发明名称
光接收组件及光学收发模块

摘要
本发明提供一种光接收组件及光学收发模块。光学收发模块包括基板，光接收组件及多个密封型光发射组件。光接收组件包括外壳体及光接收芯片，光接收芯片设置于外壳体内，光接收芯片包括芯片基材、光接收器及定位孔。芯片基材具相对的第一基材表面及第二基材表面，光接收器是设置于芯片基材的第一基材表面，定位孔是形成于芯片基材的第二基材表面上，且对位于光接收器。
1. 一种光接收组件，其特征在于：所述光接收组件包括：
外壳体；以及
光接收芯片，设置于所述外壳体内，所述光接收芯片包括芯片基材、至少一光接收器及至少一定位孔，所述芯片基材具有相对的第一基材表面及第二基材表面，所述光接收器是设置于所述芯片基材的第一基材表面上，所述定位孔是形成于所述芯片基材的第二基材表面上，且对位于所述光接收器，当光纤的一端插入所述第二基材表面上的所述定位孔内时，所述光纤的一端对位于所述第一基材表面上的所述光接收器。

2. 根据权利要求1所述的光接收组件，其特征在于：所述光纤的所述一端的切面所发出的光线与所述切面之间的角度小于90度。

3. 根据权利要求1所述的光接收组件，其特征在于：光学黏着材料是填充于所述定位孔与所述光纤之间的空隙。

4. 根据权利要求3所述的光接收组件，其特征在于：所述光学黏着材料的折射率是介于1.2与3.5之间。

5. 根据权利要求4所述的光接收组件，其特征在于：所述光学黏着材料的折射率是介于1.5与3.3之间。

6. 根据权利要求1所述的光接收组件，其特征在于：所述光纤的一端设有透镜组件。

7. 根据权利要求1所述的光接收组件，其特征在于：所述定位孔内具有一内凸面对应于光纤的一端，此内凸面可具有一凹透镜的功效，用于将光线集中于光接收器。

8. 根据权利要求1所述的光接收组件，其特征在于：所述光接收芯片包括一芯片基材、多个所述光接收器及多个所述定位孔，所述多个光接收器是位于所述第一基材表面上，所述多个定位孔是形成于所述第二基材表面上，并分别对应于所述多个光接收器。

9. 根据权利要求1所述的光接收组件，其特征在于：所述光接收组件为非密封型的光接收组件。

10. 一种光学收发模块，其特征在于：所述光学收发模块包括：
基板；
多个密封型光发射组件，设置于所述基板上；以及
光接收组件，连接于所述基板，所述光接收组件包括：
外壳体；以及
光接收芯片，设置于所述外壳体内，所述光接收芯片包括芯片基材、至少一光接收器及至少一定位孔，所述芯片基材具有相对的第一基材表面及第二基材表面，所述光接收器是设置于所述芯片基材的第一基材表面上，所述定位孔是形成于所述芯片基材的第二基材表面上，且对位于所述光接收器，当光纤的一端插入所述第二基材表面上的所述定位孔内时，所述光纤的一端对位于所述第一基材表面上的所述光接收器。
光接收组件及光学收发模块

【技术领域】
[0001] 本发明涉及一种光学收发模块及光纤缆线模块，特别是涉及一种涉及高密度安装的小型光学模块。

【背景技术】
[0002] 目前，对于计算装置的需求持续上升，甚至对于计算装置达到较高性能的需求亦在提升中。然而，传统的电性I/O(输入/输出)信号传递并无不预期地与对于性能增加的需求，特别是对于未来高性能计算的期待齐头并进。现今，I/O信号是通过电路板自处理器来回地电性传送向外输出至周边装置。电性信号必需经过焊料接头、缆线及其他电性导体。因此，电性I/O信号速率会受电性连接器的电性特性所限制。
[0003] 传统的电信传输系统逐渐被光纤传输系统所取代。光纤传输系统由于并不具有宽带限制，具有高速传输、传输距离长、材质不受电磁波干扰等优点，因此，目前电子产业多朝光纤传输之方向进行研发。
[0004] 虽然在计算装置中对于光学式的连接传输使用有持续增加，但目前用于光学信号传递所用的构件需要特别的加工，故增加系统制造的成本及复杂性。例如，近几年，要求光收发机等光学模块的进一步的小型化。然而，由于基板面积减少，所以部件的高密度安装变得更加困难。

