

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(10) International Publication Number

WO 2019/099732 A1

(43) International Publication Date
23 May 2019 (23.05.2019)

(51) International Patent Classification:
G01N 33/68 (2006.01) *G01N 33/566* (2006.01)
G01N 33/535 (2006.01) *CI2Q 1/68* (2018.01)

(72) Inventor: **VAN METER, Timothy, E.**; c/o ImmunArray, Inc, 737 North Fifth Street, Suite 304, Richmond, VA 23219 (US).

(21) International Application Number:
PCT/US2018/061372

(74) Agent: **JHAVERI, Sulay, D.**; J.a. Lindeman & Co., PLLC, 3190 Fairview Park Drive, Suite 1070, Falls Church, VA 22042 (US).

(22) International Filing Date:
15 November 2018 (15.11.2018)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/587,272 16 November 2017 (16.11.2017) US

(71) Applicant: **BRAINBOX SOLUTIONS, INC.** [US/US];
737 North Fifth Street, Suite 304, Richmond, VA 23219 (US).

(54) Title: PROTEIN BIOMARKER INDICATORS OF NEUROLOGICAL INJURY AND/OR DISEASE AND METHODS OF USE THEREOF

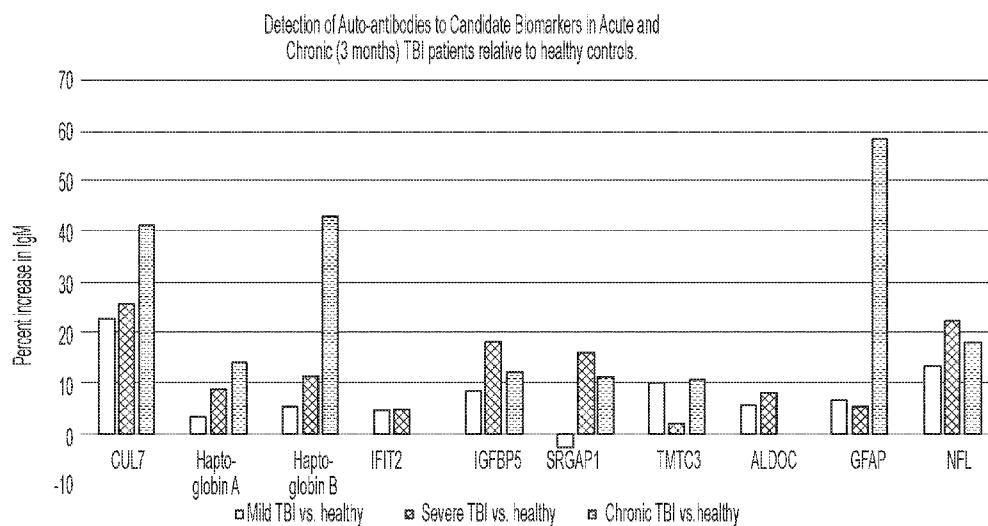


FIG. 3

(57) Abstract: Methods, compositions and kits useful in the detection, assessment, diagnosis, prognosis and/or treatment of neurological injury or disease or brain injury, such as traumatic brain injury (TBI), are provided in which certain newly discovered protein biomarkers are detected in a biological sample of a subject undergoing testing or evaluation. The methods allow for detection of changes in levels, amounts, or concentrations of the protein biomarkers in a subject compared with those of controls. Detection of the protein biomarkers, and/or levels thereof, provides an indication of biological and biochemical events, e.g., at a cellular level, that are occurring in the subject who is undergoing testing or analysis for the neurological injury or brain injury.

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *with sequence listing part of description (Rule 5.2(a))*

PROTEIN BIOMARKER INDICATORS OF NEUROLOGICAL INJURY AND/OR DISEASE AND METHODS OF USE THEREOF

PRIORITY

5 This application claims priority from U.S. provisional patent application No. 62/587,272, filed on November 16, 2017, which is hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

An estimated 5 million patients per year are evaluated for head injury in the emergency departments of hospitals and medical facilities in the United States. Most of the patients who 10 present with head injury have unclear clinical symptoms and no evidence of intracranial structural damage, such as intracranial bleeding or hemorrhage, when evaluated by computed tomography (CT) imaging of the head. Such patients may be allowed to leave a medical facility, but may suffer from late-emerging symptoms or secondary injury. These subsequent complications, resulting from the head injury, can include rupture of damaged blood vessels, 15 neurodegeneration that may be long term and insidious, or more subtle neurocognitive and neuromotor deficits that develop over time. The persistence of brain inflammation can be one underlying factor that influences these changes over time, and both the innate immune response (e.g., resident microglial cell activation in the brain and infiltrating neutrophils) and the adaptive immune system (e.g., autoantibodies and against damage-related proteins), can play a role in 20 these processes. Such factors generate a different proteomic profile in a patient.

Thus, objective tests are needed that can quickly identify and triage patients who have high or low risk for neurological injury-related symptoms. Current techniques involving single or multiple biomarkers are not sufficient to aid in determining or recommending treatments, for predicting a patient's clinical course. As described herein, methods, compositions, and kits are 25 provided that offer clinical and medical advantages and improvements for identifying, diagnosing, and assessing neurological injury and/or disease, as well as severity thereof, in individuals (patients). The biomarkers and methods described herein provide detection and treatment benefits for patients having brain injury.

SUMMARY OF THE INVENTION

30 Methods, compositions, and kits as described herein are provided for detecting, identifying, diagnosing, prognosing, assessing, monitoring and/or treating a neurological injury or a brain injury and involve the use of one or more, or a subset of, newly discovered protein

biomarkers that are indicative of neurological or brain injury, such as in a patient having traumatic brain injury (TBI). A subset of the protein biomarkers detected in the described methods may contain fewer than all of the proteins set forth in Table 1 herein. For example, a detectable subset may contain, illustratively, two or more, three or more, four or more, five or 5 more, six or more, seven or more, eight or more, nine or more, ten or more, etc., of the protein biomarkers set forth in Table 1 herein. Table 1 lists protein biomarker Nos. 1-81 along with, among other things, identifiers for function, cell and tissue specificity and role in brain repair process.

The proteins set forth in Tables 1 reflect components that result from injury, damage, or 10 destruction of various types of neurological, neuronal and/or brain cells and tissues during injury, and/or that result from such cells and tissues undergoing repair processes subsequent to neurological, neuronal, or brain cell and tissue injury, insult, or damage. These protein biomarkers thus provide superior indicators of neurological, neuronal, or brain injury in a subject. The protein biomarkers are readily detectable in a sample, e.g., a blood or serum sample 15 obtained from a subject, and offer new and assayable proteins that provide distinctive insights into different aspects of neurological injury or disease, or brain injury detection, diagnosis, assessment and in a patient who is or may be in need, as well as being useful for clinical and research purposes.

In an aspect, a method of detecting protein biomarkers, or peptide biomarkers derived 20 therefrom, indicative of neurological or brain injury in a subject detects whether one or more protein biomarkers as set forth in Table 1, or peptide biomarkers derived therefrom, are present in a biological sample obtained from the subject by using a protein detection assay. In one embodiment, the method includes contacting the sample with one or more antibodies or antigen binding fragments thereof that specifically bind to the one or more protein biomarkers, or peptide 25 biomarkers derived therefrom, and detecting binding of the one or more antibodies or antigen binding fragments thereof to the one or more protein biomarkers, or peptide biomarkers derived therefrom, or detecting the one or more protein biomarkers, or peptide biomarkers derived therefrom, by using mass spectrometry or other techniques known in the art.

In another aspect, a method of diagnosing a neurological or brain injury in a subject 30 detects whether one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from the subject by

contacting the sample with one or more antibodies or antigen binding fragments thereof that specifically bind the one or more protein biomarkers, or peptide biomarkers derived therefrom; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptide biomarkers derived therefrom, in a control sample; and diagnoses a neurological or brain injury in the subject when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels. In an embodiment of this exemplary method, the control levels are one or more of (i) levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, in a subject not having a neurological or brain injury; (ii) the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, in a subject having a more serious or severe form of the neurological or brain injury; or (iii) the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, in a subject having a less serious or mild form of the neurological or brain injury.

15 In embodiments of the methods of any of the foregoing aspects, the neurological or brain injury is traumatic brain injury (TBI). In some embodiments of the method, the TBI is a mild form of TBI (mTBI).

20 In yet another aspect, a method of assessing whether a therapy or treatment regimen for a neurological or brain injury is effective in a subject includes (i) measuring the amounts or levels of one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, in a sample obtained from the subject at a first time point prior to initiation of a therapy or treatment regimen for a neurological or brain injury; (ii) measuring the amounts or levels of the one or more protein biomarkers in the protein biomarker panel, or peptide biomarkers derived therefrom, in a sample obtained from the subject at second time point subsequent to the first time point and after the subject has received the therapy or treatment regimen; and (iii) assessing that the therapy or treatment regimen is effective when the measured levels of the one or more protein biomarkers in the protein biomarker panel, or peptide biomarkers derived therefrom, are decreased or trending to normal levels at the second time point compared with the levels of the one or more protein biomarkers in the protein biomarker panel, or peptide biomarkers derived therefrom, measured at the first time point.

In embodiments of the methods of any of the foregoing aspects, the biological sample obtained from the subject is selected from blood, serum, plasma, cerebrospinal fluid (CSF), saliva, urine, sputum, secretions, or tears. In particular embodiments, the sample is blood, serum, or plasma. In embodiments of the methods of any of the foregoing aspects, the one or 5 more protein biomarkers or peptide biomarkers derived therefrom, or levels thereof are detected or measured by an immunoassay, an immunoblotting method, an immunoprecipitation assay, an immunostaining method, a quantitative assay, a immunofluorescent assay, or a chemiluminescence assay. In particular embodiments, the one or more protein biomarkers or peptide biomarkers derived therefrom, or levels thereof are detected or measured by an 10 immunoassay, or an assay-on-a-chip assay (e.g., a microarray multiplex assay). In embodiments of the methods of any of the foregoing aspects, the immunoassay is an enzyme linked immunosorbent assay (ELISA) using one or more antibodies or antigen binding fragments thereof that specifically bind to the one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom. In a particular embodiment, the ELISA is a mesoscale 15 discovery electro-chemiluminescence assay (MSD-ELISA).

In embodiments of the methods of any of the foregoing aspects, the protein biomarker panel includes a plurality of biomarkers and includes (A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and, 20 optionally, (B) one or more protein biomarkers selected from Brain-Derived Neurotrophic Factor (BDNF), Glial Fibrillary Acidic Protein (GFAP), Intracellular Adhesion Molecule 5 (ICAM5), Synuclein Beta (SNCB), Metallothionein 3 (MT3), Neurogranin (NRGN), Neuron Specific Enolase(NSE), and Aldolase C (ALDOC). In embodiments of the methods of any of the foregoing aspects, a peptide derived from the one or more protein biomarkers is detected or 25 measured. In embodiments of the methods of any of the foregoing aspects, the one or more protein biomarkers, (A), includes a subset of the proteins set forth in Table 1. In embodiments of the methods of any of the foregoing aspects, the one or more protein biomarkers, (A), include a plurality of the proteins set forth in Table 1.

In yet another aspect, a method of assessing whether a therapy or treatment regimen for a 30 neurological or brain injury is effective in a subject includes (a) measuring the amounts or levels of one or more autoantibodies that specifically bind to one or more protein biomarkers in a

protein biomarker panel, or peptide biomarkers derived therefrom, in a sample obtained from the subject at a first time point prior to initiation of a therapy or treatment regimen for a neurological or brain injury; (b) measuring the amounts or levels of the one or more autoantibodies in a sample obtained from the subject at second time point subsequent to the first time point and after the subject has received the therapy or treatment regimen; and (c) assessing that the therapy or treatment regimen is effective when the measured levels of the one or more autoantibodies are decreased or trending to normal levels at the second time point compared with the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, measured at the first time point.

10 In another aspect, a method of detecting autoantibodies indicative of a neurological or brain injury in a subject includes contacting a biological sample obtained from the patient with one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom; and detecting specific binding of the one or more protein biomarkers or peptides to one or more antibodies or antigen binding fragments thereof in the sample; wherein the detection 15 of binding is indicative of the presence of one or more autoantibodies against the one or more protein biomarkers or peptides thereof in the subject.

20 In an embodiment of above methods, the neurological or brain injury is traumatic brain injury (TBI). In embodiments of the above methods, the biological sample is selected from blood, serum, plasma, cerebrospinal fluid (CSF), saliva, urine, sputum, secretions, tears, or tissue. In an embodiment of the above methods, the one or more autoantibodies or levels thereof are detected or measured by an immunoassay, an immunoblotting method, an immunoprecipitation assay, an immunostaining method, a quantitative assay, an immunofluorescent assay, or a chemiluminescence assay. In an embodiment of the above 25 methods, the one or more autoantibodies or levels thereof are detected or measured by an immunoassay or a chip assay.

30 In an embodiment of the methods of any of the foregoing aspects, detection of the one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, and/or the amounts or levels thereof in a subject's sample provides a determination and identification of biological or biochemical changes occurring in the subject, which reflect post-injury repair processes selected from inflammation, synaptogenesis, neurogenesis,

transdifferentiation, neuronal degeneration, demyelination, glial scar formation, angiogenesis, autophagy, necrosis and/or vascular repair.

In another aspect, a composition includes a solid substrate and a plurality of binding agents immobilized on the substrate, wherein each of the binding agents is immobilized at a different, indexable location on the substrate and the binding agents specifically bind to a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, wherein the protein biomarker panel includes (A) a subset of two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and, optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC. In an embodiment of the composition, the binding agents are labeled with a detectable moiety, optionally wherein the detectable moiety is selected from the group consisting of luminescent agents, chemiluminescent agents, radioisotopes, colorimetric agents; and enzyme-substrate agents. In another embodiment of the composition, the binding agents include one or more antibodies or antigen-binding fragments thereof.

In another aspect, a kit includes a plurality of biomarker binding agents capable of specifically binding to a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, contained in a biological sample obtained from a human patient suspected of having or at risk of having traumatic brain injury, wherein the protein biomarker panel includes (A) a subset of two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and, optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC; and a detecting reagent or a detecting apparatus capable of indicating binding of the binding agents to the one or more proteins or peptides thereof. In an embodiment of the kit, the biological sample is selected from blood, serum, plasma, cerebrospinal fluid (CSF), saliva, urine, sputum, secretions, tears, or tissue.

In particular embodiments of the methods, compositions, or kit of any of the foregoing aspects, the biological sample is a blood, serum, or plasma sample obtained from a human subject.

In an embodiment of the methods, compositions, or kit of any of the foregoing aspects, the peptide derived from the protein biomarker in the protein panel is a post-translationally modified peptide. In some embodiments, the posttranslational modification is citrullination.

In a particular embodiment of the methods, compositions, or kit of any of the foregoing aspects the protein biomarker panel include (B), one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC. In another particular embodiment of the methods, compositions, or kit of any of the foregoing aspects, the protein biomarker panel does not include the one or more protein biomarkers from (B).

In the embodiment of the methods, compositions, or kit of any of the foregoing aspects, (A), the subset of protein biomarkers, includes: (i) at least one protein biomarker selected from one or more cell adhesion proteins, one or more cell signaling proteins, a cell toxicity protein, a clotting protein, one or more cytoskeleton proteins, an extracellular matrix protein, a gene expression mediating protein, one or more gene regulation proteins, one or more inflammation proteins, a microtubule trafficking protein, one or more lipid binding proteins, one or more metabolic enzymes, one or more metabolism protein, a protein binding protein, one or more proteolytic proteins, one or more signaling proteins, a structural protein, one or more synapse proteins, and combinations thereof; (ii) at least one protein biomarker found in mammalian cells or tissue, selected from a protein found in astrocytes, one or more proteins found in blood, one or more protein found in blood, heart and liver tissue, one or more proteins found in brain tissue, a protein found in cardiac tissue, a protein found in epithelial tissue, a protein found in interneurons, a protein found in neuroepithelial cells, one or more proteins found in neurons, a protein found in skin tissue, one or more ubiquitous proteins, and combinations thereof; (iii) at least one protein biomarker having a role in a brain repair process selected from one or more apoptosis proteins, one or more inflammation proteins, one or more innate immunity proteins, one or more membrane repair proteins, one or more metabolism proteins, one or more necrosis proteins, one or more neurodegeneration proteins, one or more neurogenesis proteins, one or more synaptogenesis proteins, one or more vascular repair proteins, and combinations thereof; or combinations of (i), (ii), and (iii).

In a particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more cell adhesion proteins are selected from the group consisting of protein Nos. 6, 12, 16, 25,

32, 38, 45, 47, 51, 72, 79, and 49 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a cell toxicity protein, No 48, from Table 1. 21. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a clotting protein, No 43, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more cytoskeleton proteins selected from the group consisting of protein Nos. 57, 58, 59, and 60 from Table 1. In another particular embodiment of the methods, 10 compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more cell signaling proteins selected from the group consisting of protein Nos. 2, 23, 35, 56, 75, 76, 77, and 80 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a cell toxicity protein, No 48, from 15 Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a clotting protein, No 43, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more cytoskeleton proteins selected from the group 20 consisting of protein Nos. 57, 58, 59, and 60 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes an extracellular matrix protein, No. 37, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a gene 25 expression mediating protein, No. 31, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more gene regulation proteins selected from the group consisting of protein Nos. 7, 15, 44, 46, 53, 54, 61, 63, 74, 78, and 81 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing 30 aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more inflammation proteins selected from the group consisting of protein Nos. 26, 27, 28, 29, 30,

68, 69, 70, and 36 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a microtubule trafficking protein, No. 13, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes protein No. 5 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more lipid binding proteins selected from the group consisting of protein Nos. 8, 9, 10, and 34 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more metabolic enzymes selected from the group consisting of protein Nos. 4, 11, 14, 21, 39, 40, 41, and 50 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more metabolism proteins selected from protein Nos. 62 and 73 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a protein binding protein, No. 42, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more proteolytic proteins selected from the group consisting of protein Nos. 3, 22, 24, 33, 52, 55, 65, 66, and 67 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more signaling proteins selected from protein Nos. 64 and 70 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a structural protein, No. 1 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more synapse proteins selected from the group consisting of protein Nos. 17, 18, 19, and 20 from Table 1.

30 In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a

protein found in astrocytes, No. 49, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more proteins found in blood selected from the group consisting of protein Nos. 8, 9, 10, 26, 27, 28, 29, 30, 34, and 81 from Table 1. In 5 another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more protein found in blood, heart and liver tissue selected from protein Nos. 14 and 15 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a 10 protein found in brain tissue, No. 48, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a protein found in cardiac tissue, No. 64, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a 15 protein found in epithelial tissue, No. 72, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes proteins selected from the group consisting of protein Nos. 22, 24, and 25 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the 20 subset of protein biomarkers includes a protein found in interneurons, No. 13, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a protein found in neuroepithelial cells, No. 45, from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the 25 subset of protein biomarkers includes one or more proteins found in neurons selected from the group consisting of protein Nos. 74, 35, 12, 17, 18, 19, 71, 51, 77, 7, 31, 32, 38, and 16 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes a protein found in skin tissue, No. 20, from Table 1. In another particular embodiment 30 of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes one or more ubiquitous proteins selected

from the group consisting of protein Nos. 1, 2, 3, 4, 6, 11, 23, 33, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 73, 75, 76, 78, 79, and 80 from Table 1.

In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more apoptosis proteins, selected from protein Nos. 22 and 33 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more inflammation proteins, selected from the group consisting of protein Nos. 3, 8, 9, 21, 34, 36, 43, 57, 65, 66, 67, 68, 69, and 70 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more innate immunity proteins, selected from the group consisting of protein Nos. 27, 28, 29, and 30 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more membrane repair proteins, selected protein Nos. 2 and 41 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more metabolism proteins, selected from the group consisting of protein Nos. 11, 14, 15, 37, 39, 40, 48, 50, 73, 75, and 78 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more necrosis proteins, selected from the group consisting of protein Nos. 24, 49, and 52 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more neurodegeneration proteins, selected from the group consisting of protein Nos. 4, 10, and 25 from Table 1. In

another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more neurogenesis proteins, selected from the group consisting of protein Nos. 44, 53, 54, 61, 62, 63, 71, 74, 77, 80, 5 and 81 from Table 1. In another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more synaptogenesis proteins, selected from the group consisting of protein Nos. 6, 7, 12, 13, 16, 17, 18, 19, 20, 23, 35, 38, 45, 47, 51, 55, 58, 59, 60, and 76 from Table 1. In another particular 10 embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers includes at least one protein biomarker with a role in a brain repair process including one or more vascular repair proteins, selected from the group consisting of protein Nos. 26, 31, 64, and 79 from Table 1.

In yet another particular embodiment of the methods, compositions, or kits of any of the 15 foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers (i) includes a cell adhesion protein, a cell signaling protein, a cell toxicity protein, a clotting protein, a cytoskeleton protein, an extracellular matrix protein, a gene expression mediating protein, a gene regulation protein, an inflammation protein, a microtubule trafficking protein, a lipid binding protein, a metabolic enzyme, a metabolism protein, a protein binding protein, a 20 proteolytic protein, a signaling protein, a structural protein, and a synapse protein. In yet another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers (ii) includes a protein found in 25 astrocytes, a protein found in blood, a protein found in blood, heart and liver tissue, a protein found in brain tissue, a protein found in cardiac tissue, a protein found in epithelial tissue, a protein found in interneurons, a protein found in neuroepithelial cells, a protein found in neurons, a protein found in skin tissue, and a ubiquitous protein. In yet another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel including (A), the subset of protein biomarkers (iii) includes an apoptosis protein, an inflammation protein, an innate immunity protein, a membrane repair protein, a metabolism protein, a necrosis protein, 30 a neurodegeneration protein, a neurogenesis protein, synaptogenesis protein, and a vascular repair proteins.

