. Suitable additives are all customary formulation auxiliaries, such as, for example, organic solvents, extenders, solvents or diluents, solid carriers and fillers, surfactants (such as adjuvants, emulsifiers, dispersants, protective colloids, wetting agents and tackifiers), dispersants and/or binders or fixatives, preservatives, dyes and pigments, defoamers, inorganic and organic thickeners, water repellents, if appropriate siccatives and UV stabilizers, gibberellins and also water and further processing auxiliaries. Depending on the formulation type to be prepared in each case, further processing steps such as, for example, wet grinding, dry grinding or granulation may be required.

Organic diluents that may be present are all polar and non-polar organic solvents that are customarily used for such purposes. Preferred are ketones, such as methyl isobutyl ketone and cyclohexanone, furthermore amides, such as dimethylformamide and alkanecarboxamides, such as N,N-dimethyldecanamide and N,N-dimethyloctanamide, furthermore cyclic compounds, such as N-methylpyrrolidone, N-octylpyrrolidone, N-dodecylpyrrolidone, N-octylcaprolactam, N-dodecylcaprolactam and butyrolactone, additionally strongly polar solvents, such as dimethyl sulphoxide, furthermore aromatic hydrocarbons, such as xylene, Solvesso™, mineral oils, such as white spirit, petroleum, alkylbenzenes and spindle oil, moreover esters, such as propylene glycol monomethyl ether acetate, dibutyl adipate, hexyl acetate, heptyl acetate, tri-n-butyl citrate and di-n-butyl phthalate, and furthermore alcohols, such as, for example, benzyl alcohol and 1-methoxy-2-propanol.

Solid carriers suitable for granules are: for example crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals and also granules of organic material, such as sawdust, coconut shells, maize cobs and tobacco stalks.

Suitable surfactants (adjuvants, emulsifiers, dispersants, protective colloids, wetting agents and tackifiers) are customary ionic and nonionic substances. Examples which may be mentioned are ethoxylated nonylphenols, polyalkylene glycol ethers of straight-chain or branched alcohols, products of reactions of alkylphenols with ethylene oxide and/or propylene oxide, products of reactions of fatty amines with ethylene oxide and/or propylene oxide, furthermore fatty esters, alkylsulphonates, alkyl sulphates, alkyl ether sulphates, alkyl ether phosphates, aryl sulphates, ethoxylated arylalkylphenols, such as, for example, tristyrylphenol ethoxylates, furthermore ethoxylated and propoxylated aryalkylphenols and also sulphated or phosphated aryalkylphenol ethoxylates or ethoxy- and
propoxylates. Mention may furthermore be made of natural and synthetic water-soluble polymers, such as lignosulphonates, gelatine, gum arabic, phospholipids, starch, hydrophobically modified starch and cellulose derivatives, in particular cellulose esters and cellulose ethers, furthermore polyvinyl alcohol, polyvinyl acetate, polyvinylpyrrolidone, polyacryliic acid, polymethacrylic acid and copolymers of (meth)acrylic acid and (meth)acrylic acid esters, and moreover also alkali metal hydroxide-neutralized copolymers of methacrylic acid and methacrylic ester and condensates of optionally substituted naphthalenesulphonlic acid salts with formaldehyde.

Suitable solid fillers and carriers are all substances customarily used for this purpose in crop protection compositions. Inorganic particles, such as carbonates, silicates, sulphates and oxides having a mean particle size of from 0.005 to 20 µm, particularly preferably from 0.02 to 10 µm, may be mentioned as being preferred. Examples which may be mentioned are ammonium sulphate, ammonium phosphate, urea, calcium carbonate, calcium sulphate, magnesium sulphate, magnesium oxide, aluminium oxide, silicon dioxide, finely divided silicic acid, silica gels, natural and synthetic silicates and alumosilicates and vegetable products such as cereal meal, wood powder and cellulose powder.