【发明内容】
[0005] 本发明的主要目的在于提供一种光学收发模块，所述光学收发模块包括：
[0006] 基板具有相对的第一表面及第二表面；以及
[0007] 光接收组件，连接于所述基板；以及
[0008] 多个密封型光发射组件，设置于所述基板上，其中每一所述密封型光发射组件包括光发射器，所述光发射器是完全地密封于一个或多个密封型壳体内。
[0009] 本发明的另一目的在于提供一种光纤缆线模块，所述光纤缆线模块包括：
[0010] 光纤缆线；以及
[0011] 光学收发模块，包括：
[0012] 基板具有相对的第一表面及第二表面；以及
[0013] 光接收组件，连接于所述基板；以及
[0014] 多个密封型光发射组件，设置于所述基板上，其中每一所述密封型光发射组件包括光发射器，所述光发射器是完全地密封于一个或多个密封型壳体内。
[0015] 在本发明的一实施例中，所述多个密封型光发射组件是排列于所述基板的第一表面或所述基板的一侧上。
[0016] 在本发明的一实施例中，所述光学收发模块还包括定位件，用于定位及固定所述多个密封型光发射组件于所述基板的第一表面或所述基板的一侧上。
[0017] 在本发明的一实施例中，所述定位件包括多个凹部及卡槽，多个凹部是用于对应
容置及定位多个多个密封型光发射组件,卡槽是用于卡合及固定此多个密封型光发射组件于基板上。

[0018] 在本发明的一实施例中,所述多个密封型光发射组件是平行并列地排列于所述基板的第一表面上。

[0019] 在本发明的一实施例中,每一所述多个密封型光发射组件还包括筒状件,每一所述筒状件的至少一部分突出于所述基板的一端,所述光接收组件是固定于所述筒状件的一侧(下方)。

[0020] 在本发明的一实施例中,筒状件的外表面设有至少一外环部,用于卡置于定位件的卡槽内。

[0021] 在本发明的一实施例中,所述光接收组件是通过软性基板来连接于所述基板的第二表面上的电路。

[0022] 在本发明的一实施例中,所述多个密封型光发射组件是用于连接四个光纤通道(Channels),以符合QSFP28,QSFP+或Micro QSFP+的要求。

[0023] 在本发明的一实施例中,所述基板的尺寸是符合QSFP28,QSFP+或Micro QSFP+的要求。

[0024] 在本发明的一实施例中,基板的宽度可约为11～18mm,在另一实施例中,基板的宽度可仅为11.5～17mm。在另一实施例中,基板的宽度可约为58～73mm,在另一实施例中,基板的宽度可仅为63～73mm。

[0025] 在一实施例中,外壳体的宽度可约为13～20mm,在另一实施例中,外壳体的宽度可仅为13.5～19mm。在另一实施例中,外壳体的宽度可约为60～75mm,在另一实施例中,外壳体的宽度可仅为65～75mm。

[0026] 在本发明的一实施例中,每一所述多个密封型光发射组件的密封程度符合工业用途TO(Transmitter Optical Sub-Assembly)或Butterfly类型封装的气密要求。

[0027] 在本发明的一实施例中,每一所述多个密封型光发射组件的密封程度是介于1x10^{-4}(atm*cc/sec)与5x10^{-7}(atm*cc/sec)之间。

[0028] 在本发明的一实施例中,每一所述多个密封型光发射组件的密封程度是介于1x10^{-9}(atm*cc/sec)与5x10^{-8}(atm*cc/sec)之间。

[0029] 在本发明的一实施例中,所述光接收组件为非密封型的光接收组件。

[0030] 在本发明的一实施例中,所述光接收组件为一个或多个密封型的光接收组件。

[0031] 在本发明的一实施例中,所述光接收组件是固定于基板的第二表面上。

[0032] 在本发明的一实施例中,所述光接收组件可通过芯片直接封装(chip on board)方式进行固定。

[0033] 在本发明的一实施例中,所述密封型光发射组件还包括至少一光纤定位弹簧,所述光纤定位弹簧是设置于所述多个密封型光发射组件的一端,以确保所述多个密封型光发射组件与光纤之间的连接。

