(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2012/100058 A1

(43) International Publication Date 26 July 2012 (26.07.2012)

(51) International Patent Classification:

860K 15/035 (2006.01) F02M 25/08 (2006.01)

F16K 31/06 (2006.01)

(21) International Application Number:

PCT/US2012/021876

(22) International Filing Date:

19 January 2012 (19.01.2012)

(25) Filing Language:

English

(26) Publication Language:

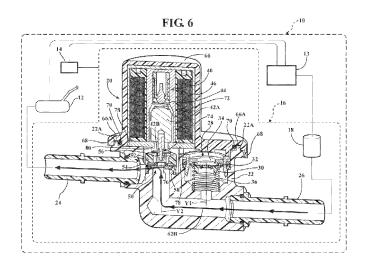
English

(30) Priority Data:

13/011,676 21 January 2011 (21.01.2011)

US

- (71) Applicant (for all designated States except US): EATON CORPORATION [US/US]; 1111 Superior Avenue, Cleveland, OH 44114-2584 (US).
- (72) Inventors: MILLS, Vaughn; 14196 Fairway Drive, Chelsea, MI 48118 (US). PIFER, Daniel, Lee; 1587 Nathans Trail, Chelsea, MI 48118 (US). SEXTON, Ronald; P.o.box 489, South Lyon, MI 48178 (US).
- (74) Agent: QUINN, Christopher, W.; Quinn Law Group, Pllc, 39555 Orchard Hill Place, Suite 520, Novi, MI 48375 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,


AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: VALVE ASSEMBLY FOR HIGH-PRESSURE FLUID RESERVOIR

(57) Abstract: A valve assembly 20 is disclosed for controlling fluid flow between two reservoirs 12 and 18. The valve assembly 20 includes a relief valve 28 arranged inside the housing 22 and configured to open a first fluid flow path 38 when the first reservoir 12 is above a first predetermined pressure value. The valve assembly 20 also includes a solenoid assembly 40 configured to open a second fluid flow path 60 when a rate of the fluid flow from the first reservoir 12 to the second reservoir 18 is above a predetermined reference value. Furthermore, the valve assembly 20 includes a flow restrictor 50 configured to open a third fluid flow path 62 when the rate of the fluid flow from the first reservoir 12 to the second reservoir 18 is below the predetermined reference value, and when the pressure inside the first reservoir 12 is below a second predetermined pressure value.

1

VALVE ASSEMBLY FOR HIGH-PRESSURE FLUID RESERVOIR

TECHNICAL FIELD

[001] The present invention relates to a valve assembly for controlling fluid flow to and from a high-pressure reservoir.

BACKGROUND

[002] Valves are employed in a multitude of industries to control flow of liquids and/or gases. One application for such control valves appears in vehicles with stored fuel to control a vehicle's evaporative emissions resulting from gasoline vapors escaping from the vehicle's fuel system. Evaporative emissions of modern vehicles are strictly regulated in many countries. To prevent fuel vapors from venting directly to the atmosphere, a majority of vehicles manufactured since the 1970's include specifically designed evaporative emissions systems. Additionally, in recent years vehicle manufacturers began developing fully sealed fuel delivery to their engines.

[003] In a typical evaporative emissions system, vented vapors from the fuel system are sent to a purge canister containing activated charcoal. The activated charcoal used in such canisters is a form of carbon that has been processed to make it extremely porous, creating a very large surface area available for adsorption of fuel vapors and/or chemical reactions. During certain engine operational modes, with the help of specifically designed control valves, the fuel vapors are adsorbed within the canister. Subsequently, during other engine operational modes, and with the help of additional control valves, fresh air is drawn through the canister, pulling the fuel vapor into the engine where it is burned.

SUMMARY

[004] An embodiment of the invention is a valve assembly for controlling fluid flow between a first reservoir and a second reservoir. The valve assembly includes a relief valve arranged inside the housing and configured to open the first fluid flow path when a pressure inside the first reservoir is above a first predetermined pressure value.

[005] The valve assembly also includes a solenoid assembly configured to open a second fluid flow path when a rate of the fluid flow from the first reservoir to the second reservoir is above a predetermined reference value.

[006] Furthermore, the valve assembly includes a flow restrictor configured to open a third fluid flow path when the rate of the fluid flow from the first reservoir to the second reservoir is below the predetermined reference value, and when the pressure inside the first reservoir 12 is below a second predetermined pressure value.