Suitable colorants that may be present in the seed dressing formulations to be used according to the invention include all colorants customary for such purposes. Use may be made both of pigments, of sparing solubility in water, and of dyes, which are soluble in water. Examples that may be mentioned include the colorants known under the designations Rhodamin B, C.I. Pigment Red 112 and C.I. Solvent Red 1. The colorants used can be inorganic pigments, for example iron oxide, titanium oxide, Prussian Blue, and organic dyes, such as alizarin, azo and metal phthalocyanine dyes, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

Suitable wetting agents that may be present in the seed dressing formulations to be used according to the invention include all substances which promote wetting and are customary in the formulation of agrochemical active compounds. Preference is given to using alkynaphthalenesulphonates, such as diisopropyl- or disobutynaphthalenesulphonates.

Suitable dispersants and/or emulsifiers that may be present in the seed dressing formulations to be used according to the invention include all nonionic, anionic and cationic dispersants which are customary in the formulation of agrochemical active compounds. Preference is given to using nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Particularly suitable nonionic dispersants are ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers, and also tristryrylphenol polyglycol ethers and their phosphated or sulphated derivatives. Particularly suitable anionic dispersants are lignosulphonates, polyacrylic acid salts and arylsulphonate/formaldehyde condensates.

Defoamers that may be present in the seed dressing formulations to be used according to the invention include all foam-inhibiting compounds which are customary in the formulation of agrochemical active
compounds. Preference is given to using silicone defoamers, magnesium stearate, silicone emulsions, long-chain alcohols, fatty acids and their salts and also organo-fluorine compounds and mixtures thereof.

Preservatives that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. By way of example, mention may be made of dichlorophen and benzyl alcohol hemiformal.

Secondary thickeners that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, polysaccharides, such as xanthan gum or Veegum, modified clays, phyllosilicates, such as attapulgite and bentonite, and also finely divided siliceous acids.

Suitable adhesives that may be present in the seed dressing formulations to be used according to the invention include all customary binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.

Suitable gibberellins that may be present in the seed dressing formulations to be used according to the invention are preferably the gibberellins A1, A3 (= gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler "Chemie der Pflanzenschutz- und Schadbensbekämpfungsmittel" [Chemistry of Crop Protection Agents and Pesticides], Vol. 2, Springer Verlag, 1970, pp. 401-412).

The formulations generally comprise between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%.

The active compound combinations according to the invention can be present in commercial formulations and in the use forms prepared from these formulations as a mixture with other active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators or herbicides. A mixture with fertilizers is also possible.

The treatment according to the invention of the plants and plant parts with the active compound combinations or compositions is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seeds, furthermore as a powder for dry seed treatment, a solution for seed treatment, a water-soluble powder for slurry treatment, by incrusting, by coating with one or more coats, etc. Preference is given to application by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching) and drip irrigating.
The application of the formulations is carried out in accordance with customary agricultural practice in a manner adapted to the application forms. Customary applications are, for example, dilution with water and spraying of the resulting spray liquor, application after dilution with oil, direct application without dilution, seed dressing or soil application of carrier granules.

The active compound content of the application forms prepared from the commercial formulations can vary within wide limits. The active compound concentration of the application forms can be from 0.0000001 up to 95% by weight of active compound, preferably between 0.0001 and 2% by weight.

The compositions according to the invention do not only comprise ready-to-use compositions which can be applied with suitable apparatus to the plant or the seed, but also commercial concentrates which have to be diluted with water prior to use.

Application methods

The treatment according to the invention of the plants and plant parts with the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) or compositions is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, stem injection, in-furrow application, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seeds, furthermore as a powder for dry seed treatment, a solution for seed treatment, a water-soluble powder for slurry treatment, by incrusting, by coating with one or more layers, etc. It is furthermore possible to apply the active compounds by the ultra-low volume method, or to inject the active compound preparation or the active compound itself into the soil.