[0034] 在本发明的一实施例中,密封型光发射组件还包括至少一个光纤定位弹簧及弹簧固定件。光纤定位弹簧是对应地设置于筒状件的一端,且固定于弹簧固定件内。

[0035] 在本发明的一实施例中,弹簧固定件靠近光纤的一端可为活动式的,通过光纤定位弹簧的弹力,可允许光纤紧靠于筒状件,因而确保光纤与密封型光发射组件之间的连接。
及定位。
[0036] 在本发明的一实施例中，每一所述多个密封型光射发组件还包括筒状件，所述光纤定位弹簧是设置于所述筒状件的一端，光纤是穿过所述光纤定位弹簧来连接于所述筒状件。
[0037] 在本发明的一实施例中，光纤定位弹簧是对应地设置于筒状件的一端，且固定于弹簧固定件内。
[0038] 在本发明的一实施例中，非密封型的光接收组件可通过芯片直接封装方式来固定于筒状件的突出部分及弹簧固定件的下方。
[0039] 在本发明的一实施例中，所述多个密封型光发射组件的多个光发射器是密封于所述单一个密封型壳体内。
[0040] 在本发明的一实施例中，所述单一密封型壳体是一L形壳体且具有凹部，光纤是穿过所述凹部来连接于所述光接收组件。
[0041] 在本发明的一实施例中，所述多个密封型光发射组件是呈L形排列，光纤是穿过所述多个密封型光发射组件的L形排列来连接于所述光接收组件。
[0042] 在本发明的一实施例中，所述光纤型光发发组件是设置于基板的一端，光接收组件可设置于基板的第一表面上。
[0043] 在本发明的一实施例中，所述基板具有一凹部，而呈L形。至少部分的所述多个密封型光发射组件是位于所述凹部内，并电性连接于所述基板的第二表面上的电路。
[0044] 在本发明的一实施例中，部分的多个密封型光发射组件是设置于基板的凹部内，其他的多个密封型光发射组件是设置于基板的第一表面上，光接收组件是设置基板的第一表面上，且位于凹部的一侧。
[0045] 在本发明的一实施例中，光接收组件可包括外壳体及光接收芯片，光接收芯片是设置于外壳体内，光接收芯片可包括芯片基材、光接收器及定位孔。芯片基材具相对的第一基材表面及第二基材表面，光接收器是设置于芯片基材的第一基材表面，定位孔是形成于芯片基材的第二基材表面上，且对位于光接收器。当外部光纤的一端插入第二基材表面上的定位孔内时，光纤的一端可直接对位于第一基材表面上的光接收器，使得光纤芯所发出的光信号可直接经由芯片基材来传至光接收器。
[0046] 在本发明的一实施例中，为了减少不预期的光反射，光纤的一端切面与光纤芯之间的角度可小于90度，亦即由此切面所发出的光线与切面之间的角度可小于90度，以减少不预期的光反射。
[0047] 在本发明的一实施例中，光学黏着材料是填充于定位孔与光纤之间的空隙，光学黏着材料的折射率可匹配芯片基材及光纤的折射率，以减少不预期的光反射或折射。
[0048] 在本发明的一实施例中，光学黏着材料的折射率可匹配芯片基材及光纤的折射率之间。例如光学黏着材料的折射率可为1.2～3.5。在另一实施例中，光学黏着材料的折射率可为1.5～3.3。
[0049] 在本发明的一实施例中，光纤位于定位孔内的一端可设有透镜组件，亦即至少部分的透镜组件可位于定位孔内，用于改善出光的光学效果。
[0050] 在本发明的一实施例中，定位孔内具有一内凸面对应于光纤的一端，此内凸面可具有一凹透镜的功效，用于将光线集中于光接收器。
【具体实施方式】

【附图说明】
说明书

光纤电缆130是连接于光学收发模块110，用于传输光学信号。光纤电缆130可包括至少一或多条光纤芯，用于允许光学信号在光纤芯内传输。

如图1所示，电子装置101可包括处理单元103，其可代表任何类型的处理电性及/或光学1/O信号的处理组件。可理解的是，此处理器103可以是一单一处理装置。多个分开的装置，处理器103可包括或可以是一微处理器、可程序逻辑装置或数位、微型控制器、讯号处理器或某些组合。

如图1所示，电子装置101的连接端口102是用于作为一界面，以连接至光学收发模块110的光学收发模块110。光学收发模块110可允许另一周边装置105与电子装置101相互连接。本实施例中光学收发模块110可支持经由一光学界面的通信。在各种实施例中，光学收发模块110亦可支持透过一电性界面的通信。

