w0 2017/007979 A1 |1 I} NP0 OO RN AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

12 January 2017 (12.01.2017)

WIPOIPCT

(10) International Publication Number

WO 2017/007979 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:

GO6F 9/44 (2006.01) HO04L 12/26 (2006.01)
International Application Number:
PCT/US2016/041412

International Filing Date:

8 July 2016 (08.07.2016)
Filing Language: English
Publication Language: English
Priority Data:
14/794,906 9 July 2015 (09.07.2015) Us

Applicant: MICROSOFT TECHNOLOGY LICENS-
ING, LLC [US/US]; Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US).

Inventors: KASHTAN, Guy; Microsoft Technology Li-
censing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). YAHALOM, Saar; Microsoft Techno-

(74

(8D

logy Licensing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). SCHLESINGER, Benny, Microsoft
Technology Licensing, LLC, Attn: Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

Agents: MINHAS, Sandip et al.; Microsoft Corporation,
Attn: Patent Group Docketing (Bldg. 8/1000), One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: AUTOMATICALLY GENERATING SERVICE DOCUMENTATION BASED ON ACTUAL USAGE

(57) Abstract: A computer system automatically generates service documenta-

00

CAPTURE NETWORK TRAFFIC INCLUDING
ACTUAL REQUESTS TO A SERVICE ENDPOINT AND
ACTUAL RESPONSES FROM THE SERVICE ENDPOINT

- 310

ANALYZE CAPTURED NETWORK TRAFFICE TO
DETERMINE OPERATIONS, INPUT ARGUMENTS, AND
OUTPUT ARGUMENTS FOR THE SERVICE ENDPOINT

¥

GENERATE METADATA FOR THE SERVICE ENDPQINT

¥

CALCULATE STATISTICS FOR THE SERVICE ENDPOINT

¥

AUTOMATICALLY GENERATE SERVICE DOCUMENTATION

¥

COMMUNICATE SERVICE DOCUMENTATION

SEARCH OR FILTER THE SERVICE DOCUMENTATION

¥

GENERATE SYNTHETIC REQUESTS
TO THE SERVICE ENDPOINT

I~ 320

I~ 330

[~ 340

I~ 350

I~ 360

I~ 370

I~ 380

FIG. 3

tion based on usage of a web service. The computer system captures network
traftic including actual requests to a service endpoint of the web service and actu-
al responses from the service endpoint of the web service. The captured network
¥ traftic can be analyzed using machine learning to determine one or more opera-
tions that are available at the service endpoint, input arguments that are accepted
by the service endpoint, and output arguments that are provided by the service
endpoint. The computer system can automatically generate service documenta-
tion for the web service based on metadata that identifies the operations, the in-
put arguments, and the output arguments.

WO 2017/007979 A1 WAL 00T 00 AR AR

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

AUTOMATICALLY GENERATING SERVICE DOCUMENTATION BASED ON
ACTUAL USAGE

BACKGROUND
[0001] Web services typically require service documentation to facilitate use by
clients. Producing and updating service documentation can be tedious and time
consuming for a developer of a web service. The developer often will manually embed
descriptive metadata in source code and then manually generate service documentation
from the embedded metadata. This manual process introduces significant overhead into
the development process. To alleviate some of this burden, partial documentation is
sometimes automatically generated by statistically analyzing the source code. This
automatic process, however, requires access to the source code of the web service.
SUMMARY
[0002] The following summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the detailed description. This summary
is not intended to identify key features or essential features of the claimed subject matter,
nor is it intended to be used to limit the scope of the claimed subject matter.
[0003] In various implementations, a computer system automatically generates service
documentation based on usage of a web service. The computer system captures network
traffic including actual requests to a service endpoint of the web service and actual
responses from the service endpoint of the web service. The captured network traffic can
be analyzed using machine learning to determine one or more operations that are available
at the service endpoint, input arguments that are accepted by the service endpoint, and
output arguments that are provided by the service endpoint. The computer system can
automatically generate service documentation for the web service based on metadata that
identifies the operations, the input arguments, and the output arguments.
[0004] These and other features and advantages will be apparent from a reading of the
following detailed description and a review of the appended drawings. It is to be
understood that the foregoing summary, the following detailed description and the
appended drawings are explanatory only and are not restrictive of various aspects as
claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] FIG. 1 illustrates an embodiment of an exemplary operating environment that

can implement aspects of the described subject matter.

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[0006] FIG. 2 illustrates an embodiment of an exemplary user interface in accordance
with aspects of the described subject matter.
[0007] FIG. 3 illustrates an embodiment of an exemplary process in accordance with
aspects of the described subject matter.
[0008] FIG. 4 illustrates an embodiment of an exemplary operating environment that
can implement aspects of the described subject matter.
[0009] FIG. 5 illustrates an embodiment of an exemplary computer system that can
implement aspects of the described subject matter.

DETAILED DESCRIPTION
[0010] The detailed description provided below in connection with the appended
drawings is intended as a description of examples and is not intended to represent the only
forms in which the present examples can be constructed or utilized. The description sets
forth functions of the examples and sequences of steps for constructing and operating the
examples. However, the same or equivalent functions and sequences can be accomplished

by different examples.

EEINA4 29

[0011] References to “one embodiment,” “an embodiment,” “an example

77 L PEIN43 PEIN<3 77 <

embodiment,” “one implementation,” “an implementation,” “one example,” “an example”
and the like, indicate that the described embodiment, implementation or example can
include a particular feature, structure or characteristic, but every embodiment,
implementation or example can not necessarily include the particular feature, structure or
characteristic. Moreover, such phrases are not necessarily referring to the same
embodiment, implementation or example. Further, when a particular feature, structure or
characteristic is described in connection with an embodiment, implementation or example,
it is to be appreciated that such feature, structure or characteristic can be implemented in
connection with other embodiments, implementations or examples whether or not
explicitly described.

[0012] Numerous specific details are set forth in order to provide a thorough
understanding of one or more aspects of the described subject matter. Itisto be
appreciated, however, that such aspects can be practiced without these specific details.
While certain components are shown in block diagram form to describe one or more
aspects, it is to be understood that functionality performed by a single component can be
performed by multiple components. Similarly, a single component can be configured to

perform functionality described as being performed by multiple components.

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[0013] Various aspects of the subject disclosure are now described in more detail with
reference to the drawings, wherein like numerals generally refer to like or corresponding
elements throughout. The drawings and detailed description are not intended to limit the
claimed subject matter to the particular form described. Rather, the intention is to cover
all modifications, equivalents and alternatives falling within the spirit and scope of the
claimed subject matter.

[0014] FIG. 1 illustrates an operating environment 100 as an embodiment of an
exemplary operating environment that can implement aspects of the described subject
matter. It is to be appreciated that aspects of the described subject matter can be
implemented by various types of operating environments, computer networks, platforms,
frameworks, computer architectures, and/or computing devices.

[0015] Implementations of operating environment 100 are described in the context of a
computing device and/or a computer system configured to perform various steps, methods,
and/or functionality in accordance with aspects of the described subject matter. It is to be
appreciated that a computer system can be implemented by one or more computing
devices. Implementations of operating environment 100 also are described in the context
of “computer-executable instructions” that are executed to perform various steps, methods,
and/or functionality in accordance with aspects of the described subject matter.

[0016] In general, a computing device and/or computer system can include one or
more processors and storage devices (e.g., memory and disk drives) as well as various
input devices, output devices, communication interfaces, and/or other types of devices. A
computing device and/or computer system also can include a combination of hardware and
software. It can be appreciated that various types of computer-readable storage media can
be part of a computing device and/or computer system. As used herein, the terms
“computer-readable storage media” and “computer-readable storage medium” do not mean
and unequivocally exclude a propagated signal, a modulated data signal, a carrier wave, or
any other type of transitory computer-readable medium. In various implementations, a
computing device and/or computer system can include a processor configured to execute
computer-executable instructions and a computer-readable storage medium (e.g., memory
and/or additional hardware storage) storing computer-executable instructions configured
to perform various steps, methods, and/or functionality in accordance with aspects of the
described subject matter.

[0017] Computer-executable instructions can be embodied and/or implemented in

various ways such as by a computer program (e.g., client program and/or server program),

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

a software application (e.g., client application and/or server application), software code,
application code, source code, executable files, executable components, program modules,
routines, application programming interfaces (APIs), functions, methods, objects,
properties, data structures, data types, and/or the like. Computer-executable instructions
can be stored on one or more computer-readable storage media and can be executed by
one or more processors, computing devices, and/or computer systems to perform particular
tasks or implement particular data types in accordance with aspects of the described
subject matter.

[0018] As shown, operating environment 100 includes client devices 110 that
communicate over a network 120 with a computer system 130. Client devices 110 can be
implemented by various types of user-facing computing devices such as a workstation or
desktop computer, a laptop computer, a tablet device, a smartphone, and/or other type of
computing device. Alternatively or additionally, client devices 110 can be implemented
by a server computer such as a physical, on-premises server computer of an enterprise. It
is to be understood that the number and types of client devices 110 are provided for
purposes of illustration and that operating environment 100 can include a greater or fewer
number of client device(s) 110.

