用于从木质纤维素生物质的预处理流中回收糖类的方法

本发明方法是用于预处理木质纤维素生物质原料，包括：浸泡木质纤维素生物质原料，其中浸泡的生物质以与游离液体的混合物形式存在，并且其中游离液体包括选自葡萄糖、木糖以及它们相应的低聚物组成的组中的至少一种溶解的化合物；洗涤浸泡的生物质和游离液体的混合物，其中从浸泡的生物质中分离包含选自葡萄糖、木糖以及它们相应的低聚物组成的组中的至少一种溶解的化合物的至少一部分游离液体，从而产生浸泡的洗涤生物质和至少一种游离液体流；压缩浸泡的生物质从而产生释放液体；从浸泡的生物质中分离释放液体，并且保存从任何游离液体中分离的至少一部分释放液体。
1. 一种用于预处理木质纤维素生物质原料的方法，其中所述方法包括
 A) 浸泡所述木质纤维素生物质原料，其中所述浸泡的生物质与能够以蒸气和液体状
 态物质存在的游离液体的混合物存在，并且其中所述游离液体包括选自葡萄糖、木糖以
 及它们相应的低聚体组成的组中的至少一种溶液的化合物。
 B) 洗涤所述浸泡的生物质和所述游离液体的混合物，其中从所述浸泡的生物质中分离
 包含选自葡萄糖、木糖以及它们相应的低聚体组成的组中的至少一种溶解放的化合物的至
 少一部分所述游离液体，从而产生浸泡的洗涤生物质和至少一种游离液体流。
 C) 以一定的压缩比压缩所述浸泡的生物质从而产生释放液体。
 D) 从所述浸泡的生物质中分离所述释放液体，并且
 E) 保存从任何游离液体中分离的至少一部分所述释放液体。

2. 根据权利要求1所述的方法，其中所述浸泡是在浸泡反应器中进行的并且至少一部
 分所述释放液体被引入所述浸泡反应器中。

3. 根据权利要求1至2中任一项所述的方法，其中所述生物质原料中的液体量加上添
 加的液体量相对于干物质的量的比率在0.5:1至10:1的范围内。

4. 根据权利要求1至2中任一项所述的方法，其中所述生物质原料中的液体量加上添
 加的液体量相对于干物质的量的比率在0.5:1至5:1的范围内。

5. 根据权利要求1至2中任一项所述的方法，其中所述生物质原料中的液体量加上添
 加的液体量相对于干物质的量的比率在0.8:1至10:1的范围内。

6. 根据权利要求1至2中任一项所述的方法，其中所述生物质原料中的液体量加上添
 加的液体量相对于干物质的量的比率在1:1至10:1的范围内。

7. 根据权利要求1至2中任一项所述的方法，其中所述生物质原料中的液体量加上添
 加的液体量相对于干物质的量的比率在1:1至5:1的范围内。

8. 根据权利要求1至7中任一项所述的方法，其中移出的游离液体的量相等于移出的
 压缩液体的量的比率在1:1至5:1的范围内。

9. 根据权利要求1至7中任一项所述的方法，其中移出的游离液体的量相等于移出的
 压缩液体的量的比率在1.5:1至4:1的范围内。

10. 根据权利要求1至7中任一项所述的方法，其中移出的游离液体的量相等于移出的
 压缩液体的量的比率在2:1至4:1的范围内。

11. 根据权利要求1至10中任一项所述的方法，其中在所述压缩步骤之前在多于一个
 位置处进行从所述浸泡的生物质中分离所述部分的游离液体。

12. 根据权利要求1至11中任一项所述的方法，其中在所述压缩步骤之前存在多于一
 个洗涤步骤。

13. 根据权利要求1至12中任一项所述的方法，其中所述压缩比在1.5至10的范围
 内。

14. 根据权利要求1至13中任一项所述的方法，其中在至少1.5巴的压力下以及在至
 少110℃的温度下进行所述浸泡从而产生浸泡的生物质。
用于从木质纤维素生物质的预处理流中回收糖类的方法

