wo 20177218872 A1 | 0000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
21 December 2017 (21.12.2017)

(10) International Publication Number

WO 2017/218872 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 21/51 (2013.01) GO6F 21/54(2013.01)

(21) International Application Number:

(74) Agent: MEAGHER, Timothy, J. et al.; HAMILTON,
BROOK, SMITH & REYNOLDS, P.C., 530 Virginia Rd,
P.O. Box 9133, Concord, MA 01742-9133 (US).

PCT/US2017/037841 (81) Designated States (unless otherwise indicated, for every
. - . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: 16 June 2017 (16.06.2017) AO, AT, AU, AZ, BA, BB, BG, BIL BN, BR, BW, BY, BZ,
o CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
e . HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
(26) Publication Language: English KR.KW,KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
62/350,917 16 June 2016 (16.06.2016) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
. . SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(71) Applicant: VIRSEC SYSTEMS, INC. [US/US]; 226 Air- TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

port Parkway, Suite 350, San Jose, CA 95110 (US).

(84) Designated States (unless otherwise indicated, for every

(72) Imventor: GUPTA, Satya, Vrat; 9699 Zac Court, Dublin,

kind of regional protection available): ARIPO (BW, GH,
CA 94568 (US).

GM, KE, LR, LS, MW,MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(54) Title: SYSTEMS AND METHODS FOR REMEDIATING MEMORY CORRUPTION IN A COMPUTER APPLICATION

STHEAMING
A
CEHPRE

STRUCTION PIPELINE
747

FIG. 7A

(57) Abstract: In example embodiments, systems and methods extract a model of a computer application during load time and store
the model in memory. Embodiments may insert instructions into the computer application at run time to collect runtime state of the
application, and analyze the collected data against the stored model to perform detection of security events. Embodiments may also
instrument an exception handler to detect the security events based on unhandled memory access violations. Embodiments may, based
upon the detection of the security events, dynamically respond, such as by modify a computer routine associated with an active process of
the computer application. Modification may include installing or verifying an individual patch in memory associated with the computer
application.

[Continued on next page]

WO 20177218872 A1 || NI /000 0 T

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IF, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2017/218872 PCT/US2017/037841

SYSTEMS AND METHODS FOR REMEDIATING MEMORY CORRUPTION IN A
COMPUTER APPLICATION

RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No.
62/350,917, filed on June 16, 2016. The entire teachings of the above application are

incorporated herein by reference in their entirety.

BACKGROUND

[0002] Network accessible applications are often vulnerable to memory corruption
attacks triggered remotely by malicious attackers. Malicious attackers have strived hard to
exploit such vulnerability since it gives them unprecedented access to the remote user’s
computer network, often with elevated privileges. Once control has been seized, arbitrary
code of the attacker’s choosing can be executed by the attacker, as if the remote user owns
the compromised machine. Usually the objective of the malicious attacker is to extract
personal and/or confidential information from the user, but the objective could also include
disrupting personal or business activity of the user for the purpose of inflicting loss of
productivity.

[0003] Preparatory attacks may help to set the stage by placing strategic data in buffers
on the stack, the heap segments, and other jump tables, including imports, exports, virtual
pointers (VPTRs), and system call/system dispatch tables in the memory address space of the
application. This allows subsequently launched attacks to manipulate the flow of execution,
with the ultimate objective of causing code designed by a malicious hacker to execute instead
of code that is natively part of the application. The most sophisticated attackers do not even
need to insert their malicious code directly into the target application’s memory space,
instead, the attackers can re-purpose existing code by stitching together selectively chosen
(i.e., cherry picked) chunks of code from the legitimately loaded application code and thereby
execute their nefarious intent. There is an urgent need to protect the application at runtime

from such advanced runtime memory corruption attacks.

WO 2017/218872 PCT/US2017/037841

SUMMARY

[0004] Embodiments of the present disclosure are directed to example systems and
methods for protection against malicious attacks that are facilitated through memory
corruption within one or more running processes. In some embodiments, the systems include
one or more instrumentation engines and one or more analysis engines for performing
operations to protect against malicious attacks. The one or more instrumentation engines
may be located on the same or different hardware or computer system as the one or more
analysis engines. In some embodiments, the systems and methods may extract a model of a
computer application as the application code first loads into memory. The model may
include, but is not limited to, building pairs of legal source and destination memory
addresses, transitions, basic block boundary information, code segment bounds, import and
export address table bounds, jump table bounds, or any other type of computer-routine-
related information known to one skilled in the art. In some embodiments, the systems and
methods may store the model of the computer application.

[0005] In some embodiments, the systems and methods may insert instructions into the
computer application (optionally, at run time) prior to the computer application instructions
being executed in memory in order to collect data at runtime and/or the execution state of the
application. In some embodiments, the systems and methods may analyze the collected data
at runtime against the stored model of the computer application to perform detection of one
or more security events. In some embodiments, the systems and methods may, based upon
the detection of the one or more security events, modify, in a manner that preserves continued
execution of the computer application, at least one computer routine associated with at least
one active process associated with the computer application (i.e., insert a patch).

[0006] According to some embodiments, the computer routine may be executed in
association with the at least one process. In some embodiments, the one or more detected
security events may be associated with a malicious movement to a different (unusual) code
path within the computer application. Such a malicious movement may include, but is not
limited to, a malicious jump routine, a trampoline to malicious code, an indirect jump vector,
or any other malicious movement known to one skilled in the art.

[0007] In response to receipt of one or more aggregate patches by a user, some

embodiments may perform at least one operation that modifies or removes the at least one

WO 2017/218872 PCT/US2017/037841
-3-

computer routine associated with the computer application, and modifying or removing one
or more individual patches associated with the computer application. According to some
embodiments, modifying may include verifying a patch or configuration associated with the
computer application. According to some embodiments, the systems and methods may
modify the stack associated with the at least one computer routine. In some embodiments,
the systems and methods may modify one or more heaps associated with the at least one
executing computer routine. In some other embodiments, the systems and methods may
modify one or more jump tables.

[0008] Further, in some embodiments, the systems and methods may modify the at least
one computer routine associated with the at least one process, while the at least one active
process is executing the at least one computer routine. As such, some embodiments may
employ hot patching (or live patching, or dynamic software patching/updating). According to
some embodiments, a replacement function (i.e., different function) may be called as a result
of a hot patch. In some embodiments, the systems and methods may, prior to modifying the at
least one computer routine, pause execution of at least one active process (or computer
application). In some embodiments, after modifying the at least one computer instruction, the
systems and methods may resume execution of the at least one active process.

[0009] In some embodiments, the systems and methods may extract a model of a
computer application during load time. According to some embodiments, the systems and
methods may store the model of the computer application. In some embodiments, the
systems and methods may insert instructions into the computer application (optionally, in
memory) prior to the computer application being executed in memory in order to collect data
at runtime. In some embodiments, the systems and methods may analyze the data collected
at runtime against the stored model of the computer application to perform detection of one
or more security events. In some embodiments, the systems and methods may, upon the
detection of the one or more security events, temporarily remediate memory corruption
associated with the computer application (i.e., restore one or more pointers) prior to executing
one or more return instructions. In some embodiments, the systems and methods may report
actionable information (i.e., report information to a vendor to create a patch) based upon the
one or more detected security events. The actionable information may include, but is not

limited to, information such as: where/how a security event occurs, where/how a trampoline

WO 2017/218872 PCT/US2017/037841
-4 -

takes place, and where/how the memory in the stack or heap of a vulnerable function is
corrupted.

[0010] In some embodiments, the systems and methods may modify, in a manner that
preserves continued execution of the computer application, at least one computer routine
associated with at least one process. In some embodiments, when a lite or full patch from the
vendor is received by a user, an application runtime monitoring and analysis (ARMAS)
application may be disabled, and new code may be loaded into computer memory associated
with the process (i.e., a different location in memory) without shutting the process down.
Some embodiments may deploy such lite patches released by a vendor as a shared static or
dynamic library. Further, in some embodiments, the systems and methods may modify at
least one computer instruction associated with at least one process, while the at least one
process is executing. In some embodiments, the systems and methods may, prior to
modifying the at least one computer instruction, pause execution of at least one process
associated with the computer application. In some embodiments, after modifying the at least
one computer instruction, the systems and methods may resume execution of the at least one
process.

[0011] Some embodiments may remediate or prevent malicious attacks in real time until
a patch is deployed. Some embodiments may provide an actionable remediation path to
software vendor’s developers. Some embodiments may detect heap based code and/or stack
based code trampolines in real time. Some embodiments may hot-deploy lite patches (i.e.,
perform hot patching) without process termination. In other words, some embodiments may
download and verify a lite patch, stop running all threads in the process temporarily, hot-
patch a binary, and finally restart all the threads in the process (and/or application). Some
embodiments may tie (i.e., associate) and track state of which patch is tied to which routine in
which parent binary. Such state may include, but not be limited to, a checksum associated
with the lite patch, and the address in the original binary itself. Some embodiments may
untie (i.e., disassociate) a state that is presently associated with the process, either before or
after deploying the patch. Some embodiments may protect a state relationship from hackers.
By modifying one or more states (or associating or disassociating on or more states from a
patch), some embodiments may protect a state relationship from hackers. Some
embodiments include protection, including, but not limited to: (a) verification of a checksum

associated with (or included in) a patch, (b) obtaining another copy of an original patch that is

WO 2017/218872 PCT/US2017/037841
-5-

deleted, and/or (¢) encrypting contents of a patch, thereby preventing man-in-the-middle
(MIM) attacks as well as deliberate/ accidental deletion.

[0012] In example embodiments, the systems and methods, for one or more code
vulnerabilities of a computer application, map each of the code vulnerabilities to a respective
system response in a table in memory (e.g., in a security policy database). In some example
embodiments, at least one code vulnerability, and mapped system response, is provided from
developers of the computer application. In some example embodiments, at least one of the
code vulnerabilities and mapped system response is automatically determined by a code
analyzer at load time or runtime of the computer application. The systems and methods next
detect an event accessing a code vulnerability of the computer application.

[0013] The systems and methods, in response to the detection of the event, determine a
system response mapped to the accessed code vulnerability in the table in memory. In some
embodiments, an exception is triggered in response to an inappropriate operation by the
application, such as inappropriately accessing the vulnerable code. The systems and methods
instrument an exception handler to overwrite the kernel mode exception handler. The systems
and methods intercept the triggered exception and associate the code vulnerability by an
instrumented exception handler. In these embodiments, the systems and methods include
querying, by the instrumented exception handler, the associated code vulnerability in the
table. The querying returns the system response, configured as a system callback routine,
mapped to the code vulnerability. The systems and methods execute the determined system
response to prevent the event from exploiting the accessed code vulnerability. For example,
the systems and methods execute the system callback routine to initiate instructions to
prevent the event from exploiting the code vulnerability.

[0014] The system response (e.g., initiated instructions by the system callback routine)
may include one or more of: logging the accessing of the code vulnerability as an error in a
system log, dumping an image of an application process containing the accessed code
vulnerability, restoring a copy of computer application prior to the accessing of the code
vulnerability, dynamically loading one or more remedial patches from memory to modify at
least one computer routine containing the code vulnerability, without restarting the computer
application, continuing execution of the computer application until it terminates (e.g.,
crashes) based on the accessed code vulnerability, and terminating proactively the computer

application.