Generally, the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) is applied in a rate of 10 g to 20 kg per ha, preferably 50 g to 10 kg per ha. most preferably 100 g to 5 kg per ha.

The invention furthermore comprises a method for treating seed. The invention furthermore relates to seed treated according to one of the methods described in the preceding paragraph.

The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or compositions comprising the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - according to the invention are especially suitable for treating seed. A large part of the damage to crop plants caused by harmful organisms is triggered by an infection of the seed during storage or after sowing as well as during and after germination of the plant. This phase is particularly critical since the roots and shoots of the growing plant are particularly
sensitive, and even small damage may result in the death of the plant. Accordingly, there is great interest in protecting the seed and the germinating plant by using appropriate compositions.

The control of nematodes by treating the seed of plants has been known for a long time and is the subject of continuous improvements. However, the treatment of seed entails a series of problems which cannot always be solved in a satisfactory manner. Thus, it is desirable to develop methods for protecting the seed and the germinating plant which dispense with the additional application of crop protection agents after sowing or after the emergence of the plants or which at least considerably reduce additional application. It is furthermore desirable to optimize the amount of active compound employed in such a way as to provide maximum protection for the seed and the germinating plant from attack by nematodes, but without damaging the plant itself by the active compound employed. In particular, methods for the treatment of seed should also take into consideration the intrinsic nematicidal properties of transgenic plants in order to achieve optimum protection of the seed and the germinating plant with a minimum of crop protection agents being employed.

Accordingly, the present invention also relates in particular to a method for protecting seed and germinating plants against attack by nematodes by treating the seed with The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or a composition comprising the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) according to the invention. The invention also relates to the use of the compositions according to the invention for treating seed for protecting the seed and the germinating plant against nematodes. Furthermore, the invention relates to seed treated with a composition according to the invention for protection against nematodes.

The control of nematodes which damage plants post-emergence is carried out primarily by treating the soil and the above-ground parts of plants with crop protection compositions. Owing to the concerns regarding a possible impact of the crop protection composition on the environment and the health of humans and animals, there are efforts to reduce the amount of active compounds applied.

One of the advantages of the present invention is that, because of the particular systemic properties of

The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or a composition comprising the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) according to the invention, treatment of the seed with The compound of the formula (I), formula (I-A), (I-B) or of a mixture of the compounds of formula (I-A) and (I-B) or these compositions not only protects the seed itself, but also the resulting plants after emergence, from nematodes. In this manner, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.

The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or the compositions comprising the compound of the formula (I), formula (I-A), (I-B) or a
mixture of the compounds of formula (I-A) and (I-B) - according to the invention are suitable for protecting seed of vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular, citrus fruits, pine apples and bananas, and grapes.

As also described further below, the treatment of transgenic seed with The compound of the formula (I) or compositions according to the invention is of particular importance. This refers to the seed of plants containing at least one heterologous gene which allows the expression of a polypeptide or protein having insecticidal properties. The heterologous gene in transgenic seed can originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium. Preferably, this heterologous gene is from Bacillus sp., the gene product having activity against the European corn borer and/or the Western corn rootworm. Particularly preferably, the heterologous gene originates from Bacillus thuringiensis.

In the context of the present invention, the compound of the formula (I), formula (I-A), (I-B) or of a mixture of the compounds of formula (I-A) and (I-B) - or a composition comprising the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - according to the invention are applied on their own or in a suitable formulation to the seed. Preferably, the seed is treated in a state in which it is sufficiently stable so that the treatment does not cause any damage. In general, treatment of the seed may take place at any point in time between harvesting and sowing. Usually, the seed used is separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. Thus, it is possible to use, for example, seed which has been harvested, cleaned and dried to a moisture content of less than 15 % by weight. Alternatively, it is also possible to use seed which, after drying, has been treated, for example, with water and then dried again.

When treating the seed, care must generally be taken that the amount of the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or a composition comprising the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - according to the invention applied to the seed and/or the amount of further additives is chosen in such a way that the germination of the seed is not adversely affected, or that the resulting plant is not damaged. This must be borne in mind in particular in the case of active compounds which may have phytotoxic effects at certain application rates.