In another aspect, methods of treatment for post-TBI outcomes include: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptide biomarkers derived therefrom, in a control sample; stratifying the risk of the patient at one or more time points for post-TBI outcome when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and if the risk stratification of the patient is high, administering a therapy or an effective amount of a drug specific to the post TBI outcome to treat the patient. In exemplary methods of treatment, the protein biomarker panel includes a plurality of protein biomarkers selected from: (A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and, optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC. Embodiments of methods of treatment include methods of treatment for post-TBI seizures, post-TBI depression, post-TBI anxiety, post-TBI PTSD, post-TBI sleep disorders, post-TBI headache, post-TBI chronic pain, post-TBI oculomotor deficits, post-TBI attention and cognitive defects, and post-TBI balance and gait problems.

DESCRIPTION OF THE FIGURES

FIGS. 1A-1J presents Table 1, which sets forth the novel protein biomarkers, Nos. 1-81.

The protein biomarkers set forth in Table 1 and amino acid sequences in the sequence listing filed herewith, respectively, were discovered in serum samples obtained from patients having traumatic brain injury (TBI) and identified by mass spectroscopy sequencing.

FIG. 2 shows a histogram that graphs the fluorescent signal obtained when individual proteins isolated by two dimensional electrophoresis of serum samples taken from human subjects diagnosed with traumatic brain injury, (TBI), (patient-derived protein arrays), were incubated with serum from a separate cohort of brain-injured patients to allow autoantibody binding, and then probed with anti-human IgM antibody that had a conjugated fluorescent tag (Alexafluor 647). The superimposed orange histograms show the fluorescence intensity of individual proteins from pooled healthy control serum, whereas the blue histograms show the

intensity from individual proteins from acutely brain injured individuals. These assays were used to determine which protein fractions showed differential serum protein levels between TBI patients (labelled “IgM A647 Pool 1 Geneopix scanner”- blue histograms) and healthy controls (labelled “IgM A647 Pool 6A Geneopix scanner”- orange histograms). These fractions were 5 subsequently subjected to mass spectroscopy of individual proteins and the sequence of the proteins were identified.

FIG. 3 shows the levels of auto-antibody reactivity against human proteins captured from serum using specific monoclonal antibodies and anti-human IgM detection antibody (electrochemiluminescence detection using MSD read buffer and a Quickplex 120 luminescence 10 reader). Auto-antibodies detected include anti-Haptoglobin, anti-Cullin-7, and known auto antibody TBI biomarkers such as anti-GFAP.

FIG. 4 shows detection of an overall increase in the average percent citrullination levels in TBI serum samples compared to healthy controls, averaged over the 10 proteins tested. Level of citrullination was detected by immunocapture using TBI antigen specific antibodies and 15 detected with anti-citrulline antisera.

FIG. 5 shows detection of the average percent citrullination levels in TBI serum samples compared to controls, for the proteins tested.

Definitions

20 The meaning of certain terms and phrases employed in the specification, examples, and appended claims are provided. The definitions are not meant to be limiting in nature and are intended to provide a clearer understanding of certain aspects and embodiments of the invention.

The term “about” as used herein means, in quantitative terms, plus or minus 5%, or in another embodiment, plus or minus 10%, or in another embodiment, plus or minus 15%, or in another 25 embodiment, plus or minus 20%.

As used herein, the term “antigen” is generally used in reference to any substance that is capable of reacting with an antibody. More specifically, as used herein, the term “antigen” refers to a synthetic peptide, polypeptide, protein or fragment of a polypeptide or protein, or other molecule which elicits an antibody response in a subject, or is recognized and bound by an 30 antibody.

As used herein, the term "autoantibody" or "autoantibodies" refers to an antibody or antibodies produced in an individual, which is/are capable of reacting against an antigenic constituent of the individual's own protein, tissue, or cells (e.g., the antibodies recognize and bind to "self-antigens" or "self-proteins").

5 As used herein, the term "biomarker" refers to a molecule that is associated either quantitatively or qualitatively with a biological change. Examples of biomarkers include polypeptides, proteins or fragments of a polypeptide or protein; and polynucleotides, such as a gene product, RNA or RNA fragment, or encoding polynucleotides; and other body metabolites. In certain embodiments, a "biomarker" means a compound (e.g., a protein) that is differentially 10 present (i.e., increased or decreased) in a biological sample from a subject or a group consisting of subjects having a first phenotype (e.g., having a disease or condition) as compared to a biological sample from a subject or group consisting of subjects having a second phenotype (e.g., not having the disease or condition or having a less severe version of the disease or condition). A biomarker may be differentially present at any level, but is generally present at a level that is 15 decreased by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, or by 100% (i.e., absent); or that is increased by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, 20 by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 100%, by at least 110%, by at least 120%, by at least 130%, by at least 140%, by at least 150%, or more. Alternatively, the differential presence of a biomarker can be characterized by a -fold change in level including, for example, a level that is decreased by 1.1-fold, at least 1.2-fold, at least 1.3-fold, at least 1.4-fold, at least 1.5-fold, at least 2.0-fold, at least 2.5-fold, at least 3.0-fold, at least 3.5-fold, at least 4.0-fold, at least 5-fold, at least 5.5-fold, at least 6-fold, at least 6.5-fold, at least 7.0-fold, at least 7.5-fold, at least 8.0-fold, at least 9-fold, at least 10-fold, at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 16-fold, at least 17-fold, at least 18-fold, at least 19-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 40-fold, or at least 50-fold; or that is increased by 1.1-fold, at least 1.2-fold, at least 1.3-fold, at least 1.4-fold, at least 1.5-fold, at least 2.0-fold, at least 2.5-fold, at least 3.0-

fold, at least 3.5-fold, at least 4.0-fold, at least 5-fold, at least 5.5-fold, at least 6-fold, at least 6.5-fold, at least 7.0-fold, at least 7.5-fold, at least 8.0-fold, at least 9-fold, at least 10-fold, at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 16-fold, at least 17-fold, at least 18-fold, at least 19-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 5 40-fold, or at least 50-fold. A biomarker is preferably differentially present at a level that is statistically significant (e.g., a p-value less than 0.05 and/or a q-value of less than 0.10 as determined using, for example, either Welch's T-test or Wilcoxon's rank-sum Test).

The term "one or more of" refers to combinations of various protein biomarkers. The term encompasses 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 10 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 . . . to N, where "N" is the total number of protein biomarkers in the particular embodiment. The term also encompasses at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 15, 16, 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 26, at least 27, at least 28, at least 29, at least 15 30, at least 31, at least 32, at least 33, at least 34, at least 35, at least 36, at least 37, at least 38, at least 39, at least 40 . . . to N. In the biomarker panel of the methods, compositions and kits of the invention, for the one or more biomarkers in (A), N = 81. It is understood that the recitation of biomarkers herein includes the phrase "one or more of" the biomarkers and, in particular, includes the "at least 1, at least 2, at least 3" and so forth language in each recited embodiment of 20 a biomarker panel.

The term "biomarker panel" refers to a collection of a plurality of biomarkers grouped together for use in the embodiments of the methods, compositions and kits of the invention. The biomarkers in the panel may be protein biomarkers, or peptide biomarkers derived therefrom. In some embodiments of the methods, compositions or kits of the invention, the protein biomarker panel includes (A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and, optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC. If the protein biomarker panel contains only one protein from Table 1, then the panel 25 must include (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC, so that the panel includes a plurality of biomarkers.

The term “peptide biomarkers derived therefrom” includes the isoforms and/or post-translationally modified forms of any of the foregoing. The invention contemplates the detection, measurement, quantification and/or determination or other analysis of both unmodified and modified (e.g., citrullination or other post-translational modification)

5 proteins/polypeptides/peptides, as well as autoantibodies to any of the foregoing. In certain embodiments, it is understood that reference to the detection, measurement, quantification and/or determination, or other analysis, of a biomarker refers to detection of the protein/polypeptide/peptide (modified and/or unmodified). In other embodiments, reference to the detection, measurement, quantification and/or determination, or other analysis, of a

10 biomarker refers to detection of autoantibodies of the protein/polypeptide/peptide.

“Altered” as used herein can refer to an increase or decrease. An increase is any positive change, e.g., by at least about 5%, 10%, or 20%; by at least about 25%, 50%, 75%, or even by 100%, 200%, 300% or more, including values between the stated percentages. A decrease is a negative change, e.g., a decrease by at least about 5%, 10%, or 20%; by at least about 25%, 50%,

15 75%; or even an increase by 100%, 200%, 300% or more, including values between the stated percentages.

The term “brain injury” refers to a condition in which the brain (central nervous system or neurological system) is damaged by injury caused by an event. As used herein, an “injury” is an alteration in cellular or molecular integrity, activity, level, robustness, state, or other alteration

20 that is traceable to an event. For example, an injury includes a physical, mechanical, chemical, biological, functional, infectious, or other modulator of cellular or molecular characteristics. An event can include a physical trauma such as a single or repetitive impact (percussive) or a biological abnormality such as a stroke resulting from either blockade or leakage of a blood vessel. An event is optionally an infection by an infectious agent. A person of skill in the art

25 recognizes numerous equivalent events that are encompassed by the terms injury or event.

More specifically, the term “brain injury” refers to a condition that results in central nervous system damage, irrespective of its pathophysiological basis. Among the most frequent origins of a “brain injury” are stroke and traumatic brain injury (TBI).

“Stroke” refers to the destruction of brain tissue as a result of intracerebral hemorrhage or

30 infarction. Stroke is a leading cause of death in the developed world. It may be caused by reduced blood flow and death of tissues in one area of the brain (infarction). Causes of strokes

include blood clots that form in the blood vessels in the brain (thrombus) and blood clots or pieces of atherosclerotic plaque or other material that travel to the brain from another location (emboli). Transient ischemic attack (TIA or “mini stroke”) is caused by a temporary blockage of blood to the brain, which causes short-term brain dysfunction and is typically resolved within 5 about 24 hours. Bleeding (hemorrhage) within the brain may also cause symptoms that mimic stroke. A “stroke” is classified into hemorrhagic and non-hemorrhagic forms. Examples of hemorrhagic stroke include cerebral hemorrhage, subarachnoid hemorrhage, and intracranial hemorrhage secondary to cerebral arterial malformation, while examples of non-hemorrhagic stroke include cerebral infarction.

10 A neurological injury, disorder, disease, or condition refers to any injury to the nervous system or central nervous system, or any disorder of the nervous system or central nervous system. Structural, biochemical, or electrical abnormalities in the brain, spinal cord, nerves of the central nervous system, or other nerves (e.g., peripheral nerves) can result in a range of symptoms. Examples of symptoms of a neurological injury include paralysis, muscle weakness, 15 poor coordination, loss of sensation, seizures, confusion, pain and altered levels of consciousness. Neurological injury or disorders may be assessed by neurological examination and may be treated within neurology and clinical neuropsychology medical specialties. Neurological disorders can be categorized according to the primary location affected, the primary type of dysfunction involved, or the primary cause. Other non-limiting examples of 20 neurological diseases and conditions include neuromuscular disease (e.g., neuropathy, amyotrophic lateral sclerosis (ALS), myopathy, muscular dystrophy, myasthenia gravis), movement disorders (e.g., Parkinson’s disease, dystonia, Huntington’s disease, Benign essential tremor, Tourette syndrome, cerebral palsy, spasticity), multiple sclerosis, epilepsy, headaches, hemifacial spasm, trigeminal neuralgia (TGN), occipital neuralgia, or brain aneurysm.

25 Neurological tumors can occur at many sites throughout the nervous system and may include pituitary adenoma, acoustic neuroma, meningioma, brain tumor, neurofibromatosis (NF). Other neurological conditions or disorders include Alzheimer’s disease and dementias. A brain injury is a non-limiting type of neurological injury, disorder, or condition.

30 The term “brain injury” also refers to subclinical brain injury, spinal cord injury, and anoxic-ischemic brain injury. The term “subclinical brain injury” (SCI) refers to brain injury without overt clinical evidence of brain injury. A lack of clinical evidence of brain injury when

brain injury actually exists could result from degree of injury, type of injury, level of consciousness, medications particularly sedation and anesthesia.

The term “traumatic brain injury” or “TBI” refers to traumatic injuries to the brain which occur when physical trauma causes brain damage. For example, TBI can result from a closed head injury or a penetrating head injury. Symptoms of TBI can be mild (even imperceptible at first) and include headache, confusion, visual disturbances, and nausea. Signs of severe TBI include loss of consciousness exceeding six hours, convulsions, dilation of the pupils, and dizziness. TBI is graded as mild (mild TBI or “mTBI”) meaning a brief change in mental status or consciousness), moderate, or severe (meaning an extended period of unconsciousness or amnesia after the injury) on the basis of the level of consciousness or Glasgow coma scale (GCS) score after resuscitation. The GCS scores eye opening (spontaneous =4, to speech=3, to pain=3, none=1), motor response (obeys=6, localizes=5, withdraws=4, abnormal flexion=3, extensor response=2, none=1), and verbal response (oriented=5, confused=4, inappropriate=3, incomprehensible=2, none=1). Mild TBI (GCS 13-15) is in most cases a concussion and there is full neurological recovery, although many of these patients have short-term memory and concentration difficulties. In moderate TBI (GCS 9-13) the patient is lethargic or stuporous, and in severe injury (GCS 3-8) the patient is comatose, unable to open his or her eyes or follow commands.

A “non-traumatic brain injury” refers to brain injuries that do not involve ischemia or external mechanical force (e.g., stroke, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, brain hemorrhage, brain infections, brain tumor, among others).

The term “mild traumatic brain injury (mTBI)” is also commonly known as “concussion” and refers to the occurrence of injury to the head or brain arising from blunt trauma or impact, or forceful motion of the head (acceleration or deceleration forces) causing one or more of the following conditions attributable to head injury: transient confusion, disorientation, or impaired consciousness; dysfunction of memory around the time of injury; or loss of consciousness lasting less than 30 minutes. One or more of the symptoms of mTBI can last a year or more following the initial head or brain injury. While early mTBI symptoms may appear to be mild, they can lead to significant, life-long impairment in an individual’s ability to function physically, cognitively and psychologically. While the term “concussion” is used interchangeably with

mTBI at times, concussions cover a clinical spectrum and may occur without loss of consciousness. Mild concussion may be present even if there is no external sign of trauma to the head. The spectrum of concussions related to sports injuries are defined by The Quality Standards Subcommittee of the American Academy of Neurology as follows: Grade 1 concussion: transient confusion, no loss of consciousness and duration of mental status abnormalities on examination that resolve in less than 15 minutes; Grade 2 concussion: transient confusion, no loss of consciousness, concussion symptoms or mental status abnormalities on examination that last more than 15 minutes; and Grade 3 concussion: any loss of consciousness, either brief (seconds) or prolonged (minutes). (Centers for Disease Control and Prevention).

10 As used herein, “secondary brain trauma” refers to damage to the brain of a patient post-acute brain injury, i.e., during the secondary injury phase of a TBI.

As used herein, “acute brain injury” refers to the condition of a patient who has suffered a neurological or brain injury and at a relatively short number of hours, such as 1-10 hours, 1-8 hours, 1-5 hours, 2-5 hours, 3-5 hours, 4-5 hours, and the like from the actual time of the injury.

15 As used herein, “sub-acute brain injury” refers to the condition of a patient who has suffered a neurological or brain injury from about 2-5 days post injury.

As used herein, “chronic brain injury” refers to the condition of a patient who has suffered a neurological or brain injury from about three days post injury until at least 12 months previously, or from about 1-5 months, or about 1-3 months from the actual time of injury, yet 20 continues to present symptoms of brain injury.

A “spinal cord injury” refers to a condition in which the spinal cord receives compression/detrition due to a vertebral fracture or dislocation to cause dysfunction. As used herein, the term “anoxic-ischemic brain injury” refers to deprivation of oxygen supply to brain tissue resulting in compromised brain function and includes cerebral hypoxia. For example, 25 anoxic-ischemic brain injury includes focal cerebral ischemia, global cerebral ischemia, hypoxic hypoxia (i.e., limited oxygen in the environment causes reduced brain function, such as with divers, aviators, mountain climbers, and fire fighters, all of whom are at risk for this kind of cerebral hypoxia), obstructions in the lungs (e.g., hypoxia resulting from choking, strangulation, the crushing of the windpipe).

30 The term “brain injury biomarker” (BIB), “brain injury protein biomarker”, “brain injury biomarker peptide”, brain injury biomarker polypeptide,” neurological injury biomarker, and the

like refer to a protein, including those described herein, that is associated with or indicative of neurological injury or disease and/or brain injury or disease and can be used in methods according to the principles of the invention, e.g., to identify, diagnose and/or detect neurological injury or disease, or brain injury or disease, e.g., mTBI or concussion, in a patient. As described 5 herein, the protein biomarkers include, but are not limited to, the proteins set forth in Table 1, herein.

The term “brain injury biomarkers” also includes the isoforms and/or post-translationally modified forms of any of the foregoing. The invention contemplates the detection, measurement, quantification, determination and the like of both unmodified and modified (e.g., citrullination or 10 other post-translational modification) proteins/polypeptides/peptides, as well as autoantibodies to any of the foregoing. In certain embodiments, it is understood that reference to the detection, measurement, determination, and the like, of a biomarker refers to detection of the protein/polypeptide/peptide (modified and/or unmodified). In other embodiments, reference to the detection, measurement, determination, and the like, of a biomarker refers to detection of 15 autoantibodies of the protein/polypeptide/peptide.

As used herein, the terms “comparing” or “comparison” refers to making an assessment of how the proportion, level or cellular localization of one or more biomarkers in a sample from a patient relates to the proportion, level or cellular localization of the corresponding one or more biomarkers in a standard or control sample. For example, “comparing” may refer to assessing 20 whether the proportion, level, or cellular localization of one or more biomarkers in a sample from a patient is the same as, more or less than, or different from the proportion, level, or cellular localization of the corresponding one or more biomarkers in standard or control sample. More specifically, the term may refer to assessing whether the proportion, level, or cellular localization 25 of one or more biomarkers in a sample from a patient is the same as, more or less than, different from or otherwise corresponds (or not) to the proportion, level, or cellular localization of predefined biomarker levels/ratios that correspond to, for example, a patient having a neurological injury or brain injury, not having a neurological injury or brain injury, is responding to treatment for a neurological injury or brain injury, is not responding to treatment for the neurological injury or brain injury, is/is not likely to respond to a particular treatment for the 30 neurological injury or brain injury, or having /not having another disease or condition. In a specific embodiment, the term “comparing” refers to assessing whether the level of one or more

biomarkers of the invention in a sample from a patient is the same as, more or less than, different from or other otherwise corresponds (or not) to levels/ratios of the same biomarkers in a control sample (e.g., predefined levels/ratios that correlate to healthy individuals, to individuals with no neurological injury or brain injury, to individuals with a lesser degree of neurological injury or 5 brain injury, standard brain injury levels/ratios, etc.). In another embodiment, the terms “comparing” or “comparison” refers to making an assessment of how the proportion, level or cellular localization of one or more biomarkers in a sample from a patient relates to the proportion, level or cellular localization of another biomarker in the same sample. For example, a ratio of one biomarker to another from the same patient sample can be compared.

10 An “isolated polynucleotide” refers to a nucleic acid (e.g., a DNA or RNA) that is free of the genes which, in the naturally-occurring genome of the organism from which the nucleic acid molecule is derived, flank the gene. The term therefore includes, for example, a recombinant DNA that is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or that exists as a separate molecule (for 15 example, a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. In addition, the term includes an RNA molecule (mRNA) that is transcribed from a DNA molecule, as well as a recombinant DNA that is part of a hybrid gene encoding one or more additional polypeptide sequences.

20 Nucleic acid molecules (polynucleotides), which encode the protein biomarkers of Table 1 in the present disclosure, include any nucleic acid molecule that encodes the disclosed proteins, or peptides thereof. Such nucleic acid molecules need not be 100% identical to an endogenous nucleic acid sequence, but will typically exhibit substantial identity. For example, a polynucleotide can have at least about 85% or greater nucleotide sequence identity to a 25 polynucleotide that encodes a protein biomarker of Table 1. Polynucleotides having “substantial identity” to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. Polynucleotides having “substantial identity” to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. By “hybridize” is meant pairing to form a double-stranded molecule between complementary polynucleotide sequences (e.g., a gene), or portions thereof, 30 under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger, 1987, *Methods Enzymol.*, 152:399; Kimmel, A. R., 1987, *Methods Enzymol.*, 152:507).