WO 2017/218872 PCT/US2017/037841

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The foregoing will be apparent from the following more particular description of
example embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The drawings
are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of
the present invention.

[0016] FIG. 1 illustrates an example application infrastructure, according to some
embodiments of the present disclosure.

[0017] FIG. 2 illustrates an example user-interaction with the application infrastructure of
FIG. 1, according to some embodiments.

[0018] FIG. 3A shows an example flow chart of load time operations executed by a
client.

[0019] FIG. 3B illustrates a flowchart of an example method (and system) for protection
against malicious attacks that are facilitated through memory corruption, in embodiments of
the present disclosure.

[0020] FIG. 3C illustrates a flowchart of an example method (and system) for protection
against malicious attacks that exploit code vulnerabilities to cause memory corruption, in
embodiments of the present disclosure.

[0021] FIG. 4A is a block diagram of a memory based attack, according to some
embodiments.

[0022] FIG. 4B is a block diagram of a first stage of stack corruption detection
functionality associated with a binary virtual patching application/probe (also known as
“bvpProbe”), according to some embodiments.

[0023] FIG. 4C is a block diagram of a first stage of heap corruption detection
functionality associated with a binary virtual patching application/probe (also known as
“bvpProbe”), according to some embodiments.

[0024] FIG. 5A illustrates patching of an individual patch of a static or dynamic linked
library (DLL) or shared object in real time, according to some embodiments.

[0025] FIG. 5B illustrates loading a patch at start up, according to some embodiments.
[0026] FIG. 5C illustrates a cycle associated with purging (or removing) one or more

individual lite patches, according to some embodiments.

WO 2017/218872 PCT/US2017/037841
-7-

[0027] FIG. 6 is a block diagram of a patching timeline, according to some embodiments.
[0028] FIG. 7A illustrates an example block diagram of the application runtime
monitoring and analysis solution (ARMAS) in embodiments of the present disclosure.

[0029] FIG. 7B illustrates an example protocol data unit (PDU) used to transmit data
within the ARMAS infrastructure of FIG. 7A.

[0030] FIG. 8 illustrates a computer network or similar digital processing environment in
which embodiments of the present disclosure may be implemented.

[0031] FIG. 9 illustrates a diagram of an example internal structure of a computer (e.g.,

client processor/device or server computers) in the computer system of FIG. 8.

DETAILED DESCRIPTION

[0032] A description of example embodiments of the invention follows.

In an application infrastructure of a data center for an enterprise, such as the one shown in
FIG. 1, web servers receive incoming web requests (e.g., HTTP requests) from users (or from
other machines through web services). However, the embodiments illustrated in FIG. 1 are
not limited to a web application infrastructure or a data center, and may include, but are not
limited to personal, enterprise, cloud-based and industrial control applications. In response to
a web request, a web server authenticates the web service, and if the authentication is
successful, establishes a session for the remote user to access information from the enterprise
system (via web servers, portals, and application servers) in response to further web requests.
The web service may access information from various applications, such as account services,
trade finance, financial accounting, document management, and any other application without
limitation, executing on computers of the enterprise system.

[0033] The web server internally maintains user and session (i.e., state) related data for
the session, but does not pass on this data to the next server when forwarding an incoming
request to one or more application servers for processing. That is, the user and session data is
terminated at the web server of the web application infrastructure of FIG. 1 in the
demilitarized zones. Then, when the application server sends the web server a response to
the web request, the web server references the user and session data to determine which user
(identified by their user name or IP address) to send the response. A web server may maintain
the user and session data for simultaneously managing thousands of web sessions in this

manner. Some of the thousands of web sessions (user and session data) may belong to

WO 2017/218872 PCT/US2017/037841
-8-

hackers that are attempting to exploit code vulnerabilities in the various applications

executing on the computers of the enterprise system (and corrupt those applications).

Overview of Malware Attacks

[0034] The National Vulnerability Database (NVD) enumerated approximately 4100
application vulnerabilities in 2011 and approximately 5300 application vulnerabilities in
2012, which are divided into twenty-three attack categories. While a few of the attack
categories result from negligence or misconfiguration, the largest number of attack categories
involve a malicious actor purposely injecting, and later causing execution of, malicious
content in an executing process of an organization. The process of injecting such malicious
content involves identifying and exploiting some poorly designed code that performs
inadequate input validation. For example, if the code lacks in user input size related
validation, the code may allow buffer error style attacks that are included in the Buffer Errors
attack category. In these attacks, the malicious actors are injecting malicious content in an
attempt to infiltrate, determine content of value and then ex-filtrating such content. Malicious
actors may also mutilate such content for profit. Content may include confidential
information, such as credit card data, intellectual property, and social security numbers. The
malicious actor may then use this confidential information to profit by selling this

information to the highest bidder.

Example System Detecting Attacks

[0035] FIG. 2 illustrates example interactions within the web application infrastructure of
FIG. 1. In a web application infrastructure (as shown in FIG. 2), a protected web server
receives a web request (e.g., HTTP requests) from a user (via a web service client). Using
information included in the web request (e.g., URL), the web server authenticates the web
service user, and if the authentication is successful, establishes a connection (or session) for
the web service user to access data within the web application infrastructure.

[0036] While connected to the application, an attacker may obtain access to code in
memory through a trampoline. However, the application runtime monitoring and analysis
(ARMAS) appliance of FIG. 2 communicates with the application to detect such memory
corruption. Once such memory corruption is detected, the ARMAS appliance utilizes the

shadow stack or Function Pointer Jump Table (which has stored the known pre-corruption

WO 2017/218872 PCT/US2017/037841
-9.

state) in order to temporarily restore the application to its known pre-corruption state. The
unauthorized access may then be declared a security attack by a malicious adversary, which
may be reported by the management server on the user interface for attack notification and
corrective remedial action. Then, the ARMAS appliance, in communication with the
management server, may obtain one or more patches and push the one or more patches out
the affected servers, in order to remediate the corruption caused due to the hacker. In other
embodiments, the ARMAS appliance may instead dynamically execute other responses at the
web service, such as logging an error in relation to the corrupted memory (code instructions),
dump an image of the application process containing the corrupted memory (e.g., a core
dump), allow the corrupted application to continue executing until it terminates in a crash, or
any other system response without limitation.

[0037] FIG. 3A shows the operations that an example client referred to herein as the
Monitoring Agent (also known as “Resolve Client,” according to some embodiments) may
perform at load time to prepare for detecting malware activity, in accordance with principles
of the present disclosure. Some embodiments may include one or more corresponding
Application Maps and/or Application Map Databases as described in the “Automated
Runtime Detection of Malware,” PCT Application No. US2014/055469 (also PCT
Publication No. W0O2015/038944, filed September 12, 2014, incorporated herein by reference
in its entirety), or other techniques known in the art. The Path Validation Engine is part of
the Monitoring Agent that can reliably detect malware activity within microseconds from the
point the malware starts to run. The Monitoring Agent first verifies the integrity and then
analyzes each module of the application in order to extract a model of the application. The
model of the application is stored in an Application Map Database that may contain the
following tables: Code Table, Export Table, V Table, Other Table, Basic Block Table, Soft
Spot Table, Memory Operand Table, Transition Table, Disassembly Table, and Critical OS
Functions Table. In the embodiment in FIG. 3A, the Application Map Database is located on
a remote system from the Monitoring Agent. In other embodiments, the Application Map
Database can be saved on the same hardware where the application is executing or on
hardware external to both the Monitoring Agent and Analysis Engine. The Monitoring Agent
uses a Streaming Engine to package the extracted model of the application into Resolve
Protocol Data Units (PDUs) to dispatch the data to be stored in the Application Map

Database on the analysis system.

WO 2017/218872 PCT/US2017/037841
-10 -

[0038] After the Monitoring Agent starts processing individual executable components of
the application at load time at 302, the same operations are performed in a loop for each
module of the computer application at 304 and 306. As each module of the application loads
in memory, the Monitoring Agent examines all the instructions of the given module. The
modules of the application file are in a standard file format, such as a Portable Executable
(PE), Executable and Linkable Format (ELF) or Common Object File Format (COFF). In
this format, the modules of the application are organized into sections that include a code
section, exported data section, v-table section, and many other additional sections. As each
module of the application loads in memory, the Monitoring Agent extracts relevant
information as part of the model of the application. The bounds and access attributes of the
code section of the module are dispatched and saved to the Application Map Database in the
Code Table at 314. Each record in this table is of the form {Start Address, End Address}.
The bounds and number of instructions of each basic block in the code section of the module
are dispatched and saved in the Application Map database in the Basic Block Table at 330.
Each record in this table is of the form {Start Address, End Address, and Number of
instructions}. The bounds and access attributes of the exported data section of the module
are saved in the Application Map database in the Export Table at 318. Each record in this
table is of the form {Start Address, End Address}. The bounds and access attributes of a v-
table section (if any) of the module are dispatched and saved in the Application Map database
in the V Table at 322. Each record in this table is of the form {Start Address, End Address}.
The bounds and access attributes of all other sections of the module are dispatched and saved
in the Application Map database in the Other Table at 326. Each record in this table is of the
form {Start Address, End Address, and Protection Attributes}.

[0039] As each module loads into memory, the Monitoring Agent also extracts other
memory mapping data 336 and soft spot data 334 from the modules of the application.
Memory mapping data includes instructions for memory allocation, memory de-allocation,
and memory writes to critical segments of memory. Soft spot data includes instructions for
manipulating large memory buffers (spot spots) including instructions that execute loops
(such as instructions with REP style opcodes). The address of soft spot instructions and the
size of each memory write are dispatched and saved in the Application Map database in the
Soft Spot Table at 334. Each record in this table is of the form { Address, Write size}. The

address and the write size will be stored for memory write instructions where the destination

WO 2017/218872 PCT/US2017/037841
-11 -

is a memory operand. This data is stored in the Application Map Database in the Memory
Operand Write Table at 340. Each record in this table is of the form {Source Address,
Memory Write Size}.

[0040] As each module of the application loads into memory, the Monitoring Agent also
extracts transition mapping data (branch transfer or transition data) from the module. The
transition mapping data can be for a direct transition mapping where transition instructions
for the target address can be presently determined or for an indirect memory mapping where
transition instructions for the target address have run time dependency preventing these
instructions from being fully determined until runtime. The full disassembly of instructions
where indirect transitions occur are dispatched and saved in the Application Map Database in
the Disassembly Table at 324. All the extracted transition mappings are also dispatched and
saved in the Application Map Database in the Transition Table at 324 and 332. Each record
in this table is of the form {Source Address, Destination Address}. In addition, an operator
can manually add Transition Mapping Data into the Map Transition Table prior to runtime at
320. In order to add records manually into the Map Transition Table, an operator may be
required to authenticate themselves using a 2-factor authentication process to eliminate
possible tampering of the Transition Table by malware.

[0041] As each module of the application loads into memory, the Monitoring Agent also
checks the application for integrity at 308. In one embodiment, this is accomplished by
computing a checksum such as the MDS5 hash of the code as it is loading and comparing it
against its corresponding known good checksum saved in a Checksum database.
Alternatively, a trusted checksum verification service can also be leveraged. This ensures that
the code of the currently loading module is not already corrupted with malware. The
Monitoring Agent may be configured to throw an alarm if the integrity check fails at 310.
[0042] At load time, particular OS functions and system calls that affect access
permissions and privileges are also identified and their addresses are dispatched and saved in
the Critical OS Functions Table at 312 and 316. The particular OS functions and system calls
dispatched by the Monitoring Agent have long reaching effects on the execution path of the
executable. These administrative and critical OS functions and system calls change access
permissions of memory segments, bump up access privileges, change the no-execute policy,

change the Structured Exception Handler protection, shut down the Address Space Layout

WO 2017/218872 PCT/US2017/037841
-12 -

Randomization policy, allocate and de-allocate memory, create a new process, create a new
thread, or are involved in encrypting and decrypting data.