[007] The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[008] Figure 1 is a cross-sectional view of a valve assembly configured for controlling fuel vapor flow between a fuel tank and a purge canister, with the valve shown in a closed state, according to one embodiment of the invention;

[009] Figure 2 is a cross-sectional view of the valve assembly shown in Figure 1, with a first flow path between the fuel tank and the purge canister shown in an open state;

[0010] Figure 3 is a cross-sectional view of the valve assembly shown in Figure 1, with a second flow path between the fuel tank and the purge canister shown in an open state;

[0011] Figure 4 is a cross-sectional view of the valve assembly shown in Figure 1, with a third flow path between the fuel tank and the purge canister shown in an open state when the fuel tank is under pressure;

[0012] Figure 5 is a cross-sectional view of the valve assembly shown in Figure 1, with a third flow path between the fuel tank and the purge canister shown in an open state when the fuel tank is under vacuum; and

[0013] Figure 6 is a cross-sectional view of the valve assembly having an armature that includes a separate piston and plunger, and the plunger is connected to the piston via a catch mechanism.

3

DETAILED DESCRIPTION

[0014] Referring to the drawings wherein like reference numbers correspond to like or similar components throughout the several figures, Figure 1 illustrates a vehicle, schematically represented by numeral 10. Vehicle 10 includes a fuel tank 12 configured as a reservoir for holding fuel to be supplied to an internal combustion engine 13 via a fuel delivery system which typically includes a fuel pump (not shown), as understood by those skilled in the art. Vehicle 10 also includes a controller 14 that is configured to regulate the operation of engine 13 and its fuel delivery system. Fuel tank 12 is operatively connected to an evaporative emissions control system 16 that includes a purge canister 18 adapted to collect fuel vapor emitted by the fuel tank 12 and to subsequently release the fuel vapor to engine 13. Controller 14 is also configured to regulate the operation of evaporative emissions control system 16 in order to recapture and recycle the emitted fuel vapor. In addition, controller 14 is adapted to regulate the operation of valve assembly 20, i.e., to selectively open and close the valve, in order to provide over-pressure and vacuum relief for the fuel tank 12

Evaporative emissions control system 16 includes a valve assembly 20. [0015]Valve assembly 20 is configured to control a flow of fuel vapor between the fuel tank 12 and the purge canister 18. Although valve assembly 20 as shown is located between fuel tank 12 and purge canister 18, nothing precludes locating the valve assembly in a different position, such as between the purge canister 18 and the engine 13. Valve assembly 20 includes a housing 22, which retains all internal components of the valve assembly in a compact manner. Housing 22 connects to fuel tank 12 via a connector 24, and to the purge canister via a connector 26. Housing 22 accommodates a relief valve 28. Relief valve 28 includes a piston 30, which may be formed from a suitable chemically-resistant material such as an appropriate plastic or aluminum. Relief valve 28 may also include a compliant seal 32, which may be formed from a suitable chemically-resistant elastomeric material. Seal 32 may be an inward-sloped dynamic pressure seal, i.e., such that the seal's outer edge or lip is angled toward a central axis Y1. In operation, seal 32 makes initial contact with the housing 22 along the seal's angled outer edge. After the initial contact with housing 22, the outer edge of seal 32 deflects to conform to the housing and hermetically

closes a passage 34. The inward slope of the seal's outer edge provides enhanced control of fuel vapor flow at small openings between seal 32 and housing 22.

[0016] Piston 30 and seal 32 may be combined into a unitary piston assembly via an appropriate manufacturing process such as overmolding, as understood by those skilled in the art. Piston 30 and seal 32 are urged to close passage 34 by a spring 36. As shown in Figure 2, relief valve 28 is configured to facilitate opening a first fuel vapor flow path being traversed by the fuel vapor flowing in a direction from the fuel tank 12 toward the purge canister 18, represented by an arrow 38, when the fuel tank 12 is above a first predetermined pressure value. The first predetermined pressure value is preferably a positive number, representing an extreme or over-pressure condition of fuel tank 12.

[0017] The over-pressure condition of fuel tank 12 may depend on design parameters typically specified according to appropriate engineering standards and commonly includes a factor of safety to preclude operational failure of the fuel tank. Pressure in the fuel tank 12 may vary in response to a number of factors, such as the amount and temperature of the fuel contained therein. The first predetermined pressure value may be established based on the design parameters of the fuel tank 12 and of the engine's fuel delivery system, as well as based on empirical data acquired during testing and development.