发明内容

本发明书中公开了用于预处理木质纤维素生物质原料的方法，包括：浸泡木质纤维素生物质原料，其中所述浸泡的生物质以与游离液体的混合物存在，并且其中所述游离液体包含选自由葡萄糖、木糖以及它们相应的低聚体组成的组中的至少一种溶解的化合物；洗涤浸泡的生物质和游离液体的混合物，其中从浸泡的生物质中分离包含选自由葡萄糖、木糖以及它们相应的低聚体组成的组中的至少一种溶解的化合物的至少一部分游离液体从而产生浸泡的洗涤生物质和至少一个游离液体流；压缩浸泡的生物质从而产生释放液体；从浸泡的生物质中分离释放液体，并且保存从任何游离液体中分离的至少一部分释放液体。如本发明说明书中使用的，在表述“游离液体（自由液体，free liquid）”术语“液体”是指能够以蒸汽和/或液体状态存在的物质。

本发明还公开了浸泡是在浸泡反应器中进行的并且至少一部分释放液体被引入浸泡反应器中。

本发明还公开了生物质原料中液体的量加上添加的液体的量相对于干物质的量的比率可以在 0.5:1 至 10:1、0.5:1 至 5:1、0.8:1 至 10:1、1:1 至 10:1、和 1:1 至 5:1 的范围内。