[0043] As each module of the application loads into memory, the Monitoring Agent
additionally instruments instructions that are inserted into the module of the application to
collect data at runtime. The instrumented code is inserted into the modules of the application
using a dynamic binary analysis engine and/or a byte code instrumentation engine. Soft spot
instructions are instrumented in areas within the modules that malware tend to attack, such as
instructions that execute loops, to collect data to track activities in these areas at runtime at
338. Direct and indirect transition mapping instructions are instrumented in the modules to
collect data to track activities involving transition mappings at runtime at 328. Memory
Operand Write instructions are instrumented in the modules to collect data on memory write
activities at runtime at 336. In the presence of self-modifying code, the basic blocks may
change at run time. Additionally, instructions are instrumented in the application to collect
data for activities involving OS functions and systems calls stored in the Critical OS Function
Table at 312 and 316.

[0044] As a result of the instrumentation inserted at load time, critical information is
generated at run time and collected for analysis. As the transition mapping data related
instrumentation is accessed, the Resolve Client collects the thread ID, current instruction
address, destination instruction address and optionally data contained in each general purpose
register. As the Soft Spot instrumentation is accessed before the instruction is executed, the
Monitoring Agent captures the thread ID and the bounds of the stack through appropriate
registers. As the soft spot instrumentation is completed, the Monitoring Agent captures the
thread ID and a few general purpose registers that allow it to estimate the region of memory
updated by this write operation. As the critical API or OS call instrumentation is accessed
before the call is executed, the Monitoring Agent captures the thread ID, API name or System
Call number and input parameters. As the critical API or OS call instrumentation is accessed
after the call is executed, the Monitoring Agent captures the thread ID, API name or System
Call number and return value. Instrumentation in the OS functions or system calls that
allocate or de-allocate memory helps to track the regions of memory that are currently
involved in the various heaps the application may have created. This memory envelope is
leveraged to track the target of indirect memory writes run time in order to find if the

malware wants to overrun control structures in the heap. In addition, by tracking the bounds

WO 2017/218872 PCT/US2017/037841
-13 -

of basic blocks using a cache, the Analysis Engine can determine if the basic block has
changed. When the determination is positive, the Basic Block Table in the model database

can be updated.

Methods of Preventing Attack

[0045] FIG. 3B illustrates a flowchart of an example method (and system) 300 for
protection against malicious attacks that are facilitated through memory corruption, in
embodiments of the present disclosure. In some embodiments, the systems and methods may
extract 382 a model of a computer application during load time. The model may include, but
is not limited to, source information (e.g., source memory addresses), destination information
(e.g., destination memory addresses), transitions, branch boundary information, basic block
boundary information, code segment bounds, import and export table bounds, jump table
bounds, or any other type of computer-routine-related information known to one skilled in the
art. The systems and methods may store 384 the model of the computer application. The
systems and methods may insert 386 instructions into the computer application to collect data
at runtime. The systems and methods may analyze 388 the data collected at runtime against
the stored model of the computer application to perform detection of one or more security
events. The systems and methods may, based upon the detection of the one or more security
events, modify 389 at least one computer routine associated with at least one active process
associated with the computer application (i.e., insert a patch).

[0046] Embodiments of the method (and system) 300 remedy/protect against various
types of attacks. Those attacks that target process memory at runtime present many serious
technical and operational challenges (which are remedied by some embodiments). For
example, most cyber security solutions do not have the ability to observe operations in
process memory at the granularity that is required to deterministically declare if an attack is
in progress or not. As a result, sophisticated memory based attacks like APTs (advanced
persistent threats) can go undetected for years. Ordinarily, until a process running vulnerable
code is restarted, such code cannot be swapped out for non-vulnerable code. As a result, the
enterprise is forced into one of two unpalatable choices — keep running and become a target
for even the most unsophisticated attacker, or reboot and suffer from discontinuity of
operations and revenue. An attack that leverages sophisticated memory corruption may begin

with the application’s control flow being maliciously altered, such that instead of the

WO 2017/218872 PCT/US2017/037841
-14 -

application’s own code executing thereafter, adversary driven code begins to execute.
Another outcome of application code ceding control may be that in other attack scenarios, the
application may take an unhandled exception and crash. This form of attack is effectively a
denial of service attack.

[0047] FIG. 3C is a flowchart of an example method (and system) 390 for protection
against malicious attacks that exploit code vulnerabilities to cause memory corruption, in
embodiments of the present disclosure. The method 390 creates 391 a security policy
database in memory of the web service infrastructure of FIG. 2 (or other system
infrastructure). The security policy database includes tables of policies, which map code
vulnerabilities of a computer application to corresponding system responses. The code
vulnerabilities and mapped system responses may be provided by a development team (or
other individuals) associated with the computer application, or automatically or statically
determined by a code analyzer or other such system tool (e.g., of the ARMAS appliance)
analyzing the code of the computer application at load time or runtime. The method 390
detects 392 an event accessing vulnerable code (a code vulnerability) of the computer
application. For example, the accessing of the vulnerable code may cause a memory access
violation or other memory or system violation, which triggers an unhandled hardware or
software exception which would normally cause the thread or process of the application
executing the vulnerable code to terminate (i.e., crash). In other embodiments, the method
390 may compare a saved copy of the computer application to the presently loaded or
executed computer application to detect the memory corruption due to an accessed code
vulnerability. In these embodiments, the method 390 may proactively trigger a hardware or
software exception. The method 390 then detects the accessing of the code vulnerability by
instrumenting an exception handler that intercepts (catches) the triggered hardware or
software exception and associates the code vulnerability prior to the exception causing the
termination of the computer application. To do so, the method 390 overwrites the kernel
mode exception handler with the instrumented exception handler so that the method 390 may
take control of the computer application back from the kernel and initiate a system response
to the triggered exception. Otherwise, the kernel would crash the computer application in
response to the triggered exception.

[0048] The method 390 provides the instrumented exception handler to include one or

more instructions that automatically query the accessed code vulnerability associated with the

WO 2017/218872 PCT/US2017/037841
-15 -

exception in the security policy database in response to intercepting the exception. By the
automatic query of the instrumented exception handler, the method 390 determines 393 the
system response mapped to the accessed code vulnerability in a policy contained in the
security policy database. The determined system response is retrieved from the policy in the
form of a system callback routine. The instrumented exception handler automatically
executes 394 the sysetm response (i.e., system callback routine) to prevent the exploitation of
the accessed code vulnerability. The system callback routine may include, without limitation,
logging the accessing of the code vulnerability as an error in a system log, dumping an image
of the application thread or process containing the accessed code vulnerability, restoring a
saved copy of the computer application prior to accessing the code vulnerability, dynamically
loading one or more remedial patches from memory in the web service infrastructure to
modify the computer routine containing the code vulnerability, continue execution of the
computer application until termination results (i.e., the computer application crashes) due to
the memory violation, immediately terminating the computer application, or any other system

response in relation to the code vulnerability.

ARMAS Probe

[0049] An example of a malicious adversary seizing control from the application is
depicted in FIG. 4A. The code (blocks of instructions) 405 of a function Foo() may include
vulnerabilities that may be exploited by an attacker. As illustrated in FIG. 4A, an adversary
may flood the stack memory 415 of the vulnerable function Foo(). As shown, the stack
memory 415 of Foo() includes local variables, a saved base pointer, a saved return pointer
418, and parameters. When the memory location of saved return pointer of the stack memory
415 of Foo() is determined and overrun by an attacker, then when the Foo() exits (returns
from the stack), the address of the next instruction may be retrieved from the saved return
pointer 418 by the attacker, and the application may come under attack. Attackers may use
such a technique to make a malicious movement to a different code path, such as trampoline
(Jump) from the application code into their own malicious code (adversary trampoline code
410).

[0050] In FIG. 4A, the target of an attack may be the Instruction Pointer Register. The
attacker may also target any other register as well. Many function pointers may be declared

in the application code and may be are loaded using indirect memory addresses whose value

WO 2017/218872 PCT/US2017/037841
-16 -

is read from various registers. By inserting malicious data in a targeted register, an attacker
may alter the program execution flow. For example, the attacker may target register EAX
(accumulator register) by looking for a ROP (return oriented programming) gadget that
targets an instruction in code 405 of Foo() like:

move rax, rsp

ret

[0051] This may have the effect of loading an adversary controlled value from the stack
415 into other registers such as RAX. Next, the adversary may trigger a trampoline from
application code 405 of Foo() to their code 410 by executing an instruction such as “call
[RAX].” Regardless of which register is targeted, the effect may be the same — adversary
code may start to execute.

[0052] In response, embodiments include an application include a runtime monitoring
and analysis (ARMAS) Probe/Application. This ARMAS Probe executes instrumented
instructions in line in every thread of the process and collects source and destination
information for branch transfer instructions, such as the function calls (e.g., move rax, rsp
shown above) and return function calls (e.g., rets shown above) that the Probe encounters at
runtime. The instrumented instructions then relay the highly granular information of the
threads to the ARMAS Probe, which may make the determination whether a branch transfer
is really a code trampoline into an adversary’s code or not. Embodiments include a smarter
ARMAS Probe, called the binary virtual patching application/probe (or “bvpProbe”), which
overcomes the limitation of constantly reaching out to the ARMAS Appliance for
confirmation.

[0053] According to some embodiments, the operation of the bvpProbe can be broken

into three stages (stages 1 through 3, as illustrated to follow):

Stage 1 Functionality of the bvpProbe

[0054] The bvpProbe may protect against stack based and/or heap based attack
trampolines. FIG. 4B is a block diagram of a first stage of stack corruption detection
functionality associated with bvpProbe, according to some embodiments. FIG. 4C is a block
diagram of a first stage of heap corruption detection functionality associated with a bvpProbe,

according to some embodiments.

WO 2017/218872 PCT/US2017/037841
-17 -

[0055] As illustrated in FIG. 4B, for a stack based trampoline, as a first step (step 1),
some embodiments may save the intended target address 420 of the computer routine. As
illustrated in FIG. 4B, in the next step (step 2), memory corruption 422 may occur by one or
more attackers (e.g., as described in references to FIG. 4A). As illustrated in step 3 of FIG.
4B, some embodiments may check 424 for (detect) the memory corruption. As illustrated in
step 4 if FIG. 4B, some embodiments may bypass the memory corruption by applying a copy
of the saved target 426 to the target address and executing 428 the saved target. Some
embodiments may handle memory corruption using one or more techniques for memory
corruption handling known to those skilled in the art, including but not limited to techniques
such as the “System and Methods for Run Time Detection and Correction of Memory
Corruption,” U.S. Patent No. 8,966,312, or other techniques known in the art. As such, some
embodiments may detect a memory corruption 424 of at least one portion of memory during
run-time and correct the memory corruption of the at least one portion of memory by
replacing the at least one portion of memory with a backup copy of the at least one portion of
memory (i.e., the copy of the saved target 426). In this way, memory corruption may be
corrected in a timely fashion while minimizing security risks.