如图1所示，此周边装置105可以是一外围1/O装置。在各种实施例中，周边装置105可以是多种运算装置中的任何一种，其包括但不限于桌上型或膝上型计算机、笔记本电脑、超薄型笔电、平板计算机、小笔电、或其它运算装置。在运算装置之外，可被了解的是，周边装置105可包括手持式装置、智能型手机、媒体装置、个人数字助理(PDA)、超行动个人计算机、移动电话、多媒体装置、内存装置、照相机、录音机、1/O装置、服务器、机顶盒、打印机、扫描机、监视器、电视机、电子长条牌、投影机、娱乐控制单元、可携式音乐播放器、数字摄影机、上网装置、游戏设备、游戏主机，或任何可以包括此光学收发模块110及/或匹配端口102的其它电子装置。在其它实施例中，此电子装置101可以是任何其他处理数据或影像的电子装置。

在实施例中，电子装置101也可包括内部的光学路径。此光学路径可代表一或多段组件，其包括在处理器103与端口102之间传送一光学信号的处理及/或终止组件。传送一信号系可包括产生及转换至光学性、或接收及转换至电性。在实施例中，装置也包括电性路径。电性路径代表在处理器103与端口102之间传送一电信号的一或多段组件。

如图1所示，光学收发模块110可用于对应配接电子装置101的匹配端口102。在实施例中，将一连接器插头和另一配接可以是来提供一机械式连接。将一连接器插头和另一配接通常亦提供通信连接。此匹配端口102亦可包括一或多个光学界面组件。路径100可代表一或多个组件，其包括用来传递光讯号(或光讯号及电讯号)于处理器103和匹配端口102之间的处理及/或终止组件。传送讯号可包括产生并转换成光讯号、或接收并转换成电讯号。

如图1所示，本发明的光学收发模块110可被称为光学连接器或光学接头。一般而言，此一光学连接器可用于提供一匹配的连接器及一光学组件相界面的实体连接界面。
此光学收发模块110可为一光引擎，用于产生光讯号及/或接收并处理光讯号。光学收发模块110可提供从电至光信号或从光至电信号的转换。

【0078】在实施例中，光学收发模块110可用来遵照或依据一或多通信协议处理该等光讯号。对于光学收发模块110用于传送一光讯号及一电讯号的实施例而言，光学界面和电性界面可依据相同的协议，但这并不是绝对必要的。不论光学收发模块110是依据电性I/O界面的协议，或是依据一不同的协议或标准来处理讯号，光学收发模块110都可为了一预期的(intended)的协议而被建构或程序化于一特定的模块内，且不同的收发模块或光引擎可为了不同的协议而被建构。

【0079】请参照图2至图5，其为本发明光学收发模块的一实施例的示意图。此光学收发模块110包括基板111、处理器112、多个密封型(hermetic)光发射组件113、光接收组件114、连接器115及外壳体116。基板111具有相对的第一表面111a及第二表面111b，基板111例如为印刷电路板(PCB)或陶瓷基板，并可包括例如插脚或连接球，用于介接至一外部装置。处理器112是连接于基板111，处理器112可为任何类型的处理器晶粒或光学IC，而非限制于任一特定的处理器类型。密封型光发射组件113及光接收组件114是连接至基板111上的处理器112，分别用于发射及接收光信号。密封型光发射组件113及光接收组件114可包含传输电子信号之发射电路和接收电路，更具体的说，是处理对应光信号之电子信号的时序或其它问题协议方面的事项。

【0080】在实施例中，光学收发模块110可例应用于四光纤通道并行传输(Parallel Single Mode 4 lane, PSM4)的技术，其是经由多个密封型光发射组件113分别将四个激光光源不同波长的光导入光纤中，通过光纤进行中、长距离的传输。光接收组件114可接收光信号，并可将处理过的光信号分隔至不同的通道。然不限于此，光学收发模块110除应用PSM4的技术外，亦可应用于波长分波多任务(WDM)、二位相位偏移调变(Binary Phase Shift Keying, BPSK)、四位相位偏移调变(Quadrature Phase Shift Keying, QPSK)、粗式波长分割多任务转换(Conventional/Coarse Wavelength Division Multiplexing, CWDM)、高密度波分多任务(Dense Wavelength Division Multiplexing, DWDM)、光波长取多任务 (Optical Add/Drop Multiplexer, OADM)、可调光波长取多任务(Reconfigurable Optical Add/Drop Multiplexer, ROADM)，或类此之相关光通讯技术。

