Abstract:
Title: 7-HYDROXY CANNABIDIOL (7-OH-CBD) FOR USE IN THE TREATMENT OF NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD)

The liver plays a key role in regulating total body energy homeostasis and its ability to do so is greatly affected by the occurrence of pathological conditions such as hepatosteatosis or non-alcoholic fatty liver disease (NAFLD), which contributes to hepatic insulin resistance and potentially end-stage liver disease-related mortality. Triglyceride accumulation in hepatocytes of steatotic livers results from the incorporation of plasma free fatty acids as well as de novo fat synthesis. The present invention relates to the use of 7-hydroxy-cannabidiol (7-OH-CBD) in the treatment of non-alcoholic fatty liver disease (NAFLD). Treatment of NAFLD involves lowering the triglyceride levels in a patient's blood stream.
7-HYDROXY CANNABIDIOL (7-OH-CBD) FOR USE IN THE TREATMENT OF NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD)

[0001] The present invention relates to the use of 7-hydroxy-cannabidiol (7-OH-CBD) in the treatment of non-alcoholic fatty liver disease (NAFLD). Treatment of NAFLD involves lowering the triglyceride levels in a patient's blood stream.

BACKGROUND TO THE INVENTION

[0002] The liver plays a key role in regulating total body energy homeostasis and its ability to do so is greatly affected by the occurrence of pathological conditions such as hepatosteatosis or non-alcoholic fatty liver disease (NAFLD), which contributes to hepatic insulin resistance and potentially end-stage liver disease-related mortality. Triglyceride accumulation in hepatocytes of steatotic livers results from the incorporation of plasma free fatty acids as well as de novo fat synthesis.

[0003] Non-alcoholic fatty liver disease (NAFLD) is the term for a wide range of conditions caused by a build-up of fat within the liver cells. It is usually seen in people who are overweight or obese. If the build-up of fat increases, inflammation and scarring of the liver may occur.

[0004] People who are obese and have NAFLD are more at risk of suffering from a heart attack or a stroke. Indeed NAFLD is associated with; obesity; type II diabetes; high blood pressure; and high cholesterol.

[0005] Treatment of NAFLD involves weight loss and exercise; reducing the levels of triglycerides in the blood and reducing the level of glucose in the blood.

[0006] There are currently no specific medicines for NAFLD, but certain medicines used to treat high blood pressure and diabetes also have a beneficial effect on the liver. NAFLD may go on to cause cirrhosis or liver cancer and as such early and effective treatment is essential.

[0007] The primary goal for the clinical management of NAFLD is to reduce the risk of cardiovascular disease and type II diabetes. The risks of these diseases are highly diminished by reducing triglyceride levels in the blood including LDL cholesterol, reducing blood pressure, and reducing blood glucose levels.

[0008] Triglycerides (TG) are fat molecules which circulate in the blood, and are used to provide energy to the body, but excess TG which are not used are stored. High triglyceride levels are linked to a greater chance of heart disease and other metabolic disorders.
Triglycerides are the end product of digesting and breaking down fats in meals. Some triglycerides are made in the body from other energy sources such as carbohydrates. A healthy diet and exercise plan can lower triglyceride levels, improve cholesterol, and lower the risk of heart disease although this is sometimes difficult to achieve.

High triglyceride levels can also be caused by medications such as beta blockers; ACE inhibitors; diuretics; hormonal contraceptives; immunosuppressants; HIV treatments; and anti-psychotics.

Lowering TG levels in the blood can help reduce the risk of suffering from heart disease, diabetes and other metabolic disorders.

It has been shown previously that tetrahydrocannabivarin (THCV) is able to decrease triglyceride levels in HHL-5 cells treated with oleic acid. This is an in vitro model for fatty liver disease which showed that THCV was able to reduce triglyceride (TG) levels in a time dependent manner (Wargent et al., 2013).

It has also been suggested that cannabidiol (CBD) may be useful in reducing TG levels in blood (WO 2009/093018).

Yang et al. (2014) describes that CBD may protect the liver from the effects of binge alcohol-induced steatosis.

The Polish patent application PL 388833 describes the use of CBD for reducing body weight gain and reducing excessive fat accumulation.

Surprisingly, it has now been found that a metabolite of CBD, 7-hydroxy-cannabidiol, (7-OH CBD) is able to decrease intracellular TG levels in an in vitro model of fatty liver disease; furthermore it was more potent than its parent compound CBD. Conversely a metabolite of THCV, 11-hydroxy-tetrahydrocannabivarin, (11-OH-THCV) had no effect on the TG levels which infers that not all metabolites are effective in the same way as their parent compounds.