本发明还公开了移出的游离液体的重量相对于移出的压缩液体的量的比率可以在 1:1 至 5:1、1:1 至 4:1 和 2:1 至 4:1 的范围内。

本发明还公开了在压缩步骤之前在多于一个位置处进行从浸泡的生物质中分离所述部分的游离液体，并且可以存在多于一个洗涤步骤。

本发明还公开了压缩步骤的压缩比例在 1.5 至 10 的范围内。
说明书

[0010]本发明还公开了在至少1.5巴的压力下以及在至少110℃的温度下进行浸泡从而产生浸泡的生物质。

附图说明
[0011]图1是本发明的一个实施方式的示意图。

具体实施方式
[0012]用于这种方法的原料是木质纤维素生物质。木质纤维素材料可以如下描述，除了淀粉，植物生物质中三种主要组分是纤维素、半纤维素和木质素，它们通常通过通称木质纤维素来提及。含有多糖的生物质作为通称包含淀粉和木质纤维素生物质两者。因此，用于预处理的一些类型的原料可以是植物生物质，含有多糖的生物质，和木质纤维素生物质。
[0013]如果生物质是包含多糖的生物质并且是木质纤维素类的，常常利用预处理以确保木质纤维素内含物的结构更易接近酶类，并且同时有害的抑制性副产物如乙酸、糠醛和甲基糠醛的浓度保持显著地较低。
[0014]根据本发明含有多糖的生物质包括含有聚合糖的任何物质，例如，以淀粉以及精制淀粉、纤维素与半纤维素的形式。
[0015]根据本发明用于预处理和随后沉淀的相关类型的生物质可以包括从农作物得到的生物质，例如，淀粉，例如包含淀粉的谷物和精制淀粉；玉米秸秆，甘蔗渣，竹秆例如来自水稻、小麦、黑麦、燕麦、大麦、油菜和高粱；软木材，例如樟子松（Pinus sylvestris），辐射松（Pinus radiate）硬木材，例如柳属（Salix spp.），桉属（Eucalyptus spp.）；根茎类，例如，甜菜、土豆；谷物，来自例如，水稻、小麦、黑麦、燕麦、大麦、油菜、高粱和玉米；废纸，来自沼气处理的纤维碎片，粪便，来自油榨处理的残余物，市政固体废料等。
[0016]所述木质纤维素生物质原料优选地来自通常称作禾本科植物（grasses）的科。固有名称是在开花植物的单子叶植物纲（百合纲，Class Liliopsida）（单子叶植物）中称作禾本科（Poaceae）或禾本科（Gramineae）的科。该科的植物通常称作禾本科植物（grasses），或为了与其他禾草类植物（graminoid）区分，称作真禾本科植物（true grasses）。也包括竹子。存在约600个属和9,000-10,000或更多个种的禾本科植物（世界禾本科植物种的Kew索引（Kew Index of World Grass Species））。
[0017]禾本科包括在全球生长的主粮和谷物、草坪草和牧草，和竹子。禾本科通称具有称作秆（culm）的空心茎，它们在称作节（node）（沿着叶子长出的秆的多个点）的间隔处被封闭（实体）。禾本科植物的叶子通常是交替的，二分的（在一个平面中）或极少地螺旋的，以及平行脉的。每片叶子分化成环绕该茎持续一段距离的下部叶鞘，以及边缘通常完整的叶片。许多禾本科植物的叶片由二氧化硅植物层（silica phytoliths）硬化，这有助于阻碍食草动物。在一些禾本科植物（例如剑叶状草（sword grass）），这使得禾本科植物叶片的边缘很锋利足以割伤人类皮肤。膜质的附着物或羽毛状的边缘（fringe of hairs），称为叶舌，位于叶鞘和叶片之间的连接处，以防止水或昆虫深入叶鞘。
[0018]禾本科的叶片在叶片的基底长出而不是来自延长茎的顶端。这种低生长点涉及对食草动物做出反应并且允许禾本科植物被有规律地吃掉或割掉而不严重地损害植物。
[0019]禾本科植物的花特征性地以小穗状花序排列，每个小穗具有一个或多个小花（小
穗状花序进一步分成圆锥花序或穗状花序。小穗由在称为颖片(glume)的基部的两个(或有时更少的)苞叶(bract),紧接着一个或多个小花构成。小花由被称为外稃(lemma)、内稃(palea)的内部部分的两片苞叶(bract)包围的花组成。这些花通常是两性的(玉蜀黍),雌雄同株的,是例外)并且传粉通常总是风媒性的。将菊苞(perianth)减少至两个鳞片(scale),称为鳞片(lodicule),这些鳞片伸展和收缩以展开外稃和内稃;这些通常解释为改变的萼片(modified sepal)。

[0020] 禾本科植物的果实是颖果(caryopsis),其中种皮融合在果皮上并且因此,不可与其分离(如在玉蜀黍核心中)。

[0021] 禾本科植物中存在三种一般性的生长习性分类,丛生型(bunch-type)(也称为丛生型(caespitose)),匍匐茎型(stoloniferous)和地下茎型(rhizomatous)。

[0022] 禾本科植物的兴旺(success)部分地在于它们的形态和生长过程,并且一部分地在于它们的生理多样性。使用用于碳固定的C3和C4光合途径,将大部分禾本科植物分成两个生理学组。C4禾本科植物使光合途径与专门的克兰兹叶解剖学(Kranz leaf anatomy)连接,这使它们特别适应较热气候和二氧化碳较低的气氛。

[0023] C3禾本科植物称作“冷季禾本植物”而C4禾本科植物称作“热季禾本植物”。禾本科植物可以是一年生或多年生的。一年生冷季禾本植物的实例是小麦,黑麦和一年生蓝草(annual bluegrass)(一年生草比率熟禾(annual meadow grass),早熟禾(Poa annua)和燕麦)。多年生冷季禾本植物的实例是野茅(orchardgrass)(鸭茅(cocksfoot),鸭茅(Dactylis glomerata),羊茅(fescue)(羊茅属(Festuca spp.),肯塔基蓝草(Kentucky Bluegrass)和多年生黑麦草(perennial ryegrass)(黑麦草(Lolium perenne)。一年生热季禾本植物的实例是玉米,苏丹草和珍珠稷。多年生热季禾本植物的实例是大须芒草(big bluestem),印度草(indiangrass),狗牙草(bermudagrass)和柳枝稷(switchgrass)。