[0019] Network 120 can be implemented by any type of network or combination of
networks including, without limitation: a wide area network (WAN) such as the Internet, a
local area network (LAN), a Peer-to-Peer (P2P) network, a telephone network, a private
network, a public network, a packet network, a circuit-switched network, a wired network,
and/or a wireless network. Client devices 110 and computer system 130 can communicate
via network 120 using various communication protocols (e.g., Internet communication
protocols, WAN communication protocols, LAN communications protocols, P2P
protocols, telephony protocols, and/or other network communication protocols), various
authentication protocols (e.g., Kerberos authentication, NT LAN Manager (NTLM)
authentication, Digest authentication, and/or other authentication protocols), and/or
various data types (web-based data types, audio data types, video data types, image data
types, messaging data types, signaling data types, and/or other data types).

[0020] Computer system 130 can be implemented by one or more computing devices
such as server computers configured to provide various types of services and/or data stores
in accordance with aspects of the described subject matter. Exemplary severs computers
can include, without limitation: web servers, front end servers, application servers,

database servers (e.g., SQL servers), domain controllers, domain name servers, directory

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

servers, and/or other suitable computers. Computer system 130 can be implemented as a
distributed computing system in which components are located on different computing
devices that are connected to each other through network (e.g., wired and/or wireless)
and/or other forms of direct and/or indirect connections.

[0021] In some implementations, computer system 130 can provide hosted and/or
cloud-based services using redundant and geographically dispersed datacenters with each
datacenter including an infrastructure of physical servers. For instance, computer system
130 can be implemented by physical servers of a datacenter that provide shared computing
and storage resources and that host virtual machines having various roles for performing
different tasks in conjunction with providing cloud-based services. Exemplary virtual
machine roles can include, without limitation: web server, front end server, application
server, database server (e.g., SQL server), domain controller, domain name server,
directory server, and/or other suitable machine roles.

[0022] In implementations where user-related data is utilized, providers (e.g., client
devices 110, applications, etc.) and consumers (e.g., computer system 130, web service,
cloud-based service, etc.) of such user-related data can employ a variety of mechanisms in
the interests of user privacy and information protection. Such mechanisms can include,
without limitation: requiring authorization to monitor, collect, or report data; enabling
users to opt in and opt out of data monitoring, collecting, and reporting; employing
privacy rules to prevent certain data from being monitored, collected, or reported;
providing functionality for anonymizing, truncating, or obfuscating sensitive data which is
permitted to be monitored, collected, or reported; employing data retention policies for

protecting and purging data; and/or other suitable mechanisms for protecting user privacy.

Automatically Generating Service Documentation

[0023] In accordance with aspects of the described subject matter, computer system
130 can perform various operations for automatically generating service documentation
based on actual usage. As shown in FIG. 1, computer system 130 hosts a web service 131
for which service documentation is to be generated. Web service 131 can be implemented
by various types of web services, service applications, and/or cloud-based services that are
accessible to client devices 110. In some implementations, web service 131 can be
deployed in development environment such as Microsoft Visual Studio® or other suitable

development environment.

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[0024] Web service 131 includes multiples service endpoints 132-134 for accessing
the functionality of web service 131. Each of service endpoints 132-134 can be identified
by a specific address (e.g., Uniform Resource Locator, (URL), Uniform Resource
Identifier (URI), and/or other suitable network address) for connecting to a particular
portion of web service 131. In various implementations, each of service endpoints 132-
134 can be associated with a different function and/or operation of web service 131.
[0025] Web service 131 can be configured to provide content from and/or perform
operations on various types of data stores such as content databases 135-137. For
instance, web service 131 can provide content from one or more content databases 135-
137 in response to requests from client devices 110. Web service 131 also can support
operations such as Create, Read, Update and Delete (CRUD) operations on databases 135-
137. Each of content databases 135-137 can store data (e.g., web data, message data,
document data, etc.) that can be presented, stored, retrieved, and/or manipulated by client
devices 110 when interacting with web service 131. Content databases 135-137 can be
associated with functions or portions of web service 131, associated with service endpoints
132-134, and/or associated with subsets of users.

[0026] Computer system 130 provides a client interface 138 that can be called and/or
utilized by client devices 110 to communicate with web service 131. Client interface 138
can include and/or expose one or more APIs for receiving requests and providing
responses to client devices 110. In some implementations, client interface 138 can include
an API for each of service endpoints 132-134. Client interface 138 can expose methods
that correspond to operations supported by web service 131 and/or specify a service
contract regarding security and/or quality of service policies defined for web service 131.
Client interface 138 can be implemented by a Representational State Transfer (REST)
interface, Remote Procedure Call (RPC) interface (e.g., XML RPC), Simple Object
Access Protocol (SOAP) interface, and/or other suitable web service interface.

[0027] As shown in FIG. 1, computer system 130 can include one or more computer
program modules and data stores for automatically generating service documentation
based on actual usage. Computer program modules of computer system 130 can be
implemented by computer-executable instructions that are stored on one or more
computer-readable storage media and that are executed to perform various steps, methods,
and/or functionality in accordance with aspects of the described subject matter. While
such computer program modules are shown in block diagram form to describe certain

functionality, it is to be understood that the functionality performed by a single computer

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

program module can be performed by multiple computer program modules and that a
single computer program module can be configured to perform functionality described as
being performed by multiple computer program modules. It is also to be understood that
separate data stores can include multiple data stores and/or can be integrated with each
other in some implementations.

[0028] Computer system 130 includes a network traffic capturer 139 configured to
monitor and capture network traffic between client devices 110 and web service 131.
Computer system 130 can utilize network traftic capturer 139 to monitor and capture
network traffic transmitted over network 120 for storage and/or analysis. The network
traffic includes actual requests to web service 131 and actual responses from web service
131. The network traffic can correspond to a community of users of web service 131, one
or more subsets of users, a particular time frame, and so forth. Network traffic capturer
139 can store captured network traffic in traffic data storage 140 in the sequence in which
it was received or in any logical or random sequence. When collecting requests and/or
responses, network traffic capturer 139 can employ a variety of mechanisms in the
interests of user privacy and information protection, as described above.

[0029] Network traffic capturer 139 can detect and capture actual requests such as
Hypertext Transfer Protocol (HTTP) requests issued by client devices 110 to service
endpoints 132-134 and/or web service 131. A captured HTTP request can include a
method (e.g., GET, PUT, POST, DELETE, HEAD, CONNECT, OPTIONS, TRACE,
etc.), a path (e.g., URL, URI, etc.), a version (e.g., HTTP 1.1, etc.), header fields (e.g.,
Accept-Charset, Accept-Encoding, Accept-Language, Accept-Datetime, Authorization,
Connection, Cookie, Content-Length, Content-Type, Date, Host, If-Modified-Since,
Referer, User-Agent, etc.) and header values, and an optional request message body that
can include client-supplied data, name-value pairs, query strings, uploaded files, and/or
other content.

[0030] Network traffic capturer 139 also can detect and capture actual responses such
as HTTP responses provided by web service 131 to client devices 110. A captured HTTP
response can include a version (e.g., HTTP 1.1, etc.), a status code, a reason (e.g., OK,
Created, No Content, Bad Request, Unauthorized, Not Found, Server Error, Service
Unavailable, etc.), header fields (e.g., Age, Allow, Connection, Content-Encoding,
Content-Length, Content-Type, Date, Expires, Last-Modified, Location, Server, etc.) and
header values, and an optional response message body that can include service-provided

data, requested resources, and/or other content.

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[0031] Computer system 130 includes a machine learning component 141 configured
to analyze captured network traffic and to generate metadata and/or statistics based on the
actual usage of web service 131. Machine learning component 141 can receive captured
network traffic from network traffic capturer 139 for analysis and/or can analyze captured
network traffic that is stored in traffic data storage 140. Machine learning component 141
can store usage data including metadata and statistics in usage data storage 142.

[0032] By analyzing captured network traffic, machine learning component 141 can
identify characteristics of web service 131 and can generate metadata and/or statistics
based on the actual usage of web service 131. In various implementations, machine
learning component 141 can analyze captured network traffic by employing one or more
machine learning techniques (e.g., supervised, semi-supervised, unsupervised, and /or
combination thereof) based on probabilistic and/or statistical-based models including, for
example: generative models (e.g., Hidden Markov Model (HMM), Naive Bayes,
probabilistic context free grammars, and the like), discriminative models (e.g., SVM,
Conditional Random Fields (CRFs), decision trees, neural networks, linear regression, and
the like), and/or a combination thereof.

[0033] Machine learning component 141 can analyze requests to and responses from
web service 131 and can generate metadata that identifies the APIs and/or service
endpoints 132-134 of web service 131. Actual requests and responses can be analyzed to
determine how frequently the APIs or service endpoints 132-134 are used. Machine
learning component 141 can compile statistics regarding the actual and/or relative usage of
the APIs and service endpoints 132-134 of web service 131.

[0034] Actual requests and responses can be analyzed to determine or infer operations
that are available at each API and/or service endpoint of web service 131. Machine
learning component 141 can generate metadata that lists operations available at the APIs
and/or service endpoints 132-134 of web service 131. The metadata can indicate which
operations of web service 131 are more commonly used, better tested, and/or
recommended for use. For each API or service endpoint, machine learning component
141 can compile statistics regarding the frequency and/or relative use of each operation.
[0035] Machine learning component 141 can examine requests that successfully
receive a response from web service 131. Successful requests can be analyzed to
determine common types of requests that are directed to the APIs and/or service endpoints
132-134 of web service 131. Corresponding responses can be analyzed to determine

common types of output provided by web service 131 and/or service endpoints 132-134.

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

Machine learning component 141 can select actual requests and responses from captured
network traffic for use as samples and can generate metadata that includes sample requests
and responses. Selecting requests and responses that are frequently observed as the
samples ensures that the samples will be relevant and useful to consumers of the service
documentation.