[0056] As also illustrated in FIG. 4B, for stack based trampoline, instead of simply
dispatching runtime transition data to the ARMAS Appliance, the bvpProbe may save critical
state at the point of entry into a routine. If the bvpProbe determines 424 that the branch
transfer operation on a given thread has been maliciously altered as shown in step 3 of FIG.
4B, it can undo the memory corruption and restores 426-428 the contextually appropriate
destination by restoring the saved intended target 420 back onto the stack from where the
address for the next instruction to be executed is retrieved.

[0057] FIG. 4C illustrates corruption detection and handling for heap based trampolines.
As illustrated in FIG. 4C, as the application runs and executes in step 1 of FIG. 4C, adversary
controlled input is written to an instance (Instance 1) of ObjA in step 2 of FIG. 4C. Instance
1 of ObjA, which contains vulnerable code, was previously declared in the heap section of
application memory. Ordinarily each object (e.g., ObjA and ObjM) of the application has one
or more virtual function pointers (vptrs), such as Function Pointers 1,2...N,..., X, that points
to the common virtual pointer table (vtable) in a read only data section. According to some
embodiments, function pointers may be declared in the read only data section of the

application memory. When the adversary data overwrites a vptr (which correspond to

WO 2017/218872 PCT/US2017/037841
-18 -

vulnerable code of ObjA), the pointer from vptr to vtable may be prevented in step 2 of FIG.
4C. At some later point in time, when known good code accesses ObjA in step 3 of FIG. 4C,
instead of executing a known good function pointer, the adversary chosen malicious code
begins to execute as in step 4 of FIG. 4C. The bvpProbe detects the trampoline at step 4 of

FIG. 4C by comparing the destinations (malicious code) with known good destinations.

Stage 2 Functionality of the bvpProbe

[0058] The bvpProbe may collect deep insight into the vulnerability and provide highly
actionable information to the development team. Once the development team has developed
and tested a non-vulnerable version of the vulnerable function, then the new code for that
function may be packaged into a library and released as an individual patch (“lite” patch).
Once a verifiable and signed version of the “lite” patch is made available at the ARMAS
Dashboard, it can be pushed to one or more affected servers where the bvpProbe may be
provisioned to run. The “lite” patch may be stored in memory at the affected servers, such
that the “lite” patch may be injected, as necessary, from memory into a computer application
(rather than repeatedly accessing from a file on the ARMAS Dashboard or over the network
from a developer site).

[0059] On receiving the individual patch (“lite” patch), the ARMAS probe may save the
configuration data for the corresponding individual patch (“lite” patch). Then, either on user
command (or automatically), or in response to an error, process threads may be suspended.
As illustrated in FIG. SA, process threads may be suspended in response to a buffer error
(BE) vulnerability hit.

[0060] As illustrated in FIG. 5A, in suspending the process threads, the ARMAS probe
may halt one or more threads in the application using an approach including but not limited to
one or more of the following mechanisms, based on the complexity of the application. The
mechanism may use intrinsics provided by the hardware running the application. A first
example mechanism (method) uses the SuspendThread() API. In this method, a process is
running 505 and branch execution vulnerability is hit 510 by an attacker. The method
suspends 515 every thread in the process recursively using the SuspendThread() API. The
method then injects 520 a lite patch DLL (as described above) into the suspended thread of

the process, which patches 525 the vulnerable function and updates 530 the corresponding

WO 2017/218872 PCT/US2017/037841
-19 -

configuration file. Once the code has been patched, the probe can call the ResumeThread()
API to resume 535 the process.

[0061] This approach may land a multithreaded application into operational issues due to
timeouts getting truncated, race conditions due to processes waking up out of order and/or
deadlock due to some lower priority thread acquiring a semaphore on being woken up. A
second example mechanism is the use of one or more system calls (such as
NtSuspendProcess()) implemented in the kernel that can suspend a process. A third example
mechanism is the use of the Debugger Interface (DebugActiveProcess() to halt and
DebugActiveProcessStop() to resume, in order to stop the process temporarily.

[0062] As illustrated in FIG. SA, once the process is “frozen” (i.e., suspended 515) it is
safe to inject 520 new code (i.e., inject a “lite” patch DLL and perform a “hot” patch for the
vulnerable function) and create trampolines from the old vulnerable code to the new non-
vulnerable code. These non-malicious trampolines may be implemented using, but not
limited to using, one of the following mechanisms. A first example mechanism is to directly
edit the functionality in the code segment to jump to where the new “lite” functionality is
loaded in memory. The second example mechanism is useful in the case that the affected
functionality is an exported functionality. The second example mechanism changes the
address in the import tables so that instead of the old vulnerable code being called, the new
non-vulnerable code is invoked. A third example mechanism inserts code that creates an
event and tie new code to the event handler.

[0063] As illustrated in FIG. 5A, the bvpProbe may wake up the suspended process (i.e.,
resume 535 the process). However, as also illustrated in FIG. SA, before waking up the
suspended process, configuration information may be updated 530 in the configuration file.
[0064] The configuration information may include information for multiple patches (i.e.,
multiple “lite” patches). It is important to save configuration related information for the
patch. This configuration information may allow the bvpProbe to tie (associate) one or more
individual (“lite”) patches to a specific release of an executable module. Then, until the
configuration is changed, the bvpProbe may reload the one or more individual (“lite”) patches
on start up. The configuration file itself may be a target for malicious adversaries. Therefore,
configuration file contents may be encrypted with an endpoint specific “canary” and its file
integrity checksum information may be published, so that the configuration file may be

verified before the bvpProbe starts to utilize it for reloading patches.

WO 2017/218872 PCT/US2017/037841
-20 -

[0065] It is also important that the above-mentioned operation of virtual patching (e.g.,
using a “lite” patch, as illustrated in FIG. 5A) may occur without the process being
terminated. This is hugely important in scenarios where the application delivers mission
critical operations to the enterprise, or if the cost to patch the application is large.

[0066] However, as illustrated in FIG. 5B, if the process is restarted before the full patch
(i.e., aggregate patch, which may include one or more individual or “lite” patches) is
delivered, the “lite” patch insertion preferably occurs at start up. As illustrated in FIG. 5B,
when a power cycle occurs, the bvpProbe application initiates the process 540, and reads 542
the configuration file to retrieve saved configuration information (including but not limited to
patch information). Next, as illustrated in FIG. 5B, the bvpProbe application loads 543 one
or more individual (“lite”) patches onto each module of the application, in order to patch 545
potentially vulnerable functions for each module. After loading the desired “lite” patches, the
bvpProbe may start running the application process.

Stage 3 of the bvpProbe

[0067] At some subsequent time, one or more users (such as a software development
team) may release a full patch (i.e., aggregate patch, which may include one or more
individual or “lite” patches) comprising of fixes to multiple vulnerabilities. A full patch may
include one or more lite patches. At that time, one or more in-memory, “lite” patches may be
explicitly removed, as illustrated in FIG. SC. FIG. 5C illustrates a cycle associated with
purging (or removing) one or more individual patches, according to some embodiments.
[0068] As illustrated in FIG. 5C, one or more communication messages (purge patch
messages) may be dispatched 570 to/from the ARMAS dashboard from/to the ARMAS
bvpProbe, so that the lite patch configuration information may be updated in the
configuration file. The bvpProbe registers 571 the purge patch messages and update 572 the
configuration file, which may include information for multiple lite patches, to reflect the most
recent version(s) of lite patches that are applicable to one or more modules. In this way, the
one or more versions of lite patches that are inapplicable to the one or more modules may not
be loaded onto the module (i.e., “purged,” or not loaded). Then, as illustrated in FIG. 5C, the
bvpProbe starts 573 the process and loads 574 each module. Once the modules are loaded,
the bypProbe loads 575 onto each module the applicable lite patches (but not the inapplicable
lite patches), which patches 576 the corresponding potentially vulnerable functions prior to

resuming the process. The bvpProbe then resumes 577 the running of the process. In this

WO 2017/218872 PCT/US2017/037841
-21 -

way, some embodiments may the bvpProbe purge the lite patches for which a full patch has

been released.

Virtual Patching Timeline

[0069] FIG. 6 is a block diagram of a patching timeline, as well as a summary of
bvpProbe functionality (as described herein), according to some embodiments. As illustrated
in the timeline of FIG. 6, after an application is deployed, a memory based attack (i.e., zero-
day attack) may occur in the stack of a function, such as stack 415 of function Foo 405, as
described by the memory based attack (or malicious trampoline) of FIG. 4A. As illustrated in
FIG. 6, according to some embodiments, the bvpProbe (in stage 1) may inhibit the malicious
trampoline (adversary trampoline code 410) that otherwise would have executed the zero-day
attack. As illustrated in FIG. 6, according to some embodiments, in Stage 2, the bvpProbe
may load a “lite” patch 580, and in Stage 3 the bvpProbe may revert (or remove or purge) the

loaded “lite” patch 580 in lieu of a full released upgrade 582, which may require a reboot.

Virtual Patching By Exception Handling

[0070] In other embodiments, the ARMAS appliance executes a virtual patching
application that can detect accessing of code vulnerabilities prior to memory corruption. In
these embodiments, as development teams (e.g., application vendors) determine code
vulnerabilities of an application via the use of the ARMAS application or by other means of
dynamic or static code analysis (e.g., code analyzers), the code vulnerabilities of the
application are configured as policies. Each configured policy includes a determined code
vulnerability and a corresponding system response configured as a system callback routine.
When a development team configures a policy for a determined code vulnerability, the team
also programs the corresponding system callback routine to execute a recommended system
response to the determined code vulnerability. The recommended system responses
(programmed as callback routines) include, without limitation, logging the accessing of the
code vulnerability as an error in a system log, dumping an image of the computer application
thread or process containing the accessed code vulnerability, restoring a saved copy of the
stack of the computer application, dynamically loading one or more remedial patches from
memory in the web service infrastructure to modify the computer routine containing the code

vulnerability, continue execution of the computter application until it crashes due to the

WO 2017/218872 PCT/US2017/037841
0D

memory violation, immediately terminating the computer application, or any other sysetm
response in relation to the code vulnerability. The team may also configure a default policy
for the computer application with a callback routine programmed to execute one of the above
recommended system responses. The configured policies are stored in tables of a security
policy database that is stored at a network location accessible to the ARMAS appliance.
[0071] The ARMAS appliance instruments a hardware or software exception handler at
the application servers of the network. When an unhandled memory access violation, or
other unhandled memory or system violation, occurs because of an event (e.g., web service
request) accesses vulnerable application code, the hardware or software (e.g., operating
system) executing the application triggers an exception. The hardware or software exception
handler instrumented by the ARMAS appliance intercepts the triggered exception, and
associates the code vulnerability, and queries the security policy database for a policy
containing the associated code vulnerability. To do so, the ARMAS appliance overwrites the
kernel mode exception handler with the instrumented exception handle to take back control
of the application from the kernel in order to initiate a system response to the triggered
exception. Otherwise, the kernel would crash the application in response to the triggered
exception. If a corresponding policy is located in the security policy database, the
instrumented exception handler executes the callback routine of the policy in response to the
accessing of the associated code vulnerability. If no corresponding policy is located, the
instrumented exception handler executes the callback routine from the default policy for the
computer application in the security policy database.