[0024] 禾本科植物的一个分类识别出12个亚科:这些亚科是:1) 羽茅草亚科(anomochloideae),包括两个属(三芒草属(Anomochloa),Streptochaela)的阔叶禾本植物的一个小谱系;2)Pharoideae,包括三个属的禾本科植物的一个小谱系,包含Pharus 和囊稃竹属(Leptaspis);3)Pueliioideae,包括非洲属Puelia的一个小谱系;4)早熟禾亚科(Pooideae),包含小麦,大麦,燕麦,雀麦(brome-grass)(雀麦(Bronnus))和拂子茅(reedgrasses)(拂子茅(Calamagrostis));5)竹亚科(Bambusoideae),包含竹子;6)稻亚科(Ehrhartoideae),包含水稻和野生稻;7)芦竹亚科(Arundinoideae),包含大芦苇(芦竹,giang reed)和普通芦苇(芦苇,common reed);8)假淡竹亚科(Centothecoideae),有时包括在黍亚科(Panicoideae)中的11个属的小亚科;9)虎尾草亚科(Chloridoideae),包含画眉草(loovegrass)(画眉草属(Eragrostis),大约350个种,包括埃及俄比亚画眉草(teff)),鼠尾粟(dropseed)(鼠尾粟属(Sporobolus),大约160个种),指状稷(finger millet)(龙爪稷属(Eleusine coracana(L.)Gaertn.),和乱子草(muhly grass)(乱子草属(Muhlenbergia),约175个种);10)黍亚科(Panicoideae),包括稷(panic grass),玉蜀黍,高粱,甘蔗,大部分稷,fonio和蓝茎禾本科植物(blue stem grass);11) Micrairoideae;12)Danthonioideae,包括蒲苇草(pampas grass);其中早熟禾属(Poa)(其是约500种禾本科植物的属),适应两个半球的温带区域。

[0025] 为了它们可食用的种子而种植的农业禾本植物称为谷物。三种常见的谷物是水
稻、小麦和玉蜀黍（玉米）。在所有谷物中，70%是禾本植物。

[0026] 甘蔗是糖生产的主要来源。禾本植物用于建筑。由竹子制造的脚手架能够承受可以折断钢脚手架的风力。较大的竹子和芦竹（Arundo donax）具有结实的秆，这些结实的秆能够以与木材相似的方式使用，并且禾本植物的根稳定了草皮房子（sod house）的草皮（sod）。芦竹（Arundo）用于制造木管乐器的簧片（reed for woodwind instrument），并且竹子用于无数的器具。

[0027] 因此，优选的木质纤维素生物质选自由禾本植物组成的组中。可代替地用短语表达，优选的木质纤维素生物质选自由禾本科（Poaceae）或禾本科（Gramineae）的植物组成的组中。另外优选的木质纤维素生物质是具有其（如纤维素）至少 5% 重量的可溶性物质，或更优选其（如纤维素）至少 10% 重量的干物质。

[0028] 通过参考图 1 将在本文中描述该方法。木质纤维素生物质原料（在原料中其包含至少 5% 重量纤维素的干物质，并且更优选至少 10% 重量）通过 S₅ 进入浸泡反应器中。根据严格的选择，在 0.5kg/stm/1kg 生物质原料至 10kg/stm/1kg 生物质原料的示例性比率下，将蒸汽添加至浸泡反应器中。再次根据严格的期望，在蒸汽存在下浸泡反应器（第一加压反应器）保持生物质持续约 30 分钟至 3 小时或更长时间。浸泡温度可以在 110℃至 190℃的范围内，或更高，但是减少了返流。在浸泡之后，典型地在浸泡反应器的相同压力下，将固体 / 液体 / 流股混合物通过固体流 S₅ 排放到倾析反应器中。如图 1 所示，存在来自排放螺旋（discharge screw）的游离液体流 L₅。因为排放螺旋可以在固体生物质上产生一些压力，该流股 L₅ 也可以含有水的释放液体。固体生物质与冷凝的冷凝物一起向上带入倾斜的反应器中或者甚至添加反向流动的水至固体流，并通过游离液体流 L₅ 来排出。