[0036] Requests to and responses from APIs and/or service endpoints 132-134 of web
service 131 can include various types of arguments such as parameters, values, name-
value pairs, strings, and/or other data supplied in the header or body. Machine learning
component 141 can examine the header and body of actual requests (e.g., HTTP requests)
to determine or infer the types of input arguments (e.g., methods, paths, headers, client-
supplied data, etc.) that are accepted by each API and/or service endpoint of web service
131. Requests can be analyzed to determine which input arguments are mandatory and
which input arguments are optional for each API or service endpoint of web service 131.
For example, machine learning component 141 can identify certain headers or parameters
that consistently appear in every successful request as being mandatory. Machine learning
component 141 also can identify mandatory input arguments by examining requests that
failed. For instance, headers and parameters that are contained in successful requests but
are missing from failed requests can be considered mandatory.

[0037] Captured network traffic can be analyzed by machine learning component 141
to identify possible variations of the inputs to and the outputs from the APIs and/or service
endpoints 132-134 of web service 131. Machine learning component 141 can identify
characteristics or patterns exhibited by successful requests to determine or infer types
and/or values of acceptable, common, or possible input arguments. In some cases,
machine learning component 141 can determine a range of values for each input argument.
For each API or service endpoint, machine learning component 141 can calculate and/or
compile statistics for types and/or values of input arguments.

[0038] Machine learning component 141 can analyze corresponding responses to
requests for determining or inferring output provided by web service 131. The header and
body of actual responses (e.g., HTTP responses) can be analyzed by machine learning
component 141 to determine or infer the types of output arguments (e.g., status codes,
reasons, headers, service-provided data, requested resources, etc.) provided by each API
and/or service endpoint for successful or failed requests. For each API or service endpoint,
machine learning component 141 can calculate and/or compile statistics for types and/or

values of output arguments.

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[0039] Machine learning component 141 can generate metadata based on the analysis
of the flow of requests to and response from web service 131. Metadata can be generated
for the operations provided by each of service endpoints 132-134 and can include request
information and response information for each operation. The request information can
identify the name and type of various input arguments supplied in successful requests and
can indicate whether such input arguments are mandatory or optional. The request
information also can provide frequent values for each mandatory or optional input
argument. The response information can identify the name and type of various output
arguments provided in responses and can list status codes and reasons for successful and
failed requests. The response information also can provide frequent values for each output
argument.

[0040] If there are multiple versions of web service 131, machine learning component
141 can analyze network traffic and generate metadata for each version of web service
131. Machine learning component 141 can generate metadata that lists different versions
of web service 131 and can compile statistics regarding the frequency and/or relative use
of each version. The metadata for each version of web service 131 can identity each API
or service endpoint, indicate the methods and/or operations provided by each service
endpoint, and include request information and response information for each operation.
[0041] Machine learning component 141 can output metadata and statistics using
various types of machine-readable formats and/or data structures including lists and tables.
The metadata and statistics generated by machine learning component 141 can be updated
and/or modified as additional network traffic is captured and analyzed. The updating of
metadata and statistics can be performed automatically, periodically, and/or on-demand.
[0042] Computer system 130 includes a service documentation generator 143
configured to automatically generate service documentation from metadata and/or
statistics output by machine learning component. Service documentation generator 143
can receive the metadata and statistics from machine learning component 141 and/or can
retrieve metadata and statistics from usage data storage 142. Service documentation
generator can store service data including service documentation service data storage 144,
[0043] Service documentation generator 143 can translate machine-readable metadata
and generate service documentation in various types of human-readable formats. In some
implementations, service documentation can be generated by populating a template or web
form with metadata and/or statistics. Service documentation generator 143 can employ

client interface 138 to communicate service documentation over network 120 to one or

10

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

more of client devices 110 (e.g., a computing device used by a developer). Alternatively
or additionally, a developer (or other user) can employ one of client devices 110 and client
interface 138 to access service documentation that is stored in service data storage 144.
[0044] Service documentation can be output or presented as one or more interactive
user interfaces, web documents, and/or web pages, as a viewable electronic document,
and/or as a printed document. When provided in an interactive format, the service
documentation can include functionality for navigating to portions that correspond to
different versions of the web service, different service endpoints for a version of the web
service, and different operations provided by a service endpoint. The service
documentation can include or link to version statistics pertaining to usage of different
versions of the web service, service endpoint statistics pertaining to usage of different
service endpoints for a version of the web service, and operation statistics pertaining to
usage of different operations at a service endpoint.

[0045] The service documentation for web service 131 can include a listing of
versions and statistics pertaining to the usage of the different versions. Selecting a version
can present information that includes a listing of APIs and/or service endpoints 132-134,
an indication of the most frequently used APIs and/or service endpoints, and statistics
pertaining to the usage of such APIs and/or service endpoints 132-134. Selecting a service
endpoint can present information that includes a listing of methods or operations, an
indication of the most frequently used methods or operations, and statistics pertaining to
the usage of such methods or operations. Selecting a method or operation can present
request information and response information for such method or operation. The request
information can include a sample request message, a listing of mandatory input arguments,
a listing of optional input arguments, frequent values for each mandatory and optional
input argument, and statistics for such values. The response information can include a
sample response message, a listing of output arguments, frequent values for each output
argument, and statistics for such values.

[0046] Service documentation can be presented in a user interface that provides
functionality for searching, filtering, and/or sorting the service documentation. The user
interface can allow the service documentation to be searched, filtered, and/or sorted based
on a single criterion or combination of criteria included in service documentation. The
criteria for searching, filtering, and/or sorting the service documentation can include
version information, service endpoint information, operation information, and/or argument

information including any type of request message data (e.g., methods, paths, headers,

11

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

body data, parameters, values, etc.) and/or response message data (e.g., status codes,
reasons, headers, body data, parameters, values, etc.) to produce service documentation
that is specific to the needs of the consumer. For instance, the service documentation can
be searched and/or filtered using a fixed client property to view requests that are
commonly sent with a specific client property. As an example, the service documentation
can be filtered based on user-agent (e.g., software client, application type, operating
system, software vendor, software revision, etc.) for viewing requests that are commonly
sent with a specific user-agent.

[0047] Computer system 130 includes a synthetic request generator 145 configured to
generate synthetic requests to web service 131. In some scenarios, the captured network
traffic that is based on the actual usage of web service 131 may not fully demonstrate the
functionality offered by web service 131. In such scenarios, synthetic request generator
145 can be employed to generate synthetic requests that illicit responses from web service
131 so that all APIs, service endpoints 132-134, and/or operations can be observed and
analyzed. Synthetic requests also can be generated proactively to explore and/or test the
functionality of web service 131.

[0048] Synthetic request generator 145 can direct synthetic requests to one or more of
service endpoints 132-134, and network traffic capturer 139 can collect the synthetic
requests and the corresponding responses. The synthetic requests can include various
input arguments, and the responses to the synthetic requests can be analyzed by machine
learning component 141 to determine or infer the exact type of a certain input argument
and/or whether such input argument is mandatory, even when no actual network traffic has
demonstrated this information. New metadata can be generated based on the responses to
the synthetic requests, and service documentation generator 143 can produce updated
service documentation.

[0049] In the embodiment shown in FIG. 1, network traffic capturer 139, traffic data
storage 140, machine learning component 141, usage data storage 142, service
documentation generator 143, service data storage 144, and synthetic request generator
145 can be implemented by computer system 130 (e.g., on a server, on middleware in a
datacenter, etc.). In another embodiment, such computer programs modules and/or data
stores can be implemented by and/or integrated with web service 131. Itis also to be
understood that such computer program modules and/or data stores can be positioned

anywhere along the communication path from client devices 110 to web service 131 and,

12

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

in some embodiments, can be implemented by one or more of client devices 110 and/or by

network 120.

Exemplary User Interface

[0050] FIG. 2 illustrates a user interface 200 as an embodiment of an exemplary user
interface that can implement aspects of the described subject matter. For instance, user
interface 200 can be displayed by one of client devices 110 or other suitable computing
device to present service documentation to a developer of web service 131 or other user of
computer system 130. It is to be appreciated that various other types of user interfaces can
be implemented along with or instead of user interface 200 to present service
documentation.

[0051] User interface 200 includes functionality for navigating to portions of service
documentation for multiple versions of a web service such as web service 131 or other
web service. Portions of the service documentation can correspond to different versions of
the web service, different service endpoints for a version of the web service, and different
operations provided by a service endpoint. The service documentation can include version
statistics pertaining to usage of different versions of the web service, service endpoint
statistics pertaining to usage of different service endpoints for a version of the web service,
and operation statistics pertaining to usage of different operations at a service endpoint.
[0052] As shown, user interface 200 can present service documentation corresponding
to an operation (e.g., operation 2) provided by a service endpoint (e.g., endpoint 1) for a
version (e.g., version 1) of a web service (e.g., web service 1). The service documentation
for the operation includes request information and response information, which are
automatically created from metadata that is generated based on an analysis of captured
requests to and responses from the service endpoint of the web service.

[0053] The request information includes a sample request message, a listing of
mandatory input arguments, and a listing of optional input arguments. The sample request
message can be selected from frequent requests obtained from actual network traffic.
Additional relevant information such as a name, a type, and a link to frequent values can
be provided for each mandatory and optional input argument. In some implementations,
selection of the link can present frequent values for the input argument as well as statistics
for such values. Similarly, the response information can include a sample response

message obtained from actual network traffic and a listing of output arguments. A name, a

13

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

type, and a link to frequent values (and/or statistics for such values) can be provided for
each output argument.