The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or a composition comprising the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - according to the invention can be applied directly, that is to say without comprising further components and without having been diluted. In general, it is preferable to apply the compositions to the seed in the form of a suitable formulation. Suitable formulations and methods for the treatment of seed are known to the person skilled in the art and are described, for

The compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) - or a composition comprising the compound of the formula (I), formula (I-A), (I-B) or of a mixture of the compounds of formula (I-A) and (I-B) - which can be used according to the invention can be converted into customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also ULV formulations.

These formulations are prepared in a known manner by mixing the active compounds or active compound combinations with customary additives, such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water as well.

Suitable colorants that may be present in the seed dressing formulations which can be used according to the invention include all colorants customary for such purposes. Use may be made both of pigments, of sparing solubility in water, and of dyes, which are soluble in water. Examples that may be mentioned include the colorants known under the designations Rhodamine B, C.I. Pigment Red 112, and C.I. Solvent Red 1.

Suitable wetting agents that may be present in the seed dressing formulations which can be used according to the invention include all substances which promote wetting and are customary in the formulation of active agrochemical substances. With preference it is possible to use alkynaphthalene-sulphonates, such as diisopropyl- or diisobutynaphthalene-sulphonates.

Suitable dispersants and/or emulsifiers that may be present in the seed dressing formulations which can be used according to the invention include all nonionic, anionic, and cationic dispersants which are customary in the formulation of active agrochemical substances. With preference, it is possible to use nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Particularly suitable nonionic dispersants are ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers, and tristyrylphenol polyglycol ethers, and their phosphated or sulphated derivatives. Particularly suitable anionic dispersants are lignosulphonates, polyacrylic salts, and arylsulphonate-formaldehyde condensates.

Defoamers that may be present in the seed dressing formulations to be used according to the invention include all foam-inhibiting compounds which are customary in the formulation of agrochemically active compounds. Preference is given to using silicone defoamers, magnesium stearate, silicone emulsions, long-chain alcohols, fatty acids and their salts and also organofluorine compounds and mixtures thereof.
Preservatives that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. By way of example, mention may be made of dichlorophen and benzyl alcohol hemiformal.

Secondary thickeners that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, polysaccharides, such as xanthan gum or Veegum, modified clays, phyllosilicates, such as attapulgite and bentonite, and also finely divided silicic acids.

Suitable adhesives that may be present in the seed dressing formulations to be used according to the invention include all customary binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.

Suitable gibberellins that may be present in the seed dressing formulations to be used according to the invention are preferably the gibberellins A1, A3 (= gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegier “Chemie der Pflanzenschutz- und Schadlingsbekämpfungsmittel” [Chemistry of Crop Protection Agents and Pesticides], Vol. 2, Springer Verlag, 1970, pp. 401-412).

The seed dressing formulations which can be used according to the invention may be used directly or after dilution with water beforehand to treat seed of any of a very wide variety of types. The seed dressing formulations which can be used according to the invention or their dilute preparations may also be used to dress seed of transgenic plants. In this context, synergistic effects may also arise in interaction with the substances formed by expression.

Suitable mixing equipment for treating seed with the seed dressing formulations which can be used according to the invention or the preparations prepared from them by adding water includes all mixing equipment which can commonly be used for dressing. The specific procedure adopted when dressing comprises introducing the seed into a mixer, adding the particular desired amount of seed dressing formulation, either as it is or following dilution with water beforehand, and carrying out mixing until the formulation is uniformly distributed on the seed. Optionally, a drying operation follows.