[0072] The callback routine functions as a virtual patch for responding to the
vulnerability in the accessed code until a full patch, provided by the development team of the
computer application, is available for download to the application server. Below is an
example of the exception handle code. Option 5, shown in the example, may comprise

injecting a “lite” patch saved in memory as describe above in reference to FIGs. SA-5C.

catch (Exception e)
{
virtual patch = Retrieve programmable callback from Security Policy
database routine for code associated with unhandled

memory violation;

WO 2017/218872 PCT/US2017/037841
-23 -

Execute virtual patch;
// Executing virtual patch may comprises one of the following
examples:
// Option 1: Console. WriteLine(" An error occurred: '{0}'"", e);
// Option 2: Save process image to disk (core dump);
// Option 3: Restore Stack and move on;
// Option 4: Let process continue and crash;
// Option 5: Patch process without restarting process
/.
/.
/.
// Option x (without limitation)

Application Runtime Monitoring and Analysis (ARMAS) Infrastructure

[0073] FIG. 7A depicts a high level block diagram of an example application runtime
monitoring and analysis (ARMAYS) infrastructure. This infrastructure may be configured on a
various hardware including computing devices ranging from smartphones, tablets, laptops,
desktops to high end servers. As shown in this figure, data collection performed by the
Monitoring Agent 702 may be segregated from analysis performed by the Analysis Engine
737 to improve application performance. The infrastructure provides high availability to
prevent hackers from subverting its protection against malware attacks. The Monitoring
Agent 702 interacts with an application to gather load time and runtime data. The
infrastructure of the application 701 includes process memory 703, third-party libraries 704,
kernel services 706, and an instruction pipeline 707. The infrastructure of the Monitoring
Agent 702 includes the Instrumentation & Analysis Engine (instrumentation engine) 705,
graphical user interface (GUI) 711, Client Daemon 708, Configuration database 709, and
Streaming and Compression Engine 710, and central processing unit (CPU) 736. Local or
remote users 750 of the application 701 interact with the application either through devices
like keyboards, mice or similar I/O devices or over a network through a communication

channel that may be established by means of pipes, shared memory or sockets. In response

WO 2017/218872 PCT/US2017/037841
-24 -

the application process 703 dispatches appropriate sets of instructions into the instruction
pipeline 707 for execution. The application may also leverage its own or third party libraries
704 such as libc.so (Linux) or msvertxx.dll (Windows). As functionality from these libraries
is invoked, appropriate instructions from these libraries are also inserted into the instruction
pipeline for execution 707. In addition the application may leverage system resources such as
memory, file /O etc. from the kernel 706. These sequences of instructions from the
application, libraries and the kernel put together in a time ordered sequence deliver the
application functionality desired by a given user.

[0074] As the application’s code begins to load into memory, the instrumentation engine
705 performs several different load time actions. Once all the modules have loaded up, the
instrumented instructions of the application generate runtime data. The Client Daemon 708
initializes the Instrumentation and Analysis Engine 705, the Streaming Engine 710 and the
GUI 711 processes in the CPU at 736 by reading one or more configuration files from the
Configuration database 709. It also initializes intercommunication pipes between the
instrumentation engine, Streaming Engine, GUI, Analysis Engine 737 and itself. The Client
Daemon also ensures that if any Monitoring Agent 702 process, including itself, becomes
unresponsive or dies, it will be regenerated. This ensures that the Monitoring Agent 702 is a
high availability enterprise grade product.

[0075] The Instrumentation and Analysis Engine 737 pushes load and runtime data
collected from the application into the Streaming Engine. The Streaming Engine packages the
raw data from the Monitoring Agent 702 into the PDU. Then it pushes the PDU over a high
bandwidth, low latency communication channel 712 to the Analysis Engine 737. If the
Monitoring Agent 702 and the Analysis Engine 737 are located on the same machine this
channel can be a memory bus. If these entities are located on different hardware but in the
same physical vicinity, the channel can be an Ethernet or Fiber based transport, which allows
remote connections to be established between the entities to transport the load and runtime
data across the Internet.

[0076] The infrastructure of the Analysis Engine 737 includes the Network Interface
Card (NIC) 713, the Packet Pool 714, the Time Stamp Engine 715, the Processor Fabric 716,
the Hashing Engine 717, the TCAM Engine 718, the Application Map database 719, and the
Thread Context database 720, which makes up the REGEX Engine 740. The infrastructure of
the Analysis Engine 737 further includes the Content Analysis Engine 721, the Events and

WO 2017/218872 PCT/US2017/037841
-25.

Event Chains 722, the Event Management Engine 723, the Event Log 724, the Application
Daemon 725, the Analysis Engine Configuration database 726, the Network Interface 727,
the Dashboard or CMS 728, the SMS/SMTP Server 729, the OTP Server 730, the Upgrade
Client 731, the Software Upgrade Server 732, Software Images 733, the Event Update Client
734, and the Event Upgrade Server 735.

[0077] The PDU together with the protocol headers is intercepted at the Network
Interface Card 713 from where the PDU is pulled and put into the Packet Pool 714. The
timestamp fields in the PDU are filled up by the Time Stamp Engine 715. This helps to make
sure that no packet is stuck in the packet Pool bufter for an inordinately long time.

[0078] The Processor Fabric 716 pulls packets from the packet buffer and the address
fields are hashed and replaced in the appropriate location in the packet. This operation is
performed by the Hashing Engine 717. Then the Processor Fabric starts removing packets
from the packet buffer in the order they arrived. Packets with information from the load time
phase are processed such that the relevant data is extracted and stored in the Application Map
database 719. Packets with information from the runtime phase are processed in accordance
with Figure 5. The efficiency of the Analysis Engine 737 can be increased or decreased
based on the number of processors in the Processor Fabric.

[0079] The transition target data is saved in the Thread Context database 720 which has a
table for each thread. The Processor fabric also leverages the TCAM Engine 718 to perform
transition and memory region searches. Since the processor fabric performing lookups using
hashes, the actual time used is predictable and very short. By choosing the number of
processors in the fabric carefully, per packet throughput can be suitable altered.

[0080] When the Analysis Engine 737 performs searches, it may, from time to time find
an invalid transition, invalid operation of critical/admin functions or system calls, or find a
memory write on undesirable locations. In each of these cases, the Analysis Engine 737
dispatches an event of the programmed severity as described by the policy stored in the Event
and Event Chain database 722 to the Event Management Engine 723. The raw event log is
stored in the Event Log Database 724. The Dashboard can also access the Event Log and
display application status.

[0081] A remedial action is also associated with every event in the Event and Event
Chain database 722. A user can set the remedial action from a range of actions from ignoring

the event in one extreme to terminating the thread in the other extreme. A recommended

WO 2017/218872 PCT/US2017/037841
-26 -

remedial action can be recommended to the analyst using the Event Update Client 734 and
Event Upgrade Server 735. In order to change the aforementioned recommended action, an
analyst can use the Dashboard 728 accordingly. The Dashboard provides a GUI interface
that displays the state of each monitored application and allows a security analyst to have
certain control over the application, such as starting and stopping the application. When an
event is generated, the Event Chain advances from the normal state to a subsequent state. The
remedial action associated with the new state can be taken. If the remedial action involves a
non-ignore action, a notification is sent to the Security Analyst using and SMS or SMTP
Server 729. The SMS/ SMTP address of the security analyst can be determined using an
LDAP or other directory protocol. The process of starting or stopping an application from
the Dashboard requires elevated privileges so the security analyst must authenticate using an
OTP Server 730.

[0082] New events can also be created and linked into the Event and Event Chain
database 722 with a severity and remedial action recommended to the analyst. This allows
unique events and event chains for a new attack at one installation to be dispatched to other
installations. For this purpose, all new events and event chains are loaded into the Event
Upgrade Server 735. The Event Update Client 734 periodically connects and authenticates to
the Event Upgrade Server 735 to retrieve new events and event chains. The Event Update
Client then loads these new events and event chains into the Events and Events Chain
database 722. The Content Analysis Engine 721 can start tracking the application for the new
attacks encapsulated into the new event chains.

[0083] Just as with the Client Daemon, the Appliance Daemon 725 is responsible for
starting the various processes that run on the Analysis Engine 737. For this purpose, it must
read configuration information from the Analysis Engine Configuration database 726. The
daemon is also responsible for running a heartbeat poll for all processes in the Analysis
Engine 737. This ensures that all the devices in the Analysis Engine 373 ecosystem are in top
working condition at all times. Loss of three consecutive heartbeats suggests that the targeted
process is not responding. If any process has exited prematurely, the daemon will revive that
process including itself.

[0084] From time to time, the software may be upgraded in the Appliance host, or of the
Analysis Engine 737 or of the Client for purposes such as fixing errors in the software. For

this purpose, the Upgrade Client 731 constantly checks with the Software Upgrade Server

WO 2017/218872 PCT/US2017/037841
-27 -

732 where the latest software is available. If the client finds that the entities in the Analysis
Engine 737 or the Client are running an older image, it will allow the analysts to upgrade the
old image with a new image from the Software Upgrade Server 732. New images are bundled
together as a system image 733. This makes it possible to provision the appliance or the host
with tested compatible images. If one of the images of a subsystem in the Analysis Engine
737 or the Monitoring Agent 702 does not match the image for the same component in the

System image, then all images will be rolled to a previous known good system image.

PDU for ARMAS Communications

[0085] FIG. 7B illustrates an example protocol data unit (PDU) used to transmit data
between the Monitoring Agent 702 and Analysis Engine 737 of FIG. 7A. In order for the
Monitoring Agent 702 and the Analysis Engine 737 to work effectively with each other, they
communicate with each other using the PDU. The PDU can specifically be used by the
Monitoring Agent 702 to package the extracted model of the application and/or collected
runtime data for transmission to the Analysis Engine 737. The PDU contains fields for each
type of information to be transmitted between the Monitoring Agent 702 and the Analysis
Engine 737. The PDU is divided into the Application Provided Data Section, the HW/CVE
Generated, and Content Analysis Engine or Raw Data sections.

[0086] The Application Provided Data Section contains data from various registers as
well as source and target addresses that are placed in the various fields of this section. The
Protocol Version contains the version number of the PDU 752. As the protocol version
changes over time, the source and destination must be capable of continuing to communicate
with each other. This 8 bit field describes the version number of the packet as generated by
the source entity. A presently unused reserved field 756 follows the Protocol Version field.
[0087] The next field of the Application Provided Data Section is the Message
Source/Destination Identifiers 757, 753, and 754 are used to exchange traffic within the
Analysis Engine infrastructure as shown in FIG. 7A. From time to time, the various entities
shown in FIG. 7, exchange traffic between themselves. Not all these devices have or need IP
addresses and therefore, the two (hardware and host) Query Router Engines uses the Message
Source and Destination fields to route traffic internally. Some messages need to go across the
network to entities in the Analysis Engine 737. For this purpose, the entities are assigned the

following IDs. A given Analysis Engine appliance may have more than one accelerator card.

WO 2017/218872 PCT/US2017/037841
-08 -

Each card will have a unique IP address; therefore, the various entities will have a unique ID.
The aforementioned infrastructure may also be running more than one application. Since each
application server will have a unique IP address, the corresponding Monitoring Agent side

entity will also have a unique ID.