[0054] As shown, user interface 200 also includes functionality for searching and
filtering service documentation. For instance, the service documentation can be searched
and/or filtered based on various types of version information, service endpoint
information, operation information, and/or argument information including any type of
request message data (e.g., methods, paths, headers, body data, parameters, values, etc.)
and/or response message data (e.g., status codes, reasons, headers, body data, parameters,

values, etc.) to produce or view particular service documentation.

Exemplary Process

[0055] Referring to F1G. 3, with continuing reference to the foregoing figures, a
computer-implemented method 300 is illustrated as an embodiment of an exemplary
process in accordance with aspects of the described subject matter. Computer-
implemented method 300, or portions thereof, can be performed by one or more
computing devices, a computer system, computer-executable instructions, software,
hardware, firmware or a combination thereof in various embodiments. For example,
computer-implemented method 300 can be performed by computer system 130 or other
suitable computer system to automatically generate service documentation based on usage
of web service 131.

[0056] At 310, a computer system can capture network traffic including actual
requests to a service endpoint of the web service and actual responses from the service
endpoint of the web service. For example, computer system 130 can implement and
employ network traffic capturer 139 to monitor and capture network traffic including
actual HTTP requests to and actual HTTP responses from service endpoints 132-134 of
web service 131.

[0057] Network traffic capturer 139 can capture successful and failed requests
including input arguments contained within the header and/or body of a request. The input
arguments can include headers supplied in actual requests to service endpoints 132-134
and message body content supplied in actual requests to service endpoints 132-134.
Network traffic capturer 139 can capture responses to successful and failed requests
including output arguments contained within the header and/or body of a response. The

output arguments can include headers provided in actual responses from service endpoints

14

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

132-134, status codes provided in actual responses from service endpoints 132-134, and
message body content provided in actual responses from service endpoints 132-134.
[0058] At 320, the computer system can analyze captured network traffic to determine
one or more operations that are available at the service endpoint, input arguments that are
accepted by the service endpoint, and output arguments that are provided by the service
endpoint. For example, computer system 130 can implement and employ machine
learning component 141 to analyze captured network traffic including actual HTTP
requests to and actual HTTP responses from service endpoints 132-134 of web service
131. Captured network traffic for service endpoints 132-134 can be analyzed to identify
APIs and service endpoints 132-134 of web service 131 and to determine operations or
methods that are available at service endpoints 132-134. Analyzing captured network
traffic can include selecting an actual request to a service endpoint for use as a sample
request message and/or selecting an actual response from a service endpoint for use as a
sample response message.

[0059] Machine learning component 141 can analyze captured network traffic to
identify input arguments for APIs, endpoints 132-134, and/or operations and determine or
infer whether each of the input arguments is mandatory or optional. Machine learning
component 141 can determine or infer a data type of each input argument and/or frequent
values for the input arguments.

[0060] At 330, the computer system can generate metadata for the service endpoint.
For example, computer system 130 can implement and employ machine learning
component 141 to generate metadata for one or more of service endpoints 132-134 that
identifies the operations that are available at such service endpoints 132-134, the input
arguments that are accepted by such service endpoints 132-134, and the output arguments
that are provided by such service endpoints 132-134. The metadata also can include
sample request messages and response messages for service endpoints 132-134.

[0061] At 340, the computer system can calculate statistics for the service endpoint.
For example, computer system 130 can implement and employ machine learning
component 141 to calculate statistics pertaining to usage of one or more of service
endpoints 132-134 of web service 131, usage of the operations of such service endpoints
132-134, usage of values for input arguments, and usage of different versions of web
service 131. Usage statistics for web service 131 can be utilized for indicating which

APIs, service endpoints 132-134, and/or operations are requested or used most frequently.

15

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[0062] At 350, the computer system can automatically generate service documentation
for the web service based on the one or more operations, the input arguments, and the
output arguments. For example, computer system 130 can implement and employ service
documentation generator 143 to automatically generate service documentation for web
service 131 based on the analysis performed by machine learning component 141 and/or
the metadata and statistics output from machine learning component 141.

[0063] Service documentation for web service 131 can identify versions of web
service 131 and statistics pertaining to the usage of the different versions. Service
documentation for web service 131 can identify APIs and/or service endpoints 132-134, an
indication of the most frequently used APIs and/or service endpoints, and statistics
pertaining to the usage of such APIs and/or service endpoints 132-134. Service
documentation for web service 131 can identify methods or operations that are available at
an API or endpoint, an indication of the most frequently used methods or operations, and
statistics pertaining to the usage of such methods or operations. Service documentation
for web service 131 can present request information including a sample request message, a
listing of mandatory input arguments, a listing of optional input arguments, frequent
values for each mandatory and optional input argument, and statistics for such values.
Service documentation for web service 131 can present response information including a
sample response message, a listing of output arguments, frequent values for each output
argument, and statistics for such values.

[0064] At 360, the computer system can communicate service documentation for the
web service. For example, computer system 130 can communicate service documentation
for web service 131 over network 120 for display on one or more of client devices 110.
Service documentation for web service 131 can be output or presented as one as one or
more interactive user interfaces, web documents, and/or web pages, such as user interface
200. Service documentation for web service 131 also can be output or presented as
viewable electronic documents and/or printed documents.

[0065] At 370, the computer system can search or filter the service documentation.
For example, computer system 130 can implement and employ client interface 138 and/or
service documentation generator 143 to search or filter the service documentation for web
service 131 based on message data included in actual requests to and/or responses from
service endpoints 132-134. Criteria for searching, filtering, and/or sorting service
documentation for web service 131 can include version information, service endpoint

information, operation information, and/or argument information including any type of

16

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

request message data and/or response message data to produce service documentation that
1s specific to the needs of the consumer.

[0066] At 380, the computer system can generate synthetic requests to the service
endpoint. For example, computer system 130 can implement and employ synthetic
request generator 145 to generate and issue synthetic requests to one or more of service
endpoints 132-134 for exploring the functionality of web service 131. Network traffic
capturer 139 can be implemented and employed by computer system 130 to capture the
synthetic requests and responses to the synthetic requests. Machine learning component
141 can be implemented and employed by computer system 130 to analyze the synthetic
requests and responses to the synthetic requests for determining additional operations that
are available at service endpoints 132-134, input arguments that are accepted by service
endpoints 132-134 to perform the additional operations, and output arguments that are
provided by service endpoints 132-134 when the additional operations are performed.
[0067] As described above, service documentation can be generated automatically for
web service 131 and/or any type of “black-box” web service based on actual usage of such
web service and without requiring access to its underlying code. Service documentation
generated from actual usage can better represent the actual functionality of web service
131. Service documentation can be generated remotely from web service 131 anywhere
along the communication path between client devices 110 and web service 131.

[0068] Service documentation can be generated automatically using machine learning
to reduce the burden on developers when producing relevant and up-to-date information
regarding the functionality of web service 131. Developer efficiency is improved by
eliminating the overhead of manually creating service documentation and/or embedding
metadata within the code of web service 131.

[0069] Frequent requests and responses captured in actual network traffic can be
selected as samples and included in the service documentation to ensure that such samples
are relevant to a consumer of the service documentation. Synthetic requests can be
generating and issued to web service 131 for exploring its functionality, even when the
actual network traffic does not demonstrate all of the APIs, service endpoints, and/or
operations of web service 131.

Exemplary Operating Environments

[0070] Aspects of the described subject matter can be implemented for and/or by
various operating environments, computer networks, platforms, frameworks, computer

architectures, and/or computing devices. Aspects of the described subject matter can be

17

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

implemented by computer-executable instructions that can be executed by one or more
computing devices, computer systems, and/or processors.

[0071] In its most basic configuration, a computing device and/or computer system
can include at least one processing unit (e.g., single-processor units, multi-processor units,
single-core units, and/or multi-core units) and memory. Depending on the exact
configuration and type of computer system or computing device, the memory
implemented by a computing device and/or computer system can be volatile (e.g., random
access memory (RAM)), non-volatile (e.g., read-only memory (ROM), flash memory, and
the like), or a combination thereof.

[0072] A computing device and/or computer system can have additional features
and/or functionality. For example, a computing device and/or computer system can
include hardware such as additional storage (e.g., removable and/or non-removable)
including, but not limited to: solid state, magnetic, optical disk, or tape.

[0073] A computing device and/or computer system typically can include or can
access a variety of computer-readable media. For instance, computer-readable media can
embody computer-executable instructions for execution by a computing device and/or a
computer system. Computer readable media can be any available media that can be
accessed by a computing device and/or a computer system and includes both volatile and
non-volatile media, and removable and non-removable media. As used herein, the term
“computer-readable media” includes computer-readable storage media and communication
media.

[0074] The term “computer-readable storage media” as used herein includes volatile
and nonvolatile, removable and non-removable media for storage of information such as
computer-executable instructions, data structures, program modules, or other data.
Examples of computer-readable storage media include, but are not limited to: memory
storage devices such as RAM, ROM, electrically erasable program read-only memory
(EEPROM), semiconductor memories, dynamic memory (e.g., dynamic random access
memory (DRAM), synchronous dynamic random access memory (SDRAM), double data
rate synchronous dynamic random-access memory (DDR SDRAM), etc.), integrated
circuits, solid-state drives, flash memory (e.g., NAN-based flash memory), memory chips,
memory cards, memory sticks, thumb drives, and the like; optical storage media such as
Blu-ray discs, digital video discs (DVDs), compact discs (CDs), CD-ROM, optical disc
cartridges, and the like; magnetic storage media including hard disk drives, floppy disks,

flexible disks, magnetic cassettes, magnetic tape, and the like; and other types of

18

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

computer-readable storage devices. It can be appreciated that various types of computer-
readable storage media (e.g., memory and additional hardware storage) can be part of a
computing device and/or a computer system. As used herein, the terms “computer-
readable storage media” and “computer-readable storage medium” do not mean and
unequivocally exclude a propagated signal, a modulated data signal, a carrier wave, or any
other type of transitory computer-readable medium.