[0018] Valve assembly 20 also includes a solenoid assembly 40 arranged inside housing 22, and adapted to receive electrical power from a vehicle alternator or from an energy-storage device (not shown), and be triggered or energized by a control signal from controller 14. Solenoid assembly 40 includes an armature 42, a solenoid spring 44, and a coil 46, as understood by those skilled in the art. Solenoid spring 44 is configured to generate a force sufficient to urge armature 42 out of the solenoid assembly 40, when the solenoid assembly is not energized. Coil 46 is configured to energize solenoid assembly 40, and to withdraw armature 42 into the solenoid assembly by overcoming the biasing force of spring 44.

[0019] Valve assembly 20 additionally may include a flow restrictor 50. Flow restrictor 50 is arranged inside the housing 22, and includes a piston 52 which may be formed from a suitable chemically-resistant material such as an appropriate plastic or aluminum. Flow restrictor 50 also includes a compliant seal 54, which may be formed from a suitable chemically-resistant rubber. Seal 54 is an inward-sloped

5

dynamic pressure seal, i.e., such that the seal's outer edge or lip is angled toward a central axis Y2. In operation, seal 54 makes initial contact with the housing 22 along the seal's angled outer edge. After the initial contact with housing 22, the outer edge of seal 54 deflects to conform to the housing and to hermetically close a passage 56. The inward slope of the seal's outer edge provides enhanced control of fuel vapor flow at small openings between seal 54 and housing 22.

[0020] Similar to the piston 30 and seal 32 above, piston 52 and seal 54 may be combined into a unitary piston assembly via an appropriate manufacturing process such as overmolding. Piston 52 and seal 54 are urged to close passage 56 by the action of a spring 58. In the embodiment shown in Figure 1, flow restrictor 50 is configured to be normally closed via the extension of armature 42 under the urging of solenoid spring 44 in the absence of the control signal from controller 14. Referring back to Figure 2, the normally closed position of the flow restrictor, combined with the opening of relief valve 28 (as described above), also facilitates the opening of the first flow fuel vapor flow path represented by arrow 38.

[0021] As shown in Figure 3, passage 56 is exposed when armature 42 is withdrawn into solenoid assembly 40 in response to the solenoid assembly being energized by the control signal from controller 14. Spring 58 is compressed by the force of the flow of fuel vapor, and the flow restrictor 50 is pushed out of the way by the vapor flow to thereby facilitate the opening of passage 56. Exposing passage 56 opens a second fuel vapor flow path to be traversed by the fuel vapor flowing in the direction from the fuel tank 12 toward the purge canister 18, represented by arrow 60. Fuel vapor flows in the direction represented by arrow 60 when a rate of fluid flow from fuel tank 12 to purge canister 18 is greater than a predetermined reference value in order to open passage 56.

[0022] The rate of fluid flow from fuel tank 12 may vary in response to a number of factors, such as the amount, temperature and pressure of the fuel contained therein. The predetermined reference value of the rate of fluid flow may be set at, for example, approximately 260 liters per minute (LPM), but may also be established in relation to a higher or a lower predetermined reference value. The reference value is typically predetermined or established in accordance with operating parameters of a particular engine's fuel delivery system, as understood by those skilled in the art. The predetermined rate of fluid flow, however, must be sufficiently high to compress

6

spring 58 and thereby expose passage 56, and the rate of spring 58 should therefore be selected accordingly.

[0023] Piston 52 and seal 54 are urged to close passage 56 by a spring 58. Relief valve 28 is configured to open a third fuel vapor flow path represented by arrow 62A, as shown in Figure 4, and arrow 62B, as shown in Figure 5. Arrow 62A represents the third fuel vapor flow path being traversed by the fuel vapor flowing in the direction from the fuel tank 12 toward the purge canister 18, and arrow 62B represents the third fuel vapor flow path being traversed by the fuel vapor flowing in a direction from the purge canister 18 toward the fuel tank 12. Fuel vapor flows in the direction represented by arrow 62B when the rate of the fluid flow from fuel tank 12 to purge canister 18 is below the first predetermined reference value.

[0024] As shown in Figure 6, armature 42 may also be composed of separate parts, a piston 42A and a plunger 42B in order to reduce operational hysteresis of the armature during the opening and closing of the passage 56. Friction may develop between the armature 42 and a bore 72 of the solenoid assembly 40 during the operation of the valve assembly 20. Particularly, such friction may impact the opening and closing instance of the third fuel vapor flow path represented by arrow 62B shown in Figure 5 as the flow restrictor 50 is pushed out of the way by the vapor flow. In order to address such a possibility, as shown in Figure 6, the plunger 42B is connected to the piston 42A via a catch mechanism 74. Accordingly, the catch mechanism 74 is configured to maintain the connection between the plunger 42B and the piston 42A.