An “isolated polypeptide” refers to a polypeptide or protein, such as the proteins set forth in Table 1 that has been separated from components that naturally accompany it, or from components that are present during an isolation or purification process. Typically, the polypeptide is isolated when it is at least 60%, by weight, free from the proteins and naturally-
5 occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, a polypeptide of the disclosure. An isolated polypeptide of the disclosure may be obtained, for example, by extraction from a natural source, by expression of a recombinant nucleic acid encoding such a polypeptide; or by chemically synthesizing the protein. Purity can be measured
10 by any appropriate method, for example, column chromatography, polyacrylamide gel electrophoresis, or by HPLC analysis.

As used herein, the terms “indicates” or “correlates” (or “indicating” or “correlating,” or “indication” or “correlation,” depending on the context) in reference to a parameter, e.g., a modulated proportion, level, or cellular localization in a sample from a patient, may mean that
15 the patient is improving, not improving, etc. In specific embodiments, the parameter may include the level of one or more biomarkers as described herein. A particular set or pattern of the amounts of one or more biomarkers may indicate that a patient has improved or worsened.

In other embodiments, a particular set or pattern of the amounts of one or more biomarkers may be correlated to a patient being unaffected (i.e., indicates a patient does not have
20 brain injury). In certain embodiments, “indicating,” or “correlating,” as used according to the invention, may be by any linear or non-linear method of quantifying the relationship between levels/ratios of biomarkers to a standard, control or comparative value for the assessment of the diagnosis, prediction of a neurological injury, brain injury or progression thereof, assessment of efficacy of clinical treatment, identification of a patient who may respond to a particular
25 treatment regime or pharmaceutical agent, monitoring of the progress of treatment, and in the context of a screening assay, for the identification of a therapeutic for the neurological injury or brain injury.

“Magnetic resonance imaging (MRI)” of the brain is a noninvasive and painless neuroimaging test for detailed visualization and analysis that uses a magnetic field and radio
30 waves to produce detailed images of the brain and the brain stem. Unlike a CAT scan (also called a CT scan; computed axial tomography scan), an MRI scan does not use radiation. In

some cases, a dye (contrast dye) or contrast material (e.g., iodine, barium, or gadolinium) is used during the MRI to allow visualization of the brain structures (e.g., blood vessels and tissue) more clearly. For example, the dye may show blood flow and areas of inflammation or edema. In some cases, MRI is 3T MRI.

5 The terms “patient,” “individual,” or “subject” are used interchangeably herein, and refer to a mammal, particularly, a human. The patient may have a mild, intermediate or severe disease or condition. The patient may be an individual in need of treatment or in need of diagnosis based on particular symptoms or personal or family history. In some cases, the terms may refer to treatment in experimental animals, in veterinary application, and in the development of animal
10 models for disease, including, but not limited to, rodents including mice, rats, and hamsters; and primates.

The terms “measuring” and “determining” are used interchangeably throughout, and refer to methods which include obtaining or providing a patient sample and/or detecting the level (or amount) of a biomarker(s) in a sample. In one embodiment, the terms refer to obtaining or
15 providing a patient sample and detecting the level of one or more biomarkers in the sample. In another embodiment, the terms “measuring” and “determining” mean detecting the level of one or more biomarkers in a patient sample. The term “measuring” is also used interchangeably throughout with the term “detecting.” In certain embodiments, the term is also used interchangeably with the term “quantifying.”

20 The terms “sample,” “patient sample,” “biological sample,” “biologic sample,” “biofluid sample,” and the like, encompass a variety of sample types obtained from a patient, individual, or subject and can be used in a diagnostic, screening, or monitoring assay. The patient sample may be obtained from a healthy subject or a patient suspected of having or having associated symptoms of neurological injury or brain injury. Moreover, a sample obtained from a patient
25 can be divided, and only a portion may be used for diagnosis. Further, the sample, or a portion thereof, can be stored under conditions to maintain sample for later analysis. The definition of “sample” specifically encompasses blood, serum, plasma, cerebrospinal fluid (CSF) and other liquid samples of biological origin, including, but not limited to, peripheral blood, cord blood, amniotic fluid, tears, urine, saliva, stool, semen, secretions and synovial fluid. A sample also
30 encompasses solid tissue samples, such as a biopsy specimen or cells derived therefrom, or tissue culture cells and the progeny thereof. A tissue or cell sample may be processed (e.g.,

homogenized, etc.) to produce a suspension or dispersion in liquid form, as discussed below. In a specific embodiment, a sample includes a blood sample. In another embodiment, a sample includes a plasma sample. In yet another embodiment, a serum sample is used. In certain embodiments, a sample includes cerebrospinal fluid.

5 The definition of “sample” also includes samples that have been manipulated in any way after their procurement, such as by centrifugation, filtration, precipitation, dialysis, chromatography, treatment with reagents, washed, or enriched for certain cell populations. The terms further encompass a clinical sample, and also include cells in culture, cell supernatants, tissue samples, organs, and the like. Samples may also include fresh-frozen and/or formalin-10 fixed, paraffin-embedded tissue blocks, such as blocks prepared from clinical or pathological biopsies, prepared for pathological analysis or study by immunohistochemistry. A sample may be tested immediately after collection, or it may be tested after storage at 4°C, -20°C, or -80°C. Storage times may be 24 hours, 1 week, 1 month, 1 year, 10 years or up to 30 years, depending on stability of the sample and storage conditions.

15 Various methodologies of the instant invention include a step that involves comparing a value, level, feature, characteristic, property, etc. to a “suitable control,” referred to interchangeably herein as an “appropriate control,” a “control sample,” a “reference” or simply a “control.” A “suitable control,” “appropriate control,” “control sample,” “reference” or a “control” is any control or standard familiar to one of ordinary skill in the art useful for 20 comparison purposes. A “reference level” of a biomarker means a level of the biomarker that is indicative of a particular disease state, phenotype, or lack thereof, as well as combinations of disease states, phenotypes, or lack thereof. A “positive” reference level of a biomarker means a level that is indicative of a particular disease state or phenotype. A “negative” reference level of a biomarker means a level that is indicative of a lack of a particular disease state or phenotype.

25 For example, a “brain injury-positive reference level” of a biomarker means a level of a biomarker that is indicative of brain injury in a subject, and a “brain injury-negative reference level” of a biomarker means a level of a biomarker that is indicative of no brain injury of in a subject.

30 A “reference level” of a biomarker may be an absolute or relative amount or concentration of the biomarker, a presence or absence of the biomarker, a range of amount or concentration of the biomarker, a minimum and/or maximum amount or concentration of the

biomarker, a mean amount or concentration of the biomarker, and/or a median amount or concentration of the biomarker; and, in addition, “reference levels” of combinations of biomarkers may also be ratios of absolute or relative amounts or concentrations of two or more biomarkers with respect to each other. Appropriate positive and negative reference levels of 5 biomarkers for a particular disease state, phenotype, or lack thereof may be determined by measuring levels of desired biomarkers in one or more appropriate subjects, and such reference levels may be tailored to specific populations of subjects (e.g., a reference level may be age-matched so that comparisons may be made between biomarker levels in samples from subjects of a certain age and reference levels for a particular disease state, phenotype, or lack thereof in a 10 certain age group). Such reference levels may also be tailored to specific techniques that are used to measure levels of biomarkers in biological samples (e.g., ELISA, PCR, LC-MS, GC-MS, etc.), where the levels of biomarkers may differ based on the specific technique that is used.

In one embodiment, a “suitable control” or “appropriate control” is a value, level, feature, 15 characteristic, property, etc., determined in a cell, organ, or patient, e.g., a control or normal cell, organ, or patient, exhibiting, for example, normal traits. For example, the biomarkers of the invention may be assayed for levels/ratios in a sample from an unaffected individual (UI) (e.g., no brain injury) or a normal control individual (NC) (both terms are used interchangeably herein). For example, a “suitable control” or “appropriate control” can be a value, level, feature, characteristic, property, ratio, etc. determined prior to performing a therapy (e.g., brain injury 20 treatment) on a patient or a value, level, feature, characteristic, property, ratio, etc. determined prior to disease development (e.g., a baseline test). In yet another embodiment, a protein level/ratio, transcription rate, mRNA level, translation rate, biological activity, cellular characteristic or property, genotype, phenotype, etc., can be determined prior to, during, or after administering a therapy into a cell, organ, or patient. In a further embodiment, a “suitable 25 control” or “appropriate control” is a predefined value, level, feature, characteristic, property, ratio, etc. A “suitable control” can be a profile or pattern of levels/ratios of one or more biomarkers of the invention that correlates to brain injury, to which a patient sample can be compared. The patient sample can also be compared to a negative control, i.e., a profile that correlates to not having brain injury.

30 As used herein, the term “predetermined threshold value of expression” of a biomarker refers to the level of expression of the same biomarker (expressed, for example, in ng/ml) in a

corresponding control/normal sample or group consisting of control/normal samples obtained from normal, or healthy, subjects, i.e., subject who do not have brain injury. Further, the term “altered level of expression” of a biomarker in a sample refers to a level that is either below or above the predetermined threshold value of expression for the same biomarker and thus 5 encompasses either high (increased) or low (decreased) expression levels. In particular embodiments, the biomarkers described herein are increased or decreased relative to age-matched (and/or sex-matched) controls.

The terms “specifically binds to,” “specific for,” and related grammatical variants refer to that binding which occurs between such paired species as enzyme/substrate, receptor/agonist, 10 antibody/antigen, aptamer/target, and lectin/carbohydrate which may be mediated by covalent or non-covalent interactions or a combination of covalent and non-covalent interactions. When the interaction of the two species produces a non-covalently bound complex, the binding which occurs is typically electrostatic, hydrogen-bonding, or the result of lipophilic interactions. Accordingly, “specific binding” occurs between a paired species where there is interaction 15 between the two which produces a bound complex having the characteristics of an antibody/antigen or enzyme/substrate interaction. In particular, the specific binding is characterized by the binding of one member of a pair to a particular species and to no other species within the family of compounds to which the corresponding member of the binding member belongs. Thus, for example, an antibody typically binds to a single epitope and to no 20 other epitope within the family of proteins. In some embodiments, specific binding between an antigen and an antibody will have a binding affinity of at least 10^{-6} M. In other embodiments, the antigen and antibody will bind with affinities of at least 10^{-7} M, 10^{-8} M to 10^{-9} M, 10^{-10} M, 10^{-11} M, or 10^{-12} M. As used herein, the terms “specific binding” or “specifically binding” when 25 used in reference to the interaction of an antibody and a protein or peptide means that the interaction is dependent upon the presence of a particular structure (i.e., the epitope) on the protein.

As used herein, the terms “binding agent specific for” or “binding agent that specifically binds” refers to an agent that binds to a biomarker and does not significantly bind to unrelated compounds. Examples of binding agents that can be effectively employed in the disclosed 30 methods include, but are not limited to, proteins and antibodies, such as monoclonal or polyclonal antibodies, or antigen-binding fragments thereof. In certain embodiments, a binding

agent binds a biomarker (e.g., a polypeptide biomarker) with an affinity constant of, for example, greater than or equal to about 1×10^{-6} M.

By “antibody” is meant any immunoglobulin polypeptide, or fragment thereof, having immunogen or antigen binding ability. As used herein, the terms “antibody fragments”, 5 “fragment”, or “fragment thereof” refer to a portion of an intact antibody, in particular, an immunogen- or antigen-binding portion of the antibody. Examples of antibody fragments include, but are not limited to, linear antibodies; single-chain antibody molecules; Fc or Fc' peptides, Fab and Fab fragments, and multi-specific antibodies formed from antibody fragments. In most embodiments, the terms also refer to fragments that bind an antigen of a target molecule 10 (e.g., a protein biomarker described herein) and can be referred to as “antigen-binding fragments.” As used herein, the term “antibody” is used in reference to any immunoglobulin molecule that reacts with a specific antigen. It is intended that the term encompass any immunoglobulin (e.g., IgG, IgM, IgA, IgE, IgD, etc.) obtained from any source (e.g., humans, rodents, non-human primates, caprines, bovines, equines, ovines, etc.). Specific types/examples 15 of antibodies include polyclonal, monoclonal, humanized, chimeric, human, or otherwise-human-suitable antibodies. “Antibodies” also includes any fragment or derivative of any of the herein described antibodies that specifically binds the target antigen.

The term “epitope” or “antigenic determinant” are used interchangeably herein and refer to that portion of an antigen capable of being recognized and specifically bound by a particular 20 antibody. When the antigen is a polypeptide, epitopes can be formed both from contiguous amino acids and noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained upon protein denaturing, whereas epitopes formed by tertiary folding are typically lost upon protein denaturing. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial 25 conformation. An antigenic determinant can compete with the intact antigen (i.e., the “immunogen” used to elicit the immune response) for binding to an antibody.

By “an effective amount” is meant the amount of a required to ameliorate the symptoms of a disease relative to an untreated patient. The effective amount of active compound(s) used to practice the invention for therapeutic treatment of brain injury varies depending upon the manner 30 of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen.

Such amount is referred to as an “effective” amount.

As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to a “protein” is a reference to one or more proteins, and includes equivalents thereof known to those skilled in the art and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Specific methods, devices, and materials are described, although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention. It is understood that the invention is not limited to the particular methods and components, etc., described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the invention.

All publications cited herein are hereby incorporated by reference including all journal articles, books, manuals, published patent applications, and issued patents.

DETAILED DESCRIPTION OF THE INVENTION

The methods, compositions, and kits described herein are based in part on the discovery of new proteins in pooled sera from patients having a neurological injury, such as a brain injury, namely, traumatic brain injury (TBI). The described proteins, or subsets thereof, serve as biomarkers for brain injury and neurodegenerative processes in the brain and spinal cord. Briefly, the proteins were discovered by pooling serum from TBI patients using art-recognized 2D gel electrophoresis (PF2D) protein separation and isolation methods. The separated and resolved proteins were purified and sequenced via mass spectroscopy, thus identifying the new protein biomarkers that are detectable in a patient’s sample and that are indicative of neurological or brain injury or disease in a patient undergoing testing. Such a patient may have a neurological injury or disease, such as a brain injury, e.g., TBI, may be suspected of having, or may be at risk of having these conditions.

The identified proteins described herein provide new and advantageous biomarkers that are associated with and/or are indicative of neurological injury or disease, brain injury or disease and/or neurodegenerative processes in the brain and spinal cord of a patient who has, is suspected of having, or is at risk of having the foregoing conditions. These protein biomarkers

are presented in Table 1 (FIG. 1A-1J) and are detected in a biological sample from a patient undergoing testing, evaluation, or analysis using the methods as described herein. Encompassed herein are peptides derived from the amino acid sequences of the proteins of Table 1. Such peptides may be detected in the methods described herein. In embodiments of the methods, the 5 amounts of these detected proteins are increased or decreased in a patient's sample compared to controls, if a patient has a neurological injury such as a brain injury, e.g., TBI. In embodiments, a control is a healthy individual with no neurological injury or disease, or no brain injury or disease, e.g., TBI; or a control is an individual who has a lesser or milder form of a neurological injury or disease, or a brain injury or disease, e.g., TBI; or the control is an individual who has a 10 more serious or severe form of a neurological injury or disease, or a brain injury or disease, e.g., TBI.

In an embodiment, a polynucleotide encoding one or more of the protein biomarkers described herein and presented in Table 1 are detected by the methods described herein.

15 In an embodiment, autoantibodies directed against one or more of the described protein biomarkers are detected in a biological sample from a patient undergoing testing, evaluation, or analysis using the methods as described herein.

Brain Injury

20 Traumatic brain injury (TBI) is an injury to the head that involves an acute mechanical event, in which sheer force, blunt force, or linear acceleration or deceleration damages brain tissue. Those having skill in the art appreciate that even individuals who are completely asymptomatic after a head injury can have symptoms or disabilities that develop over time, such as weeks to months after the initial injury. Late emerging deficits in patients can also result from multiple subclinical or sub-concussive head injuries.

25 The recognition of chronic traumatic encephalopathy (CTE) as a more common long term consequence of concussion or repetitive head injury has further underscored the need for biomarkers that are sensitive to more subtle changes after TBI and for long term changes that are not evident in a patient at the time of injury. The proteins identified and described herein are improved and comprehensive biomarkers, and protein biomarker panels, which are indicative of 30 neurological or brain injury or disease and are informative across the spectrum of injury and recovery. The provision of readily detectable protein biomarkers for TBI identification,

diagnosis and outcome is beneficial to both patients and the medical community, because these protein biomarkers are detected by the practice of non-invasive methods in which a biological sample obtained from a patient is assayed as described herein.

For example, in order to follow the course of neural inflammation and subsequent 5 degeneration or repair mechanisms in patients who have or are suspected of having TBI, samples from the patients are examined at several time points after the patient experiences or presents with TBI. The protein biomarker panels, provide biomarkers that are detected in elevated (increased), acutely elevated, or decreased amounts, levels, or concentrations in a patient's sample (e.g., a blood sample from a TBI patient), as well as biomarkers that are involved with 10 chronic degradative processes in the patient. Thus, the methods in which these protein biomarkers are detected allow for determining the evolution of post-TBI responses and for arriving at an accurate molecular and anatomical picture of TBI in a patient across a given time course.

Different types of biomarkers may also reflect the various types of cells that suffer 15 damage in TBI. The biological nature and types of cell damage involved in brain injury such as TBI is as complex and heterogeneous as the brain tissue itself, arguably the most complex tissue in the body. Detection of the described protein biomarkers, subsets thereof, and/or increases or decreases in their amounts, in a patient's sample using the methods described herein allows the determination and identification of changes that occur in an injured patient and that reflect the 20 processes of inflammation, synaptogenesis, glial scar formation, angiogenesis and vascular repair which occur post-injury. In embodiments, different subsets of the protein biomarkers, and/or amounts and alterations thereof, are associated with one or more of these biological features and processes that lead to more or less severe neurological damage or brain injury in an injured patient, such as a TBI patient.

25 **Detection of Biomarkers of Neurological Injury or Disease**

Detection by Immunoassay

In specific embodiments of the methods of the invention, the biomarkers in Table 1, Protein Nos. 1-81, can be detected and/or measured by immunoassay. Immunoassay requires 30 biospecific capture reagents/binding agents, such as antibodies, to capture the biomarkers. Many antibodies are available commercially. Antibodies also can be produced by methods well known in the art, e.g., by immunizing animals with the biomarkers. Biomarkers can be isolated from

samples based on their binding characteristics. Alternatively, if the amino acid sequence of a polypeptide biomarker is known, the polypeptide can be synthesized and used to generate antibodies by methods well-known in the art.

Detection methods suitable for use in the described methods involve, without limitation, 5 traditional immunoassays including, for example, sandwich immunoassays including enzyme-linked immunosorbent assays (ELISA) or fluorescence-based immunoassays, immunoblots, Western Blots (WB), as well as other enzyme immunoassays. Multiplex ELISA assays are also suitable for use. Nephelometry is an assay performed in liquid phase, in which antibodies are in solution. The binding of a protein antigen to a specific antibody results in changes in 10 absorbance, a parameter that is measured. In a SELDI-based immunoassay, a biospecific capture reagent for the biomarker is attached to the surface of an MS probe, such as a pre-activated protein chip array. The biomarker is then specifically captured on the biochip through this reagent, and the captured biomarker is detected by mass spectrometry.

In certain embodiments, the expression levels of the biomarkers employed herein are 15 quantified by immunoassay, such as ELISA technology. In specific embodiments, the levels of expression of the biomarkers are determined by contacting the biological sample with antibodies, or antigen binding fragments thereof, that selectively bind to the biomarkers; and detecting binding of the antibodies, or antigen binding fragments thereof, to the biomarkers. In certain embodiments, the binding agents employed in the disclosed methods and compositions are 20 labeled with a detectable moiety.

For example, the level of a biomarker in a sample can be assayed by contacting the biological sample with an antibody, or antigen binding fragment thereof, that selectively binds to the target biomarker (referred to as a capture molecule or antibody or a binding agent), and detecting the binding of the antibody, or antigen-binding fragment thereof, to the biomarker. 25 The detection can be performed using a second antibody to bind to the capture antibody complexed with its target biomarker. A target biomarker can be an entire protein, or a variant or modified form thereof. Kits for the detection of biomarkers as described herein can include pre-coated strip plates, biotinylated secondary antibody, standards, controls, buffers, streptavidin-horse radish peroxidase (HRP), tetramethyl benzidine (TMB), stop reagents, and detailed 30 instructions for carrying out the tests including performing standards.

Embodiments of the invention also provide methods for identifying, detecting, or diagnosing brain injury, e.g., mTBI or concussion, in a subject, wherein the protein biomarkers, or levels, amounts, or concentrations thereof, are detected in a sample obtained from a patient or subject. For example, in one embodiment, methods are provided that include: (a) contacting a 5 biological sample obtained from the subject with a plurality of binding agents that selectively bind to a plurality of the protein biomarkers disclosed herein in Table 1 for a period of time sufficient to form binding agent-biomarker complexes; and (b) detecting binding of the binding agents to the plurality of biomarkers in the sample. In an embodiment, detection is by immunoassay or mass spectrometry or other suitable detection assay or system.