[0075] Communication media typically embodies computer-executable instructions,
data structures, program modules, or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. By way of example,
and not limitation, communication media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic, radio frequency, infrared,
and other wireless media.

[0076] In various embodiments, aspects the described subject matter can be
implemented by computer-executable instructions stored on one or more computer-
readable storage media. Computer-executable instructions can be implemented using any
various types of suitable programming and/or markup languages such as: Extensible
Application Markup Language (XAML), XML, XBL HTML, XHTML, XSLT,
XMLHttpRequestObject, CSS, Document Object Model (DOM), Java®, JavaScript,
JavaScript Object Notation (JSON), Jscript, ECMAScript, Ajax, Flash®, Silverlight™,
Visual Basic® (VB), VBScript, PHP, ASP, Shockwave®, Python, Perl®, C, Objective-C,
C++, C#/ net, and/or others.

[0077] A computing device and/or computer system can include various input devices,
output devices, communication interfaces, and/or other types of devices. Exemplary input
devices include, without limitation: a user interface, a keyboard/keypad, a touch screen, a
touch pad, a pen, a mouse, a trackball, a remote control, a game controller, a camera, a
barcode reader, a microphone or other voice input device, a video input device, laser range
finder, a motion sensing device, a gesture detection device, and/or other type of input
mechanism and/or device. A computing device can provide a Natural User Interface
(NUI) that enables a user to interact with the computing device in a “natural” manner, free
from artificial constraints imposed by input devices such as mice, keyboards, remote
controls, and the like. Examples of NUI technologies include, without limitation: voice

and/or speech recognition, touch and/or stylus recognition, motion and/or gesture

19

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

recognition both on screen and adjacent to a screen using accelerometers, gyroscopes
and/or depth cameras (e.g., stereoscopic or time-of-flight camera systems, infrared camera
systems, RGB camera systems and/or combination thereof), head and eye tracking, gaze
tracking, facial recognition, 3D displays, immersive augmented reality and virtual reality
systems, technologies for sensing brain activity using electric field sensing electrodes
(EEG and related methods), intention and/or goal understanding, and machine intelligence.
[0078] A computing device can be configured to receive and respond to input in
various ways depending upon implementation. Responses can be presented in various
forms including, for example: presenting a user interface, outputting an object such as an
image, a video, a multimedia object, a document, and/or other type of object; outputting a
text response; providing a link associated with responsive content; outputting a computer-
generated voice response or other audio; or other type of visual and/or audio presentation
of a response. Exemplary output devices include, without limitation: a display, a
projector, a speaker, a printer, and/or other type of output mechanism and/or device.
[0079] A computing device and/or computer system can include one or more
communication interfaces that allow communication between and among other computing
devices and/or computer systems. Communication interfaces can be used in the context of
network communication between and among various computing devices and/or computer
systems. Communication interfaces can allow a computing device and/or computer
system to communicate with other devices, other computer systems, web services (e.g., an
affiliated web service, a third-party web service, a remote web service, and the like), web
service applications, and/or information sources (e.g. an affiliated information source, a
third-party information source, a remote information source, and the like). As such
communication interfaces can be used in the context of accessing, obtaining data from,
and/or cooperating with various types of resources.

[0080] Communication interfaces also can be used in the context of distributing
computer-executable instructions over a network or combination of networks. For
example, computer-executable instructions can be combined or distributed utilizing
remote computers and storage devices. A local or terminal computer can access a remote
computer or remote storage device and download a computer program or one or more
parts of the computer program for execution. It also can be appreciated that the execution
of computer-executable instructions can be distributed by executing some instructions at a

local terminal and executing some instructions at a remote computer.

20

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[0081] A computing device can be implemented by a mobile computing device such
as: a mobile phone (e.g., a cellular phone, a smart phone such as a Microsoft® Windows®
phone, an Apple iPhone, a BlackBerry® phone, a phone implementing a Google®
Android™ operating system, a phone implementing a Linux® operating system, or other
type of phone implementing a mobile operating system), a tablet computer (¢.g., a
Microsoft® Surface® device, an Apple iPad™, a Samsung Galaxy Note® Pro, or other
type of tablet device), a laptop computer, a notebook computer, a netbook computer, a
personal digital assistant (PDA), a portable media player, a handheld gaming console, a
wearable computing device (e.g., a smart watch, a head-mounted device including smart
glasses such as Google® Glass™, a wearable monitor, etc.), a personal navigation device,
a vehicle computer (e.g., an on-board navigation system), a camera, or other type of
mobile device.

[0082] A computing device can be implemented by a stationary computing device
such as: a desktop computer, a personal computer, a server computer, an entertainment
system device, a media player, a media system or console, a video-game system or
console, a multipurpose system or console (e.g., a combined multimedia and video-game
system or console such as a Microsoft® Xbox® system or console, a Sony® PlayStation®
system or console, a Nintendo® system or console, or other type of multipurpose game
system or console), a set-top box, an appliance (e.g., a television, a refrigerator, a cooking
appliance, etc.), or other type of stationary computing device.

[0083] A computing device also can be implemented by other types of processor-
based computing devices including digital signal processors, field-programmable gate
arrays (FPGAs), program- and application-specific integrated circuits (PASIC/ASICs),
program- and application-specific standard products (PSSP/ASSPs), a system-on-a-chip
(SoC), complex programmable logic devices (CPLDs), and the like.

[0084] A computing device can include and/or run one or more computer programs
implemented, for example, by software, firmware, hardware, logic, and/or circuitry of the
computing device. Computer programs can be distributed to and/or installed on a
computing device in various ways. For instance, computer programs can be pre-installed
on a computing device by an original equipment manufacturer (OEM), installed on a
computing device as part of installation of another computer program, downloaded from
an application store and installed on a computing device, distributed and/or installed by a
system administrator using an enterprise network management tool, and distributed and/or

installed in various other ways depending upon the implementation.

21

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[0085] Computer programs implemented by a computing device can include one or
more operating systems. Exemplary operating systems include, without limitation: a
Microsoft® operating system (e.g., a Microsoft® Windows ® operating system), a
Google® operating system (e.g., a Google® Chrome OS™ operating system or a
Google® Android™ operating system), an Apple operating system (e¢.g., a Mac OS® or an
Apple i0S™ operating system), an open source operating system, or any other operating
system suitable for running on a mobile, stationary, and/or processor-based computing
device.

[0086] Computer programs implemented by a computing device can include one or
more client applications. Exemplary client applications include, without limitation: a web
browsing application, a communication application (e.g., a telephony application, an e-
mail application, a text messaging application, an instant messaging application, a web
conferencing application, and the like), a media application (e.g., a video application, a
movie service application, a television service application, a music service application, an
e-book application, a photo application, and the like), a calendar application, a file sharing
application, a personal assistant or other type of conversational application, a game
application, a graphics application, a shopping application, a payment application, a social
media application, a social networking application, a news application, a sports
application, a weather application, a mapping application, a navigation application, a
travel application, a restaurants application, an entertainment application, a healthcare
application, a lifestyle application, a reference application, a finance application, a
business application, an education application, a productivity application (e.g., word
processing application, a spreadsheet application, a slide show presentation application, a
note-taking application, and the like), a security application, a tools application, a utility
application, and/or any other type of application, application program, and/or app suitable
for running on a mobile, stationary, and/or processor-based computing device.

[0087] Computer programs implemented by a computing device can include one or
more server applications. Exemplary server applications include, without limitation: one
or more server-hosted, cloud-based, and/or online applications associated with any of the
various types of exemplary client applications described above; one or more server-hosted,
cloud-based, and/or online versions of any of the various types of exemplary client
applications described above; one or more applications configured to provide a web
service, a web site, a web page, web content, and the like; one or more applications

configured to provide and/or access an information source, data store, database, repository,

22

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

and the like; and/or other type of application, application program, and/or app suitable for
running on a server computer.

[0088] A computer system can be implemented by a computing device, such as a
server computer, or by multiple computing devices configured to implement a service in
which one or more suitably-configured computing devices perform one or more
processing steps. A computer system can be implemented as a distributed computing
system in which components are located on different computing devices that are
connected to each other through network (e.g., wired and/or wireless) and/or other forms
of direct and/or indirect connections. A computer system also can be implemented via a
cloud-based architecture (e.g., public, private, or a combination thereof) in which services
are delivered through shared datacenters. For instance, a computer system can be
implemented by physical servers of a datacenter that provide shared computing and
storage resources and that host virtual machines having various roles for performing
different tasks in conjunction with providing cloud-based services. Exemplary virtual
machine roles can include, without limitation: web server, front end server, application
server, database server (e.g., SQL server), domain controller, domain name server,
directory server, and/or other suitable machine roles. Some components of a computer
system can be disposed within a cloud while other components are disposed outside of the
cloud.