[0025] The catch mechanism 74 is configured to permit the plunger 42B to move or translate away from the flow restrictor 50 for a distance 76 that is sufficient to open the third fuel vapor flow path 62B without the need for the piston 42A to also be displaced away from the flow restrictor. Therefore, the separate piston 42A and plunger 42B permit friction between the piston 42A and the bore 72 to not impact the initial opening of the third fuel vapor flow path 62B. A stop plate 78 is provided to limit travel of the piston 42A within the bore 72.

[0026] As shown in the embodiment of Figure 6, a plunger spring 80 is additionally provided to preload the plunger 42B against the stop plate 78. The plunger spring 80 is configured to press plunger 42B against seal 54 and maintain the normally closed position of the flow restrictor 50 when solenoid assembly 40 is not

7

energized. The plunger spring 80 permits the force of gravity to be employed in pulling the piston 42A against the stop plate 78 when the valve assembly 20 is oriented as shown in Figures 106. Accordingly, in the situation when the valve assembly 20 is oriented to employ the force of gravity in such manner, the solenoid spring 44 becomes optional. In such a case, the plunger spring 80 is additionally configured to perform all the described functions of the solenoid spring 44.

[0027] As shown in Figure 4, passage 64 is exposed when armature 42 is withdrawn into solenoid assembly 40 in response to the solenoid assembly being energized by the control signal from controller 14. The force of the flow of fuel vapor in the third fuel vapor flow path 62A is insufficient to compress spring 58. Spring 58 is thus permitted to extend and urge the flow restrictor 50 to close passage 56 while at the same time exposing passage 64. In this example, the third fuel vapor flow path represented by arrow 62A is opened when the rate of fluid flow is lower than the predetermined reference value of approximately 260 LPM, but may also be established in relation to a higher or a lower reference value. However, to expose passage 64, the rate of fluid flow in the third fuel vapor flow path should be incapable of compressing spring 58; therefore, the rate of spring 58 should be selected accordingly.

[0028] As noted above, relief valve 28 is additionally configured to open the third fuel vapor flow path being traversed by the fuel vapor flowing in the direction represented by arrow 62B when the fuel tank 12 is below a second predetermined pressure value (shown in Figure 5). The first predetermined pressure value is greater than the second predetermined pressure value. While the first predetermined pressure value is preferably a positive number, representing an extreme or over-pressure condition of fuel tank 12, the second predetermined pressure value is preferably a negative number i.e., signifying that the fuel tank 12 is under a vacuum. This vacuum in the fuel tank 12 is sufficient to overcome the force of spring 44, and thereby expose passage 64 to open the third fuel vapor flow path. Spring 44 is specifically designed to permit opening of the third fuel vapor flow path at a specific vacuum set point of the fuel tank 12. As such, the rate of solenoid spring 44 generates a force that is sufficient to close passage 64 when the fuel tank 12 is at positive pressure, but is insufficient to close the same passage when the fuel tank is under vacuum.

8

[0029] In the embodiments shown in Figures 1 through 5, valve assembly 20 also includes a cover 66, which in this example is configured as a single-piece component. Cover 66 locates relative to the housing 22 with the aid of a flange 22A nesting inside a channel 66A. Cover 66 engages and interconnects with housing 22 via tabbed extensions 68 that are configured to provide a snap-fit against the housing. Valve assembly 20 additionally includes a static seal 70 adapted to hermetically seal cover 66 against housing 22. As shown in Figures 1-5, and as understood by those skilled in the art, seal 70 is of an O-ring type.

[0030] While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.

9

PCT/US2012/021876

CLAIMS

WO 2012/100058

1. A valve assembly 20 configured for controlling fluid flow between a first reservoir 12 and a second reservoir 18, the valve assembly 20 comprising:

a relief valve 28 configured to open a first fluid flow path 38 when a pressure inside the first reservoir 12 is above a first predetermined pressure value;

a solenoid assembly 40 configured to open a second fluid flow path 60 when a rate of the fluid flow from the first reservoir 12 to the second reservoir 18 is above a predetermined reference value; and