Monitoring Agent Side Entities
1. GUI

Instrumentation and Analysis Engine
Client Message Router

Streaming Engine

Client Side Daemon

CLI Engine

Client Watchdog

Client Compression Block

Client iWarp Ethernet Driver (100 Mb/1Gb/10Gb)

A S B AT R

Per PCI Card Entities (starting address = 20 + n*20)
20. Securalyzer TOE block
21. Securalyzer PCI Bridge

22. Decompression Block

23. Message Verification Block

24. Packet Hashing Block

25. Time-Stamping Block

26. Message Timeout Timer Block
27. Statistics Counter Block

28. Securalyzer Query Router Engine

29. Securalyzer Assist

Securalyzer Host Entities

200. Securalyzer PCle Driver
201. Host Routing Engine
202. Content Analysis Engine
203. Log Manager

WO 2017/218872 PCT/US2017/037841
-20 .

204. Daemon

205. Web Engine

206. Watchdog

207. IPC Messaging Bus
208. Configuration Database
209. Log Database

SIEM Connectors

220. SIEM Connector 1 — Virsec Dashboard
221. SIEM Connector 2 — HP ArcSight

222. SIEM Connector 3 — IBM QRadar
223. SIEM Connector 4 — Alien Vault USM

Securalyzer Infrastructure Entities
230. Virsec dashboard

231. SMTP Server

232. LDAP Server

233. SMS Server

234. Entitlement Server

235. Database Backup Server
236. OTP Client

237. OTP Server

238. Checksum Server

239. Ticketing Server

240. Virsec Rules Server
241. Virsec Update Server

All user applications

255. User Applications — Application PID is used to identify the application issuing a
query

[0088] Another field of the Application Provided Data section is the Message Type field
which indicates the type of data being transmitted 755. At the highest level, there are three

WO 2017/218872 PCT/US2017/037841
-30 -

distinct types of messages that flow between the various local Monitoring Agent side entities,
between the Analysis Engine appliance side entities and between Client side and appliance
side entities. Furthermore, messages that need to travel over a network must conform to the
OSI model and other protocols.

[0089] The following field of the Application Provided Data section is the Packet
Sequence Number field containing the sequence identifier for the packet 779. The Streaming
Engine will perform error recovery on lost packets. For this purpose it needs to identify the
packet uniquely. An incrementing signed 64 bit packet sequence number is inserted by the
Streaming Engine and simply passes through the remaining Analysis Engine infrastructure. If
the sequence number wraps at the 64 bit boundary, it may restart at 0. In the case of non-
application packets such as heartbeat or log message etc., the packet sequence number may
be -1.

[0090] The Application Provided Data section also contains the Canary Message field
contains a canary used for encryption purposes 761. The Monitoring Agent 702 and the
Analysis Engine 737 know how to compute the Canary from some common information but
of a fresh nature such as the Application Launch time, PID, the license string, and an
authorized user name.

[0091] The Application Provided Data section additionally contains generic fields that are
used in all messages. The Application Source Instruction Address 780, Application
Destination Instruction Address 758, Memory Start Address Pointer 759, Memory End
Address Pointer 760, Application PID 762, Thread ID 763, Analysis Engine Arrival
Timestamp 764, and Analysis Engine Departure Timestamp 765 fields which hold general
application data.

[0092] The PDU also contains the HW/CAE Generated section. In order to facilitate
analysis and to maintain a fixed time budget, the Analysis Engine 737 hashes the source and
destination address fields and updates the PDU prior to processing. The HW/ CAE Generated
section of the PDU is where the hashed data is placed for later use. This section includes the
Hashed Application Source Instruction Address 766, Hash Application Destination
Instruction Address 767, Hashed Memory Start Address 768, and Hashed Memory End
Address 769 fields. The HW/CAW Generated section additionally contains other fields
related to the Canary 771 including the Hardcoded Content Start Magic header, API Name

WO 2017/218872 PCT/US2017/037841
-31 -

Magic Header, Call Context Magic Header and Call Raw Data Magic Header are present in
all PDU packets.

[0093] The HW/CAW Generated section also includes a field 770 to identify other
configuration and error data which includes Result, Configuration Bits, Operating Mode,
Error Code, and Operating Modes data. The Result part of the field is segmented to return
Boolean results for the different Analysis Engine queries — the transition playbook, the code
layout, the Memory (Stack or Heap) Overrun, and the Deep Inspection queries. The
Configuration Bits part of the field indicates when a Compression Flag, Demo Flag, or Co-
located Flag is set. The presence of the flag in this field indicates to the Analysis Engine 737
whether the packet should be returned in compression mode. The Demo Flag indicates that
system is in demo mode because there is no valid license for the system. In this mode, logs
and events will not be available in their entirety. The Co-located Flag indicates that the
application is being run in the Analysis Engine 737 so that Host Query Router Engine can
determine where to send packets that need to return to the Application. If this flag is set, the
packets are sent via the PCI Bridge, otherwise they are sent over the Ethernet interface on the
PCI card. The Operating Mode part of the field indicates whether the system is in Paranoid,
Monitor, or Learn mode. These modes will be discussed in more details later in this section.
Lastly, the Error Code part of the field indicates an error in the system. The first eight bits of
the error code will correspond to the message source. The remaining 12 bits will correspond
to the actual error reported by each subsystem.

[0094] The PDU also contains the Content Analysis Engine or Raw Data. All variable
data such as arguments and return value of the OS library calls and System Calls is placed in
this section of the PDU. The data in this section contains the content of the data collected
from the application and is primarily targeted at the Content Analysis Engine 721. This
section contains the Variable Sized API Name or Number 772, the Call Content Magic
Header 777, the Variable Sized Call Content 774, the Call Raw Data Magic Header 778,
Variable Sized Raw Data Contents 776, and two reserved 773 and 775 fields. Furthermore,

these fields can be overloaded for management messages.

Digital Processing Infrastructure
[0095] FIG. 8 illustrates a computer network or similar digital processing environment in

which embodiments of the present disclosure may be implemented.

WO 2017/218872 PCT/US2017/037841
-32 -

[0096] Client computer(s)/devices 50 and server computer(s) 60 provide processing,
storage, and input/output devices executing application programs and the like. The client
computer(s)/devices 50 can also be linked through communications network 70 to other
computing devices, including other client devices/processes 50 and server computer(s) 60.
The communications network 70 can be part of a remote access network, a global network
(e.g., the Internet), a worldwide collection of computers, local area or wide area networks,
and gateways that currently use respective protocols (TCP/IP, Bluetooth®, etc.) to
communicate with one another. Other electronic device/computer network architectures are
suitable.

[0097] Client computers/devices 50 may be configured as the security monitoring agent.
Server computers 60 may be configured as the analysis engine which communicates with
client devices (i.e., security monitoring agent) 50 for detecting database injection attacks.
The server computers 60 may not be separate server computers but part of cloud network 70.
In some embodiments, the server computer (e.g., analysis engine) may analyze a set of
computer routines, identify one or more patches to be applied, and apply one or more patches
to the computer routines. The client (security monitoring agent) S0 may communicate
patches and patch requests, to/from the server (analysis engine) 60. In some embodiments,
the client 50 may include client applications or components (e.g., instrumentation engine)
executing on the client (i.e., security monitoring agent) 50 for capturing requests and queries,
and detecting corrupted memory for which patches are required, as well as providing patches,
and the client 50 may communicate this information to the server (e.g., analysis engine) 60.
[0098] FIG. 9 is a diagram of an example internal structure of a computer (e.g., client
processor/device 50 or server computers 60) in the computer system of FIG. 8. Each
computer 50, 60 contains a system bus 79, where a bus is a set of hardware lines used for data
transfer among the components of a computer or processing system. The system bus 79 is
essentially a shared conduit that connects different elements of a computer system (e.g.,
processor, disk storage, memory, input/output ports, network ports, etc.) that enables the
transfer of information between the elements. Attached to the system bus 79 is an I/O device
interface 82 for connecting various input and output devices (e.g., keyboard, mouse, displays,
printers, speakers, etc.) to the computer 50, 60. A network interface 86 allows the computer
to connect to various other devices attached to a network (e.g., network 70 of FIG. 8).

Memory 90 provides volatile storage for computer software instructions 92 and data 94 used

WO 2017/218872 PCT/US2017/037841
-33 -

to implement an embodiment of the present disclosure (e.g., security monitoring agent,
instrumentation engine, and analysis engine elements described herein). Disk storage 95
provides non-volatile storage for computer software instructions 92 and data 94 used to
implement an embodiment of the present disclosure. A central processor unit 84 is also
attached to the system bus 79 and provides for the execution of computer instructions.
[0099] Embodiments or aspects thereof may be implemented in the form of hardware
including but not limited to hardware circuitry, firmware, or software. If implemented in
software, the software may be stored on any non-transient computer readable medium that is
configured to enable a processor to load the software or subsets of instructions thereof. The
processor then executes the instructions and is configured to operate or cause an apparatus to
operate in a manner as described herein.

[00100] Some embodiments may transform the behavior and/or data of a set of computer
routines by asynchronously and dynamically manipulating at least one of the computer
routines through patch updates. The patch may include (but is not limited to) modification of
a value, input parameter, return value, or code body associated with one or more of the
computer routines, thereby transforming the behavior (and/or data) of the computer routine.
[00101] Some embodiments may provide functional improvements to the quality of
computer applications, computer program functionality, and/or computer code by detecting
malicious handling of computer routines and/or vulnerabilities in the computer applications
and/or computer code. Some embodiments may deploy one or more patches to correct and/or
replace improperly executing computer routines to avoid the unexpected and/or incorrect
behavior. As such, some embodiments may detect and correct computer code functionality,
thereby providing a substantial functional improvement.

[00102] Some embodiments solve a technical problem (thereby providing a technical
effect) by improving the robustness of functionality of software and its error handling
functionality. Some embodiments also solve a technical problem of detecting and
remediating code corruption that may be hard to do using existing approaches (thereby
providing a technical effect).

[00103] Further, hardware, firmware, software, routines, or instructions may be described
herein as performing certain actions and/or functions of the data processors. However, it

should be appreciated that such descriptions contained herein are merely for convenience and

WO 2017/218872 PCT/US2017/037841
-34 -

that such actions in fact result from computing devices, processors, controllers, or other
devices executing the firmware, software, routines, instructions, etc.

[00104] It should be understood that the flow diagrams, block diagrams, and network
diagrams may include more or fewer elements, be arranged differently, or be represented
differently. But it further should be understood that certain implementations may dictate the
block and network diagrams and the number of block and network diagrams illustrating the
execution of the embodiments be implemented in a particular way.

[00105] Accordingly, further embodiments may also be implemented in a variety of
computer architectures, physical, virtual, cloud computers, and/or some combination thereof,
and, thus, the data processors described herein are intended for purposes of illustration only
and not as a limitation of the embodiments.

[00106] While this disclosure has been particularly shown and described with references to
example embodiments thereof, it will be understood by those skilled in the art that various
changes in form and details may be made therein without departing from the scope of the

disclosure encompassed by the appended claims.

WO 2017/218872 PCT/US2017/037841

-35-
CLAIMS

What is claimed is:

1. A computer-implemented method comprising:

extracting a model of a computer application during load time;

storing the model of the computer application;

inserting instructions into the computer application to collect data at runtime;

analyzing the data collected at runtime against the stored model of the
computer application to perform detection of one or more security events; and

based upon the detection of the one or more security events, modifying, in a
manner that preserves continued execution of the computer application, at least one
computer routine associated with at least one active process associated with the

computer application.

2. The method of Claim 1 wherein the computer routine is executed in association with

the at least one process.