[0089] FIG. 4 illustrates an operating environment 400 as an embodiment of an
exemplary operating environment that can implement aspects of the described subject
matter. It is to be appreciated that operating environment 400 can be implemented by a
client-server model and/or architecture as well as by other operating environment models
and/or architectures in various embodiments.

[0090] Operating environment 400 includes a computing device 410, which can
implement aspects of the described subject matter. Computing device 410 includes a
processor 411 and memory 412. Computing device 410 also includes additional hardware
storage 413. It is to be understood that computer-readable storage media includes memory
412 and hardware storage 413.

[0091] Computing device 410 includes input devices 414 and output devices 415.
Input devices 414 can include one or more of the exemplary input devices described above
and/or other type of input mechanism and/or device. Output devices 415 can include one
or more of the exemplary output devices described above and/or other type of output

mechanism and/or device.

23

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[0092] Computing device 410 contains one or more communication interfaces 416 that
allow computing device 410 to communicate with other computing devices and/or
computer systems. Communication interfaces 416 also can be used in the context of
distributing computer-executable instructions.

[0093] Computing device 410 can include and/or run one or more computer programs
417 implemented, for example, by software, firmware, hardware, logic, and/or circuitry of
computing device 410. Computer programs 417 can include an operating system 418
implemented, for example, by one or more exemplary operating systems described above
and/or other type of operating system suitable for running on computing device 410.
Computer programs 417 can include one or more applications 419 implemented, for
example, by one or more exemplary applications described above and/or other type of
application suitable for running on computing device 410.

[0094] Computer programs 417 can be configured via one or more suitable interfaces
(e.g., API or other data connection) to communicate and/or cooperate with one or more
resources. Examples of resources include local computing resources of computing device
410 and/or remote computing resources such as server-hosted resources, cloud-based
resources, online resources, remote data stores, remote databases, remote repositories, web
services, web sites, web pages, web content, and/or other types of remote resources.
[0095] Computer programs 417 can implement computer-executable instructions that
are stored in computer-readable storage media such as memory 412 or hardware storage
413, for example. Computer-executable instructions implemented by computer programs
417 can be configured to work in conjunction with, support, and/or enhance one or more
of operating system 418 and applications 419. Computer-executable instructions
implemented by computer programs 417 also can be configured to provide one or more
separate and/or stand-alone services.

[0096] Computing device 410 and/or computer programs 417 can implement and/or
perform various aspects of the described subject matter. As shown, computing device 410
and/or computer programs 417 can include service documentation generation code 420. In
various embodiments, service documentation generation code 420 can include computer-
executable instructions that are stored on a computer-readable storage medium and
configured to implement one or more aspects of the described subject matter. By way of
example, and without limitation, service documentation generation code 420 can be
implemented by computing device 410 which, in turn, can represent any one of client

devices 110 and display user interface 200. By way of further example, and without

24

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

limitation, service documentation generation code 420 can implement one or more of
network traffic capturer 139, machine learning component 141, service documentation
generator 143, and synthetic request generator 145 and/or perform one or more aspects of
computer-implemented method 300.

[0097] Operating environment 400 includes a computer system 430, which can
implement aspects of the described subject matter. Computer system 430 can be
implemented by one or more computing devices such as one or more server computers.
Computer system 430 includes a processor 431 and memory 432. Computer system 430
also includes additional hardware storage 433. It is to be understood that computer-
readable storage media includes memory 432 and hardware storage 433.

[0098] Computer system 430 includes input devices 434 and output devices 435.
Input devices 434 can include one or more of the exemplary input devices described above
and/or other type of input mechanism and/or device. Output devices 435 can include one
or more of the exemplary output devices described above and/or other type of output
mechanism and/or device.

[0099] Computer system 430 contains one or more communication interfaces 436 that
allow computer system 430 to communicate with various computing devices (e.g.,
computing device 410) and/or other computer systems. Communication interfaces 436
also can be used in the context of distributing computer-executable instructions.

[00100] Computer system 430 can include and/or run one or more computer programs
437 implemented, for example, by software, firmware, hardware, logic, and/or circuitry of
computer system 430. Computer programs 437 can include an operating system 438
implemented, for example, by one or more exemplary operating systems described above
and/or other type of operating system suitable for running on computer system 430.
Computer programs 437 can include one or more applications 439 implemented, for
example, by one or more exemplary applications described above and/or other type of
application suitable for running on computer system 430.

[00101] Computer programs 437 can be configured via one or more suitable interfaces
(e.g., API or other data connection) to communicate and/or cooperate with one or more
resources. Examples of resources include local computing resources of computer system
430 and/or remote computing resources such as server-hosted resources, cloud-based
resources, online resources, remote data stores, remote databases, remote repositories, web

services, web sites, web pages, web content, and/or other types of remote resources.

25

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[00102] Computer programs 437 can implement computer-executable instructions that
are stored in computer-readable storage media such as memory 432 or hardware storage
433, for example. Computer-executable instructions implemented by computer programs
437 can be configured to work in conjunction with, support, and/or enhance one or more
of operating system 438 and applications 439. Computer-executable instructions
implemented by computer programs 437 also can be configured to provide one or more
separate and/or stand-alone services.

[00103] Computing system 430 and/or computer programs 437 can implement and/or
perform various aspects of the described subject matter. As shown, computer system 430
and/or computer programs 437 can include service documentation generation code 440. In
various embodiments, service documentation generation code 440 can include computer-
executable instructions that are stored on a computer-readable storage medium and
configured to implement one or more aspects of the described subject matter. By way of
example, and without limitation, service documentation generation code 440 can be
implemented by computer system 430 which, in turn, can represent computer system 130.
By way of further example, and without limitation, service documentation generation code
440 can implement one or more of network traffic capturer 139, machine learning
component 141, service documentation generator 143, and synthetic request generator 145
and/or perform one or more aspects of computer-implemented method 300.

[00104] Computing device 410 and computer system 430 can communicate over
network 450, which can be implemented by any type of network or combination of
networks suitable for providing communication between computing device 410 and
computer system 430. Network 450 can include, for example and without limitation: a
WAN such as the Internet, a LAN, a telephone network, a private network, a public
network, a packet network, a circuit-switched network, a wired network, and/or a wireless
network. Computing device 410 and computer system 430 can communicate over
network 450 using various communication protocols and/or data types. One or more
communication interfaces 416 of computing device 410 and one or more communication
interfaces 436 of computer system 430 can be employed in the context of communicating
over network 450.

[00105] Computing device 410 and/or computer system 430 can communicate with a
storage system 460 over network 450. Alternatively or additionally, storage system 460
can be integrated with computing device 410 and/or computer system 430. Storage

system 460 can be representative of various types of storage in accordance with the

26

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

described subject matter. For example, storage system 460 can implement one or more of
content databases 135-137, traffic data storage 140, usage data storage 142, and/or service
data storage 144. Storage system 460 can provide any suitable type of data storage for
relational (e.g., SQL) and/or non-relational (e.g., NO-SQL) data using database storage,
cloud storage, table storage, blob storage, file storage, queue storage, and/or other suitable
type of storage mechanism. Storage system 460 can be implemented by one or more
computing devices, such as a computer cluster in a datacenter, by virtual machines, and/or
provided as a cloud-based storage service.

[00106] FIG. 5 illustrates a computer system 500 as an embodiment of an exemplary
computer system that can implement aspects of the described subject matter. In various
implementations, deployment of computer system S00 and/or multiple deployments
thereof can provide server virtualization for concurrently running multiple virtual servers
instances on one physical host server computer and/or network virtualization for
concurrently running multiple virtual network infrastructures on the same physical
network.

[00107] Computer system 500 can be implemented by various computing devices such
as one or more physical server computers that provide a hardware layer 510 which
includes processor(s) 511, memory 512, and communication interface(s) 513. Computer
system 500 implements a hypervisor 520 configured to manage, control, and/or arbitrate
access to hardware layer 510. In various implementations, hypervisor 520 can manage
hardware resources to provide isolated execution environments or partitions such a parent
(root) partition and one or more child partitions. A parent partition can operate to create
one or more child partitions. Each partition can be implemented as an abstract container
or logical unit for isolating processor and memory resources managed by hypervisor 520
and can be allocated a set of hardware resources and virtual resources. A logical system
can map to a partition, and logical devices can map to virtual devices within the partition.
[00108] Parent and child partitions can implement virtual machines such as virtual
machines 530, 540, and 550, for example. Each virtual machine can emulate a physical
computing device or computer system as a software implementation that executes
programs like a physical machine. Each virtual machine can have one or more virtual
processors and can provide a virtual system platform for executing an operating system
(e.g., a Microsoft® operating system, a Google® operating system, an operating system
from Apple®, a Linux® operating system, an open source operating system, etc.). As

shown, virtual machine 530 in parent partition can run a management operating system

27

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

531, and virtual machines 540, 550 in child partitions can host guest operating systems
541, 551 each implemented, for example, as a full-featured operating system or a special-
purpose kernel. Each of guest operating systems 541, 551 can schedule threads to execute
on one or more virtual processors and effectuate instances of application(s) 542, 552,
respectively.

[00109] Virtual machine 530 in parent partition has access to hardware layer 510 via
device drivers 532 and/or other suitable interfaces. Virtual machines 540, 550 in child
partitions, however, generally do not have access to hardware layer 510. Rather, such
virtual machines 540, 550 are presented with a virtual view of hardware resources and are
supported by virtualization services provided by virtual machine 530 in parent partition.
Virtual machine 530 in parent partition hosts a virtualization stack 533 that provides
virtualization management functionality including access to hardware layer 510 via device
drivers 532. Virtualization stack 533 implements and/or operates as a virtualization
services provider (VSP) to handle requests from and provide various virtualization
services to a virtualization service client (VSC) implemented by one or more virtualization
stacks 543, 553 in virtual machines 540, 550 that are operating in child partitions.