The nematicidal compositions according to the invention can be used for the curative or protective control of nematodes. Accordingly, the invention also relates to curative and protective methods for controlling nematodes using the the compound of the formula (I), formula (I-A), (I-B) or of a mixture of the compounds of formula (I-A) and (I-B) - and compositions containing the compound of the formula (I), formula (I-A), (I-B) or of a mixture of the compounds of formula (I-A) and (I-B) - according to the invention, which are applied to the seed, the plant or plant parts, the fruit or the soil in which the plants grow. Preference is given to application onto the plant or the plant parts, the fruits or the soil.
The compositions according to the invention for controlling nematodes in crop protection comprise an active, but non-phytotoxic amount of the compounds according to the invention. "Active, but non-phytotoxic amount" shall mean an amount of the composition according to the invention which is sufficient to control or to completely kill the plant disease caused by nematodes, which amount at the same time does not exhibit noteworthy symptoms of phytotoxicity. These application rates generally may be varied in a broader range, which rate depends on several factors, e.g. the nematodes, the plant or crop, the climatic conditions and the ingredients of the composition according to the invention.

The fact that the active compounds, at the concentrations required for the controlling of plant diseases, are well tolerated by plants permits the treatment of aerial plant parts, of vegetative propagation material and seed, and of the soil.

In an exemplary seed treatment method, an aqueous composition comprising the compound of the formula (I), formula (I-A), (I-B) or a mixture of the compounds of formula (I-A) and (I-B) can be applied at a rate to provide in the range of 0.5 g to 10 kg, preferably 0.8 g to 5 kg, most preferably 1 g to 1 kg The compound of the formula (I), formula (I-A), (I-B) or of a mixture of the compounds of formula (I-A) and (I-B) per 100 kg (dt) of seeds. In an exemplary seed treatment method, an aqueous composition comprising the biological control agent, in particular Bacillus firmus CNCM 1-1582 spore can be applied at a rate to provide in the range of 0.1 g to 20 g, preferably 1 g to 10 g, particularly preferably 2.5 g to 7.5 g., and most preferably approximately 5 g spore per hectare or 100,000 kernels of seed. The above ranges refer to a spore formulation or suspension containing 10^7 spores/g.

In various embodiments, the biological control agent is added to the seed at a rate of about 1 x 10^5 to 1 x 10^6 colony forming units (cfu) per seed, including about 1 x 10^5 cfu/seed, or about 1 x 10^6 cfu/seed, or about 1 x 10^7 cfu/seed, or about 1 x 10^8 cfu/seed, including about 1 x 10^5 to 1 x 10^7 cfu/per seed, about 1 x 10^5 to 1 x 10^6 cfu/per seed, about 1 x 10^6 to 1 x 10^7 cfu/per seed, about 1 x 10^6 to 1 x 10^7 cfu/per seed and about 1 x 10^7 to 1 x 10^8 cfu/per seed.

Formula for the efficacy of the combination of two compounds

The expected efficacy of a given combination of two compounds is calculated as follows (see Colby, S.R., „Calculating Synergistic and antagonistic Responses of Herbicide Combinations", Weeds 15, pp. 20-22, 1967):

If

\[X \text{ is the efficacy expressed in } \% \text{ mortality of the untreated control for test compound A at a concentration of m ppm respectively m g/ha,} \]

\[Y \text{ is the efficacy expressed in } \% \text{ mortality of the untreated control for test compound B at a concentration of n ppm respectively n g/ha,} \]
E is the efficacy expressed in % mortality of the untreated control using the mixture of A and B at m and n ppm respectively m and n g/ha,

\[E = X \times Y \]

then is

\[E = X + Y - \ldots \]

If the observed insecticidal efficacy of the combination is higher than the one calculated as „E”, then the combination of the two compounds is more than additive, i.e., there is a synergistic effect.

Further embodiments which are preferred as well are mentioned hereafter:

A1. Use of the compound of the formula (I)

![Chemical structure of compound (I)](image)

for controlling nematodes in nematode resistant crops and for increasing yield in those crops.