[0029] 游离液体（自由液体）或游离水（自由水）是指可以通过筛选、过滤、重力流，而不用压缩固体物质而移出的水或液体。游离液体并不必要必须不含有来自压缩的释放液体，但是至少 50% 的游离液体是游离液体。优选地，游离液体流将具有不超过 5% 重量的释放液体。游离液体还包含水解的木质纤维素生物质的可溶性产物，其包含乙酸、葡萄糖、木糖以及它们的可溶性低聚体。

[0030] 短语释放液体是指这种液体（通常是含有其他溶解物质的水），从浸泡的生物质中释放（通常通过压缩、挤压或另外地压缩浸泡的生物质流）从而挤压出或释放出液体（通常是水），该液体结合在空隙区域中。这可以通过压滤机、离心机、滚筒或加压螺旋来完成，但并不限于此。

[0031] 如图 1 所示，将游离液体流 L₅ 和 L₆ 结合至 H₅ 中，至保存罐 1 中。如果只有一个游离液体流，L₅ 和 L₆ 将是相同的。

[0032] 在离开倾斜的反应器时，将固体生物质通过流股 S₅ 传送至压缩区域（准备蒸汽爆破（气爆））。在通过压缩区域之后发生蒸汽爆破。压缩区域典型地用装置来压缩固体并且通过流股 S₅ 将固体移动至蒸汽爆破区域（在此处生产蒸汽爆破的固体），并且通过固体流 S₅ 传送至下一个操作单元。