【0081】如图2至图5所示，连接器115可提供复位向机制以便越过光纤(未示出)来改变光学收发模块110与外部的一些对象(例如，另一装置)之间的光线。例如，连接器115可通过反射面来提供光信号的复位向。连接器115的角度、尺寸和形状取决于光的波长，以及用来制造耦合器的材料和整个系统的要求。在实施例中，连接器115可设计成提供来自基板111的垂直光和传至基板111的水平光的复位向。

【0082】此外，连接器的尺寸、形状及组态和该标准有关，其包括用于相应的连接器配接的公差。因此，连接器用来整合光学I/O组件的布局(layout)可因为各式标准而有所不同。一领域技术者理解的是，光学界面需要瞄准线(line-of-sight)连接，用以具有一和接收器相接之光讯号发送器(两者皆可被称为透镜)。因此，连接器的组态将使得透镜不会被相应的电性接点组件遮挡。例如，光学界面透镜可被设置在该等接点组件的侧边、或上方或下方，端视该连接器内可用空间而定。

【0083】在实施例中，连接器115可为MPO(Multi-Fibre Push On)的规格，光纤可以是以
多通道的方式一对一的对接。在一实施例中，可利用CWM/WDM系统，并经由分配、解分光的步骤，来达到LR4的规格需求。

【0084】如图2所示，外壳体116是用于保护及组装基板111、处理器112、多个密封型光发射组件113、光接收组件114及连接器115。在其他实施例中，光学收发模块110还可包括平面光波芯片（PLC）及调变器。平面光波芯片可为光的传输及其转换成电信号提供一平面之整合组件，反之亦然。可以理解的是，平面光波芯片（PLC）的功能也可以被整合于连接器115中。

【0085】请参照图5及图7，图6为本发明光发射组件及定位件的一实施例的示意图，图7为本发明定位件的一实施例的示意图。在本实施例中，多个密封型光发射组件113可排列设置于基板的第一表面111a上，例如多个（如4个）密封型光发射组件113可平行并列地排列于基板111的第一表面111a上。在一实施例中，光学收发模块110还可包括定位件117，用于定位及固定此多个密封型光发射组件113于基板111的第一表面上111a，以维持光纤通道以及光收发组件之接合的特性损失和可靠性。具体地，定位件117可设置于基板111的第一表面111a上，且定位件117可包括多个凹部117a及卡槽117b，多个凹部117a是用于对应容置及定位多个多个密封型光发射组件113，卡槽117b是用于卡合及固定此多个密封型光发射组件113于基板111的第一表面上111a上。

【0086】如图6所示，每一密封型光发射组件113包括光发射器113a，且光发射器113a是完全地密封于一个或多个密封型壳体113b内，亦即密封型光发射组件113内的光发射器113a并不会接触到密封型光发射组件113之外的外部环境或空气，以避免光发射器113a的组件老化，确保光发射器113a的组件性能，大幅延长组件的使用寿命。其中，密封型光发射组件113的密封程度为符合工业用途TO（Transmitter Optical Sub-Assembly）类型封装的气密要求。例如，每一多个密封型光发射组件113的密封程度可为1x 10^-12～5x10^-7(atm*cc/sec)。在一实施例中，更具体地，每一多个密封型光发射组件113的密封程度可为1x10^-9～5x 10^-8(atm*cc/sec)。

【0087】在各种实施例中，密封型光发射组件113的光发射器113a所发出的光信号的波长可位于近红外光至红外光的范围，约为830纳米（nm）～1660纳米。光发射器113a可为适合于产生光信号之任一种类型的激光芯片（例如边射型激光装置，FP/DFB/EMI激光，或垂直腔表面发光型激光，VCSEL）。

【0088】如图6及图7所示，在本实施例中，密封型光发射组件113还包括密封型壳体113b及简状件113c。光发射器113a可直接密封于密封型壳体113b，且不具有外露的间隙，以确保密封型光发射组件113的密封性。在本实施例中，密封型壳体113b例如为圆筒型壳体。简状件113c是设置于密封型壳体113b的一侧，并可容置于定位件117的凹部117a内。由光发射器113a所发出的光信号可经由简状件113c传导至光纤。简状件113c的外表面设有至少一外环部113d，用于卡置于定位件117的卡槽117b内。简状件113c的内表面可能设有耦光透镜（未显示），例如凸透镜或球形透镜，用于将光发射器113a所射出的光信号经由简状件113c耦光至外部光纤。