[00110] Computer system 500 can implement and/or perform various aspects of the
described subject matter. By way of example, and without limitation, one or more virtual
machines 540, 550 can implement functionality for automatically generating service
documentation based on actual usage. By way of further example, and without limitation,
one or more virtual machines 540, 550 can implement one or more aspects of computer
system 130 and/or perform one or more aspects of computer-implemented method 300. In
addition, hardware layer 510 can be implemented by one or more computing devices of

computer system 130 and/or computer system 430.

Supported Aspects

[00111] The detailed description provided above in connection with the appended
drawings explicitly describes and supports various aspects of automatically generating
service documentation based on actual usage. By way of illustration and not limitation,
supported aspects include a computer system for automatically generating service
documentation based on usage of a web service, the computer system comprising: a
processor configured to execute computer-executable instructions; and memory storing

computer-executable instructions configured to: capture network traffic including actual

28

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

requests to a service endpoint of the web service and actual responses from the service
endpoint of the web service; analyze captured network traffic to determine one or more
operations that are available at the service endpoint, input arguments that are accepted by
the service endpoint, and output arguments that are provided by the service endpoint;
generate metadata for the service endpoint that identifies the one or more operations, the
input arguments, and the output arguments; automatically generate service documentation
for the web service based on the metadata; and communicate the service documentation
for the web service to a client device.

[00112] Supported aspects include the forgoing computer system, wherein the input
arguments include one or more of: headers supplied in the actual requests to the service
endpoint and message body content supplied in the actual requests to the service endpoint.
[00113] Supported aspects include any of the forgoing computer systems, wherein the
output arguments include one or more of: headers provided in the actual responses from
the service endpoint, status codes provided in the actual responses from the service
endpoint, and message body content provided in the actual responses from the service
endpoint.

[00114] Supported aspects include any of the forgoing computer systems, wherein
analyzing the captured network traffic comprises determining whether each of the input
arguments is mandatory or optional.

[00115] Supported aspects of automatic generation of service documentation include
any of the forgoing computer systems, wherein analyzing the captured network traffic
comprises determining a data type of each input argument.

[00116] Supported aspects of automatic generation of service documentation include
any of the forgoing computer systems, wherein analyzing the captured network traffic
comprises determining frequent values for one or more of the input arguments.

[00117] Supported aspects of automatic generation of service documentation include
any of the forgoing computer systems, wherein the memory further stores computer-
executable instructions configured to select an actual request to the service endpoint for
use as a sample request message.

[00118] Supported aspects of automatic generation of service documentation include
any of the forgoing computer systems, wherein the memory further stores computer-
executable instructions configured to calculate statistics pertaining to one or more of’

usage of the operations of the service endpoint, usage of values for the input arguments,

29

10

15

20

25

30

WO 2017/007979

PCT/US2016/041412

usage of different service endpoints of the web service, and usage of different versions of
the web service.

[00119] Supported aspects of automatic generation of service documentation include
any of the forgoing computer systems, wherein the memory further stores computer-
executable instructions configured to search or filter the service documentation based on
message data included in one or more actual requests to the service endpoint.

[00120] Supported aspects of automatic generation of service documentation include
any of the forgoing computer systems, wherein the memory further stores computer-
executable instructions configured to generate synthetic requests to the service endpoint.
[00121] Supported aspects include an apparatus, a computer-readable storage medium,
a computer-implemented method, and/or means for implementing any of the foregoing
computer systems or portions thereof.

[00122] Supported aspects include a computer-implemented method performed by a
computer system to automatically generate service documentation based on usage of a
web service, the computer-implemented method comprising: capturing network traffic
including actual requests to a service endpoint of the web service and actual responses
from the service endpoint of the web service; analyzing captured network traffic to
determine one or more operations that are available at the service endpoint, input
arguments that are accepted by the service endpoint, and output arguments that are
provided by the service endpoint; and automatically generating service documentation for
the web service based on the one or more operations, the input arguments, and the output
arguments.

[00123] Supported aspects include the foregoing computer-implemented method,
further comprising: generating metadata for the service endpoint that identifies the one or
more operations, the input arguments, and the output arguments.

[00124] Supported aspects include any of the foregoing computer-implemented
methods, further comprising: determining whether each of the input arguments is
mandatory or optional.

[00125] Supported aspects include any of the foregoing computer-implemented
methods, further comprising: selecting an actual request to the service endpoint for use as
a sample request message.

[00126] Supported aspects include any of the foregoing computer-implemented
methods, further comprising: calculating statistics pertaining to usage of the service

endpoint.

30

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[00127] Supported aspects include any of the foregoing computer-implemented
methods, further comprising: filtering, by the computer system, the service documentation
based on message data included in one or more actual requests to the service endpoint.
[00128] Supported aspects include any of the foregoing computer-implemented
methods, further comprising: generating synthetic requests to the service endpoint; and
analyzing the synthetic requests and responses to the synthetic requests to determine an
additional operation that is available at the service endpoint, input arguments that are
accepted by the service endpoint to perform the additional operation, and output
arguments that are provided by the service endpoint when the additional operation is
performed.

[00129] Supported aspects include a system, an apparatus, a computer-readable storage
medium, and/or means for implementing and/or performing any of the foregoing
computer-implemented methods or portions thereof.

[00130] Supported aspects include a computer-readable storage medium storing
computer-executable instructions that, when executed by a computer system, cause the
computer system to implement: a network traffic capturer configured to capture actual
requests to a service endpoint of a web service and capture actual responses from the
service endpoint of the web service; a machine learning component configured to analyze
captured network traffic and generate metadata that identifies one or more operations that
are available at the service endpoint, input arguments that are accepted by the service
endpoint, and output arguments that are provided by the service endpoint; and a service
documentation generator configured to automatically generate service documentation for
the web service based on the metadata.

[00131] Supported aspects include the forgoing computer-readable storage medium,
wherein the machine learning component is further configured to: determine a data type of
each input argument, determine whether each of the input arguments is mandatory or
optional, select an actual request to the service endpoint for use as a sample request, and
calculate statistics pertaining to usage of the operations of the service endpoint.

[00132] Supported aspects include any of the forgoing computer-readable storage
media, further storing computer-executable instructions that implement a synthetic request
generator configured to generate synthetic requests to the service endpoints of the web

service for exploring functionality of the web service.

31

10

15

20

25

30

WO 2017/007979 PCT/US2016/041412

[00133] Supported aspects include an apparatus, a system, a computer-implemented
method, and/or means for implementing any of the foregoing computer-readable media or
performing the functions thereof.

[00134] Supported aspects of the described subject matter provide various attendant
and/or technical advantages. By way of illustration and not limitation, service
documentation can be generated automatically for any type of “black-box” web service
based on actual usage of such web service and without requiring access to its underlying
code. Service documentation generated from actual usage of the web service can better
represent the actual functionality of the web service. Service documentation can be
generated remotely from the web service anywhere along the communication path
between a client device and the web service.

[00135] Service documentation can be generated automatically using machine learning
to reduce the burden on developers when producing relevant and up-to-date information
regarding the functionality of a web service. The efficiency of web service development is
improved by eliminating the need for developers to manually create service documentation
and/or manually embed metadata within the code of the web service.

[00136] Frequent requests and responses captured in actual network traffic can be
selected as samples and included in the service documentation to ensure that such samples
are relevant to a consumer of the service documentation. Synthetic requests can be
generating and issued to the web service for exploring the functionality of the web service
even when the actual network traffic does not demonstrate all of the APIs, service
endpoints, and/or operations of the web service.

[00137] Supported aspects can provide various attendant and/or technical advantages in
terms of improved efficiency and/or savings with respect to power consumption, memory,
processor cycles, and/or other computationally-expensive resources.

[00138] The detailed description provided above in connection with the appended
drawings is intended as a description of examples and is not intended to represent the only
forms in which the present examples can be constructed or utilized.

[00139] Ttisto be understood that the configurations and/or approaches described
herein are exemplary in nature, and that the described embodiments, implementations
and/or examples are not to be considered in a limiting sense, because numerous variations
are possible. The specific processes or methods described herein can represent one or
more of any number of processing strategies. As such, various operations illustrated

and/or described can be performed in the sequence illustrated and/or described, in other

32

WO 2017/007979 PCT/US2016/041412

sequences, in parallel, or omitted. Likewise, the order of the above-described processes
can be changed.

[00140] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are presented as

example forms of implementing the claims.

33

WO 2017/007979 PCT/US2016/041412

CLAIMS
1. A computer system for automatically generating service documentation based on
usage of a web service, the computer system comprising:
a processor configured to execute computer-executable instructions; and
memory storing computer-executable instructions configured to:
capture network traffic including actual requests to a service endpoint of
the web service and actual responses from the service endpoint of the web service;
analyze captured network traffic to determine one or more operations that
are available at the service endpoint, input arguments that are accepted by the
service endpoint, and output arguments that are provided by the service endpoint;
generate metadata for the service endpoint that identifies the one or more
operations, the input arguments, and the output arguments;
automatically generate service documentation for the web service based on
the metadata; and
communicate the service documentation for the web service to a client
device.
2. The computer system of claim 1, wherein:
the input arguments include one or more of: headers supplied in the actual requests
to the service endpoint and message body content supplied in the actual requests to the
service endpoint; and
the output arguments include one or more of: headers provided in the actual
responses from the service endpoint, status codes provided in the actual responses from
the service endpoint, and message body content provided in the actual responses from the
service endpoint.
3. The computer system of claim 1 or claim 2, wherein analyzing the captured
network traffic comprises determining whether each of the input arguments is mandatory
or optional.
4. The computer system of any one of claims 1 to 3, wherein analyzing the captured
network traffic comprises determining frequent values for one or more of the input
arguments.
5. The computer system of any one of claims 1 to 4, wherein the memory further
stores computer-executable instructions configured to select an actual request to the

service endpoint for use as a sample request message.