3. The method of Claim 1 wherein the one or more detected security events is associated

with a malicious movement to a different code path within the computer application.

4. The method of Claim 1 wherein modifying includes verifying a patch or configuration

associated with the computer application.

5. The method of Claim 1 further comprising:
in response to receipt of one or more aggregate patches by a user, performing
at least one of"
modifying or removing the at least one computer routine associated with the
computer application; and
modifying or removing one or more individual patches associated with the

computer application.

WO 2017/218872 PCT/US2017/037841
-36 -

The method of Claim 1 further comprising:
modifying one or more stacks associated with the at least one computer

routine.

The method of Claim 1 further comprising:
modifying one or more heaps associated with the at least one executing

computer routine.

The method of Claim 1 further comprising:
modifying the at least one computer routine associated with the at least one
process, while the at least one active process is executing the at least one computer

routine.

The method of Claim 1 further comprising:

prior to modifying the at least one computer routine, pausing execution of at
least one active process; and

after modifying the at least one computer routine, resuming execution of the at

least one active process.

A computer system comprising:
an instrumentation engine configured to:
extract a model of a computer application during load time;
store the model of the computer application;
insert instructions into the computer application to collect data at
runtime; and
an analysis engine configured to:
analyze the data collected at runtime against the stored model of the
computer application to perform detection of one or more security events; and
based upon the detection of the one or more security events,
modifying, in a manner that preserves continued execution of the computer
application, at least one computer routine associated with at least one active

process associated with the computer application.

11.

12.

13.

14.

15.

16.

17.

18.

WO 2017/218872 PCT/US2017/037841

-37-

The system of Claim 10 wherein the computer routine is executed in association with

the at least one process.

The system of Claim 10 wherein the one or more detected security events is
associated with a malicious movement to a different code path within the computer

application.

The system of Claim 10 wherein the analysis engine is further configured to verify a

patch or configuration associated with the computer application.

The system of Claim 10, wherein the analysis engine is further configured to:
in response to receipt of one or more aggregate patches by a user, perform at
least one of:
modifying or removing the at least one computer routine associated
with the computer application; and
modifying or removing one or more individual patches associated with

the computer application.

The system of Claim 10, wherein the analysis engine is further configured to:

modify one or more stacks associated with the at least one computer routine.

The system of Claim 10, wherein the analysis engine is further configured to:
modify one or more heaps associated with the at least one executing computer

routine.

The system of Claim 10, wherein the analysis engine is further configured to:
modify the at least one computer routine associated with the at least one
process, while the at least one active process is executing the at least one computer

routine.

The system of Claim 10, wherein the analysis engine is further configured to:

prior to modifying the at least one computer routine, pause execution of at
least one active process; and

after modify the at least one computer routine, resuming execution of the at

least one active process.

WO 2017/218872 PCT/US2017/037841
-38 -

19. A computer-implemented method comprising:

extracting a model of a computer application during load time;

storing the model of the computer application;

inserting instructions into the computer application to collect data at runtime;

analyzing the data collected at runtime against the stored model of the
computer application to perform detection of one or more security events;

upon the detection of the one or more security events, temporarily remediating
memory corruption associated with the computer application prior to executing one or
more return instructions;

reporting actionable information based upon the one or more detected security
events; and

based upon the detection of the one or more security events, modifying, in a
manner that preserves continued execution of the computer application, at least one
computer routine associated with at least one active process associated with the

computer application.

20. The method of Claim 19 further comprising:
modifying at least one computer instruction associated with at least one

process, while the at least one process is executing.

21. The method of Claim 19 further comprising:
prior to modifying the at least one computer routine, pausing execution of at
least one process associated with the computer application; and
after modifying the at least one computer routine, resuming execution of the at

least one process.

22. A computer system comprising:
an instrumentation engine configured to:
extract a model of a computer application during load time;
store the model of the computer application;
insert instructions into the computer application to collect data at
runtime; and

an analysis engine configured to:

WO 2017/218872 PCT/US2017/037841
-39 .

analyze the data collected at runtime against the stored model of the
computer application to perform detection of one or more security events;

upon the detection of the one or more security events, temporarily
remediate memory corruption associated with the computer application prior
to executing one or more return instructions;

report actionable information based upon the one or more detected
security events; and

based upon the detection of the one or more security events, modify, in
a manner that preserves continued execution of the computer application, at
least one computer routine associated with at least one active process

associated with the computer application.

23. The system of Claim 22, wherein the analysis engine is further configured to:
modify at least one computer instruction associated with at least one process,

while the at least one process is executing.

24, The system of Claim 22, wherein the analysis engine is further configured to:
prior to modifying the at least one computer routine, pause execution of at
least one process associated with the computer application; and
after modifying the at least one computer routine, resume execution of the at

least one process.

25. A computer-implemented method comprising:

for one or more code vulnerabilities of a computer application, mapping each
code vulnerability to a respective system response in a table in memory;

detecting an event accessing a code vulnerability of the computer application;

in response to the detection of the event, dynamically determining a

system response mapped to the accessed code vulnerability in the table in memory;
and

executing the determined system response, the executing prevents the event

from exploiting the accessed code vulnerability.

WO 2017/218872 PCT/US2017/037841
-40 -

26. The method of Claim 25, wherein at least one code vulnerability and mapped system

response is provided from developers of the computer application.

27. The method of Claim 25, wherein at least one code vulnerability and mapped system
response is automatically determined by a code analyzer at load time or runtime of the

computer application.

28. The method of Claim 25, wherein the system response comprises a system callback

routine programmable by a system or user.

29. The method of Claim 28, further comprising:

instrumenting an exception handler to overwrite a kernel mode exception
handler;

triggering an exception in response to the accessing of the code vulnerability;

intercepting the triggered exception and associating the code vulnerability at
the instrumented exception handler;

querying, by the instrumented exception handler, the associated code
vulnerability in the table in memory, the querying returning the system callback
routine mapped to the code vulnerability; and

executing, by the instrumented exception handler, the system callback routine

to initiate instructions to prevent the event from exploiting the code vulnerability.

30. The method of Claim 25, wherein the system response includes one or more of:
logging the accessing of the code vulnerability as an error in a system log;
dumping an image of an application process containing the accessed code
vulnerability;
restoring a copy of the computer application prior to the accessing of the code
vulnerability;
dynamically loading one or more remedial patches from memory, the loading
using the remedial patch to modify at least one computer routine containing the code
vulnerability, the loading modifying the at least one computer routine without

restarting the computer application;

WO 2017/218872 PCT/US2017/037841
-41 -

continuing execution of the computer application until termination results
based on the accessed code vulnerability; and

terminating proactively the computer application.

31 The method of Claim 30, wherein dynamically loading includes injecting the remedial

patches directly from memory of a server executing the computer application.

32. A computer system comprising:
an instrumentation engine configured to:
for one or more code vulnerabilities of a computer application, map
each code vulnerability to a respective system response in a table in memory;

and

an analysis engine configured to:
detect an event accessing a code vulnerability of the computer
application;
in response to the detection of the event, dynamically determine a
system response mapped to the accessed code vulnerability in the table in
memory; and
execute the determined system response, the executing prevents the

event from exploiting the accessed code vulnerability.

33. The system of Claim 32, wherein at least one code vulnerability and mapped system

response is provided from developers of the computer application.

34. The system of Claim 32, wherein at least one code vulnerability and mapped system
response is automatically determined by a code analyzer at load time or runtime of the

computer application.

35. The system of Claim 32, wherein the system response comprises a system callback

routine programmable by a system or user.

WO 2017/218872 PCT/US2017/037841
-42 -

36. The system of Claim 35, wherein the analysis engine is further configured to:
instrument an exception handler to overwrite a kernel mode exception handler;
trigger an exception in response to the accessing of the code vulnerability;
intercept the triggered exception and associate the code vulnerability at the
instrumented exception handler;

query, by the instrumented exception handler, the associated code
vulnerability in the table, the querying returning the system callback routine mapped
to the code vulnerability; and

execute, by the instrumented exception handler, the system callback routine to

initiate instructions to prevent the event from exploiting the code vulnerability.

37. The system of Claim 32, wherein the system response includes one or more of’
logging the accessing of the code vulnerability as an error in a system log;
dumping an image of an application process containing the accessed code
vulnerability;

restoring a copy of computer application prior to the accessing of the code
vulnerability;

dynamically loading one or more remedial patches from memory, the loading
using the remedial patch to modify at least one computer routine containing the code
vulnerability, the loading modifying the at least one computer routine without
restarting the computer application;

continuing execution of the computer application until termination results
based on the accessed code vulnerability; and

terminating proactively the computer application.

38. The system of Claim 37, wherein the dynamically loading includes injecting the

remedial patches directly from memory of a server executing the computer application.

PCT/US2017/037841

1/16

WO 2017/218872

w{mzmwaﬁwwg emlm..ﬂ\\(ﬁmmmhm
T SNOILOFTIOD | & {) L HAAMIS T
£ T ELSAS M / }x,&am i e e r
= LWSOW Qv T =
mﬁmwmmm T LAEISAS W] LY ANN Tl 3SNOESTY WINIO/ L300V |
JMELYD 1+ = ONDINYE = s =
| = JONILNADDOY| ALVHOdHO0 | e
 LANG T IWLY = WONYNE |2 1 TONDINVE o mmﬁmzwﬂw &=
=] ONIVIXH | O | omome | EE A AN =
o / BONVNIS / == o
AVMILYS = Savel 1LY oNbiNvE N | [| i -
NOLYOIddvf= B | L o [ENEEN m
FTEOW s <Ld0d> A [<1b0d> | \M&mw%m%v <L¥Od>
ﬁ . ,,ﬁ = M
Sled et L S30IANT HIONY TV \ =
HOLMS ok aavvanaam|T ST ¥ 2
=HE HOLIMS B AN -
SWaLsAs || ER —— <LHOd> " [<140d> %_m,xwmw%m%v <1HOd>
NINSYEEL . Aainon | oNpiNve | [| vidod =
=R BECT ERIE: JIVHOLH00 | ESL | ONDINVE =
== g BTV R | b \ / ONIYNYE = JENY =
N3LSAS | | reanEs S U L3Y 1/ WMOd o
ONDINYE = INNODOY /SONNIS | B |LINYIINI =
FH00 & ONDINVE LN | [p NN =
2= naLsas |1z 4 " 3SNOJSIH WINIA/LdIO0Y
o NanEOvNI AN - ey
c= B WIYETlalels (\ == =
o L v \J i3 / == L80! “avan L

SUBSTITUTE SHEET (RULE 26)

2/16 PCT/US2017/037841

WO 2017/218872

..... \\
N\ @

v

{slimnaien
SEROBIE(]

¢ 'Ol

mmmm?