10 In an embodiment, the levels, amounts, or concentrations of the protein biomarkers, or the level of expression of the protein biomarkers from protein biomarker panel, in the biological sample is determined. In addition to the biomarkers in Table 1, the biomarker panel may include one or more previously known biomarkers for brain injury. In an embodiment, a plurality of the biomarkers from protein biomarker panel includes (A) one or more, two or more, 15 three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, and the like, or all, or a subset of the proteins presented in Table 1, and optionally (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC. International Patent Application Publication No. WO 2018/005791 describes methods, compositions and kits useful in the diagnosis, prognosis and/or 20 assessment of brain injuries and risk for brain injuries, such as hemorrhage, are based upon detection of certain biomarkers including BDNF, GFAP, ICAM5, SNCB, MT3, and NSE. U.S. Patent No. 9,746,481, describes panels of biomarkers useful in diagnosing brain injuries, which include the biomarkers NRGN, MT3 and GFAP, among others. International Patent Application Publication No. WO 2016/179426 describes methods and kits for detecting or monitoring TBI 25 using ALDOC.

The levels, amounts, or concentrations of the biomarkers, or the levels of expression of the biomarkers, or plurality of biomarkers in the protein biomarker panel, in the patient's sample can be compared with predetermined threshold values. By way of example, the levels of expression of at least one of the plurality of polypeptide biomarkers in the panel which are above 30 or below the predetermined threshold values indicates, for example, a neurological injury or brain injury in the subject. Examples of binding agents that can be effectively employed in such

methods include, but are not limited to, antibodies or antigen-binding fragments thereof, aptamers, lectins and the like. Such binding agents may include single chain antibodies and camelid antibodies and may be recombinantly produced.

In a further aspect, embodiments of the invention provide compositions that can be employed in the disclosed methods. In certain embodiments, such compositions include a solid substrate and a plurality of binding agents immobilized on the substrate, wherein each of the binding agents is immobilized at a different, indexable, location on the substrate and the binding agents selectively bind to a plurality of biomarkers in a protein biomarker panel, wherein the panel includes (A) one or more, two or more, three or more, four or more, five or more, six or 10 more, seven or more, eight or more, nine or more, ten or more, and the like, or all, or a subset of the proteins presented in Table 1, and optionally (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC. In a specific embodiment, the locations are pre-determined. In one embodiment, the binding agents selectively bind to a plurality of biomarkers of the proteins presented in Table 1 described herein. 15 Binding agents that can be employed in such compositions include, but are not limited to, antibodies, or antigen-binding fragments thereof, aptamers, lectins and the like.

In a related aspect, methods for assessing brain injury, e.g., mTBI or concussion, in a subject are provided, such methods including: (a) contacting a biological sample obtained from the subject with a composition disclosed herein for a period of time sufficient to form binding 20 agent-polypeptide biomarker complexes; (b) detecting binding of the plurality of binding agents to the plurality of polypeptide biomarkers in the protein biomarker panel, thereby determining the levels of expression of the plurality of polypeptide biomarkers in the biological sample; and (c) comparing the levels of expression of the plurality of polypeptide biomarkers in the biological sample with predetermined threshold values, wherein levels of expression of at least 25 one of the plurality of polypeptide biomarkers above or below the predetermined threshold values indicates brain injury status in the subject.

In yet another aspect, embodiments of the invention provide compositions including a solid substrate and a plurality of polypeptide biomarkers in a protein biomarker panel disclosed herein immobilized on the substrate, wherein each of the polypeptide biomarkers is immobilized 30 at a different, indexable, location on the substrate. The protein biomarker panel includes a plurality of biomarkers selected from: (A) a subset of one or more, two or more, three or more,

four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and, optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC.

5 Although antibodies are useful because of their extensive characterization, any other suitable agent (e.g., a ligand molecule, a peptide, an aptamer, or a small organic molecule) that specifically binds a biomarker of the invention may be optionally used in place of the antibody in the above described immunoassays. For example, an aptamer that specifically binds a biomarker and/or one or more of its breakdown products might be used. Aptamers are nucleic acid-based
10 molecules that bind specific ligands. Methods for making aptamers with a particular binding specificity are known as detailed in U.S. Patents No. 5,475,096; No. 5,670,637; No. 5,696,249; No. 5,270,163; No. 5,707,796; No. 5,595,877; No. 5,660,985; No. 5,567,588; No. 5,683,867; No. 5,637,459; and No. 6,011,020.

15 In specific embodiments, the assay performed on the biological sample can include contacting the biological sample with one or more capture agents (e.g., antibodies, peptides, aptamer, etc., combinations thereof) to form a biomarker capture agent complex. The complexes can then be detected and/or quantified. A subject can then be identified as having brain injury based on a comparison of the detected/quantified/measured levels of biomarkers to one or more reference controls as described herein.

20 In one method, a first, or capture, binding agent, such as an antibody that specifically binds the biomarker of interest, is immobilized on a suitable solid phase substrate or carrier. The test biological sample is then contacted with the capture antibody and incubated for a desired period of time. After washing to remove unbound material, a second, detection, antibody that binds to a different, non-overlapping, epitope on the biomarker (or to the bound capture
25 antibody) is then used to detect binding of the polypeptide biomarker to the capture antibody. The detection antibody is preferably conjugated, either directly or indirectly, to a detectable moiety. Examples of detectable moieties that can be employed in such methods include, but are not limited to, chemiluminescent and luminescent agents; fluorophores such as fluorescein, rhodamine and eosin; radioisotopes; colorimetric agents; and enzyme-substrate labels, such as
30 biotin.

5 In another embodiment, the assay is a competitive binding assay, wherein labeled biomarker is used in place of the labeled detection antibody, and the labeled biomarker and any unlabeled biomarker present in the test sample compete for binding to the capture antibody. The amount of biomarker bound to the capture antibody can be determined based on the proportion of labeled biomarker detected.

Solid phase substrates, or carriers, that can be effectively employed in such assays are well known to those of skill in the art and include, for example, 96 well microtiter plates, glass, paper, and microporous membranes constructed, for example, of nitrocellulose, nylon, polyvinylidene difluoride, polyester, cellulose acetate, mixed cellulose esters and polycarbonate. 10 Suitable microporous membranes include, for example, those described in U.S. Patent Application Publication No. U.S. 2010/0093557 A1. Methods for the automation of immunoassays are well known in the art and include, for example, those described in U.S. Patent Nos. 5,885,530, 4,981,785, 6,159,750 and 5,358,691.

15 The presence of several different polypeptide biomarkers in a test sample can be detected simultaneously using a multiplex assay, such as a multiplex ELISA. Multiplex assays offer the advantages of high throughput, a small volume of sample being required, and the ability to detect different proteins across a broad dynamic range of concentrations.

20 In certain embodiments, such methods employ an array, wherein multiple binding agents (for example capture antibodies) specific for multiple biomarkers are immobilized on a substrate, such as a membrane, with each capture agent being positioned at a specific, pre-determined, location on the substrate. Methods for performing assays employing such arrays include those described, for example, in U.S. Patent Application Publication Nos. US2010/0093557A1 and US2010/0190656A1, the disclosures of which are incorporated by reference herein.

25 Multiplex arrays in several different formats based on the utilization of, for example, flow cytometry, chemiluminescence or electron-chemiluminescence technology, can be used. Flow cytometric multiplex arrays, also known as bead-based multiplex arrays, include the Cytometric Bead Array (CBA) system from BD Biosciences (Bedford, Mass.) and multi-analyte profiling (xMAP®) technology from Luminex Corp. (Austin, Tex.), both of which employ bead sets which are distinguishable by flow cytometry. Each bead set is coated with a specific capture 30 antibody. Fluorescence or streptavidin-labeled detection antibodies bind to specific capture antibody-biomarker complexes formed on the bead set. Multiple biomarkers can be recognized

and measured by differences in the bead sets, with chromogenic or fluorogenic emissions being detected using flow cytometric analysis.

In an alternative format, a multiplex ELISA from Quansys Biosciences (Logan, Utah) coats multiple specific capture antibodies at multiple spots (one antibody at one spot) in the same well on a 96-well microtiter plate. Chemiluminescence technology is then used to detect multiple biomarkers at the corresponding spots on the plate.

Detection by Mass Spectrometry

In one aspect, the described biomarkers may be detected by mass spectrometry, a method that employs a mass spectrometer to detect gas phase ions. Examples of mass spectrometers are time-of-flight, magnetic sector, quadrupole filter, ion trap, ion cyclotron resonance, Orbitrap, hybrids or combinations of the foregoing, and the like.

In particular embodiments, the biomarkers of the invention are detected using selected reaction monitoring (SRM) mass spectrometry techniques. Selected reaction monitoring (SRM) is a non-scanning mass spectrometry technique, performed on triple quadrupole-like instruments and in which collision-induced dissociation is used as a means to increase selectivity. In SRM experiments two mass analyzers are used as static mass filters, to monitor a particular fragment ion of a selected precursor ion. The specific pair of mass-over-charge (m/z) values associated to the precursor and fragment ions selected is referred to as a “transition” and can be written as parent m/z → fragment m/z (e.g. 673.5 → 534.3). Unlike common MS based proteomics, no mass spectra are recorded in a SRM analysis. Instead, the detector acts as counting device for the ions matching the selected transition thereby returning an intensity distribution over time. Multiple SRM transitions can be measured within the same experiment on the chromatographic time scale by rapidly toggling between the different precursor/fragment pairs (sometimes called multiple reaction monitoring, MRM). Typically, the triple quadrupole instrument cycles through a series of transitions and records the signal of each transition as a function of the elution time. The method allows for additional selectivity by monitoring the chromatographic co-elution of multiple transitions for a given analyte. The terms SRM/MRM are occasionally used also to describe experiments conducted in mass spectrometers other than triple quadrupoles (e.g. in trapping instruments) where upon fragmentation of a specific precursor ion a narrow mass range is scanned in MS2 mode, centered on a fragment ion specific to the precursor of interest or in general in experiments where fragmentation in the collision cell is used as a means to increase

selectivity. In this application the terms SRM and MRM or also SRM/MRM can be used interchangeably, since they both refer to the same mass spectrometer operating principle. As a matter of clarity, the term MRM is used throughout the text, but the term includes both SRM and MRM, as well as any analogous technique, such as e.g. highly-selective reaction monitoring,

5 hSRM, LC-SRM or any other SRM/MRM-like or SRM/MRM-mimicking approaches performed on any type of mass spectrometer and/or, in which the peptides are fragmented using any other fragmentation method such as e.g. CAD (collision-activated dissociation (also known as CID or collision-induced dissociation), HCD (higher energy CID), ECD (electron capture dissociation), PD (photodissociation) or ETD (electron transfer dissociation).

10 In another specific embodiment, the mass spectrometric method includes matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF MS or MALDI-TOF). In another embodiment, method includes MALDI-TOF tandem mass spectrometry (MALDI-TOF MS/MS). In yet another embodiment, mass spectrometry can be combined with another appropriate method(s) as may be contemplated by one of ordinary skill in the art. For example, MALDI-
15 TOF can be utilized with trypsin digestion and tandem mass spectrometry as described herein.

20 In an alternative embodiment, the mass spectrometric technique includes surface enhanced laser desorption and ionization or “SELDI,” as described, for example, in U.S. Patents No. 6,225,047 and No. 5,719,060. Briefly, SELDI refers to a method of desorption/ionization gas phase ion spectrometry (e.g. mass spectrometry) in which an analyte (here, one or more of the biomarkers) is captured on the surface of a SELDI mass spectrometry probe. There are several versions of SELDI that may be utilized including, but not limited to, Affinity Capture Mass Spectrometry (also called Surface-Enhanced Affinity Capture (SEAC)), and Surface-Enhanced Neat Desorption (SEND) which involves the use of probes including energy absorbing molecules that are chemically bound to the probe surface (SEND probe). Another SELDI
25 method is called Surface-Enhanced Photolabile Attachment and Release (SEPAR), which involves the use of probes having moieties attached to the surface that can covalently bind an analyte, and then release the analyte through breaking a photolabile bond in the moiety after exposure to light, e.g., to laser light (see, U.S. Patent No. 5,719,060). SEPAR and other forms of SELDI are readily adapted to detecting a biomarker or biomarker panel, pursuant to the
30 invention.

In another mass spectrometry method, the biomarkers can be first captured on a chromatographic resin having chromatographic properties that bind the biomarkers. For example, one could capture the biomarkers on a cation exchange resin, such as CM Ceramic HyperD F resin, wash the resin, elute the biomarkers and detect by MALDI. Alternatively, this 5 method could be preceded by fractionating the sample on an anion exchange resin before application to the cation exchange resin. In another alternative, one could fractionate on an anion exchange resin and detect by MALDI directly. In yet another method, one could capture the biomarkers on an immuno-chromatographic resin that includes antibodies that bind the biomarkers, wash the resin to remove unbound material, elute the biomarkers from the resin and 10 detect the eluted biomarkers by MALDI or by SELDI.

Detection by Electrochemiluminescent Assay

In several embodiments, the described protein biomarkers may be detected by means of an electrochemiluminescent assay developed by Meso Scale Discovery (Gaithersburg, MD). Electrochemiluminescence detection uses labels that emit light when electrochemically 15 stimulated. Background signals are minimal because the stimulation mechanism (electricity) is decoupled from the signal (light). Labels are stable, non-radioactive and offer a choice of convenient coupling chemistries. They emit light at ~620 nm, eliminating problems with color quenching. *See* U.S. Patents No. 7,497,997; No. 7,491,540; No. 7,288,410; No. 7,036,946; No. 7,052,861; No. 6,977,722; No. 6,919,173; No. 6,673,533; No. 6,413,783; No. 6,362,011; No. 20 6,319,670; No. 6,207,369; No. 6,140,045; No. 6,090,545; and No. 5,866,434. *See also* U.S. Patent Applications Publication No. 2009/0170121; No. 2009/006339; No. 2009/0065357; No. 2006/0172340; No. 2006/0019319; No. 2005/0142033; No. 2005/0052646; No. 2004/0022677; No. 2003/0124572; No. 2003/0113713; No. 2003/0003460; No. 2002/0137234; No. 2002/0086335; and No. 2001/0021534.

25 Other Methods for Detecting Biomarkers

The protein biomarkers can be detected by other suitable methods. Detection paradigms that can be employed to this end include optical methods, electrochemical methods (voltammetry and amperometry techniques), atomic force microscopy, and radio frequency methods, e.g., multipolar resonance spectroscopy. Illustrative of optical methods, in addition to microscopy, 30 both confocal and non-confocal, are detection of fluorescence, luminescence, chemiluminescence, absorbance, reflectance, transmittance, and birefringence or refractive index

(e.g., surface plasmon resonance, ellipsometry, a resonant mirror method, a grating coupler waveguide method or interferometry).

In another embodiment, a sample, such as a sample containing the protein biomarkers described herein, may also be analyzed by means of a biochip. Biochips generally include solid substrates and have a generally planar surface, to which a capture reagent (also called an adsorbent or affinity reagent) is attached. Frequently, the surface of a biochip includes a plurality of addressable locations, each of which has the capture reagent bound there. Protein biochips are biochips adapted for the capture of polypeptides. Many protein biochips are described in the art. These include, for example, protein biochips produced by Ciphergen Biosystems, Inc. (Fremont, CA.), Invitrogen Corp. (Carlsbad, CA), Affymetrix, Inc. (Fremont, CA), Zyomyx (Hayward, CA), R&D Systems, Inc. (Minneapolis, MN), Biacore (Uppsala, Sweden) and Procognia (Berkshire, UK). Examples of such protein biochips are described in the following patents or published patent applications: U.S. Patent No. 6,537,749; U.S. Patent No. 6,329,209; U.S. Patent No. 6,225,047; U.S. Patent No. 5,242,828; PCT International Publication No. WO 2000/56934; and PCT International Publication No. WO 03/048768.

In a particular embodiment, a microarray chip may be utilized. More specifically, the chip includes a small wafer that carries a collection of binding agents bound to its surface in an orderly pattern, each binding agent occupying a specific position on the chip. The set of binding agents specifically bind to each of the one or more one or more of the biomarkers described herein. In particular embodiments, a few microliters of a biological sample, e.g., a blood, serum, or plasma sample, are dropped on the chip array. Protein biomarkers present in the tested specimen bind to the binding agents which specifically recognize and target the proteins. The subtype and amount of a bound biomarker can be detected and quantified using, for example, a fluorescently-labeled secondary, subtype-specific antibody. In particular embodiments, an optical reader is used for bound biomarker detection and quantification. Thus, a system can include a chip array and an optical reader. In other embodiments, a chip is provided.

Other assays useful for detection of the plurality of protein biomarkers in the protein biomarker panel, or peptide biomarkers derived therefrom, in a biological sample from a patient, e.g., a TBI patient, include single-molecule arrays (SIMOATM), (e.g., as provided by Quanterix, Lexington, MA), which are bead-based detection assays, in which antibody capture molecules are attached to the surface of paramagnetic beads that are capable of detecting thousands of

single protein molecules simultaneously and use the same reagents as are used in conventional ELISA assays described herein. Femtomolar (fg/mL) concentrations of proteins can be measured in a SIMOA bead-based immunoassay, which involves arrays of femtoliter-sized reaction chambers that can isolate and detect single protein molecules. Because the array 5 volumes are significantly smaller than those of a conventional ELISA, a rapid increase of fluorescent product is generated if a labeled protein is present.

2-Dimensional Gel Electrophoresis

Two-dimensional electrophoresis (2-D electrophoresis) is a powerful and widely-used biochemical separation technique for the analysis of complex protein mixtures extracted from 10 cells, tissues, or other biological samples. As is appreciated by the skilled practitioner, this technique separates proteins according to two independent properties in two discrete steps: The first dimension step is isoelectric focusing (IEF), which separates proteins according to their isoelectric points (pI). The second dimension step is SDS-polyacrylamide gel electrophoresis (SDS-PAGE), which separates proteins according to their molecular weights (MW). The 15 separated proteins are delineated as spots on a two-dimensional array.

Each spot on the resulting two-dimensional array corresponds to a single protein in a sample. Thousands of different proteins can be separated, and information such as the pI, apparent molecular weight (MW), e.g., in kDa, and the amount of each protein can be obtained. 2-D electrophoresis is a particularly useful as biochemical separation technique tool that may be 20 integral to other developments in separation techniques, image analysis, and protein characterization.

Proteomics, which refers to the systematic separation, identification, and quantification of many proteins simultaneously from a single sample, relies on 2-D electrophoresis and its ability to separate thousands of proteins simultaneously. 2-D electrophoresis can also be used to detect 25 post- and co-translational modifications of protein molecules, which cannot be predicted from the genomic sequence. 2-D electrophoresis is applicable for the analysis of cell differentiation, detection of disease markers in research, drug discovery research, cancer research, purity checks, and microscale protein purification.

2-D gel electrophoresis sample preparation

For optimal 2-D electrophoresis results, samples must have the right composition for IEF, which means they must be in a solution that does not affect the pI of the proteins to be separated. 30

Accordingly, the samples should not include impurities, especially ionic impurities. Sample preparation can be improved by using specific products to clean-up the samples and provide optimal sample buffers for gel electrophoresis. Streaking resulting from nonspecific oxidation of thiol groups on proteins during 2-D electrophoresis may be addressed by utilizing specific 5 reagents that reduce or eliminate streaking between spots in the gel, especially in the pH range 7 to 11. Such reagents also simplify the spot pattern by reducing the number of spots caused by protein oxidation.

Spot Processing

Gel spots (protein spots) of interest can be picked and analyzed by mass spectrometry 10 (MS) to identify the corresponding proteins. The procedure of picking and digesting spots can be performed manually or semi-automatically by manual transfer of gels and microplates between instruments, or automatically using an integrated workstation. For example, an Ettan Spot Picker is designed to reproducibly spot protein samples and matrix on multiple MALDI MS targets for subsequent analysis by mass spectrometry. An Ettan Digester is an example of a 15 versatile instrument designed to perform in-gel digestion of proteins captured in 2-D gel electrophoresis spots.

2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE)

2-D DIGE is a variant of two-dimensional gel electrophoresis in which an internal 20 standard may be included so that all samples - even those run on different gels - can easily be compared and accurately quantified. An internal standard can virtually eliminate experimental gel-to-gel variation and avoid a need to run technical replicates to confirm differences in protein abundance. 2-D DIGE allows increased throughput and significantly reduced analysis time and cost, dependable results with far fewer 2-D gels (multiplexing two samples per gel with internal standards) and the detection of true differences in protein expression with extremely high 25 statistical confidence.

Briefly, 2-D DIGE is performed by labeling protein samples and internal standard with 30 different fluorescent molecules, such as CyDye DIGE Fluors (GE Healthcare Life Sciences, Piscataway, NJ). The internal standard and one or two samples are run on each gel. Using an internal standard and running multiple samples on the same gel results in fewer gels being run and cost savings. The internal standard is made by pooling all samples in an experiment, and is run on every 2-D DIGE gel. This means that there is a standard for every spot on the gel, and

that all gels within the same experiment are quantitatively linked. The internal standard virtually eliminates gel-to-gel variation such that technical replicates are not necessary. A protein sample is first labeled with fluorophores. In contrast to conventional 2D gel electrophoresis in which proteins are post-stained, the protein labeling step in 2-D DIGE is performed before 5 electrophoresis using fluorescent molecules, such as CyDye DIGE Fluors. The first and second dimension electrophoresis steps are performed in a manner similar to that of traditional 2-D electrophoresis, for example using an IEF system, IPG strips, and an electrophoresis system. Image analysis of 2-D DIGE gels is performed with a biomolecular imager that detects multiplex fluorescence, for example, as Typhoon FLA 9500. Analysis (GE Healthcare Life Sciences, 10 Piscataway, NJ) is performed using DeCyder 2-D Differential Analysis Software, optimized for 2-D DIGE.