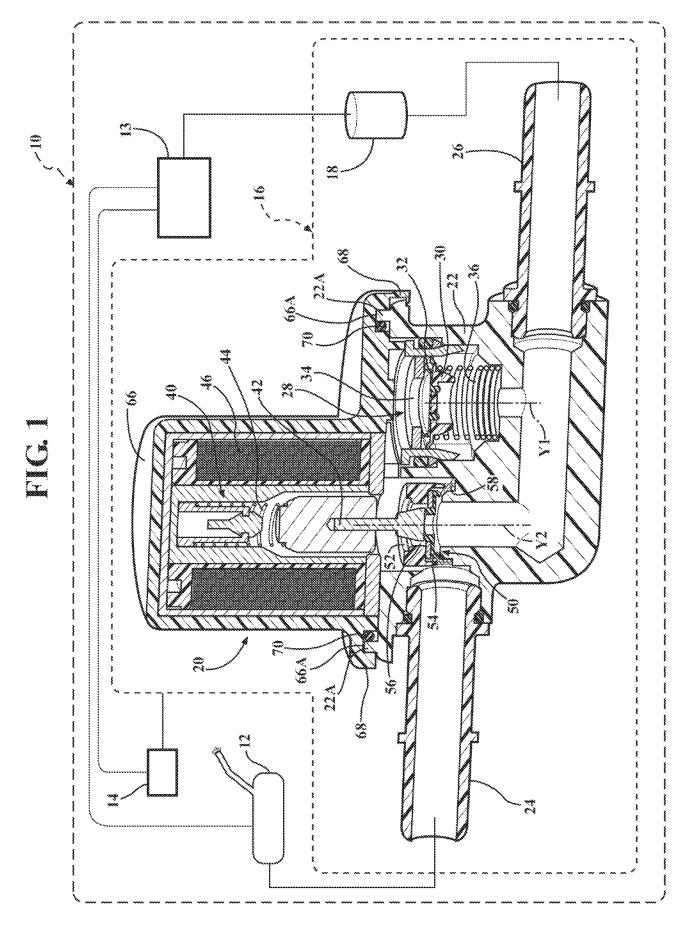
a flow restrictor 50 configured to open a third fluid flow path 62 when the rate of the fluid flow from the first reservoir 12 to the second reservoir 18 is below the predetermined reference value, and when the pressure inside the first reservoir 12 is below a second predetermined pressure value.

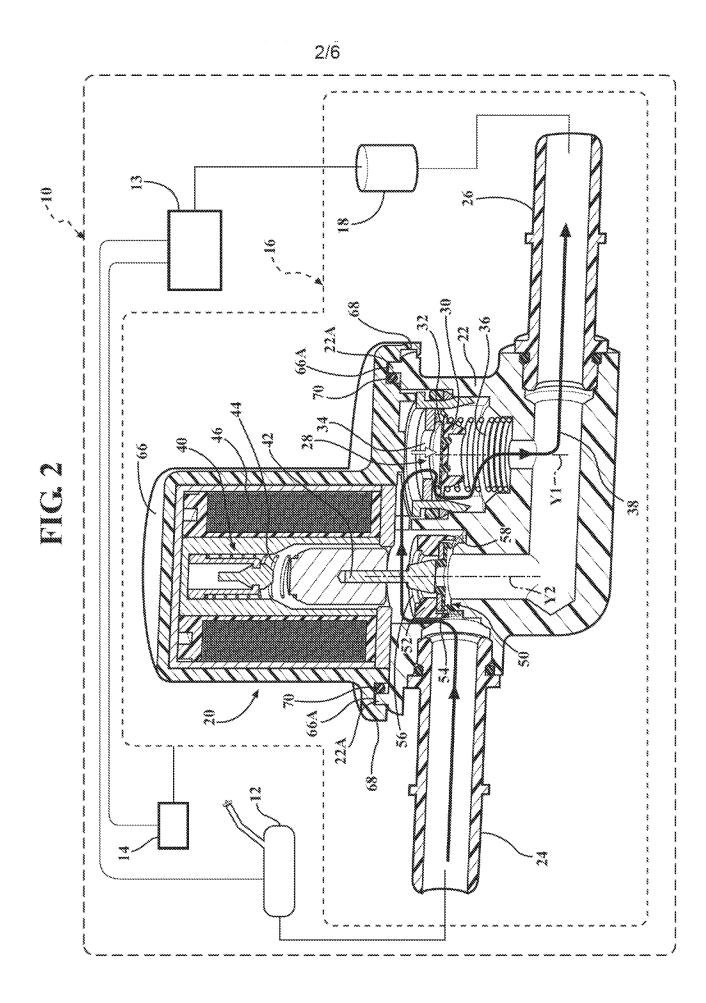
- 2. The valve assembly of claim 1, wherein the solenoid assembly 40 includes an armature 42 configured to selectively open and close the flow restrictor 50, and the armature 42 includes a piston 42A and a plunger 42B, and wherein the piston 42A is connected to the plunger 42B by a catch mechanism 74 configured to permit the plunger 42 to translate away from the flow restrictor 50 such that the third fluid flow path 62 is opened without displacing the piston 42A.
- 3. The valve assembly of claim 2, further comprising a plunger spring 80 configured to press the plunger 42B against the flow restrictor 50 to maintain the flow restrictor 50 in a closed position, and comprising a coil 46 configured to energize the armature 42 and overcome the plunger spring 80 to open the flow restrictor 50.
- 4. The valve assembly of claim 3, further comprising a solenoid spring 44 configured to generate a force sufficient to close the restrictor 50 by displacing the armature 42, and the coil 46 is additionally configured to overcome the solenoid spring 44.
- 5. The valve assembly according to claim 1, further comprising a housing 22 including the first 38, second 60, and third 62 fluid flow paths, wherein the relief