34

WO 2017/007979 PCT/US2016/041412

6. The computer system of any one of claims 1 to 5, wherein the memory further
stores computer-executable instructions configured to calculate statistics pertaining to one
or more of

usage of the operations of the service endpoint,

usage of values for the input arguments,

usage of different service endpoints of the web service, and

usage of different versions of the web service.
7. The computer system of any one of claims 1 to 6, wherein the memory further
stores computer-executable instructions configured to search or filter the service
documentation based on message data included in one or more actual requests to the
service endpoint.
8. The computer system of any one of claims 1 to 7, wherein the memory further
stores computer-executable instructions configured to generate synthetic requests to the
service endpoint.
9. A computer-implemented method performed by a computer system to
automatically generate service documentation based on usage of a web service, the
computer-implemented method comprising:

capturing network traffic including actual requests to a service endpoint of the web
service and actual responses from the service endpoint of the web service;

analyzing captured network traffic to determine one or more operations that are
available at the service endpoint, input arguments that are accepted by the service
endpoint, and output arguments that are provided by the service endpoint; and

automatically generating service documentation for the web service based on the
one or more operations, the input arguments, and the output arguments.
10. The computer-implemented method of claim 9, further comprising:

generating metadata for the service endpoint that identifies the one or more
operations, the input arguments, and the output arguments.
11. The computer-implemented method of claim 9 or claim 10, further comprising:

determining whether each of the input arguments is mandatory or optional.
12. The computer-implemented method of any one of claims 9 to 11, further
comprising:

selecting an actual request to the service endpoint for use as a sample request

message.

35

WO 2017/007979 PCT/US2016/041412

13. The computer-implemented method of any one of claims 9 to 12, further
comprising:

calculating statistics pertaining to usage of the service endpoint.
14. The computer-implemented method of any one of claims 9 to 13, further
comprising:

generating synthetic requests to the service endpoint; and

analyzing the synthetic requests and responses to the synthetic requests to
determine an additional operation that is available at the service endpoint, input arguments
that are accepted by the service endpoint to perform the additional operation, and output
arguments that are provided by the service endpoint when the additional operation is
performed.
15. A computer program comprising code portions which, when executed on a
processor, cause the processor to carry out the computer-implemented method of any one

of claims 9 to 14.

36

PCT/US2016/041412

WO 2017/007979

1/5

I E

L¢1 {1N3LINOD

9¢1 {1N3LNOD

6¢1 41N31NOD

ad

—

ad

—

ad

—

1 S30IA3A LN3IND

VLva 378
O ERINES ¥OLVHINID
NOLLYLNIWNI0Q 30IAN3S
VLva W
Zvl4 39vsN LN3INOJINOD
ONINYY3I1 INHOVIN
VLva 8er
0v1 4 Old4WaL ¥IUNLYD
Ol34V¥L YIOMLIN
el Syl
¥OLVHINID
FOINE3S 83 1S3NDIY JILIHLNAS
E.ﬁums.mu Ns.m_u
E1A

JOVAYILNI LN

€1 IW3LSAS ¥31NdINOD

PCT/US2016/041412

WO 2017/007979

2/5

¢ Old

SANTVA ¥ INFWNOUY
SANTVA € INFWNOUY

SANTVA ¢ INFWNOUY
SANIVA | INFJWNOYY

SINJWNOYY LNdNO
F1dNVS
ISNOdSIY
IdAL ¥ INFJWNOYY | ¥ INFJWNOYY
IdAL € INFJWNOYY | € LNFJWNOYY

SININNOYY LNdNI TYNOILLO

3dAL ¢ INFJWNDYY

¢ INJNNDYY

I INFWNOUY

SINIFWNOYY LNdNI AMOLVANVI

J9VSSIW 1S3INDIY I1dWVS

F1dINVS
IEENVEL |

¢ NOILV¥3dO

¢ NOIS¥3A
¢ LNIOdaN4d
¢ LNIOdAaN4d

SNOILVY3dO
S1V1S NOILY¥3dO
} LNIOdAN3
SINIOdAaN3
S1V1S INIOddNd
| NOISY3A
SNOISY3A
S1V1S NOISYH3A
| JOIAYSS 9IM

431714 | HOYV3AS | 3LVOIAVN

WO 2017/007979 PCT/US2016/041412

3/5

00

CAPTURE NETWORK TRAFFIC INCLUDING
ACTUAL REQUESTS TO A SERVICE ENDPOINTAND |~ 310
ACTUAL RESPONSES FROM THE SERVICE ENDPOINT

v

ANALYZE CAPTURED NETWORK TRAFFICE TO
DETERMINE OPERATIONS, INPUT ARGUMENTS, AND |~ 320
OUTPUT ARGUMENTS FOR THE SERVICE ENDPOINT

v

GENERATE METADATA FOR THE SERVICE ENDPOINT |~ 330

v

CALCULATE STATISTICS FOR THE SERVICE ENDPOINT |— 340

v

AUTOMATICALLY GENERATE SERVICE DOCUMENTATION [~ 350

v

COMMUNICATE SERVICE DOCUMENTATION — 360

v

SEARCH OR FILTER THE SERVICE DOCUMENTATION |- 370

v

GENERATE SYNTHETIC REQUESTS
TO THE SERVICE ENDPOINT

— 380

FIG. 3

PCT/US2016/041412

WO 2017/007979

4/5

09y
W3LSAS 39V0LS

(17
MYOMLIN

¥ Old

9ev 0v% 3009 NOILYYINIO 1337
41 NINOD NOILV.LNIWND0A DIANAS JOVHOLS
(457 357 8y F4%7
1ndLno SNOILYDITddV SO A¥OW3N
75y IEF (SINVH¥D0Ud ¥ILNdINOD 15
LNdNI 057 W3LSAS ¥3LNdINOD y0SS3904d
91y 02¥ 3009 NOILYYINIO %7
41 NINOD NOILV.LNIWND0A DIANAS JOVHOLS
(%7 (%7 (1% F4%7
1ndLno SNOILYDITddV SO A¥OW3N
7iv I17 (SINV¥D0Ud ¥ILNdINOD T
LNdNI 01% 32IA3d ONILNINOD y0SS3904d

(1}

PCT/US2016/041412

WO 2017/007979

5/5

G Old

€16 (S)3DV443LNI — — 01G Y3AV
NOLLYOINMINOD Z1S AMOWaN 116 (S)40SS3ID04d THVMANYH
A
025 ¥OSIAYIdAH
| 1
Y Y Y
€SS (OSA) MOVIS £¥S (OSA) MOVIS F439
NOILVZITVYNLYIA NOILVZITVYNLYIA Y SY3IANA 30IA3A
— — $EG (dSA) MOV1S
}SS SO 1S3N9 %S SO 1S3n9 NOLLYZITYALNIA
756G (SINOILYOINddY V8 (SINOILYOINddY TG SO LNJWIDVNVIN
0SS ANIHOYIN TVYNLYIA 075 ANIHOYIN TVYNLYIA 0€S ANIHOYIN TVYNLYIA
[] []
N NOILILYVYd ATIHD ' | NOILILYVd QTIHD ' NOILILYVd LNI¥Vd
[] []

005 INJLSAS ¥3LNdINOD

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/041412

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/44 HO4L12/26
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Guidefor Wireshark 1.7",
INTERNET CITATION,

XP002694937,
Retrieved from the Internet:

/user-guide-ad.pdf
[retrieved on 2013-04-08]
Section 4- Section 8

5 July 2011 (2011-07-05), pages I1-X,

URL:http://web.archive.org/web/20110705021
327/http://www.wireshark.org/download/docs

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2013/007767 Al (LEMING MATTHEW W [GB] 1-15

ET AL) 3 January 2013 (2013-01-03)

paragraph [0004] - paragraph [0039];

figures 1-3
A ULF LAMPING ET AL: "Wireshark User's 1-15

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 September 2016

Date of mailing of the international search report

05/10/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kalejs, Eriks

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/041412

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

"Rapid Protocol Development in Wireless
Sensor Networks Using Wireshark Plugins",
10 February 2013 (2013-02-10), CORRECT
SYSTEM DESIGN; [LECTURE NOTES IN COMPUTER
SCIENCE; LECT.NOTES COMPUTER], SPRINGER
INTERNATIONAL PUBLISHING, CHAM, PAGE(S)
426 - 433, XP047267297,

ISSN: 0302-9743

ISBN: 978-3-540-40317-3

page 427 - page 431

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 20147282403 Al (FRENKIEL ANDY L [US]) 1-15

18 September 2014 (2014-09-18)

paragraph [0075] - paragraph [0080];

figure 12
A SURMACZ TOMASZ ED - PEDRO CAMPQOS ET AL: 1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2016/041412
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2013007767 Al 03-01-2013 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report
	Page 45 - wo-search-report
	Page 46 - wo-search-report