Autoantibodies

Provided herein are methods for detecting, determining, identifying, measuring, or quantifying, unmodified and modified, e.g., post-translationally modified, citrullinated, 15 glycosylated, etc., proteins in the biomarker panels described herein, as well as autoantibodies to any of the foregoing in a sample obtained from a patient having, suspected of having, or at risk of having a neurological injury or a brain injury. Such autoantibodies directed against a plurality of proteins in a protein biomarker panel, or peptide biomarkers derived therefrom, may be of different immunoglobulin classes and subclasses, e.g., IgM, IgG, IgG1, IgG2a, IgG2b, IgG3, 20 IgG4, etc.). Without wishing to be bound by theory, autoantibodies of the IgM class, or a predominance thereof, that are directed against a plurality of proteins in the protein biomarker panel, or peptide biomarkers derived therefrom, and that are detected in a patient's sample may indicate an early or acute stage of a neurological or brain injury, as this class of antibodies develops early in the immune response. Autoantibodies of the IgG class, or a predominance 25 thereof, detected in a patient's sample may indicate a later or chronic stage of a neurological or brain injury, as this class of antibodies can reflect a sustained or memory immune response.

The determination of the presence of autoantibodies, or of an autoantibody profile, in a patient can be used as a surrogate measurement of the state of the patient prior to brain injury. In addition, the determination of the levels of circulating protein detected at a time after a 30 neurological or brain injury, e.g., a short or a long time period after injury, can be used as a surrogate measurement of the nature or degree of injury. Algorithms that combine the

information about the state of the patient prior to injury and the nature or degree of the injury can be used in order to determine how a patient will fare or the outcome of a patient's injury or disease.

The detection of the presence of autoantibodies against protein biomarkers as antigens, as well as the determination of an autoantibody profile, in a subject can be performed, for example, using a platform in which the antigens, e.g., a plurality of proteins in a protein biomarker panel, or peptide biomarkers derived therefrom, are bound to a solid surface or substrate. The surface or substrate is contacted with a sample containing the autoantibodies, which specifically bind to the antigen (e.g., a plurality of proteins in a protein biomarker panel, or peptide biomarkers derived therefrom,), and the autoantibodies are detected with a tagged or labeled secondary antibody (e.g., a labeled IgM or IgG antibody) which is detectable. Autoantibody detection can be achieved using, for example, an immunoassay, such as an ELISA format, which includes one or more capture antigens (proteins) and detection antibody(ies).

The platforms used for autoantibody and protein antigen detection may be independent (e.g., iCHIP for autoantibody, MSD ELISA for protein antigens, or any relevant ELISA based platform) or may be combined into a single platform to simultaneously measure both circulating autoantibodies and protein antigens in a sample. By way of example, such dual detection can be accomplished by printing an iCHIP with both the relevant protein antigens and protein antigen-specific capture antibodies (or binding molecules); contacting a subject's sample, e.g., serum, with the printed surface such that circulating autoantibodies bind to the surface bound protein antigens, and circulating protein antigens bind to the surface bound capture antibodies (or binding molecules). A cocktail or mixture of secondary antibodies and detection antibodies can be used for detection of autoantibodies and protein antigens in a sample. In the case where there is a need to measure autoantibodies to the same protein antigen that informs about a disease state or condition, these measurements can be done in two separate chambers. The data from multiple tests can be combined for the purpose of an algorithmic analysis to determine, diagnose, or predict the status of the patient and/or the patient's outcome.

In an embodiment, methods are provided for detecting or diagnosing neurological injury or brain injury in a patient by detecting autoantibodies to a plurality of proteins in a protein biomarker panel, or peptide biomarkers derived therefrom. In one embodiment, autoantibodies to a plurality of protein biomarkers are detected, for example, autoantibodies directed against

more than one, more than two, more than three, more than four, more than five, and the like, of the proteins in the protein biomarker panel are detected in a sample. In another embodiment, autoantibodies directed against a subset of the proteins in the protein biomarker panel is detected.

In an embodiment, a method is provided for detecting the presence of autoantibodies that bind to one or more of the protein biomarkers, or a plurality of the protein biomarkers, a protein biomarker panel in a biological sample obtained from the patient. In an embodiment, the detection of the autoantibodies can diagnose, identify, evaluate, or assess a neurological injury or a brain injury, e.g., TBI, in the patient. In an embodiment, the autoantibodies are detected by contacting a biological sample obtained from the patient with one or more of the protein biomarkers of the biomarker panel, or a bindable peptide derived therefrom, and detecting the binding of the protein biomarker or peptide with a labeled or otherwise detectable antibody specific for the protein or peptide, wherein the detection of binding is indicative of the presence of autoantibodies against the protein biomarker or peptide thereof in the patient. In an embodiment, the amount of autoantibodies that specifically bind to the protein or peptide biomarkers can be compared with those in a control subject not having a neurological injury or a brain injury, or to those in a control subject having a lesser or milder form of the neurological injury or brain injury, which assists in determining the status of the neurological injury or the brain injury in the patient undergoing testing.

In another embodiment, a method for assessing the effectiveness of a neurological injury or brain injury therapy or treatment regimen in a patient, in which (a) a baseline level of autoantibodies that bind to a plurality of protein biomarkers in a biomarker panel is established in the subject, by detecting the presence of the autoantibodies in the patient at a first time point prior to therapy or treatment of the patient for the neurological injury or brain injury; (b) detecting (monitoring) the levels of autoantibodies that bind to a plurality of protein biomarkers in a biomarker panel, at a second time point and, optionally at additional time points, after initiation of the therapy or treatment regimen; and (c) comparing the detected levels of the autoantibodies that bind to the plurality of protein biomarkers in a biomarker panel at the second (and/or subsequent time points) to the baseline level of autoantibodies determined at the first time point as described for (a) above. A decrease in the level of autoantibodies detected at the second and/or subsequent time points is indicative of the effectiveness of the neurological injury or brain injury therapy or treatment regimen in the patient. In an embodiment, one or more

peptide biomarkers derived from the protein biomarkers in the protein biomarker panel that are bindable by autoantibodies in the sample are detected.

In a further embodiment, a method for qualifying neurological injury or brain injury status, or degree thereof, in a patient is provided, in which the method involves (a) detecting 5 autoantibodies that bind to a plurality of protein biomarkers in a biomarker panel in a biological sample obtained from a patient; (b) measuring the levels of the autoantibodies that bind to the a plurality of protein biomarkers in a biomarker panel in the patient's sample; and (c) comparing the measured levels of the autoantibodies in (b) with levels of autoantibodies in controls, such as samples from subjects having different neurological injury or brain injury status, e.g., no injury, 10 or mild or lesser degrees of injury, so as to qualify the neurological injury or brain injury status, or degree thereof, in the patient. In various embodiments of the method, the neurological or brain injury status involves one or more of the risk of neurological or brain injury, the development of neurological or brain injury, the presence or absence of neurological or brain injury, the stage of neurological or brain injury, the subtype of neurological or brain injury, the 15 prognosis for the patient, and the effectiveness of treatment of neurological or brain injury.

In embodiments of any of the foregoing methods, the binding of autoantibodies to the one or more protein biomarkers, or to peptides thereof, is detected by enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, or immunoblotting. In certain embodiments, the detected protein is one from a plurality of protein biomarkers in a protein biomarker panel, or a subset of 20 the proteins, or a bindable peptide derived from the proteins in the protein biomarker panel.

Protein Biomarker Panels

The described protein biomarkers can be used in panels of several biomarkers in screening, identification, detection, determinative, or diagnostic methods to screen, identify, detect, determine, evaluate, assess and/or qualify brain injury, TBI, or other types of brain injury 25 in an individual (patient). In particular embodiments of the methods, compositions or kits of the invention, the protein biomarker panel includes a plurality of biomarkers and includes (A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and, optionally, (B) one or more protein biomarkers selected from 30 BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC.

In some embodiments of the methods, compositions, or kit of any of the foregoing aspects the protein biomarker panel includes (B), one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC. In other embodiments, the protein biomarker panel does not include the one or more protein biomarkers from (B). It is
5 understood that if the protein biomarker panel contains only one protein biomarker (A) from protein Nos. 1-81 from Table 1, then the panel must include (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC, so that the panel includes a plurality of biomarkers.

In an embodiment of the methods, compositions, or kit of any of the foregoing aspects, the protein biomarker panel includes (A), the subset of protein biomarkers selected from protein Nos. 1-81 from Table 1, including: (i) at least one protein biomarker selected from one or more cell adhesion proteins, one or more cell signaling proteins, a cell toxicity protein, a clotting protein, one or more cytoskeleton proteins, an extracellular matrix protein, a gene expression mediating protein, one or more gene regulation proteins, one or more inflammation proteins, a
15 microtubule trafficking protein, one or more lipid binding proteins, one or more metabolic enzymes, one or more metabolism protein, a protein binding protein, one or more proteolytic proteins, one or more signaling proteins, a structural protein, one or more synapse proteins, and combinations thereof; (ii) at least one protein biomarker found in mammalian cells or tissue, selected from a protein found in astrocytes, one or more proteins found in blood, one or more protein found in blood, heart and liver tissue, one or more proteins found in brain tissue, a protein found in cardiac tissue, a protein found in epithelial tissue, a protein found in interneurons, a protein found in neuroepithelial cells, one or more proteins found in neurons, a protein found in skin tissue, one or more ubiquitous proteins, and combinations thereof; (iii) at least one protein biomarker with a role in a brain repair process selected from one or more
20 apoptosis proteins, one or more inflammation proteins, one or more innate immunity proteins, one or more membrane repair proteins, one or more metabolism proteins, one or more necrosis proteins, one or more neurodegeneration proteins, one or more neurogenesis proteins, one or more synaptogenesis proteins, one or more vascular repair proteins, and combinations thereof; or (iv) combinations of (i), (ii), and (iii). The protein biomarker panels described above for use in
25 the exemplary methods, compositions and kits of the invention optionally include (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and
30

ALDOC. The functions, cell and tissue types and roles in brain repair processes are known in the art. The term “ubiquitous” refers to proteins found in multiple tissues and cells throughout the body.

In some embodiments of the methods, compositions, or kits of the invention, exemplary 5 protein biomarker panels including a plurality of biomarker proteins and optionally including (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC, include one of more of the following biomarkers or groups of biomarkers:

one or more cell adhesion proteins selected from the group consisting of protein Nos. 6, 12, 16, 25, 32, 38, 45, 47, 51, 72, 79, and 49 from Table 1;

10 one or more cell signaling proteins selected from the group consisting of protein Nos. 2, 23, 35, 56, 75, 76, 77, and 80 from Table 1;

a cell toxicity protein, No. 48, from Table 1;

a clotting protein, No. 43, from Table 1;

one or more cytoskeleton proteins selected from the group consisting of protein Nos. 57, 15 58, 59, and 60 from Table 1;

an extracellular matrix protein, No. 37, from Table 1;

a gene expression mediating protein, No. 31, from Table 1;

one or more gene regulation proteins selected from the group consisting of protein Nos. 7, 15, 44, 46, 53, 54, 61, 63, 74, 78, and 81 from Table 1;

20 one or more inflammation proteins selected from the group consisting of protein Nos. 26, 27, 28, 29, 30, 68, 69, 70, and 36 from Table 1;

a microtubule trafficking protein, No. 13, from Table 1;

protein No. 5 from Table 1;

one or more lipid binding proteins selected from the group consisting of protein Nos. 8, 9, 25 10, and 34 from Table 1;

one or more metabolic enzymes selected from the group consisting of protein Nos. 4, 11, 14, 21, 39, 40, 41, and 50 from Table 1;

one or more metabolism proteins selected from protein Nos. 62 and 73 from Table 1;

30 a protein binding protein, No. 42, from Table 1;

one or more proteolytic proteins selected from the group consisting of protein Nos. 3, 22, 24, 33, 52, 55, 65, 66, and 67 from Table 1;

one or more signaling proteins selected from protein Nos. 64 and 70 from Table 1;
a structural protein, No. 1, from Table 1;
one or more synapse proteins selected from the group consisting of protein Nos. 17, 18,
19, and 20 from Table 1;

5 a protein found in astrocytes, No. 49, from Table 1;
one or more proteins found in blood selected from the group consisting of protein Nos. 8,
9, 10, 26, 27, 28, 29, 30, 34, and 81 from Table 1;
one or more protein found in blood, heart and liver tissue selected from protein Nos. 14
and 15 from Table 1;

10 a protein found in brain tissue, No. 48, from Table 1;
a protein found in cardiac tissue, No. 64, from Table 1;
a protein found in epithelial tissue, No. 72, from Table 1;
protein Nos. 22, 24, and 25 from Table 1;
a protein found in interneurons, No. 13, from Table 1;

15 a protein found in neuroepithelial cells, No. 45, from Table 1;
one or more proteins found in neurons selected from the group consisting of protein Nos.
74, 35, 12, 17, 18, 19, 71, 51, 77, 7, 31, 32, 38, and 16 from Table 1;
a protein found in skin tissue, No. 20, from Table 1;
one or more ubiquitous proteins selected from the group consisting of protein Nos. 1, 2,
20 3, 4, 6, 11, 23, 33, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 65, 66, 67, 68, 69, 70, 73, 75, 76, 78, 79, and 80 from Table 1;
one or more apoptosis proteins with a role in the brain repair process, selected from
protein Nos. 22 and 33 from Table 1;

25 one or more inflammation proteins with a role in the brain repair process, selected from
the group consisting of protein Nos. 3, 8, 9, 21, 34, 36, 43, 57, 65, 66, 67, 68, 69, and 70 from
Table 1;
one or more innate immunity proteins with a role in the brain repair process, selected
from the group consisting of protein Nos. 27, 28, 29, and 30 from Table 1;

30 one or more membrane repair proteins with a role in the brain repair process, selected
protein Nos. 2 and 41 from Table 1;

one or more metabolism proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 11, 14, 15, 37, 39, 40, 48, 50, 73, 75, and 78 from Table 1;

one or more necrosis proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 24, 49, and 52 from Table 1;

5 one or more neurodegeneration proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 4, 10, and 25 from Table 1;

one or more neurogenesis proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 44, 53, 54, 61, 62, 63, 71, 74, 77, 80, and 81 from Table 1;

10 one or more synaptogenesis proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 6, 7, 12, 13, 16, 17, 18, 19, 20, 23, 35, 38, 45, 47, 51, 55, 58, 59, 60, and 76 from Table 1; and

one or more vascular repair proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 26, 31, 64, and 79 from Table 1. Exemplary protein biomarker panels also include combinations of one or more of the above.

15 In some embodiments of the methods, compositions, or kits of the invention, exemplary protein biomarker panels including a plurality of biomarker proteins and optionally including (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC, include one of more of the following biomarkers or groups of biomarkers:

one or more cell adhesion proteins selected from the group consisting of protein Nos. 12, 20 16, 25, 38, 51, 79, and 49 from Table 1;

one or more cell signaling proteins selected from the group consisting of protein Nos. 2, 35, 75, 76, 77, and 80 from Table 1;

a cell toxicity protein, No. 48, from Table 1;

a clotting protein, No. 43, from Table 1;

25 a gene expression mediating protein, No. 31, from Table 1;

one or more gene regulation proteins selected from the group consisting of protein Nos. 7, 53, 54, 61, and 74 from Table 1;

one or more inflammation proteins selected from the group consisting of protein Nos. 26, 27, 28, 29, 30, and 36 from Table 1;

30 one or more lipid binding proteins selected from the group consisting of protein Nos. 10, and 34 from Table 1;

one or more metabolic enzymes selected from the group consisting of protein Nos. 39, 40, 41, and 50 from Table 1;

5 a metabolism protein, No. 73, from Table 1;

one or more proteolytic proteins selected from the group consisting of protein Nos. 22, 24, and 33 from Table 1;

10 a signaling protein, No. 71, from Table 1;

a synapse protein, No. 17, from Table 1;

a protein found in astrocytes, No. 49, from Table 1;

one or more proteins found in blood selected from the group consisting of protein Nos. 10, 27, 28, 29, 30, and 34, from Table 1;

15 a protein found in brain tissue, No. 48, from Table 1;

one or more proteins found in neurons selected from the group consisting of protein Nos. 74, 35, 12, 17, 71, 51, 77, 7, 31, 38, and 16 from Table 1;

a protein found in skin tissue, No. 20, from Table 1;

20 one or more ubiquitous proteins selected from the group consisting of protein Nos. 2, 33, 36, 39, 40, 41, 43, 50, 53, 54, 61, 73, 75, 76, and 79 from Table 1;

one or more apoptosis proteins with a role in the brain repair process, selected from protein Nos. 22 and 33 from Table 1;

25 one or more inflammation proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 34, 36, and 43 from Table 1;

one or more innate immunity proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 27, 28, 29, and 30 from Table 1;

one or more membrane repair proteins with a role in the brain repair process, selected from protein Nos. 2 and 41 from Table 1;

30 one or more metabolism proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 39, 40, 48, 50, 73, and 75 from Table 1;

one or more necrosis proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 24 and 49 from Table 1;

one or more neurodegeneration proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 10 and 25 from Table 1;

one or more neurogenesis proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 53, 54, 61, 71, 74, and 77 from Table 1;

one or more synaptogenesis proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 7, 12, 13, 16, 17, 35, 38, 51, 55, 58, 59, 60, and 76 from

5 Table 1; and

one or more vascular repair proteins with a role in the brain repair process, selected from the group consisting of protein Nos. 31 and 79 from Table 1. Exemplary protein biomarker panels also include combinations of one or more of the above.

In yet another particular embodiment of the methods, compositions, or kits of any of the 10 foregoing aspects, the protein biomarker panel includes (A), the subset of protein biomarkers (i) includes a cell adhesion protein, a cell signaling protein, a cell toxicity protein, a clotting protein, a cytoskeleton protein, an extracellular matrix protein, a gene expression mediating protein, a gene regulation protein, an inflammation protein, a microtubule trafficking protein, a lipid binding protein, a metabolic enzyme, a metabolism protein, a protein binding protein, a

15 proteolytic protein, a signaling protein, a structural protein, and a synapse protein. In yet another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel includes (A), the subset of protein biomarkers (ii) includes a protein found in astrocytes, a protein found in blood, a protein found in blood, heart and liver tissue, a protein found in brain tissue, a protein found in cardiac tissue, a protein found in epithelial tissue, a

20 protein found in interneurons, a protein found in neuroepithelial cells, a protein found in neurons, a protein found in skin tissue, and a ubiquitous protein. In yet another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the biomarker panel includes (A), the subset of protein biomarkers (iii) includes an apoptosis protein, an inflammation protein, an innate immunity protein, a membrane repair protein, a metabolism protein, a necrosis protein,

25 a neurodegeneration protein, a neurogenesis protein, synaptogenesis protein, and a vascular repair proteins.

In yet another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the protein biomarker panel includes a plurality of biomarker proteins selected from one or more of the following: one or more cell adhesion proteins selected from the group 30 consisting of NAV3, MEG10, LAMA3, CELGR1, CLUS, ANXA2, LEG7, ASTN2, VWF, ICAM5, and SPR2E; one or more cell signaling proteins selected from the group consisting of

TMTC3, TRI44, and FRMPD4; one or more cell toxicity proteins selected from the group consisting of MT1X and MT3; a clotting protein, HRG; one or more cytoskeleton proteins selected from the group consisting of S100A7, S100A8, S100A9, S100A11, and GFAP; an extracellular matrix protein FBN1; one or more gene regulation proteins selected from the group consisting of A2GL, STOX2, CWC22, SYF1, SON, ZN652, AP3B2 and KMT2A; one or more inflammation proteins selected from the group consisting of FABP5, CAH1, S100A11, SAA1, SAA4, SAMP, HRG, FETB, CO41, CO9, CFAH and FHR1; a microtubule trafficking protein, ABCA2; one or more lipid binding proteins selected from the group consisting of APOA1 and APOB; one or more metabolic enzymes selected from the group consisting of CAH1, ARG1, GGCT, GPX3, PGRP2, TACC2, NSE and ALDOC; a metabolism protein, FBN1; one or more proteolytic proteins selected from the group consisting of CASPE, ADAM8, and A1AT; a signaling protein TRI44; a structural protein; and a synapse protein, KCNMA1.

In yet another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the protein biomarker panel includes a plurality of biomarker proteins selected from one or more of the following: one or more proteins found in astrocytes selected from the group consisting of ASTN2, MEG10, GFAP, and ALDOC; a protein found in blood, APOE; one or more proteins found in blood, heart and liver tissue selected from the group consisting of BD1L1 and NR1H1; a protein found in brain tissue, MT1X; a protein found in cardiac tissue FABP5; a protein found in epithelial tissue, SPR2E; a protein found in interneurons, ABCA2; one or more proteins found in neuroepithelial cells selected from the group consisting of DSC1,LEG7, ASTN2,FRMDP4 and KCNMA1; and one or more proteins found in neurons selected from the group consisting of AP3B2, CELGR1, NAV3, STOX2, TRI44, OR SRGAP1.