[0033] 如表 1 所示，已经发现，释放液体流 L₅（其是包含至少 50% 释放液体的液体流，优选低于 5% 重量的由挤压或压缩洗涤的固体获得的游离液体）出人意料地基本上不具有在随后的发酵工艺中有用的糖类或化合物，但是具有恒定量的乙酰基（其是游离的乙酸和能够转化成乙酸的乙酰基的总和）。类似地，葡聚糖是葡萄糖和葡萄糖低聚体和葡萄糖多聚体。
（即纤维素）的总和。木聚糖类是木糖和木糖低聚体和木糖多聚体（即半纤维素）的总和。
[0034] 在压缩步骤中压缩的量表示为施加到浸泡的洗涤生物质上的压缩比，并且优选在1.5 至 10 的范围内，更优选 1.5 至 5。
[0035] 因此，释放液体流 L_1 的排出，本身具有优点。然而，由于它的乙酸含量，由挤压或压缩固体生物质获得的至少一部分释放液体流 L_1 可以循环到浸泡反应器中，该浸泡反应器将在浸泡步骤中发生的水解反应由自水解过程转化成酸催化的水解反应，其中酸来自木质纤维素生物质。这种酸水解反应的优点是不需要添加随后难以除去的酸化合物（例如硫酸）。
[0036] 在引入浸泡反应器之前还可以处理释放液体流以除去任何特别的不希望的化合物，例如糖醛。在引入过程中还可以将该流股浓缩并进一步使用。即，可以从该流股中回收乙酸。
[0037] 如表 1 所示，作为 HI 收集的游离液体流 L_1 和 L_2 相对于释放液体流 L_3 含有高含量的糖，并且可以针对包含在这些流股中的糖类或与固态体重新结合的糖类进行一个或多个特别处理。
[0038] 因此可以将该方法描述为用于预处理木质纤维素生物质原料的方法，包括：在至少 1.5 巴至高达 20 巴的压力下以及在至少 110℃的温度下浸泡木质纤维素生物质原料，洗涤浸泡的生物质并且分离至少一部分游离液体，其中游离液体包含选自乙酸、葡萄糖、木糖以及它们可溶性低聚体组成的组中的至少一种溶解的化合物，压缩浸泡的生物质，其中施加到浸泡的洗涤原料上的压缩产生释放液体，并且从浸泡的生物质中分离释放液体，并且至少一部分释放液体并不与游离液体结合或混合。
[0039] 如表 1 中详细说明的，释放液体实质上不含糖并且可以将至少一部分的释放液体与木质纤维素生物质原料一起添加至浸泡反应器中。如上文所述，释放液体流在其中可以具有更多游离液体。然而，优选的是游离液体的分离尽可能完全以便没有游离液体进入压缩步骤。没有游离液体一词，是指进入压缩步骤的游离液体小于释放液体的量，并且优选小于 5% 的游离液体量。
[0040] 可以存在额外的步骤：在 8 巴至 25.5 巴的范围内将压力施加给浸泡的、洗涤的及压缩的生物质，并且将原料传递至膨胀装置下游，其中该膨胀装置快速地释放原料的压力，使得原料经历蒸汽爆破（汽爆）反应。
[0041] 该方法另外的特征还在于，单独地或至少部分地通过来自浸泡步骤的冷凝流的液体洗涤。这也可以通过在倾斜的反应器中冷却材料来完成，使得冷凝物可以在顶部冷凝并且反向地进入倾斜的反应器中向上移动的固体浸泡生物质的流股中。如果需要，可以在压缩步骤之前的任何阶段添加额外的液体以洗涤浸泡的生物质。
[0042] 倾斜的反应器并不是必须的，因为可以通过过滤器、筛网、或者甚至水平反应器来进行液体移出。优选地，反应器使用螺旋（screw）或其他机械来升高或推进浸泡的生物质固体通过反应器。
[0043] 游离液体，通常是水，可以在一个位置或多个位置处从浸泡的生物质中分离，其条件是其是在压缩步骤之前进行的并且分离出足够量的游离液体，使得释放液体中基本上不含有糖类。在释放液体中基本上不含有糖类是指释放液体具有低于 0.1% 重量的溶解的葡萄糖、木糖以及它们相应的低聚体，更优选 0.05%，并且最优选 0.025%。
[0044] 技术人员应当清楚的是，控制该过程的一种方法是在压缩步骤之前控制离开该过程
程的液体量。通过控制在压缩步骤之前移出的液体量并且知道进入该过程的全部液体量（例如，在生物质、蒸汽、洗涤液中的液体），人们通过定义可以控制在压缩步骤中必须移出的液体量，因为它将包括先前没有移出的过量液体，或游离液体，以及压缩液体的添加。据认为进入压缩步骤的游离液体量应当是小值，因为它有可能包含糖类，并且来自压缩的释放液体将基本上不含糖类。

[0045] 从表 1 中可以看出，液体量（在这种情况下，原料中的水加上添加的水量）相对于原料中干物质的量的比率可以在 0.5:1 至 10:1 的范围内，优选范围 0.5:1 至 5:1，甚至更优选 0.8:1 至 10:1，优选范围 1:1 至 10:1，最优选 1:1 至 5:1。比率越高，就必须移出和处理更多的液体。

[0046] 从表 1 中可以看出，分离的游离液体的量（重量）相对于分离的释放液体的量的比率在 1:1 至 5:1 的范围内，更优选 1.5:1 至 4:1，最优选 2:1 至 4:1。这些量并不包括这些流股中的干物质，干物质的量是在从样品中蒸发水之后保留的量。