SR Ie1i BB

R

{sy8r195 uonsmddy

30804 Lo10allin

WO 0Ed o, UOINDUNY DOISNLL

{21iBainn OB

7y epgdidy

%

\\\\

\\\\\\\\\\\\\\\

T s,

e
Ay,

IBAOBH

SUBSTITUTE SHEET (RULE 26)

Ve "'DId

g AN

LLIRBPY S0 BEYIAL,

B BB EATE
sgosmdg

I
TR Sy YOI
WO BT

DN

¥ *

BEL gronyomapsuy
BRLS puBssta
LSRG AR A F

YES gyosdn
BT LT BEBBE SR
Livpead iy

PCT/US2017/037841

y

oo

et ey
ﬂvmbﬂvxhw Mu &k,..\\.v
LAY B BEREGRMISY
sy

2 o7e
GET AN

AR e 5

5

P :

G B
SIRIEALERE §
RN FSFRINB B

¥ *

743 e .
»&mﬁ@ﬁﬂ«w\m i WAyl zeg {Fam g%

B8 Bprgaersasisma) gl BT UGS

3/16

BRI IR

IRV SIS
SRS, DR iy
v » b 3

yE0dng wapedn

¥

=

w35
SR VGY U
R IFRAE

P A A e Y

WO 2017/218872

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/037841
4/16

WO 2017/218872

68¢

88¢

98¢

8¢

(8¢

d¢ 'OId

2uiNo. _
Jaindwod auo 1sed| 18 AJIPOIW

sjuana AlluNDdas aJowl
10 DU0 109319p pue elep azA|euy

ﬁ

2uIIIUNJ Je Blep 109]|02 01 uonedidde
Joanduwiod 01Ul SUOIDNIISU| 1U9SU]

i

[2pOW PaIdRIIXD 101G

!

awi} peoj Bunp |apow 10elIx3

SUBSTITUTE SHEET (RULE 26)

WO 2017/218872 5/16 PCT/US2017/037841

390

CREATE MAPPING CODE 301
VULNERABILITIES TO SYSTEM
RESPONSES

¥

DETECT EVENT ACCESSING 302
A CODE VULNERABILITY
IN AN APPLICATION

k4

DETERMINE THE SYSTEM 303
RESPONSE MAPPED TO
THE ACCESSED CODE
VULNERABILITY

¥

EXECUTE THE SYSTEM 304
RESPONSE TO PREVENT THE
EVENT FROM EXPLOITING THE
ACCESSED CODE
VULNERABILITY

FIG. 3C

SUBSTITUTE SHEET (RULE 26)

WO 2017/218872 6/16 PCT/US2017/037841

405~ CODE OF FUNCTION ADVERSARY
Foo()

e ™
BLOCKS OF INSTRUCTIONS
. p
- ™
BLOCKS OF INSTRUCTIONS
. y

415~ STACK OF FUNCTION
Foo()

~ ™

LOCAL VARIABLES

AN

.
-~
SAVED BASE POINTER

418~

PARAMETERS

FIG. 4A

SUBSTITUTE SHEET (RULE 26)

7/16 PCT/US2017/037841

WO 2017/218872

8y
b

1304V 03

AY

ay ol
$SIUAAY
1I0uYL @mw
|l 3ouvt “
waw%mm QIAYS AdOD
8
CET | d31S
wy
b

NOLLAHHO DAL NN X5 -

ANFIaNLL NOWLNO3Xd 2300

SUBSTITUTE SHEET (RULE 26)

8/16 PCT/US2017/037841

WO 2017/218872

oY Ol

zegzmm

SfEIA - NOLLODS YAIVT AINO Y3y

z HILNIOHE m,mwwz@nm :

o JONVISNI b AONYLEN

O GONVLSNH 2} SONVISNI | oo | BONYLSN
AFE0 P80 | w0 vrg0
7/ a0h-NOILOES dYaH
S
eddls zddls
3000 4009 wg@o (1009 |«—53000 TIIVHINTNAL <
..... RFETES
NOLLO3S 3000
AAI EE
ANITANIL NOILNOIXE 3000

SUBSTITUTE SHEET (RULE 26)

9/16 PCT/US2017/037841

WO 2017/218872

VG 'Old

/ ma N\
CHOLYE I |
\ 103Nt /T

OUANCD
2ivadn

{{ onmmny
\\ 853004 |

/ savauHL \
[35390Md |
\ ONGASTS

/7. N/ nowonns \.
.wmwwmmwwm.w | TIOVEEINTOA
\ /) . HOIYd

e ¢ts sis o0s

SUBSTITUTE SHEET (RULE 26)

10/16 PCT/US2017/037841

WO 2017/218872

[{ onmnmy \)

NOLLONN

\\553002d //*

9vG

HOLVd

dg '©Old
TINCON YO
TIEVHINTA fe—dSTHO Il T 17T} w%ﬁ%g
avO'l
Gv& vis £vS

)

DINOTD
vy

Z¥s

SUBSTITUTE SHEET (RULE 26)

11/16 PCT/US2017/037841

WO 2017/218872

[{ onmn |

| 553002 /

A

Q¢ Old

NOLLONNA
FTEVHINTA

HOLVd

945

3 NCON HO4

F1NAON

avo

i7AY

mwm Z M._m] M..m

wmwuema

SLUvLS DHNOD e (suasion)

mw@m%}g 31vQdn \agos % %)

048 ~ 398Nd

SUBSTITUTE SHEET (RULE 26)

12/16 PCT/US2017/037841

WO 2017/218872

INITENIL
ST oo Yoo e {
(43LV1 SHLNOW) (43LY1 SAVQ) MOVLLY AVA a3A01d3d
HOLVd T1N4 YOAN3A HOLVd 31T HOANIA 0Y3z ddv
4 "
SYILINVHYd
vy
C yaINod
3Sv4 Q3AYS
e o
- ™
STIAVIEVA V20T
. S
(Jood
NOILONNS 40 MoviS~9+¥
........ F ™
SNOILONYLSN SNOILONYLSNI
40 SM0018
% Y
B 7 ",
SNOILONYLSN SNOILONYLSNI
.. - 3000.18: _ d0s¥oo1d
AYYHEIT QIHOLYd 0004 HOLYd 3009 ANMOdNYHL (Jood
ATIN4 SHOANIA 3L SHOANIA AHVSHIAQY NOILLONNS 40 3009

286~ 085~ oLy~ GOy~

SUBSTITUTE SHEET (RULE 26)

WO 2017/218872 PCT/US2017/037841
13/16

ki

) fed B
o G & gl !
e el ST \\Q; &
~ o o
pa ‘ o R ¥ S
L i bl =
{5 G SR fi‘]
X R W A
; ; W
VR R Lo S W RS Y TR o]
éﬂ'- ;A‘,“. H), i i 0.0, - "\‘P. N :
e . H ol R Rt
L:J W H L e <
o v o=
el H [R
i & H hewvs aad '\
. : o
X i p ST
AN . e oy -
¥ s : 3 e B
= : °F e X
[. AL el e ‘)
st X bplyed o p L
[ol St L E{:! .\\)E ,
o S sSed b=
by] ‘ i
et 1
e Lt

B

&=

SUBSTITUTE SHEET (RULE 26)

WO 2017/218872

PCT/US2017/037841
14/16

3
+

Profonnd

Version -8 bifs i

Ry

b i Reserved - 24 b 758

Originad Mezsage
Saurca -8 bis

3 3
tsss‘az‘}i ?v?&*n&%&i% Messans

Meszage N 9508
Soaroe-B DS | Destination<8hits| Tvpe-8his

‘

™y Fackat Sequence Mumber -84 bis

o

8 4

L i vl

Appication Sourcs nstructon Address {84 bits)

Appoaton Desfination b

olion Adidress {84 hs%

e
7%
e

Menory St Address Poinler <84 bl 758
femory End Address Poinler - 54 bits TEN
Canary Messags 3¢ ik 81

Application PID - 32

$ mad el
sl e s S e

Thread 1032 bils

R 1

‘;“ Anadysls Engine Ardval Thvestanp 54 bilg) B M
g Analysis Engine Deporture Timestamp (4 bits) 758 '\
& | Hashed Application Souve Instniction Address + Reserved (B bils +4bls} 1788 (D
& | Hashed Application Destination instruction Address + Ressrved (Db vdbis) B L

44

Hashed Mamory m Addrass + Regarved (38 bils +4 bits)

[5s R

3

YA I PR
HOAE

. , . , . ,, , 5 , ,
E H £ P4 £ ¥] # ? H :

Hished Mamory End Address + Reserved {28 bits +4 Rig) 789
Transiion Pla E){W + Loy + Mamo {}xw@ + Usep Inspection Resut e §
Config Bils + Operating Mods + Eror Code - {4 +4 +4 + 20 bils) 770

Conterd Slagt
Magie Header -8 hits

TP R+ SOF Rule+ CARdle + 8 .
Effochive Fags + Reservad - 1hbis 7°°

s m i T
APV Sy - £ hits

77T Yariahle Sized AP Nave or Numbeer
&

Magh

Calt Contet.
i Meader - B hits

Ressrved < 34 bite

3

.
73

L SR Lt
;5%1- e
7

R Vartable Sized Cal Contesd g

47

A

Call Raw Data *
Magic Header - B hits

[t

Reservad - 24 Hig R

"

%‘“g‘

orderd

YVarable Shad Raw Dol Conleriz

wnid
el
s

SUBSTITUTE SHEET (RULE 26)

WO 2017/218872

&0

15/16
\H\g 3‘
e
G|
x
s
‘E} I~
prad

N
i : ‘u%
3

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/037841

FIG. 8

PCT/US2017/037841
16/16

WO 2017/218872

6 'Old

28
wesboid S0

G ofiviols ysi()

BL 3N WRSAS .

BLIINON

G5 Aoy

8a
SoBLIRI
HIOMSN

HISEY
HOSSBAV i
e

po s

goRLIBIU|
$20A3(1 O

SUBSTITUTE SHEET (RULE 26)

International application No.
INTERNATIONAL SEARCH REPORT PCT/US2017/037841
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I:' Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:' As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-24
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the

payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

I:' No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/037841

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/51 GO6F21/54
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

cited in the application
claim 1

Y BUCK B ET AL:
PATCHING",
20000101,

vol. 14, no. 4,

317-329, XP008079534,
page 317

Y WO 2015/038944 Al (VIRSEC SYSTEMS INC
[US]) 19 March 2015 (2015-03-19)

paragraph [0063] - paragraph [0064]
"AN API FOR RUNTIME CODE

1 January 2000 (2000-01-01), pages

1-24

1-24

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

11 September 2017

Date of mailing of the international search report

13/11/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Maenpaa, Jari

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/037841

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

"Software Instrumentation ED - Wah B",
1 January 2008 (2008-01-01), WILEY
ENCYCLOPEDIA OF COMPUTER SCIENCE AND
ENGINEE, WILEY, PAGE(S) 1 - 11,
XP007912827,

the whole document

1-24

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/037841
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2015038944 Al 19-03-2015 AU 2014318585 Al 17-03-2016
CA 2923231 Al 19-03-2015
EP 3044719 Al 20-07-2016
JP 2016534479 A 04-11-2016
KR 20160114037 A 04-10-2016
US 2016212159 Al 21-07-2016
WO 2015038944 Al 19-03-2015

Form PCT/ISA/210 (patent family annex) (April 2005)

International Application No. PCT/ US2017/ 037841

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-24

Computer implemented method and computer system wherein
based upon the detection of security events, detected
through Toad time model extraction and instrumentation based
monitoring and analysis mechanism, a routine associated with
an application is modified in a manner that preservers
continued execution of the computer application.

2. claims: 25-38

Computer implemented method and computer system wherein an
event accessing a code vulnerability is detected and
respective response is determined and executed to prevent
the event from exploiting the the accessed code
vulnerability.

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - wo-search-report
	Page 62 - wo-search-report
	Page 63 - wo-search-report
	Page 64 - wo-search-report
	Page 65 - wo-search-report