In yet another particular embodiment of the methods, compositions, or kits of any of the foregoing aspects, the protein biomarker panel includes a plurality of biomarker proteins selected from one or more of the following: one or more apoptosis proteins selected from the group consisting of CASPE,MEG10 and CATD, one or more inflammation proteins selected from the group consisting of FABP5, CAH1, S100A11 ,SAA1, SAA4, SAMP, HRG and FETB; one or more innate immunity proteins selected from the group consisting of CO41, CO9, CFAH, and FHR1; one or more membrane repair proteins selected from the group consisting of PLCH1 and PG12A; one or more metabolism proteins selected from the group consisting of ARG1, GGCT, GPX3, PGRP2, TACC2, and ALDOC; one or more necrosis proteins selected from the group

consisting of KLKB1, CATD, and MEG10, one or more neurodegeneration proteins selected from the group consisting of APOE, CLUS, and ENOA, one or more neurogenesis proteins selected from the group consisting of SRGAP1, STOX2, and TRI44; one or more synaptogenesis proteins selected from the group consisting of TMTC3, PCSK5, NAV3, FRMPD4, and LEG7; and one or more vascular repair proteins selected from the group consisting of VWF, TNI3K, FA12, and CUL7.

5 The phrase “brain injury status” includes any distinguishable manifestation of brain injury, as the case may be, e.g., TBI, mTBI or concussion, including not having brain injury. For example, brain injury status includes, without limitation, brain injury or non-injury in a patient, 10 the stage or severity of brain injury, the progress of brain injury (e.g., progress of brain injury over time), or the effectiveness or response to treatment of brain injury (e.g., clinical follow up and surveillance of brain injury after treatment). Based on this status, further procedures may be indicated, including additional diagnostic tests or therapeutic procedures or regimens.

15 The power of a diagnostic test to correctly predict status is commonly measured as the sensitivity of the assay, the specificity of the assay or the area under a receiver operated characteristic (“ROC”) curve. Sensitivity is the percentage of true positives that are predicted by a test to be positive, while specificity is the percentage of true negatives that are predicted by a test to be negative. An ROC curve provides the sensitivity of a test as a function of 1-specificity. The greater the area under the ROC curve, the more powerful the predictive value of the test. 20 Other useful measures of the utility of a test are positive predictive value and negative predictive value. Positive predictive value is the percentage of people who test positive that are actually positive. Negative predictive value is the percentage of people who test negative that are actually negative.

25 In particular embodiments, the biomarker panels of the invention may show a statistical difference in different brain injury statuses of at least $p < 0.05$, $p < 10^{-2}$, $p < 10^{-3}$, $p < 10^{-4}$ or $p < 10^{-5}$. Diagnostic tests that use these biomarkers may show an ROC of at least 0.6, at least about 0.7, at least about 0.8, or at least about 0.9.

30 The protein biomarkers can be differentially present in UI (NC or non-brain injury) and brain injury, and, therefore, are useful in aiding in the determination of brain injury status. In certain embodiments, the biomarkers are measured in a patient sample using the methods described herein and compared, for example, to predefined biomarker levels/ratios and correlated

to brain injury status. In particular embodiments, the measurement(s) may then be compared with a relevant diagnostic amount(s), cut-off(s), or multivariate model scores that distinguish a positive brain injury status from a negative brain injury status. The diagnostic amount(s) represents a measured amount of a biomarker(s) above which or below which a patient is

5 classified as having a particular brain injury status. For example, if the biomarker(s) is/are up-regulated compared to normal, then a measured amount(s) above (or greater than) the diagnostic cutoff(s) provides an assessment of brain injury status. Alternatively, if the biomarker(s) is/are down-regulated, then a measured amount(s) at or below the diagnostic cutoff(s) provides an assessment of brain injury status. As is well understood in the art, by adjusting the particular

10 diagnostic cut-off(s) used in an assay, one can increase sensitivity or specificity of the diagnostic assay depending on the preference of the diagnostician. In particular embodiments, the particular diagnostic cut-off can be determined, for example, by measuring the amount of biomarkers in a statistically significant number of samples from patients with the different brain injury statuses, and drawing the cut-off to suit the desired levels of specificity and sensitivity.

15 In other embodiments, the relative or normalized amounts of biomarkers to each other are useful in aiding in the determination of brain injury status. In certain embodiments, the biomarker ratios are indicative of diagnosis. In other embodiments, a biomarker ratio can be compared to another biomarker ratio in the same sample or to a set of biomarker ratios from a control or reference sample.

20 Furthermore, in certain embodiments, the values measured for markers of a biomarker panel are mathematically combined and the combined value is correlated to the underlying diagnostic question. Biomarker values may be combined by any appropriate state of the art mathematical method. Mathematical methods useful for correlating a marker combination to a brain injury status employ methods like discriminant analysis (DA) (e.g., linear-, quadratic-, regularized-DA), Discriminant Functional Analysis (DFA), Kernel Methods (e.g., SVM),

25 Multidimensional Scaling (MDS), Nonparametric Methods (e.g., k-Nearest-Neighbor Classifiers), PLS (Partial Least Squares), Tree-Based Methods (e.g., Logic Regression, CART, Random Forest Methods, Boosting/Bagging Methods), Generalized Linear Models (e.g., Logistic Regression), Principal Components based Methods (e.g., SIMCA), Generalized Additive Models, Fuzzy Logic based Methods, Neural Networks and Genetic Algorithms based Methods.

30 In one embodiment, the method used in correlating a biomarker combination of the invention,

e.g. to assess brain injury, is selected from DA (e.g., Linear-, Quadratic-, Regularized Discriminant Analysis), DFA, Kernel Methods (e.g., SVM), MDS, Nonparametric Methods (e.g., k-Nearest-Neighbor Classifiers), PLS (Partial Least Squares), Tree-Based Methods (e.g., Logic Regression, CART, Random Forest Methods, Boosting Methods), or Generalized Linear Models 5 (e.g., Logistic Regression), and Principal Components Analysis. Details relating to these statistical methods are found in the following references: Ruczinski et al., 12 J. OF COMPUTATIONAL AND GRAPHICAL STATISTICS 475-511 (2003); Friedman, J. H., 84 J. OF THE AMERICAN STATISTICAL ASSOCIATION 165-75 (1989); Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome, The Elements of Statistical Learning, Springer Series in Statistics (2001); 10 Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. Classification and regression trees, California: Wadsworth (1984); Breiman, L., 45 MACHINE LEARNING 5-32 (2001); Pepe, M. S., The Statistical Evaluation of Medical Tests for Classification and Prediction, Oxford Statistical Science Series, 28 (2003); and Duda, R. O., Hart, P. E., Stork, D. G., Pattern Classification, Wiley Interscience, 2nd Edition (2001).

15 **Determining Risk of Brain Injury**

In a specific embodiment, methods are provided for determining the risk of brain injury, such as TBI, in a patient. Biomarker percentages, ratios, amounts or patterns are characteristic of various risk states, e.g., high, medium or low. The risk of brain injury is determined by measuring the relevant biomarkers in a protein biomarker panel, and then either submitting them 20 to a classification algorithm or comparing them with a reference amount, i.e., a predefined level or pattern of biomarkers that is associated with the particular risk level.

Determining Severity of Brain Injury

In other embodiments, methods are provided for determining the severity of brain injury, e.g., TBI, mTBI, in a patient. Each grade or stage of brain injury likely has a characteristic level 25 of a biomarker or relative levels/ratios of a set of biomarkers (a pattern or ratio). The severity of brain injury is determined by measuring the relevant biomarkers and then either submitting them to a classification algorithm or comparing them with a reference amount, i.e., a predefined level or pattern of biomarkers that is associated with the particular stage. In embodiments, severity of brain injury, e.g., TBI, is further determined by performing neuroimaging analysis to detect more 30 serious or severe damage or insult, such as a change in vascular permeability, such as, for example, blood vessel leakage or intracranial hemorrhage (ICH). Neuroimaging analysis, e.g.,

using contrast MRI, allows for the detection and visualization of injury such as bleeding, hemorrhage, or other insult or damage to the integrity to the brain or its blood-brain barrier.

Determining Brain Injury Prognosis

In one embodiment, methods are provided for determining the course of brain injury, e.g.,

5 TBI, mTBI or concussion, in a patient, e.g., a patient who has experienced repetitive injury. Brain injury course refers to changes in brain injury status over time, including brain injury progression (worsening) and brain injury regression (improvement). Over time, the levels, amounts, or relative levels or amounts (e.g., the pattern or ratio) of the biomarkers change. For example, biomarker "X" may be increased with brain injury, while biomarker "Y" may be
10 decreased with brain injury. Therefore, the trend of these biomarkers, either increased or decreased over time toward neurological injury or brain injury, or recovery, indicates the course of the condition. Accordingly, this method involves measuring the level of one or more biomarkers in a patient at least two different time points, e.g., at a first time point and at a second time point, and comparing the change, if any. The course of brain injury, as well as a
15 determination of injury status, are determined based on these comparisons.

Patient Management

In certain embodiments, methods of identifying or qualifying the status of a neurological injury or a brain injury, e.g., TBI, mTBI or concussion include determining and/or managing patient treatment based on injury status and/or risk. Such management includes the decisions
20 and actions of the medical practitioner, physician, or clinician subsequent to determining brain injury status, e.g., as to TBI, mTBI, or concussion. For example, if a physician makes a diagnosis of TBI, mTBI or concussion, then a certain monitoring regimen would follow. An assessment of the course of brain injury using the described methods may then require a certain treatment or therapy regimen. Profiles of the levels of a set of biomarkers in the biological
25 sample, combined with the age, sex, and acute symptoms of a patient, can provide a risk stratification (high risk, lower risk, or little to no risk likelihood of developing a certain post-TBI outcome, such as seizures, chronic pain, chronic headache, post-concussive symptoms, incomplete recovery assessed by GOS-E <8, sleep disturbances, mild to severe depressive symptoms, mild to severe anxiety, PTSD, chronic headache, poor attention or cognitive
30 performance, or motor deficits). Each model profile with these biomarkers allows the physician to better make an informed decision to direct the TBI, mild TBI, or concussion patient down a

treatment pathway tailored for each of the outcomes for which he or she is at high risk. An assessment of the course of brain injury using the described methods may then require a certain treatment or therapy regimen, including identifying an individual's eligibility for clinical trials that investigate therapeutics for a symptom or set of symptoms that results from TBI.

5 Alternatively, a diagnosis of no brain injury might be followed with further testing or monitoring. Also, further tests may be called for if the diagnostic test gives an inconclusive result for neurological or brain injury status.

In one aspect, methods of treatment for post-TBI outcomes include: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptide biomarkers derived therefrom, in a control sample; stratifying the risk of the patient at one or more time points for post-TBI outcome when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and if the risk stratification of the patient is high, administering a therapy or an effective amount of a drug specific to the post TBI outcome to treat the patient. In the exemplary methods of treatment of the invention, the protein biomarker panel includes a plurality of protein biomarkers selected from: (A) a subset of one or more, two or more, three or more, four or more, 10 five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and, optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and 15 ALDOC.

In one embodiment, a method treatment of post-TBI seizures includes: detecting whether 20 a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient at one or more time points for post-TBI seizures 25 when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and if 30

the risk stratification of the patient is high, administering an effective amount of an antiepileptic drug, such as Keppra, Depakote, or Gabapentin, to the patient.

In another embodiment, a method of treating post-TBI depression includes: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient for at one or more time points post-TBI depression when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and if the risk stratification of the patient is high, administering psychotherapy or psychiatry or an effective amount of an antidepressant, such as Prozac or Elavil to the patient.

In another embodiment, a method of treating post-TBI anxiety includes: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient at one or more time points for post-TBI anxiety when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and if the risk stratification of the patient is high, administering psychotherapy or psychiatry or an effective amount of an anxiolytic depressant, such as Xanax, Librium, Klonopin, or Ativan to the patient.

In another embodiment, a method of treating post-TBI post-traumatic stress disorder (PTSD) includes: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient at one or more time points for post-TBI PTSD when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample

relative to the control levels; and if the risk stratification of the patient is high, administering psychotherapy or psychiatry to the patient.

In yet another embodiment, a method of treating post-TBI sleep disorder includes: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient at one or more time points for post-TBI sleep disorder when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and if the risk stratification of the patient is high, administering therapy at a sleep clinic or an effective amount of sleep aid, such as melatonin or Advil PM to the patient.

In yet another embodiment, a method of treating post-TBI headache includes: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient at one or more time points for post-TBI headache when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and if the risk stratification of the patient is high, administering an effective amount of analgesic, such as ibuprofen, acetaminophen to the patient.

In yet another embodiment, a method of treating post-TBI chronic pain includes: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient at one or more time points for post-TBI chronic pain when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's

sample relative to the control levels; and if the risk stratification of the patient is high, administering therapy from a pain specialist or an effective amount of analgesic, such as opioids or cannabidiols to the patient.

In yet another embodiment, a method of treating post-TBI oculomotor deficits includes:

- 5 detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient at one or more time
- 10 points for post-TBI oculomotor deficits when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and if the risk stratification of the patient is high, administering vision therapy to the patient.

In yet another embodiment, a method of treating post-TBI attention and cognitive defects

- 15 includes: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient at one or more time
- 20 points for post-TBI attention and cognitive defects when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and if the risk stratification of the patient is high, administering cognitive therapy to the patient.

In yet another embodiment, a method of treating post-TBI balance and gait problems

- 25 includes: detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptides derived therefrom, in a control sample; stratifying the risk of the patient at one or more time
- 30 points for post-TBI balance and gait problems when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the

subject's sample relative to the control levels; and if the risk stratification of the patient is high, administering physical therapy to the patient.

Determining Therapeutic Efficacy of Pharmaceutical Drug

In another embodiment, methods are provided for determining the therapeutic efficacy of a pharmaceutical drug or treatment. These methods are useful in performing clinical trials of the drug, as well as monitoring the progress of a patient undergoing treatment with the drug.

Therapy or clinical trials involve administering the drug in a particular regimen. The regimen may involve a single dose of the drug, or multiple doses of the drug over time. The doctor or clinical researcher monitors the effect of the drug on the patient or subject over the course of administration. If the drug has a pharmacological impact on the condition, the amounts or relative amounts (e.g., the pattern, profile or ratio) of one or more of the biomarkers described herein may change toward a neurological injury or brain injury status profile, such as TBI, mTBI or concussion. Therefore, the course of one or more biomarkers in the patient can be followed or monitored during the course of treatment. Accordingly, this method involves measuring one or more biomarkers in a patient receiving drug therapy, and correlating the biomarker levels/ratios with the brain injury status of the patient (e.g., by comparison to predefined levels/ratios of the biomarkers that correspond to different brain injury statuses). An embodiment of this method involves determining the levels/ratios of one or more biomarkers for at least two different time points during a course of drug therapy, e.g., a first time and a second time, and comparing the change in levels/ratios of the biomarkers, if any. For example, the levels/ratios of one or more biomarkers can be measured before and after drug administration or at two different time points during drug administration. The effect of therapy is determined based on these comparisons. If a treatment is effective, then the level/ratio of one or more biomarkers will trend toward normal, while if treatment is ineffective, the level/ratio of one or more biomarkers will trend toward a particular brain injury status.

Generation of Classification Algorithms for Qualifying Brain Injury Status

In some embodiments, data that are generated using samples such as "known samples" can then be used to "train" a classification model. A "known sample" is a sample that has been pre-classified. The data that are used to form the classification model can be referred to as a "training data set." The training data set that is used to form the classification model may include raw data or pre-processed data. Once trained, the classification model can recognize

patterns in data generated using unknown samples. The classification model can then be used to classify the unknown samples into classes. This can be useful, for example, in predicting whether or not a particular biological sample is associated with a certain biological condition (e.g., brain injury versus no brain injury).

5 Classification models can be formed using any suitable statistical classification or learning method that attempts to segregate bodies of data into classes based on objective parameters present in the data. Classification methods may be either supervised or unsupervised. Examples of supervised and unsupervised classification processes are described in Jain, “Statistical Pattern Recognition: A Review”, *IEEE Transactions on Pattern Analysis and*
10 *Machine Intelligence*, Vol. 22, No. 1, January 2000, the teachings of which are incorporated by reference.

In supervised classification, training data containing examples of known categories are presented to a learning mechanism, which learns one or more sets of relationships that define each of the known classes. New data may then be applied to the learning mechanism, which
15 then classifies the new data using the learned relationships. Examples of supervised classification processes include linear regression processes (e.g., multiple linear regression (MLR), partial least squares (PLS) regression and principal components regression (PCR)), binary decision trees (e.g., recursive partitioning processes such as CART), artificial neural networks such as back propagation networks, discriminant analyses (e.g., Bayesian classifier or
20 Fischer analysis), logistic classifiers, and support vector classifiers (support vector machines).

Another supervised classification method is a recursive partitioning process. Recursive partitioning processes use recursive partitioning trees to classify data derived from unknown samples. Further details about recursive partitioning processes are provided in U.S. Patent Application Publication No. 2002/0138208 A1 to Paulse et al., “Method for analyzing mass spectra.”
25

In other embodiments, the classification models that are created can be formed using unsupervised learning methods. Unsupervised classification attempts to learn classifications based on similarities in the training data set, without pre-classifying the spectra from which the training data set was derived. Unsupervised learning methods include cluster analyses. A cluster
30 analysis attempts to divide the data into “clusters” or groups that ideally should have members that are very similar to each other, and very dissimilar to members of other clusters. Similarity is

then measured using some distance metric, which measures the distance between data items, and clusters together data items that are closer to each other. Clustering techniques include the MacQueen's K-means algorithm and the Kohonen's Self-Organizing Map algorithm.

Learning algorithms asserted for use in classifying biological information are described, 5 for example, in PCT International Publication No. WO 01/31580 (Barnhill et al., "Methods and devices for identifying patterns in biological systems and methods of use thereof"), U.S. Patent Application Publication No. 2002/0193950 (Gavin et al. "Method or analyzing mass spectra"), U.S. Patent Application Publication No. 2003/0004402 (Hitt et al., "Process for discriminating between biological states based on hidden patterns from biological data"), and U.S. Patent 10 Application Publication No. 2003/0055615 (Zhang and Zhang, "Systems and methods for processing biological expression data").

The classification models can be formed on and used on any suitable digital computer. Suitable digital computers include micro, mini, or large computers using any standard or specialized operating system, such as a UNIX, WINDOWS® or LINUX™ based operating 15 system. In embodiments utilizing a mass spectrometer, the digital computer that is used may be physically separate from the mass spectrometer that is used to create the spectra of interest, or it may be coupled to the mass spectrometer.

The training data set and the classification models according to embodiments of the invention can be embodied by computer code that is executed or used by a digital computer. The 20 computer code can be stored on any suitable computer readable media including optical or magnetic disks, sticks, tapes, etc., and can be written in any suitable computer programming language including R, C, C++, visual basic, etc.

The learning algorithms described above are useful both for developing classification algorithms for the biomarkers already discovered, and for finding new biomarker biomarkers. 25 The classification algorithms, in turn, form the base for diagnostic tests by providing diagnostic values (e.g., cut-off points) for biomarkers used singly or in combination.

Kits for the Detection of Biomarkers

In another aspect, embodiments of the invention provide kits for detecting, identifying, assessing, diagnosing, evaluating, or qualifying neurological injury or brain injury or the status 30 thereof, e.g., qualifying TBI, mTBI or concussion, in a patient (subject). The kits are used to detect the protein biomarkers in the protein, or to detect a peptide derived therefrom. In a

specific embodiment, the kit is provided as an ELISA kit including antibodies, or an antigen binding fragment thereof, that bind to one or more of, or a subset of, the plurality of protein biomarkers in protein biomarker panel, or a bindable peptide thereof.

5 The ELISA kit may include a solid support, such as a chip, microtiter plate (e.g., a 96-well plate), beads, or resin having protein biomarker capture reagents (e.g., binding molecules) attached thereon. The kit may further include a means for detecting the protein biomarkers, such as antibodies, and a secondary antibody-signal complex such as horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG antibody and tetramethyl benzidine (TMB) as a substrate for HRP.

10 The kit may be provided as an immuno-chromatography strip including a membrane on which specific antibodies are immobilized, and a means for detecting, e.g., gold particle bound antibodies, where the membrane, includes NC membrane and PVDF membrane. In certain embodiments, neurological injury or brain injury in a patient can be detected or diagnosed by adding to the kit a biological sample (e.g., blood or serum) obtained from the patient and

15 detecting the relevant protein biomarkers that are bound to detectable antibodies, for example, by a method which includes: (i) collecting blood or serum from the patient; (ii) adding the blood or serum from the patient to the diagnostic kit; and, (iii) detecting the biomarkers bound to the antibodies. Use of the kit brings bound antibodies into contact with the patient's sample, such as blood or serum. If protein biomarkers of the protein biomarker panel (or peptides thereof) are 20 present in the sample, the antibodies or antigen binding fragments thereof will bind to the proteins (or peptides thereof) in the sample, and are detected. In other kit and diagnostic embodiments, blood or serum is not collected from the patient (i.e., it is already collected). In other embodiments, the sample may include a tissue sample or a clinical sample, which may be processed prior to contact with detection antibodies.

25 The kit can also include a washing solution or instructions for making a washing solution, in which the combination of the capture reagents and the washing solution allows capture of the biomarkers on the solid support for subsequent detection by, e.g., antibodies, such as by using an immunoassay or mass spectrometry. In a further embodiment, a kit can include instructions in the form of a label or separate insert. For example, the instructions may inform the user about 30 how to collect the sample, and how to wash a support or substrate on which the particular biomarkers are bound and can be detected, etc. In yet another embodiment, the kit can include

one or more containers with control biomarker samples, to be used as standard(s) or references for calibration or normalization.