WO 2012/100058

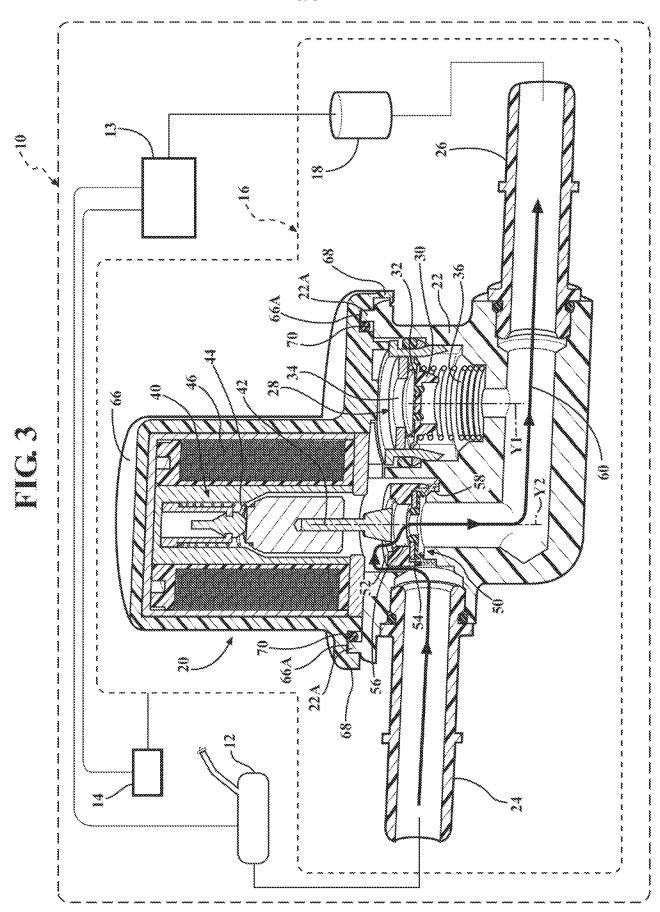
10

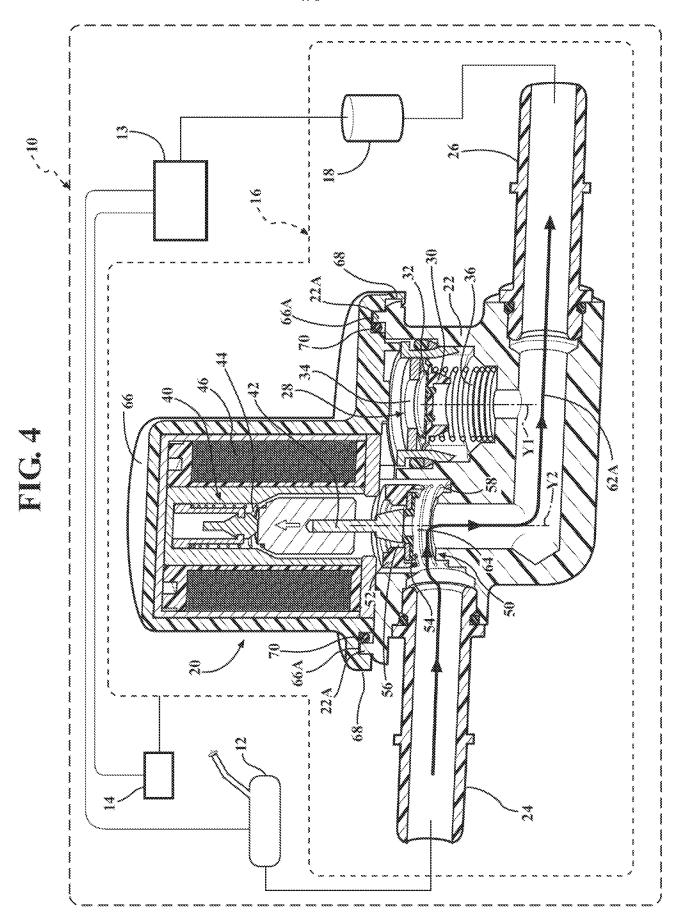
PCT/US2012/021876