【0089】在一实施例中，如图5及图6所示，密封型光发射组件113还包括至少一个光纤定位弹簧113e及弹簧固定件113f。光纤定位弹簧113e是对应地设置于简状件113c的一端，且固定于弹簧固定件113f内，外部的光纤可例如穿过光纤定位弹簧113e来连接于简状件113c。
因此，光纤定位弹簧113e可确保光纤稳固地连接于密封型光发射组件113的筒状件113c，以维持光纤通道以及光收发组件接合的特性损失和可靠性。具体地，弹簧固定件113f靠近光纤的一端可为活动式的，通过光纤定位弹簧113e的弹力，可允许光纤紧靠于筒状件113c，因而确保光纤与密封型光发射组件113之间的连接及定位。

【0090】在本实施例中，筒状件113c的至少一部分可突出或超出于基板111的一端，而光接收组件114可固定于筒状件113c的突出部分的一侧（下方），且定位件117的至少一部分可突出或超出于基板111的一端，以更稳固地固定筒状件113c的突出部分。具体地，非密封型的光接收组件114可通过芯片直接封装（chip on board）方式来固定于筒状件113c的突出部分及弹簧固定件113f的下方。如此，密封型光发射组件113可排列于基板111的第一表面111a，而光接收组件114可固定于筒状件113c的下方，而无需设置于基板111的第一表面111a上，因而可缩减基板111的宽度。再者，由于光接收组件114可固定于筒状件113c的下方，而无需设置于基板111的第二表面111b上，因而可减少光学收发模块110的整体厚度。在此实施例中，光接收组件114可通过一软性基板118来连接于基板111的第二表面111b上的电路，以电性连接至处理器112。

【0091】然不限于此，在一实施例中，光接收组件114也可为一个或多个密封型的光接收组件。在另一实施例中，光接收组件114也可通过芯片直接封装（chip on board）方式来固定于基板111的第二表面111b上。

【0092】在本实施例中，每一多个密封型光发射组件113的尺寸与基板111的尺寸可以为符合QSFP28、QSFP+或Micro QSFP+的要求之设计。例如，在一实施例中，基板111的宽度可为11～18mm，在另一实施例中，基板111的宽度可仅约为11.5～17mm。在一实施例中，基板111的长度可约为58～73mm，在另一实施例中，基板111的长度可仅约为63～73mm，以符合QSFP+或QSFP28的要求。因此，通过密封型光发射组件113的光接收组件114的配置，可将多个密封型光发射组件113及非密封型的光接收组件114可配置及封装于小型的光学收发模块110内，实现光学收发模块的小型化。

【0093】例如，在一实施例中，外壳体116的宽度可为13～20mm，在另一实施例中，外壳体116的宽度可仅约为13.5～19mm。在一实施例中，外壳体116的长度可为60～75mm，在另一实施例中，外壳体116的长度可仅约为65～75mm。因此，确地实现光学收发模块的小型化。

【0094】请参照图8A至图8B，其为本发明光学收发模块的一实施例的示意图。在一实施例中，多个密封型光发射组件213的多个光发射器光发射器113a也可密封于单一个密封型外壳体213b内。在此实施例中，此单一密封型外壳体213b可为一L形外壳体且具有四个213g，光纤可穿过密封型外壳体213b的凹部213g来连接于光接收组件214。具体地，在此实施例中，密封型光发射组件213是设置于基板111的一端，光接收组件214可设置于基板111的第一表面111a上。如此，可将多个密封型光发射组件213及非密封型的光接收组件214可配置及封装于小型的光学收发模块110内，实现光学收发模块的小型化。

【0095】在其他实施例中，多个密封型光发射组件也可呈L形排列，光纤是穿过多个密封型光发射组件的L形排列来连接于光接收组件214。

【0096】请参照图9，其为本发明光学收发模块的一实施例的示意图。在一实施例中，基板311可具有一凹部311c，而呈L形。至少部分的多个密封型光发射组件313是位于基板311的凹部311c内，并电性连接于基板311的第二表面111b上的电路。具体地，在此实施例中，部分
的多个（例如2个）密封型光发射组件313是设置基板311的凹部311c内，其他的多个（例如2个）密封型光发射组件313是设置基板311的第一表面111a上，光接收组件314是设置基板311的第一表面111a上，且位于凹部311c的一侧。如此，可将多个密封型光发射组件313及非密封型的光接收组件314可配置及封装于一小型的光学收发模块110内，实现光学收发模块的小型化。