DEFINITIONS AND ABBREVIATIONS

Definitions of some of the terms used to describe the invention are detailed below:

The phytocannabinoids described in the present application are listed below along with their standard abbreviations.
The table above is not exhaustive and merely details the cannabinoids which are identified in the present application for reference. So far over 60 different cannabinoids have been identified and these cannabinoids can be split into different groups as follows:

- **Phytocannabinoids; Endocannabinoids and Synthetic cannabinoids** (which may be novel cannabinoids or synthetically produced phytocannabinoids or endocannabinoids).

 "Phytocannabinoids" are cannabinoids that originate from nature and can be found in the cannabis plant. The phytocannabinoids can be isolated from plants to produce a highly purified extract or can be reproduced synthetically.

 "Highly purified cannabinoid extracts" are defined as cannabinoids that have been extracted from the cannabis plant and purified to the extent that other cannabinoids and non-cannabinoid components that are co-extracted with the cannabinoids have been substantially removed, such that the highly purified cannabinoid is greater than or equal to 98% (w/w) pure.
“Synthetic cannabinoids” are compounds that have a cannabinoid or cannabinoid-like structure and are manufactured using chemical means rather than by the plant.

Phytocannabinoids can be obtained as either the neutral (decarboxylated form) or the carboxylic acid form depending on the method used to extract the cannabinoids. For example it is known that heating the carboxylic acid form will cause most of the carboxylic acid form to decarboxylate into the neutral form.

BRIEF SUMMARY OF THE DISCLOSURE

In accordance with a first aspect of the present invention there is provided a pharmaceutical composition comprising 7-hydroxy-cannabidiol (7-OH-CBD) and a pharmaceutically acceptable carrier for use in the treatment of non-alcoholic fatty liver disease (NAFLD).

In one embodiment the treatment involves lowering triglyceride levels. The high triglyceride levels may be caused by obesity; type II diabetes; or medication.

Preferably the dose of 7-OH-CBD is between 1 and 1000 mg/kg day.

The pharmaceutical composition may comprise 7-OH-CBD in combination with another medicament. Preferably the 7-OH-CBD may be formulated for administration separately, sequentially or simultaneously with the other medicament or the combination may be provided in a single dosage form.

Preferably the 7-OH-CBD is in a pure, isolated or synthetic form.

It is envisaged that the composition be administered as an oral liquid solution. Other modes of administration including solids, semi-solids, gels, sprays, aerosols, inhalers, vaporisers, enemas and suppositories are alternative administration forms. Such medicaments could be administered via the oral, buccal, sublingual, respiratory, nasal and distal rectum route.

In accordance with a second aspect of the present invention there is provided a method of treating non-alcoholic fatty liver disease (NAFLD) comprising administering a therapeutically effective amount of 7-hydroxy-cannabidiol (7-OH-CBD) to a subject in need thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are further described hereinafter with reference to the accompanying drawings, in which:

Figure 1 shows Adipored staining of triglycerides in HHL5 cells; and
Figure 2 shows Adipored staining of triglycerides in 3T3-L1-derived mature adipocytes.

Legend to the figures:

Figure 1. THCV, CBD and 7-OH-CBD decrease Adipored staining of triglycerides in HHL5 cells in a dose dependent manner. HHL5 cells in 96-well plates at 90% confluence treated without or with 100μM oleic acid in the absence or presence of THCV, 11-OH-THCV, CBD or 7-OH-CBD at the indicated concentrations (μM) assayed for intracellular triglyceride levels using AdipoRed (Lonza) (top) or cell viability via MTT (bottom). Data is expressed as the average and standard deviation of signals from 4 wells. * P<0.05.

Figure 2. THCV, CBD and 7-OH-CBD decrease Adipored staining of triglycerides in 3T3-L1-derived mature adipocytes in a dose dependent manner. 3T3-L1 cells were grown and differentiated in 100mm plates for 5 days before being transferred to 96-well plates, at d7 the cells were treated with THCV, 11-OH-THCV, CBD or 7-OH-CBD at the indicated concentrations (μM) for 48 hours prior to analysis of assayed intracellular triglyceride levels using AdipoRed (Lonza) (top) or cell viability via MTT (bottom). Data is expressed as the average and standard deviation of signals from 4 wells. * P<0.05.

DETAILED DESCRIPTION

The Example below describes the use of an in vitro model of fatty liver disease to demonstrate the efficacy of CBD, THCV and their primary metabolites 7-OH-CBD and 11-OH-THCV respectively in reducing triglyceride levels.