[0047] 该方法能够以分批或连续的过程进行。

[0048] 表 1
<table>
<thead>
<tr>
<th>编号</th>
<th>测试 A</th>
<th>测试 B</th>
<th>测试 C</th>
<th>测试 D</th>
<th>测试 E</th>
</tr>
</thead>
<tbody>
<tr>
<td>原材料</td>
<td>甘蔗</td>
<td>甘蔗</td>
<td>麦秸</td>
<td>稻秆</td>
<td>甘蔗渣</td>
</tr>
<tr>
<td>温度（℃）</td>
<td>155</td>
<td>155</td>
<td>155</td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td>压力（bar）</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>停留时间（min）</td>
<td>115</td>
<td>125</td>
<td>70</td>
<td>70</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>入</th>
<th>出</th>
<th>入</th>
<th>出</th>
<th>入</th>
<th>出</th>
<th>入</th>
<th>出</th>
<th>入</th>
<th>出</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料</td>
<td>水</td>
<td>H1</td>
<td>L3</td>
<td>原料</td>
<td>水</td>
<td>H1</td>
<td>L3</td>
<td>原料</td>
<td>水</td>
</tr>
<tr>
<td>流量（kg/h）</td>
<td>44.6</td>
<td>163.2</td>
<td>40.2</td>
<td>12.7</td>
<td>43.4</td>
<td>110</td>
<td>45.8</td>
<td>15.9</td>
<td>27.8</td>
</tr>
<tr>
<td>十（kg/h）</td>
<td>35</td>
<td>2.5</td>
<td>0.1</td>
<td>34</td>
<td>3</td>
<td>0.2</td>
<td>25</td>
<td>2.7</td>
<td>0.1</td>
</tr>
<tr>
<td>湿（kg/h）</td>
<td>9.6</td>
<td>163.2</td>
<td>37.7</td>
<td>12.6</td>
<td>9.4</td>
<td>110</td>
<td>42.8</td>
<td>15.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

成分（湿基）

葡聚糖类（%wt）	28.36%	0.85%	0.00%	28.36%	0.84%	0.01%	38.53%	0.93%	0.00%	32.70%	1.19%	0.01%	30.59%	0.18%	0.01%
木聚糖类（%wt）	20.00%	2.47%	0.00%	20.00%	2.53%	0.00%	27.16%	2.94%	0.00%	16.91%	2.21%	0.00%	21.36%	1.45%	0.00%
糖醛（%wt）	0.00%	0.12%	0.10%	0.00%	0.08%	0.15%	0.00%	0.05%	0.09%	0.00%	0.11%	0.17%	0.00%	0.05%	0.10%
5-HMF（%wt）	0.00%	0.03%	0.00%	0.00%	0.02%	0.00%	0.01%	0.00%	0.00%	0.02%	0.00%	0.00%	0.01%	0.00%	
乙酰基（%wt）	2.98%	0.74%	0.93%	2.98%	0.60%	0.70%	1.83%	0.56%	0.57%	2.03%	0.65%	0.50%	1.21%	0.26%	0.16%
实验室分析操作（LAP）定期日期:4/25/2008（Laboratory Analytical Procedure (LAP) Issue Date: 4/25/2008）

0545 测定生物质中的提取物
实验室分析操作（LAP）定期日期:7/17/2005（Laboratory Analytical Procedure (LAP) Issue Date: 7/17/2005）

0587 制备用于组分分析的样品
实验室分析操作（LAP）定期日期:9/28/2005（Laboratory Analytical Procedure (LAP) Issue Date: 9/28/2005）

060 测定生物质中的全部固体和液体处理样品中的全部溶解固体
实验室分析操作（LAP）定期日期:3/31/2008（Laboratory Analytical Procedure (LAP) Issue Date: 3/31/2008）

061 测定生物质中的灰分
实验室分析操作（LAP）定期日期:7/17/2005（Laboratory Analytical Procedure (LAP) Issue Date: 7/17/2005）

065 测定液体分馏处理样品中的糖类、副产品和降解产物
实验室分析操作（LAP）定期日期:12/08/2006（Laboratory Analytical Procedure (LAP) Issue Date: 12/08/2006）

068 测定预处理的生物质材料中不溶性固体
实验室分析操作（LAP）定期日期:03/21/2008（Laboratory Analytical Procedure (LAP) Issue date: 03/21/2008）

071 应当清楚的是本发明的权利要求并不限于说明书中的实施方式，但是本发明人对于本领域技术人员制造的变体具有权利。
图 1