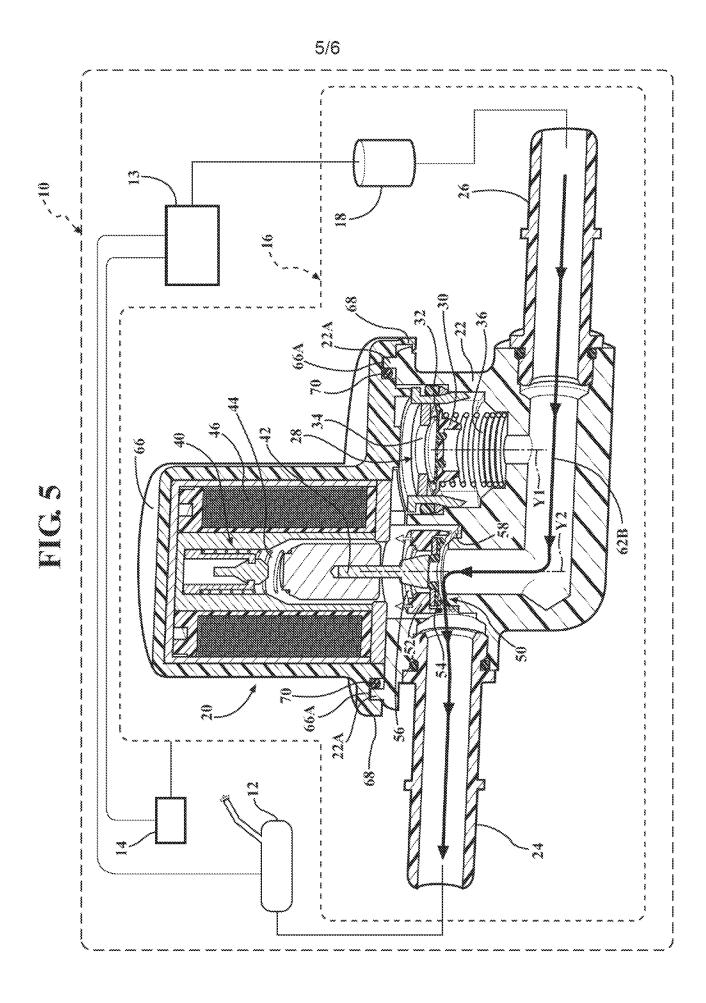

valve 28, the solenoid assembly 40, and the flow restrictor 50 are arranged inside the housing 22.