A2. Use according to embodiment A1, whereas the compound of the formula (I) is the compound (I-A)

![Chemical structure of compound (I-A)](image)

A3. Use according to embodiment A1, whereas the compound of the formula (I) is the compound (I-B)

![Chemical structure of compound (I-B)](image)
A4. Use according to any of embodiments A1 to A3, of a mixture of the compounds of the formula (I-A) and (I-B) for controlling nematodes in nematode resistant crops and for increasing yield in those crops.

A5. Use according to any of embodiments A1 to A4, of a composition comprising the compound of the formula (I), formula (I-A), formula (I-B) or a mixture of the compounds of formula (I-A), (I-B) and at least one further agrochemically active compound and/or at least one nematicidal biological control agent for controlling nematodes in nematode resistant crops and for increasing yield in those crops.

A6. Use according to any of embodiments A1 to A5, wherein the nematode resistant crops are selected from the group consisting of cereals, beans, fruit trees/fruits, vegetables, root crops, industrial crops, pepos, pasture plants, lawn grasses, crops for flavorings, and flower plants.

A7. A method of controlling nematodes in nematode resistant crops by applying the compound of the formula (I), (I-A), (I-B) or a mixture of the compounds of the formula (I-A) and (I-B) to plants.

A8. A method of treating seeds for the control of nematodes in the group of crops selected from cereals, beans, fruit trees/fruits, vegetables, root crops, industrial crops, pepos, pasture plants, lawn grasses, crops for flavorings, and flower plants, comprising applying the compound of the formula (I), (I-A), (I-B) or a mixture of the compounds of the formula (I-A) and (I-B) to seeds.

A9. A method for increasing yield, comprising applying the compound of the formula (I), (I-A), (I-B) or a mixture of the compounds of the formula (I-A) and (I-B) according to any of embodiments A1 to A6 to a plant.

A10. A method for increasing yield, comprising applying the compound of the formula (I), (I-A), (I-B) or a mixture of the compounds of the formula (I-A) and (I-B) according to any of embodiments A1 to A6 to a seed.
Claims

1. Use of the compound of the formula (I)

\[
\begin{array}{c}
\text{F} \\
\text{N} \\
\text{N} \\
\text{F} \\
\text{S} \\
\text{F} \\
\text{F} \\
\text{CH}_3 \\
\text{N} \\
\text{N} \\
\text{F} \\
\text{O} \\
\text{F} \\
\text{F} \\
\text{NH}_2
\end{array}
\]

(I)

for controlling nematodes in nematode resistant crops and for increasing yield in those crops.

2. Use according to claim 1, whereas the compound of the formula (I) is the compound (I-A)

\[
\begin{array}{c}
\text{F} \\
\text{N} \\
\text{N} \\
\text{F} \\
\text{S} \\
\text{F} \\
\text{F} \\
\text{CH}_3 \\
\text{N} \\
\text{N} \\
\text{F} \\
\text{O} \\
\text{F} \\
\text{F} \\
\text{NH}_2
\end{array}
\]

(I-A).

3. Use according to claim 1, whereas the compound of the formula (I) is the compound (I-B)

\[
\begin{array}{c}
\text{F} \\
\text{N} \\
\text{N} \\
\text{F} \\
\text{S} \\
\text{F} \\
\text{F} \\
\text{CH}_3 \\
\text{N} \\
\text{N} \\
\text{F} \\
\text{O} \\
\text{F} \\
\text{F} \\
\text{NH}_2
\end{array}
\]

(I-B).

4. Use according to any of claims 1 to 3, wherein the compound of the formula (I) is used in form of a mixture of the compounds of the formula (I-A) and (I-B), for controlling nematodes in nematode resistant crops and for increasing yield in those crops.

5. Use according to any of claims 1 to 4, wherein the compound of the formula (I) is used in form of a composition comprising the compound of the formula (I), formula (I-A), formula (I-B) or a mixture of the compounds of formula (I-A), (I-B) and at least one further agrochemically active compound and/or at least one nematicidal biological control agent, for controlling nematodes in nematode resistant crops and for increasing yield in those crops.