7-OH-CBD is the primary metabolite of its parent compound CBD and 11-OH-THCV is the primary metabolite of its parent compound THCV.

EXAMPLE 1:

Materials and Methods

Cell Culture:

HHL-5 cells were cultured in standard growth media (DMEM [Lonza] supplemented with 10% FBS [Lonza], NEAA [Gibco] and Pen/Strep [Gibco]). 3T3-L1 cells were cultured in growth media (GM; DMEM [Lonza] low NaHCO3 (1.5g/l), supplemented with 10% FBS [Lonza] and pen./strep. [Gibco]).

In order to induce adipogenesis cells were grown to 100% confluence and then switched to differentiation media (DMEM [Lonza] supplemented with a specific lot of 10% FBS [Lonza],
1µg/ml Insulin (Sigma), 250nM Dexamethasone (Sigma), 500µM MIX (Sigma) and pen./strept. [Gibco]) for 2 days, followed by incubation in DMEM [Lonza] supplemented with a specific lot of 10% FBS [Lonza], 1µg/ml Insulin (Sigma) and pen./strept. [Gibco] until day 7-10 at which point mature adipocytes are treated with cannabinoids at the indicated concentrations.

5 [0042] Triglyceride level analysis in cells:

[0043] HHL5 cells seeded in 96-well plates were grown to 90% confluence and then treated with 100µM oleic acid (OA) or DMSO (-) for 24 hours in the absence or presence of cannabinoids at the indicated concentrations.

[0044] 3T3-L1 cells were plated in 100mm plates and differentiated as above to obtain mature adipocytes, at which point they were re-plated into 96-well plates and then treated with the indicated concentrations of cannabinoids for 2 days. Cells were then washed with PBS and stained with AdipoRed (Lonza) and read with a Genios Pro Plate reader (Tecan) according to the manufacturer's instructions.

[0045] MTT assay:

[0046] MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) (5 mg/ml differentiation media) was added to cells treated as described above, and cells were incubated for additional 1 h at 37°C.

[0047] Cells were then washed in PBS and dried before the addition of 100µl of isopropanol to dissolve the formazan precipitate. The OD of each well was measured with a Genios-Pro plate reader (Tecan) equipped with a 620-nm filter.

RESULTS

[0048] HHL5 hepatocytes that have been treated with oleic acid to induce intracellular lipid accumulation are a useful in vitro model for fatty liver disease.

[0049] THCV and CBD, when metabolized by the liver result in the formation of the metabolites 11-OH-THCV and 7-OH-CBD (among others) respectively.

[0050] The ability of purified 11-OH-THCV and 7-OH-CBD, to modulate intracellular lipid levels in the in vitro hepatosteatosis model system was tested to determine if the metabolism of THCV and CBD resulted in compounds (metabolites) that were more, or less, active than their parent cannabinoids.

[0051] Upon co-incubation of HHL5 cells with 100µM oleic acid with the above mentioned compounds for 24hr we found that, THCV and CBD both dose-dependently lowered intracellular lipid levels.
Figure 1 shows that the metabolite of THCV, 11-OH-THCV, was devoid of lipid lowering activity, and the metabolite of CBD, 7-OH-CBD, was effective at lowering TG levels. Indeed the 7-OH-CBD compound was even more potent than its parent compound CBD (Fig. 1, top).

HHL5 cells treated in parallel were also assessed for viability using the MTT assay, and no toxicity was found for THCV or CBD up to 20 μM. Similarly, neither 11-OH-THCV or 7-OH-CBD were found to be toxic, indicating that the observed decreases in lipid content were not due to toxicity (Figure 1, bottom).

Adipocytes are the major biological store of triglycerides. The in vitro production of mature 3T3-L1-derived adipocytes, allows the effects of cannabinoids on the lipid content of a relatively pure pool of adipocytes to be examined.

As shown in Figure 2 (top), just as in HHL5 hepatocytes, THCV, CBD and 7-OH-CBD all dose-dependently decreased intracellular lipid stores within mature 3T3-L1-derived adipocytes, while again, 11-OH-THCV had no effect.

DISCUSSION

The data presented in this Example reinforce the previously reported studies that THCV and CBD may be useful agents for regulating lipid metabolism.

Interestingly, the metabolites of these cannabinoids, 11-OH-THCV and 7-OH-CBD differ in their abilities to modulate lipid levels.

While 11-OH-THCV appears to be inactive, 7-OH-CBD appears to be more active than CBD.