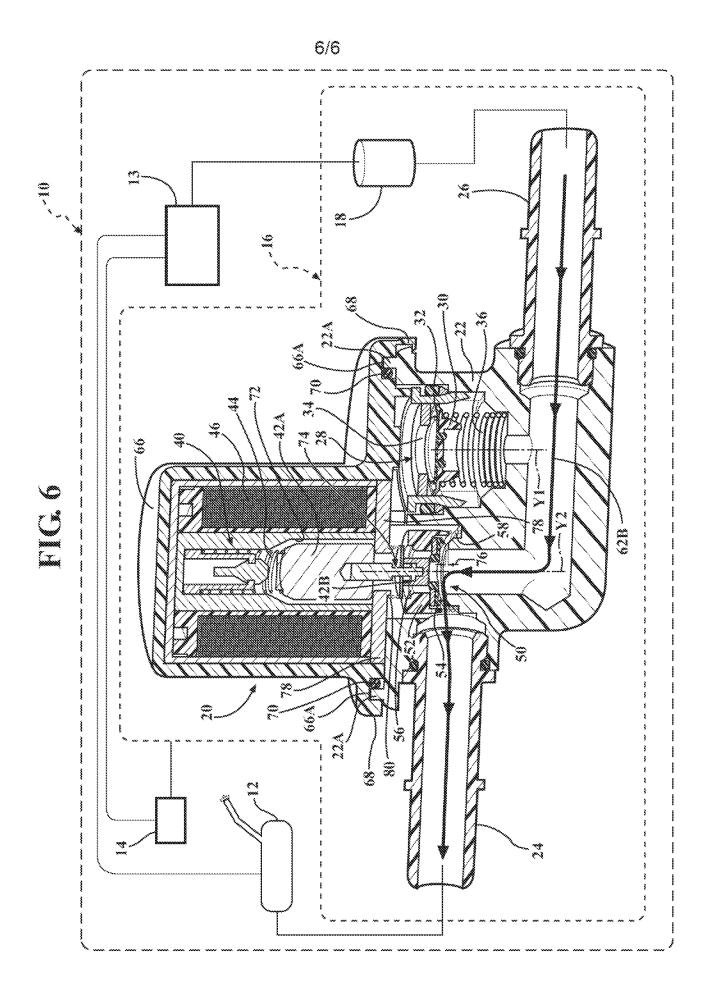

- 6. The valve assembly according to claim 1, wherein the first predetermined pressure value is greater than the second predetermined pressure value.
- 7. The valve assembly according to claim 3, wherein the coil 46 is configured to overcome the plunger spring 80 when the rate of the fluid flow is below the predetermined reference value.
- 8. The valve assembly according to claim 3, wherein the plunger spring 80 is configured to generate a force sufficient to close the third fluid flow path 62 when the pressure inside the first reservoir 12 is a positive value, but insufficient to close the third fluid flow path 62 when the pressure inside the first reservoir 12 is a negative value.
- 9. The valve assembly according to claim 1, further comprising a spring 58 configured to urge the flow restrictor 50 to open, wherein the flow restrictor 50 is configured to be normally closed.
- 10. The valve assembly according to claim 1, wherein at least one of the relief valve 28 and the flow restrictor 50 includes an inward-sloped pressure seal 54 configured to seal the corresponding relief valve 28 and the flow restrictor 50 against the housing 22.
- 11. The valve assembly according to claim 1, further comprising a cover 66 configured to retain the relief valve 28, the flow restrictor 50, and the solenoid assembly 40 inside the housing 22.
- 12. The valve assembly according to claim 11 wherein the cover 66 engages and interconnects with the housing 22 via a snap-fit.

11


- 13. The valve assembly according to claim 11, further comprising a static seal 70 configured to seal the cover 66 against the housing 22.
- 14. The valve assembly according to claim 13, wherein the static seal 70 is an O-ring type seal.







3/6

INTERNATIONAL SEARCH REPORT

International application No PCT/US2012/021876

Relevant to claim No.

A. CLASSIFICATION OF SUBJECT MATTER
INV. B60K15/035 F16K31/06 F02M25/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Category* Citation of document, with indication, where appropriate, of the relevant passages

B60K F02M F16K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Х	US 2010/269921 A1 (PIFER DANIEL ET AL) 28 October 2010 (2010-10 the whole document	1	
X	US 2006/207663 A1 (TSUGE SHIGET 21 September 2006 (2006-09-21) abstract figures 1-8 paragraphs [0022], [0034], [0	1	
Α	US 2008/042086 A1 (SISK GREGORY AL) 21 February 2008 (2008-02-2 abstract figures 1-4	E [US] ET 1) -/	1
X Furth	I her documents are listed in the continuation of Box C.	X See patent family annex.	
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family	
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
2	6 June 2012	06/07/2012	
Name and n	nailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Payr, Matthias	

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2012/021876

C(Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A A	US 5 048 790 A (WELLS ROBERT A [US]) 17 September 1991 (1991-09-17) abstract figure 1 column 1, line 44 - line 50		Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/US2012/021876

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
US 2010269921	A1	28-10-2010	EP 2422121 A1 KR 20120014164 A US 2010269921 A1 WO 2010122414 A1	29-02-2012 16-02-2012 28-10-2010 28-10-2010
US 2006207663	A1	21-09-2006	JP 2006258135 A US 2006207663 A1	28-09-2006 21-09-2006
US 2008042086	A1	21-02-2008	NONE	
US 5048790	Α	17-09-1991	NONE	

International application No. PCT/US2012/021876

INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 1-14(partially) because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.2

Claims Nos.: 1-14(partially)

The applicant has chosen not to cite his own patent document US 2010/0269921 A1 (D1) contrary to Rule 5 (ii) PCT. This document discloses all features of claim 1 and would have been a good starting point for search. From this it becomes apparent that claim 1 does not represent the subject-matter to be protected by the current application. Furthermore dependent claim 2 is unclear, since it refers, as does the description, to a "catch mechanism" whereas the corresponding figure appears to disclose a "lost motion device". Thus, also here, it is unclear what should be searched. The applicant was therefore given the opportunity to clarify matters. Since the applicant did not reply to the invitation to provide informal clarification the search was directed to a valve assembly comprising a lost motion arrangement as shown in figure 6 of the application.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.2), should the problems which led to the Article 17(2) declaration be overcome.