6. Use according to any of claims 1 to 5, wherein the nematode resistant crops are selected from the group consisting of cereals, beans, fruit trees/fruits, vegetables, root crops, industrial crops, pepos, pasture plants, lawn grasses, crops for flavorings, and flower plants.
7. A method of controlling nematodes in nematode resistant crops by applying the compound of the formula (I), (I-A), (I-B) or a mixture of the compounds of the formula (I-A) and (I-B) to plants.

8. A method of treating seeds for the control of nematodes in the group of crops selected from cereals, beans, fruit trees/fruit, vegetables, root crops, industrial crops, pepos, pasture plants, lawn grasses, crops for flavorings, and flower plants, comprising applying the compound of the formula (I), (I-A), (I-B) or a mixture of the compounds of the formula (I-A) and (I-B) to seeds.

9. A method for increasing yield, comprising applying the compound of the formula (I), (I-A), (I-B) or a mixture of the compounds of the formula (I-A) and (I-B) according to any of claims 1 to 6 to a plant.

10. A method for increasing yield, comprising applying the compound of the formula (I), (I-A), (I-B) or a mixture of the compounds of the formula (I-A) and (I-B) according to any of claims 1 to 6 to a seed.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A01N43/653 A01P5/00

According to International Patent Classification (IPC) and to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2011/152320 AI (KUMIAI CHEMICAL INDUSTRY CO [JP]; IHARA CHEMICAL IND CO [JP]; TORI YABE) 8 December 2011 (2011-12-08) paragraphs [0007], [0028], [0031], [0032], [0036], [0038] test examples 1-4 - & EP 2 578 575 AI (KUMIAI CHEMICAL INDUSTRY CO [JP]; IHARA CHEMICAL IND CO [JP]) 10 April 2013 (2013-04-10) ---- -/-- -</td>
<td>--</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) on which said document relies
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Z document member of the same patent family

Date of the actual completion of the international search: 14 February 2014

Date of mailing of the international search report: 21/02/2014

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer:

Habermann, Jbrg
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 2 274 982 AI (BAYER CR0PSCIENCE AG [DE]) 19 January 2011 (2011-01-19) cited in the applicati on claim 4 paragraphs [0042], [0048], [0049]</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2011/006646 AI (BAYER CR0PSCIENCE AG [DE]; ANTONS STEFAN [DE]; LU1 NOIBERT [DE]; M0RAD) 20 January 2011 (2011-01-20) cited in the applicati on page 9, line 25 - line 26 claim 9</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2011/006603 A2 (BAYER CR0PSCIENCE AG [DE]; ANDERSCH WOLFRAM [DE]; HUNGENBERG HEIKE [DE]) 20 January 2011 (2011-01-20) cited in the applicati on page 1, line 2 - line 5 page 1, line 21 - page 2, line 3 page 18, line 3 - line 6 compounds 1-4A examples A-C</td>
<td>1-10</td>
</tr>
<tr>
<td>Category*</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2011152320 A1</td>
<td>08-12-2011</td>
<td>CN 102918030 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2578575 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130081654 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013046002 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011152320 A1</td>
</tr>
<tr>
<td>EP 2578575 A1</td>
<td>10-04-2013</td>
<td>CN 102918030 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2578575 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130081654 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013046002 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011152320 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 10516976 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2581725 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101039922 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 182594 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4970950 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070064321 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 553200 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2007118700 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1382020 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009076282 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006043635 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 2007026684 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102469787 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012532905 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120052986 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011053996 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011006605 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012532906 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120037993 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 20120105122 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201116517 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011015405 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013172573 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011006646 A1</td>
</tr>
<tr>
<td>WO 2011006603 A2</td>
<td>20-01-2011</td>
<td>AU 2010272872 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102510721 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103548836 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6491032 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2453750 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012532904 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120051015 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011166109 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011006603 A2</td>
</tr>
</tbody>
</table>