[0097] 请参照图10至12，其为本发明光接收芯片的一实施例的示意图。在一实施例中，光接收组件114可包括外壳体（未显示）及光接收芯片114b，光接收芯片114b是设置于外壳体内，光接收芯片114b可包括芯片基材114c、光接收器114d及定位孔114e。芯片基材114c具相对的第一基材表面114f及第二基材表面114g，光接收器114d是设置于芯片基材114c的第一基材表面114f上，且第一基材表面114f可形成电路114h，以连结于光接收器114d。定位孔114e是形成于芯片基材114c的第二基材表面114g上，且定位孔114e是设置于光接收器114d来形成。定位孔114e的最大直径可大于或等于外部光纤131的一端的直径，以供外部光纤131的一端可直接插入定位孔114e内。当外部光纤的一端插入第二基材表面114g上的定位孔114e内时，光纤131的光芯132可对位于第一基材表面114f上的光接收器114d，使得光纤芯所发出的光信号可直接经由芯片基材114c传至光接收器114d。

[0098] 请参照图13，其为本发明光接收芯片的一实施例的示意图。在一实施例中，为了减少不预期的光反射，光纤131的一端切面233与光纤芯132之间的角度θ可小于90度，亦即由此切面233所发出的光线与切面233之间的角度θ可小于90度，以减少不预期的光反射。

[0099] 请参照图14，其为本发明光接收芯片的一实施例的示意图。在一实施例中，光纤131位于定位孔114e内的一端可设有透镜组件134，亦即至少部分的透镜组件134可位于定位孔114e内，用于改善出光的光学效果。

[0100] 请参照图15，其为本发明光接收芯片的一实施例的示意图。在一实施例中，可利用一光学黏着材料114i来填充于定位孔114e与光纤131之间的空隙，光学黏着材料114i的折射率可匹配芯片基材114c及光纤131的折射率，以减少不预期的光反射或折射。亦即，光学黏着材料114i的折射率可匹配芯片基材114c及光纤131的折射率之间。例如光学黏着材料114i的折射率为1.2～3.5。在一实施例中，光学黏着材料114i的折射率为1.5～3.3。

[0101] 请参照图16，其为本发明光接收芯片的一实施例的示意图。在一实施例中，定位孔114e内具有一内凸面114j对应于光纤131的一端，此内凸面114j可具有一凹透镜的功能，用于将光线集中于光接收器114d。

[0102] 请参照图17，其为本发明光接收芯片的一实施例的示意图。在一实施例中，光接收芯片214b可包括一芯片基材214c、多个光接收器214d及多个定位孔214e。多个光接收器214d是设置于第一基材表面114f上，而形成光接收器数组。多个定位孔214e是形成于第二基材表面114g上，并分别对应于光接收器214d。

[0103] 本发明的光学收发模块可配置及封装多个密封型光发射组件及光接收组件于一小型的光学收发模块内，实现光学收发模块的小型化。

[0104] “在一些实施例中”及“在各种实施例中”等用语被重复地使用。该用语通常不是指相同的实施例；但它亦可以是指相同的实施例。“包含”、“具有”及“包括”等用词是同义词，除非其前后文意显示出自其它意思。

[0105] 虽然各种方法、设备、及系统的例子已被描述于本文中，但本揭示内容涵盖的范围
并不局限于此。相反地，本揭示内容涵盖所有合理地落在权利要求界定的范围内的方法、设备、系统及制造之物，权利要求的范围应依据已被建立的申请专利范围解释原理来加以解读。例如，虽然上述揭示的系统的例子在其它构件之外还包括可自硬件上执行的软件或或韧体，但应理解的是，该等系统只是示范性的例子，并应解读为是限制性的例子。详言之，任何或所有被揭示的硬件、软件、及/或韧体构件可被专门地被体现为硬件、专门地被体现为软件、专门地被体现为韧体、或硬件、软件及/或韧体的一些组合。

综上所述，虽然本发明已以优选实施例揭露如上，但上述优选实施例并非用以限制本发明，本领域的普通技术人员，在不脱离本发明的精神和范围内，均可作各种更动与润饰，因此本发明的保护范围以权利要求界定的范围为准。
图2