These data confirm that like in hepatocytes, THCV and CBD are able to reduce lipid levels within in vitro derived mature 3T3-L1 adipocytes. Further, as in hepatocytes, while 11-OH-THCV had no effect on lipid levels, 7-OH-CBD was more efficacious than CBD at reducing Adipored staining in mature adipocytes. These results were not associated with any apparent effect on cellular viability based on the MTT assay.

The surprising ability of the 7-OH-CBD metabolite to reduce triglyceride levels therefore makes this a potentially useful treatment of metabolic disorders by lowering triglyceride (cholesterol) levels in the blood stream. The fact that 7-OH-CBD appears more potent than its parent cannabinoid, CBD, means that lower doses of 7-OH-CBD may be used in the treatment of NAFLD.
REFERENCES

Yang et al. (2014) Free Radical Biology and Medicine, vol. 68, 2014, 260-267 "Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy."
CLAIMS

1. A pharmaceutical composition comprising 7-hydroxy-cannabidol (7-OH-CBD) and a pharmaceutically acceptable carrier for use in the treatment of non-alcoholic fatty liver disease (NAFLD).

2. A pharmaceutical composition as claimed in claim 1, wherein the treatment involves lowering triglyceride levels.

3. A pharmaceutical composition as claimed in claim 2, wherein the high triglyceride levels are caused by obesity.

4. A pharmaceutical composition as claimed in claim 2, wherein the high triglyceride levels are caused by type II diabetes.

5. A pharmaceutical composition as claimed in claim 2, wherein the high triglyceride levels are caused by medication.

6. A pharmaceutical composition as claimed in any of claims 1 to 5, wherein the dose of 7-OH-CBD is between 1 and 1000 mg/kg day.

7. A pharmaceutical composition as claimed in claim 1, wherein the 7-OH-CBD is used in combination with another medicament wherein the 7-OH-CBD may be formulated for administration separately, sequentially or simultaneously with the other medicament or the combination may be provided in a single dosage form.

8. A pharmaceutical composition as claimed in any of the preceding claims wherein the 7-OH-CBD is in a pure, isolated or synthetic form.

9. A method of treating non-alcoholic fatty liver disease (NAFLD) comprising administering a therapeutically effective amount of 7-hydroxy-cannabidiol (7-OH-CBD) to a subject in need thereof.
Figure 1. Adipored staining of triglycerides in HHL5 cells

Adipored

MTT

OA 100uM, 24hr

DMSO THCV 11OHTCV CBD 7OHCB

OA 200uM, 24h,
Figure 2. Adipored staining of triglycerides in 3T3-L1-derived mature adipocytes

Adipored

<table>
<thead>
<tr>
<th></th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td></td>
</tr>
<tr>
<td>THCV</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>11OHTHCV</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>CBD</td>
<td></td>
</tr>
<tr>
<td>7OHCBBD</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

MTT

<table>
<thead>
<tr>
<th></th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td></td>
</tr>
<tr>
<td>THCV</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>11OHTHCV</td>
<td></td>
</tr>
<tr>
<td>CBD</td>
<td></td>
</tr>
<tr>
<td>7OHCBBD</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

PCT/GB2015/051893

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61K31/05 A61P1/16
ADD.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal , WPI Data, CHEM ABS Data, MEDLINE, EMBASE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

'A' document defining the general state of the art which is not considered to be of particular relevance

'E' earlier application or patent but published on or after the international filing date

'L' document which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)

'O' document referring to an oral disclosure, use, exhibition or other means

'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

'U' document member of the same patent family

Date of the actual completion of the international search
19 August 2015

Date of mailing of the international search report
26/08/2015

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer
Tayl or, Mark

Form PCT/ISA/210 (second sheet) (April 2005)
INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2015/051893

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2711873 A1</td>
<td>30-07-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101977596 A</td>
<td>16-02-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2254565 A1</td>
<td>01-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2459637 A</td>
<td>04-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011509989 A</td>
<td>31-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015120739 A</td>
<td>02-07-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011082195 A</td>
<td>07-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013245110 A</td>
<td>19-09-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009093018 Al</td>
<td>30-07-2009</td>
</tr>
<tr>
<td>US 2005143448 Al</td>
<td>30-06-2005</td>
<td>US 2005143448 Al</td>
<td>30-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008194674 A</td>
<td>14-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009221692 A</td>
<td>03-09-2009</td>
</tr>
</tbody>
</table>

Form PCT/ISA210 (patent family annex) (April 2005)