The practice of the principles of the invention employs, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, 5 cell biology, biochemistry and immunology, which are well within the purview of the skilled artisan. Such techniques are explained fully in the literature, such as, "Molecular Cloning: A Laboratory Manual", second edition (Sambrook, 1989); "Oligonucleotide Synthesis" (Gait, 1984); "Animal Cell Culture" (Freshney, 1987); "Methods in Enzymology" "Handbook of Experimental Immunology" (Weir, 1996); "Gene Transfer Vectors for Mammalian Cells" 10 (Miller and Calos, 1987); "Current Protocols in Molecular Biology" (Ausubel, 1987); "PCR: The Polymerase Chain Reaction", (Mullis, 1994); "Current Protocols in Immunology" (Coligan, 1991). These techniques are applicable to the production of the polynucleotides and polypeptides of the invention, and, as such, may be considered in making and practicing the invention. Particularly useful techniques for particular embodiments will be discussed in the 15 sections that follow.

Without further elaboration, it is believed that one skilled in the art, using the preceding description, can utilize the invention to the fullest extent. The following examples are illustrative only, and not limiting of the remainder of the disclosure or claims in any way whatsoever. In addition, the examples are put forth so as to provide those of ordinary skill in the art with a 20 complete disclosure, description and exemplification of how to make and use the assay, screening, assessing, monitoring and therapeutic methods of the invention, and are not intended to limit the scope of what the inventors regard as their invention.

EXAMPLES

In the following examples, efforts have been made to ensure accuracy with respect to 25 numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for herein. Unless indicated otherwise, parts are parts by weight, temperature is in degrees Celsius or is at ambient temperature, and pressure is at or near atmospheric. There are numerous variations and combinations of reaction conditions, e.g., component concentrations, desired solvents, solvent mixtures, temperatures, pressures and other reaction ranges and conditions that 30 can be used to optimize the product purity and yield obtained from the described process. Only reasonable and routine experimentation will be required to optimize such process conditions.

Example 1**Discovery of Biomarkers for Neurological Injury and Disease**

The protein biomarkers presented in Table 1, and their amino acids sequences provided in the sequence listing filed herewith, were discovered by pooling serum from patients having TBI 5 using 2D gel electrophoresis (PF2D), which used isoelectric focusing (separation by isoelectric focusing point, pI), followed by hydrophobicity focusing (separation by hydrophobicity).

Separated proteins resolved by these methods were purified and sequenced (their amino acid sequences were determined) via mass spectroscopy using routine procedures.

In particular, serum proteins from healthy subjects (control pools) and serum proteins 10 from patients with brain injury (brain injury patient pools) were separated by 2D gel electrophoresis involving isoelectric and hydrophobicity focusing. The resolved individual antigen (protein) fractions were printed (spotted) onto custom microarrays (i.e., microarrayed proteins printed from separated proteins from patient serum) and were probed with serum from human patients having acute to chronic brain injury, as well as with antibodies to known 15 antigens. The reactivities of the antibodies against the proteins in the samples were detected with species-specific anti-IgG or anti-IgM antibodies with fluorescent tags. Candidate fractions were chosen for sequencing. Mass spectroscopy amino acid sequencing and bioinformatics were performed to identify candidate biomarkers that were differentially expressed (i.e., at higher or lower levels, based on fluorescence signals) in patients who had traumatic brain injury compared 20 to controls (subject without TBI or with acute or milder forms of TBI). Several time points after injury were examined using the spotted TBI-protein or healthy control-protein arrays in order to discover the proteome of proteins that were indicative of neurological injury or brain injury, such as TBI.

The protein biomarkers discovered by using the above-designed strategy of proteomic 25 profiling of proteins in serum samples from patients having brain injury, such as TBI, compared with proteins in serum samples from healthy controls, provide concrete and isolatable components (biomarkers) that result from neurological injury or brain injury in subjects with these conditions. These protein biomarker components further provide an indication of the many types of cells and tissues, as well as the cell and tissue damage, that constitute identified and 30 detectable neurological injury-related or brain injury-related components in a patient's sample, such as serum. These biomarker components include proteins whose increased or decreased

amounts or levels correlate with neurological injury or brain injury in patients, compared with the amounts or levels of these component proteins in control subjects who do not have the neurological injury or brain injury (e.g., non-TBI subjects).

The isolation and identification methods described above resulted in the identification of 5 new protein biomarkers associated or correlated with, or indicative of, neurological injury or brain injury, such as neuron-enriched proteins, e.g., KCNMA1, FRMDP4, that correlate with synaptogenesis, neural signaling and neuronal survival (Lee et al., 2008, *J. Neurosci.*, 28(53):14546-56). In addition, protein biomarkers of vascular integrity, e.g., von Willebrand factor (vWF), (Gong et al., 2016, *Neurology*, 86(16): S11.001), initially reported in tumor 10 angiogenesis and TBI were detected by the above method. Transcription factors that control injury-related phenotypes and gene expression, e.g., ZNF652, (Callen et al., 2010, *Oncol. Rep.*, 23(4):1045-52) were detected in TBI samples, and proteases common to injury and restructuring, such as Cathepsin D (CTSD) and Kallikrein (KRKR1) were also discovered by the above 15 described methods. These proteins identified and described herein are component parts of the cellular machinery that is involved with the normal turnover of cells and tissues. These proteins are also enhanced after tissue injury due to the cascade of injury-related restructuring processes that are activated in cells to remove and clear cell debris, damaged cell fragments, and extracellular matrix in order to allow regrowth and tissue repair in an injured subject. Thus, the 20 proteins presented in Table 1 provide new proteins for use in detection, assessment, diagnostic, and/or prognostic methods as indicators of neurological injury or disease, injury of the nervous system, or brain injury. The methods described using these proteins as neurological or brain 25 injury biomarkers afford more efficient, reliable and economical means and procedures for patients having, suspected of having, or at risk of having various types of neurological injury or disease or brain injury, such as TBI or mTBI, to receive determinative medical assessments, advice, treatments, therapies and outcomes.

Example 3

Detection of autoantibodies to proteins to specific candidate TBI biomarkers

Auto-antibodies of proteins to specific candidate TBI biomarker proteins were detected in 30 serum samples in sandwich immunoassays. Serum was diluted 1:20 in 1.5% bovine serum albumin (BSA) containing phosphate buffered saline (PBS blocking buffer) supplemented with Tween-20 detergent. Capture monoclonal antibodies raised against 10 specific human TBI

antigen proteins were used to coat 96 well microtiter plates in PBS. Antibody coated wells were washed and incubated in blocking buffer, then incubated with diluted serum. FIG. 3 demonstrates the detected increase in auto-antibody reactivity against human proteins captured from serum using specific monoclonal antibodies and anti-human IgM detection antibody 5 (electrochemiluminescence detection using MSD read buffer and a Quickplex 120 luminescence reader). Auto-antibodies detected include anti-Haptoglobin, anti-Cullin-7, and known auto antibody TBI biomarkers such as anti-GFAP.

Example 4

Citrullination levels in specific proteins for TBI protein biomarkers were detected in 10 serum samples in sandwich immunoassays as follows. Serum was diluted 1:20 in 1.5% bovine serum albumin (BSA) containing phosphate buffered saline (PBS blocking buffer) supplemented with Tween-20 detergent. Capture monoclonal antibodies raised against 10 specific human TBI antigen proteins were used to coat 96 well microtiter plates in PBS. Antibody coated wells were washed and incubated in blocking buffer, then incubated with diluted serum. FIG. 4 15 demonstrates the detected increase in citrullinated amino acids for the 10 proteins studied, as detected in the immunocaptured proteins using a citrullination-specific antibody reactivity of the captured human proteins (electrochemiluminescence detection using MSD read buffer and a Quickplex 120 luminescence reader) as an average, based on cohort.

Example 5

Citrullination levels in specific proteins for TBI protein biomarkers were detected in 20 serum samples in sandwich immunoassays as follows. Serum was diluted 1:20 in 1.5% bovine serum albumin (BSA) containing phosphate buffered saline (PBS blocking buffer) supplemented with Tween-20 detergent. Capture monoclonal antibodies raised against 10 specific human TBI antigen proteins were used to coat 96 well microtiter plates in PBS. Antibody coated wells were 25 washed and incubated in blocking buffer, then incubated with diluted serum. FIG. 5 demonstrates the detected average increase in citrullinated amino acids for the 10 proteins studied, as detected in the immunocaptured proteins using a citrullination specific antibody reactivity of the captured human proteins (electrochemiluminescence detection using MSD read buffer and a Quickplex 120 luminescence reader).

Other Embodiments

From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.

5 The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or sub-combination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

10 All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

What is claimed is:

1. A method of detecting protein biomarkers, or peptide biomarkers derived therefrom, indicative of neurological or brain injury in a subject, the method comprising detecting whether one or more protein biomarkers, or peptide biomarkers derived therefrom, are present in a biological sample obtained from the subject by using a protein detection assay, wherein the one or more protein biomarkers are selected from protein Nos. 1-81 from Table 1.
2. The method of claim 1, wherein the step of detecting whether one or more protein biomarkers, or peptide biomarkers derived therefrom, are present in a biological sample comprises:
 - 10 a) detecting the presence of one or more protein biomarkers, or peptide biomarkers derived therefrom, by contacting the biological sample with one or more antibodies or antigen binding fragments thereof that specifically bind to the one or more protein biomarkers, or peptide biomarkers derived therefrom, and detecting binding of the one or more antibodies or antigen binding fragments thereof to the one or more protein biomarkers, or peptide biomarkers derived therefrom; or
 - b) detecting the presence of one or more protein biomarkers, or peptide biomarkers derived therefrom, using mass spectrometry.
3. A method of diagnosing a neurological or brain injury in a subject, the method comprising:
 - 20 detecting whether one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from the subject by contacting the sample with one or more antibodies or antigen binding fragments thereof that specifically bind the one or more protein biomarkers, or peptide biomarkers derived therefrom;
 - 25 measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptide biomarkers derived therefrom, in a control sample; and
 - 30 diagnosing a neurological or brain injury in the subject when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels;

wherein the protein biomarker panel comprises a plurality of biomarkers selected from the group consisting of:

(A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and,

5 optionally, (B) one or more protein biomarkers selected from Brain-Derived Neurotrophic Factor (BDNF), Glial Fibrillary Acidic Protein (GFAP), Intracellular Adhesion Molecule 5 (ICAM5), Synuclein Beta (SNCB), Metallothionein 3 (MT3), Neurogranin (NRGN), Neuron Specific Enolase(NSE), and Aldolase C (ALDOC).

10 4. The method of claim 3, wherein the control levels are one or more of (i) the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, in a subject not having a neurological or brain injury; (ii) the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, in a subject having a more serious or severe form of the neurological or brain injury; or (iii) the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, in a subject having a less serious or mild form of the neurological or brain injury.

15 5. A method of assessing whether a therapy or treatment regimen for a neurological or brain injury is effective in a subject, the method comprising:

20 (i) measuring the amounts or levels of one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, in a sample obtained from the subject at a first time point prior to initiation of a therapy or treatment regimen for a neurological or brain injury;

25 (ii) measuring the amounts or levels of the one or more protein biomarkers in the protein biomarker panel, or peptide biomarkers derived therefrom, in a sample obtained from the subject at second time point subsequent to the first time point and after the subject has received the therapy or treatment regimen; and

30 (iii) assessing that the therapy or treatment regimen is effective when the measured levels of the one or more protein biomarkers in the protein biomarker panel, or peptide biomarkers derived therefrom, are decreased or trending to normal levels at the second time point compared with the levels of the one or more protein biomarkers in the protein biomarker panel, or peptide biomarkers derived therefrom, measured at the first time point;

wherein the protein biomarker panel comprises a plurality of biomarkers selected from the group consisting of:

(A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and,

5 optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC.

6. A method of detecting autoantibodies indicative of a neurological or brain injury in a subject, the method comprising:

10 contacting a biological sample obtained from the patient with one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom; and

detecting specific binding of the one or more protein biomarkers, or peptide biomarkers derived therefrom, to one or more antibodies or antigen binding fragments thereof in the sample;

15 wherein the detection of binding is indicative of the presence of one or more autoantibodies against the one or more protein biomarkers, or peptide biomarkers derived therefrom, in the subject;

wherein the protein biomarker panel comprises a plurality of biomarkers selected from the group consisting of:

20 (A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and,

optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC.

25 7. A method of assessing whether a therapy or treatment regimen for a neurological or brain injury is effective in a subject, the method comprising:

(i) measuring the amounts or levels of one or more autoantibodies that specifically bind to one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, in a sample obtained from the subject at a first time point prior to initiation of a therapy or treatment regimen for a neurological or brain injury;

(ii) measuring the amounts or levels of the one or more autoantibodies in a sample obtained from the subject at second time point subsequent to the first time point and after the subject has received the therapy or treatment regimen; and

5 (iii) assessing that the therapy or treatment regimen is effective when the measured levels of the one or more autoantibodies are decreased or trending to normal levels at the second time point compared with the levels of autoantibodies measured at the first time point;

wherein the protein biomarker panel comprises a plurality of biomarkers selected from the group consisting of:

10 (A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and,

optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC.

8. The method of any one of claims 1-7, wherein the neurological or brain injury is a 15 concussion.

9. The method of any one of claims 1-7, wherein the neurological or brain injury is traumatic brain injury (TBI).

10. The method of claim 9, wherein the TBI is a mild TBI (mTBI)

20 11. The method of any one of claims 2-10, wherein the one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, or levels thereof are detected or measured by an immunoassay, an immunoblotting method, an immunoprecipitation assay, an immunostaining method, a quantitative assay, an immunofluorescent assay, or a chemiluminescence assay.

12. The method of any one of claims 2-10, wherein the one or more protein 25 biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, or levels thereof are detected or measured by an immunoassay or a chip assay.

13. The method of claim 12, wherein the immunoassay is an enzyme linked immunosorbent assay (ELISA) using one or more antibodies or antigen binding fragments thereof that specifically bind to the one or more protein biomarkers in a protein biomarker panel.

30 14. The method of claim 13, wherein the ELISA is a mesoscale discovery electro- chemiluminescence assay (MSD-ELISA).

15. A composition comprising a solid substrate and a plurality of binding agents immobilized on the substrate, wherein each of the binding agents is immobilized at a different, indexable location on the substrate and the binding agents specifically bind to a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom;

5 wherein the protein biomarker panel comprises a plurality of biomarkers selected from the group consisting of:

(A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and,

10 optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC.

16. The composition of claim 15, wherein the binding agents are labeled with a detectable moiety, optionally wherein the detectable moiety is selected from the group consisting of luminescent agents, chemiluminescent agents, radioisotopes, colorimetric agents; and enzyme-
15 substrate agents.

17. The composition of claim 16, wherein the binding agents comprise one or more antibodies or antigen-binding fragments thereof.

18. A kit comprising:

20 a plurality of biomarker binding agents capable of specifically binding to a plurality of biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, contained in a biological sample obtained from a human patient suspected of having or at risk of having traumatic brain injury, wherein the protein biomarker panel comprises a plurality of biomarkers selected from the group consisting of:

(A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and,

25 optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC; and

30 a detecting reagent or a detecting apparatus capable of indicating binding of the binding agents to the one or more proteins or peptides thereof.

19. The method of any one of claims 2-14, the composition of any one of claims 15-17, or the kit of claim 18, wherein the protein biomarker panel comprises (B), one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC.

5 20. The method of any one of claims 2-14, the composition of any one of claims 15-17, or the kit of claim 18, wherein the protein biomarker panel does not comprise the one or more protein biomarkers from (B).

21. The method, composition or kit of claim 19 or 20, wherein (A), the subset of protein biomarkers from protein Nos. 1-81 from Table 1, comprises:

10 (i) at least one protein biomarker selected from one or more cell adhesion proteins, one or more cell signaling proteins, a cell toxicity protein, a clotting protein, one or more cytoskeleton proteins, an extracellular matrix protein, a gene expression mediating protein, one or more gene regulation proteins, one or more inflammation proteins, a microtubule trafficking protein, one or more lipid binding proteins, one or more metabolic enzymes, one or more metabolism protein, a protein binding protein, one or more proteolytic proteins, one or more signaling proteins, a structural protein, one or more synapse proteins, and combinations thereof;

15 (ii) at least one protein biomarker found in mammalian cells or tissue, selected from a protein found in astrocytes, one or more proteins found in blood, one or more protein found in blood, heart and liver tissue, one or more proteins found in brain tissue, a protein found in cardiac tissue, a protein found in epithelial tissue, a protein found in interneurons, a protein found in neuroepithelial cells, one or more proteins found in neurons, a protein found in skin tissue, one or more ubiquitous proteins, and combinations thereof;

20 (iii) at least one protein biomarker with a role in a brain repair process selected from one or more apoptosis proteins, one or more inflammation proteins, one or more innate immunity proteins, one or more membrane repair proteins, one or more metabolism proteins, one or more necrosis proteins, one or more neurodegeneration proteins, one or more neurogenesis proteins, one or more synaptogenesis proteins, one or more vascular repair proteins, and combinations thereof; or

25 (iv) combinations of (i), (ii), and (iii).

22. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more cell adhesion proteins selected from the group consisting of protein Nos. 6, 12, 16, 25, 32, 38, 45, 47, 51, 72, 79, and 49 from Table 1.

23. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more cell signaling proteins selected from the group consisting of protein Nos. 2, 23, 35, 56, 75, 76, 77, and 80 from Table 1.

24. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a cell toxicity protein, No 48, from Table 1.

25. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a clotting protein, No 43, from Table 1.

26. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more cytoskeleton proteins selected from the group consisting of protein Nos. 57, 58, 59, and 60 from Table 1.

27. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises an extracellular matrix protein, No. 37, from Table 1.

28. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a gene expression mediating protein, No. 31, from Table 1.

29. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more gene regulation proteins selected from the group consisting of protein Nos. 7, 15, 44, 46, 53, 54, 61, 63, 74, 78, and 81 from Table 1.

30. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more inflammation proteins selected from the group consisting of protein Nos. 26, 27, 28, 29, 30, 68, 69, 70, and 36 from Table 1.

31. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a microtubule trafficking protein, No. 13, from Table 1.

32. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises protein No. 5 from Table 1.

33. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more lipid binding proteins selected from the group consisting of protein Nos. 8, 9, 10, and 34 from Table 1.

34. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more metabolic enzymes selected from the group consisting of protein Nos. 4, 11, 14, 21, 39, 40, 41, and 50 from Table 1.

5 35. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more metabolism proteins selected from protein Nos. 62 and 73 from Table 1.

36. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a protein binding protein, No. 42, from Table 1.

10 37. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more proteolytic proteins selected from the group consisting of protein Nos. 3, 22, 24, 33, 52, 55, 65, 66, and 67 from Table 1.

38. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more signaling proteins selected from protein Nos. 64 and 70 from Table 1.

15 39. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a structural protein, No. 1 from Table 1.

40. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more synapse proteins selected from the group consisting of protein Nos. 17, 18, 19, and 20 from Table 1.

20 41. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a protein found in astrocytes, No. 49, from Table 1.

42. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more proteins found in blood selected from the group consisting of protein Nos. 8, 9, 10, 26, 27, 28, 29, 30, 34, and 81 from Table 1.

25 43. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more protein found in blood, heart and liver tissue selected from protein Nos. 14 and 15 from Table 1.

44. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a protein found in brain tissue, No. 48, from Table 1.

30 45. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a protein found in cardiac tissue, No. 64, from Table 1.

46. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a protein found in epithelial tissue, No. 72, from Table 1.

47. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises proteins selected from the group consisting of protein Nos. 22, 24, and 25 from Table 1.

48. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a protein found in interneurons, No. 13, from Table 1.

49. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a protein found in neuroepithelial cells, No. 45, from Table 1.

50. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more proteins found in neurons selected from the group consisting of protein Nos. 74, 35, 12, 17, 18, 19, 71, 51, 77, 7, 31, 32, 38, and 16 from Table 1.

51. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises a protein found in skin tissue, No. 20, from Table 1.

52. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers, comprises one or more ubiquitous proteins selected from the group consisting of protein Nos. 1, 2, 3, 4, 6, 11, 23, 33, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 73, 75, 76, 78, 79, and 80 from Table 1.

53. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more apoptosis proteins, selected from protein Nos. 22 and 33 from Table 1.

54. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more inflammation proteins, selected from the group consisting of protein Nos. 3, 8, 9, 21, 34, 36, 43, 57, 65, 66, 67, 68, 69, and 70 from Table 1.

55. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more innate immunity proteins, selected from the group consisting of protein Nos. 27, 28, 29, and 30 from Table 1.

56. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more membrane repair proteins, selected protein Nos. 2 and 41 from Table 1.

57. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more metabolism proteins, selected from the group consisting of protein Nos. 11, 14, 15, 37, 39, 40, 48, 50, 73, 75, and 78 from Table 1.

58. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more necrosis proteins, selected from the group consisting of protein Nos. 24, 49, and 52 from Table 1.

59. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more neurodegeneration proteins, selected from the group consisting of protein Nos. 4, 10, and 25 from Table 1.

60. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more neurogenesis proteins, selected from the group consisting of protein Nos. 44, 53, 54, 61, 62, 63, 71, 74, 77, 80, and 81 from Table 1.

61. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more synaptogenesis proteins, selected from the group consisting of protein Nos. 6, 7, 12, 13, 16, 17, 18, 19, 20, 23, 35, 38, 45, 47, 51, 55, 58, 59, 60, and 76 from Table 1.

62. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers comprises at least one protein biomarker with a role in a brain repair process comprising one or more vascular repair proteins, selected from the group consisting of protein Nos. 26, 31, 64, and 79 from Table 1.

63. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers (i) comprises a cell adhesion protein, a cell signaling protein, a cell toxicity protein, a clotting protein, a cytoskeleton protein, an extracellular matrix protein, a gene expression mediating protein, a gene regulation protein, an inflammation protein, a microtubule trafficking

protein, a lipid binding protein, a metabolic enzyme, a metabolism protein, a protein binding protein, a proteolytic protein, a signaling protein, a structural protein, and a synapse protein.

64. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers (ii) comprises a protein found in astrocytes, a protein found in blood, a protein found in blood, heart and liver tissue, a protein found in brain tissue, a protein found in cardiac tissue, a protein found in epithelial tissue, a protein found in interneurons, a protein found in neuroepithelial cells, a protein found in neurons, a protein found in skin tissue, and a ubiquitous protein.

65. The method, composition or kit of claim 21, wherein (A), the subset of protein biomarkers (iii) comprises an apoptosis protein, an inflammation protein, an innate immunity protein, a membrane repair protein, a metabolism protein, a necrosis protein, a neurodegeneration protein, a neurogenesis protein, synaptogenesis protein, and a vascular repair proteins.

66. A method treatment of post-TBI seizures, post-TBI depression, post-TBI anxiety, post-TBI post-traumatic stress disorder (PTSD), post-TBI sleep disorder, post-TBI headache, post-TBI chronic pain, post-TBI oculomotor deficits, post-TBI attention and cognitive defects, and/or post-TBI balance and gait problems, wherein the method comprises:

detecting whether a plurality of protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom, are present in a biological sample obtained from a patient;

measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptide biomarkers derived therefrom, in a control sample;

stratifying the risk of the patient at one or more time points for post-TBI seizures, post-TBI depression, post-TBI anxiety, post-TBI post-traumatic stress disorder (PTSD), post-TBI sleep disorder, post-TBI headache, post-TBI chronic pain, post-TBI oculomotor deficits, post-TBI attention and cognitive defects, and/or post-TBI balance and gait problems when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels; and

if the risk stratification of the patient is high, administering an effective amount of therapy or drug to the patient.

67. The method of treatment of claim 66, wherein the protein biomarker panel comprises a plurality of biomarkers selected from the group consisting of:

(A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table 1; and,

5 optionally, (B) one or more protein biomarkers selected from BDNF, GFAP, ICAM5, SNCB, MT3, NRGN, NSE, and ALDOC.

68. The method, composition, or kit of any one of claims 21-67, wherein the biological sample is selected from blood, serum, plasma, cerebrospinal fluid (CSF), saliva, urine, 10 sputum, secretions, tears, or tissue.

69. The method, composition, or kit of claim 21, wherein the peptide derived from the protein biomarker in the protein panel is a post-translationally modified protein.

70. The method, composition, or kit of claim 69, wherein the post-translationally modified protein is a citrullinated protein.

TABLE 1

No.	Protein name (Gene name)	Amino acid sequence for detected protein	Accession number	MW (kDa)	Function	Tissue/Cell specificity	Cell location	Role in brain repair process
1	14-3-3 protein sigma (SFn)	SEQ ID NO 1	NP_006133.1 [Homo sapiens] protein sigma [Homo sapiens]	28 kDa	structural	Ubiquitous	Nuclear	Unknown
2	1-phosphatidylinositol 4,5-bisphosphate pho- sphodiesterase eta-1 (PLCH1)	SEQ ID NO 2	NP_00133680.1 [Homo sapiens] 1-phosphatidyl inositol 4,5-bisphosphate phosphodiesterase eta-1 isoform d [Homo sapiens]	189 kDa	Cell signaling	Ubiquitous	Cell membrane	Membrane repair
3	ATP Binding Cassette sub-family A member 2 (ABCA2)	SEQ ID NO 3	NP_001597.2 [Homo sapiens] ATP-binding cassette sub-family A member 2 isoform [Homo sapiens]	47 kDa	Proteolysis	Ubiquitous	extracellular	Inflammation
4	Alpha-1-antitrypsin (SERPINA1)	SEQ ID NO 4	NP_001121179.1 [Homo sapiens] alpha-1-antitrypsin precursor [Homo sapiens]	47 kDa	Metabolic enzyme	Ubiquitous	cytoplasm	Neurodegeneration
5	Ankyrin repeat domain- containing protein 20A4 (ANKRD20A4)	SEQ ID NO 5	NP_001092275.1 [Homo sapiens] ankyrin repeat domain-containing protein 20A4 [Homo sapiens]	94 kDa	Unknown	Unknown	Nucleus	Unknown
6	Annexin A2 (ANXA2)	SEQ ID NO 6	NP_001020558.1 [Homo sapiens] annexin A2 isoform 1 [Homo sapiens]	39 kDa	Cell adhesion	Ubiquitous	Cell membrane	Synaptogenesis
7	AP-3 complex subunit beta-2 (AP3B2)	SEQ ID NO 7	NP_001265441.1 [Homo sapiens] AP-3 complex subunit beta-2 isoform 1 [Homo sapiens]	119 kDa	Gene regulation	Neurons, brain specific	cytoplasm nucleus	Synaptogenesis
8	Apolipoprotein A-I (APOA1)	SEQ ID NO 8	NP_001304947.1 [Homo sapiens] apolipoprotein A-I isoform 1 prepro- protein [Homo sapiens]	31 kDa	Lipid binding	Blood	extracellular	Inflammation

FIG. 1A

TABLE 1

No.	Protein name (Gene name)	Amino acid sequence for detected protein	Accession number	MW (kDa)	Function	Tissue/Cell Specificity	Cell location	Role in brain repair process
9	Apolipoprotein B-100 (APOB)	SEQ ID NO 9	NP_000375_2 apolipoprotein B-100	516 kDa	Lipid binding	Blood	extracellular	Inflammation
10	Apolipoprotein E (APOE)	SEQ ID NO 10	NP_001289617_1 apolipoprotein E [isoform a precursor [Homo sapiens]	36 kDa	Lipid binding	Blood	extracellular	Neurodegeneration
11	Arginase-1 (ARG1)	SEQ ID NO 11	XP_011534103_1 PREDICTED: arginase-1 isoform X1 [Homo sapiens]	35 kDa	Metabolic enzyme	Ubiquitous	extracellular	Metabolism
12	Astroactin-2 (ASTN2)	SEQ ID NO 12	NP_054729_3 astroactin-2 iso- form a precursor [Homo sapiens]	148 kDa	Cell adhesion	Neuron/glia	Cell membrane	Synaptogenesis
13	Bile acid receptor (NR1H4)	SEQ ID NO 13	NP_001193906_1 bile acid recep- tor isoform 1 [Homo sapiens]	270 kDa	Involved in microtubule trafficking	Interneurons, muscle	Cell membrane	Synaptogenesis
14	Biorientation of chromo- somes in cell division protein 1-like 1 (BODIL1)	SEQ ID NO 14	NP_683692_2 biorientation of chromosomes in cell division protein 1-like 1 [Homo sapiens]	56 kDa	Metabolic enzyme	Blood, heart, liver	Nucleus	Metabolism
15	Calcium-activated potass- ium channel subunit alpha-1 (KCNA1)	SEQ ID NO 15	AA144497_1 KCNA1 protein [Homo sapiens]	330 kDa	Gene regulation	Blood, liver, heart	Nucleus	Metabolism
16	Calmoculin (CALM1)	SEQ ID NO 16	NP_008619_1 calmodulin-1 [Homo sapiens]	329 kDa	Cell adhesion	Neuron-specific	Cell membrane	Synaptogenesis

TABLE 1

No.	Protein name (Gene name)	Amino acid sequence for detected protein	Accession number	MW (kDa)	Function	Tissue/Cell Specificity	Cell location	Role in brain repair process
17	Calmodulin-like protein 3 (CALML3)	SEQ ID NO 17	NP_005176.1 calmodulin-like protein 3 [Homo sapiens]	138 kDa	Synapse	Neuron/glia	Membrane	Synaptogenesis
18	Calmodulin-like protein 5 (CALML5)	SEQ ID NO 18	NP_009118.2 calmodulin-like protein 5 [Homo sapiens]	17 kDa	Synapse	Neuron/glia	Cytoplasm	Synaptogenesis
19	Carbonic anhydrase 1 (CAH1)	SEQ ID NO 19	NP_001122301.1 carbonic anhy- drase 1 isoform a [Homo sapiens]	17 kDa	Synapse	Neuron/glia	Cytoplasm	Synaptogenesis
20	Caspase-14 (CASP14)	SEQ ID NO 20	NP_066246.1 caspase-14 precursor [Homo sapiens]	16 kDa	Synapse	Skin, blood	Blood	Synaptogenesis
21	Catenin alpha-1 (CTNNA1)	SEQ ID NO 21	NP_001310912.1 catenin alpha- 1 isoform 1 [Homo sapiens]	29 kDa	Metabolic enzyme	Metabolic enzyme	Cytoplasm	Inflammation
22	Cathepsin D (CTSD)	SEQ ID NO 22	NP_001900.1 cathepsin D preprotein [Homo sapiens]	28 kDa	Proteolysis	Cell death	extracellular	Apoptosis
23	Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1)	SEQ ID NO 23	NP_055061.1 cadherin EGF LAG seven-pass G-type receptor 1 precursor [Homo sapiens]	100 kDa	Cell signaling	Brain	Cytoplasm	Synaptogenesis

		SEQ ID NO 24	NP_001822.3 clusterin preprotein [Homo sapiens]		Proteolysis	Ubiquitous	Lysosome, extracellular	Necrosis
24	Clstern (CLU)							
25	Coagulation factor XII (F12)	SEQ ID NO 25	AAA70225.1 coagulation factor XII precursor, partial [Homo sapiens]	52 kDa	Cell adhesion	Blood	extracellular	Neurodegeneration
26	Complement C4-A (C4A)	SEQ ID NO 26	NP_009224.2 complement C4-A isoform 1 preprotein [Homo sapiens]	68 kDa	Inflammation	Blood	extracellular	Vascular repair

FIG. 1C
CONTINUED

TABLE 1

No.	Protein name (Gene name)	Amino acid sequence for detected protein	Accession number	MW (kDa)	Function	Tissue/Cell Specificity	Cell location	Role in brain repair process
27	Complement component C9 (C9)	SEQ ID NO 27	NP_001728.1 complement component C9 preprotein [Homo sapiens]	193 kDa	Inflammation	Blood	extracellular	Innate immunity
28	Complement factor H (CFH)	SEQ ID NO 28	AA42700.1 Complement factor H [Homo sapiens]	63 kDa	Inflammation	Blood	extracellular	Innate immunity
29	Complement factor H-related protein 1 (CFHR1)	SEQ ID NO 29	NP_002104.2 complement factor H-related protein 1 precursor [Homo sapiens]	139 kDa	Inflammation	Blood	extracellular	Innate immunity
30	Cullin 7 (CUL7)	SEQ ID NO 30	NP_00116842.1 cullin-7 isoform 1	38 kDa	Inflammation	Blood	extracellular	Innate immunity
31	Desmocollin-1 (DSC1)	SEQ ID NO 31	NP_077739.1 desmocollin-1 isoform Dsc1a preprotein [Homo sapiens]	191 kDa	Gene expression	Neurons/Epithelia	Nucleus	Vascular repair
32	Disintegrin and metalloproteinase domain-containing protein 8 (ADAM8)	SEQ ID NO 32	NP_001100.3 disintegrin and metalloproteinase domain-containing protein 8 isoform 1 precursor [Homo sapiens]	100 kDa	Cell adhesion	Neurons/Epithelia	Cell membrane	Synaptogenesis

FIG. 1D

6/20

				Proteolysis	Ubiquitous	extracellular	Apoptosis
33	Dispatched Homolog 2 (DISP2)	SEQ ID NO 33	NP_277045.1 protein dispatched homolog 2 [Homo sapiens]	89 kDa			
34	Enolase 1 (ENO1)	SEQ ID NO 34	NP_001419.1 alpha-enolase isoform 1 [Homo sapiens]	15 kDa	Lipid binding	Blood	extracellular
35	Fatty acid-binding protein, epidermal (FABP5)	SEQ ID NO 35	NP_001435.1 fatty acid-binding protein, epidermal [Homo sapiens]	144 kDa	Cell signaling	Neuron, other	Dendrite morphology

FIG. 1D
CONTINUED

TABLE 1

No.	Protein name (Gene name)	Amino acid sequence for detected protein	Accession number	MW (kDa)	Function	Tissue/Cell Specificity	Cell location	Role in brain repair process
36	FERM and PDZ domain-containing protein 4 (FRMPD4)	SEQ ID NO 36	NP_055543.2 FERM and PDZ domain-containing protein 4 [Homo sapiens]	42 kDa	Inflammation /Proteolysis	Ubiquitous	extracellular	Inflammation
37	Fetuin-B (FETUB)	SEQ ID NO 37	NP_055190.2 fetuin-B isoform 1 precursor [Homo sapiens]	312 kDa	Extracellular matrix, glucose regulation		extracellular	Metabolism
38	Fibulin-1 (FBN1)	SEQ ID NO 38	NP_000129.3 fibulin-1 preprotein [Homo sapiens]	15 kDa	Cell adhesion	Neurons/Epithelia	Cell-cell adhesion	Synaptogenesis
39	Galectin-7 (LGALS7)	SEQ ID NO 39	NP_002296.1 galectin-7 [Homo sapiens]	21 kDa	Metabolic enzyme	Ubiquitous	Intra/extracellu- lar	Metabolism
40	Gamma-glutamylcyclotransferase (GGT)	SEQ ID NO 40	NP_076956.1 gamma-glutamyl clottransferase isoform 1 [Homo sapiens]	26 kDa	Metabolic enzyme	Ubiquitous	Plasma	Metabolism
41	Glutathione peroxidase 3 (GPX3)	SEQ ID NO 41	NP_002075.2 glutathione peroxidase 3	21 kDa	Metabolic enzyme	Ubiquitous	Cell membrane	Membrane repair
42	Group XIIA secretory phospholipase A2 (PLA2G12A)	SEQ ID NO 42	NP_110448.2 group XIIA secretory phospholipase A2 precursor [Homo sapiens]	45 kDa	Protein binding	Ubiquitous	extracellular	Unknown

SUBSTITUTE SHEET (RULE 26)

		SEQ ID NO 43	NP_005134.1 haptoglobin isoform 1 [preprotein [Homo sapiens]]	60 kDa	Clotting/ Inflammation	Ubiquitous	extracellular	Inflammation
43	Haptoglobin (HP)							
44	Histidine-rich glycoprotein (HRG)	SEQ ID NO 44	NP_000403.1 histidine-rich glycoprotein precursor [Homo sapiens]	432 kDa	Gene regulation	Ubiquitous	Nucleus	Neurogenesis

FIG. 1E
CONTINUED

9/20

TABLE 1

No.	Protein name (Gene name)	Accession number	MW (kDa)	Function	Tissue/Cell Specificity	Cell location	Role in brain repair process
45	Histone-lysine N-methyl- transferase 2A (KMT2A)	SEQ ID NO 45	NP_001184033.1 histone-lysine N-methyltransferase 2A isoform 1 precursor [Homo sapiens]	367 kDa	Cell adhesion	Neuroepithelial cells	Cell Membrane
46	Kallikrein-plasma (KLKB1)	SEQ ID NO 46	NP_000883.2 plasma kallikrein isoform 1 preprotein [Homo sapiens]	38 kDa	Gene regulation	Ubiquitous	Extracellular
47	Laminin subunit alpha- 3 (LAMA3)	SEQ ID NO 47	NP_937762.2 laminin subunit alpha-3 isoform 1 precursor [Homo sapiens]	522 kDa	Cell adhesion	Ubiquitous	Cell membrane
48	Leucine-rich alpha-2 glycoprotein (LRG1)	SEQ ID NO 48	NP_443204.1 leucine-rich alpha- 2-glycoprotein precursor [Homo sapiens]	6 kDa	Cell toxicity	Brain	Synaptogenesis
49	Low-density lipoprotein receptor-related protein 2 (LRP2)	SEQ ID NO 49	NP_004516.2 low-density lipop- rotein receptor-related protein 2 precursor [Homo sapiens]	122 kDa	Cell adhesion/ Cell death	Astrocytes, macrophages	Nuclear, extracellular
50	Metallothionein-1X (MT1X)	SEQ ID NO 50	NP_005943.1 metallothionein- 1X [Homo sapiens]	62 kDa	Metabolic enzyme	Ubiquitous	Cytoplasm

FIG. 1F

10/20

	SEQ ID NO 51	NP_001243474.1 multiple epidermal growth factor-like domains protein 10 [MEGF10] [Homo sapiens]	256 kDa	Cell adhesion	Neurons	Axon/synapse	Synaptogenesis
51	Multiple epidermal growth factor-like domains protein 10 (MEGF10)						
52	Neuronal Navigator 3 (NAV3)	SEQ ID NO 52	NP_001019354.1 neuron navigator 3 isoform 1 [Homo sapiens]	71 kDa	Proteolysis	Ubiquitous	extracellular
							Necrosis

FIG. 1F
CONTINUED

11/20

TABLE 1

No	Protein name (Gene name)	Amino acid sequence for detected protein	Accession number	MW (kDa)	Function	Tissue/Cell specificity	Cell location	Role in brain repair process
53	N-acetylglutamyl-L-L- alanine amidase (PGLYRP2)	SEQ ID NO 53	NP_443122.3 N-acetylglutamyl-L- alanine amidase precursor [Homo sapiens]	105 kDa	Gene regulation	Ubiquitous	Nucleus, cytoplasm	Neurogenesis
54	Proprotein convertase subtilisin/kexin type 5 (PCSK5)	SEQ ID NO 54	AAH12064.1 Proprotein convertase subtilisin/kexin type 5	100 kDa	Gene regulation	Ubiquitous	Nucleus	Neurogenesis
55	Pre-mRNA-splicing factor CWC22 homolog (CWC22)	SEQ ID NO 55	NP_065994.1 pre-mRNA-splicing factor CWC22 homolog [Homo sapiens]	207 kDa	Proteolysis	Ubiquitous	extracellular	Synaptogenesis
56	Protein S100-A11 (S100A11)	SEQ ID NO 56	NP_005611.1 protein S100- A11 [Homo sapiens]	152 kDa	Cell signaling	Ubiquitous	Cell Membrane	Unknown
57	Protein S100-A7 (S100A7)	SEQ ID NO 57	NP_002954.2 protein S100- A7 [Homo sapiens]	12 kDa	Cytoskeleton	Ubiquitous	Cell Membrane	Inflammation
58	Protein S100-A8 (S100A8)	SEQ ID NO 58	NP_001306125.1 protein S100- A8 isoform a [Homo sapiens]	11 kDa	Cytoskeleton	Ubiquitous	Cytoplasm	Synaptogenesis
59	Protein S100-A9 (S100A9)	SEQ ID NO 59	NP_002956.1 protein S100- A9 [Homo sapiens]	11 kDa	Cytoskeleton	Ubiquitous	Cytoplasm	Synaptogenesis

SUBSTITUTE SHEET (RULE 26)

FIG. 1G

12/20

		SEQ ID NO 60	NP_620305.2 protein SON isoform F [Homo sapiens]	13 kDa	Cytoskeleton	Ubiquitous	Cytoplasm	Synaptogenesis
60	Protein SON (SON)	SEQ ID NO 60	NP_620305.2 protein SON isoform F [Homo sapiens]	13 kDa	Cytoskeleton	Ubiquitous	Cytoplasm	Synaptogenesis

		SEQ ID NO 61	NP_003587.1 protein-tyrosine sulfotransferase 1 [Homo sapiens]	264 kDa	Gene regulation	Ubiquitous	Nucleus	Neurogenesis
61	Protein-tyrosine sulfotransferase 1 (TPST1)	SEQ ID NO 61	NP_003587.1 protein-tyrosine sulfotransferase 1 [Homo sapiens]	264 kDa	Gene regulation	Ubiquitous	Nucleus	Neurogenesis

FIG. 1G
CONTINUED

TABLE 1

No.	Protein name (Gene name)	Amino acid sequence for detected protein.	Accession number	MW (kDa).	Function.	Tissue/Cell Specificity	Cell location.	Role in brain repair process.
62	Scaffold attachment factor B1 (SAFB)	SEQ ID NO 62	NP_001168267.1 scaffold attach- ment factor B1 isoform 1 [Homo sapiens]	42 kDa	Metabolism	Ubiquitous	Cytoplasm	Neurogenesis
63	Serine/threonine-protein kinase TNNI3K (TNNI3K)	SEQ ID NO 63	NP_057062.1 serine/threonine- protein kinase TNNI3K [Homo sapiens]	103 kDa	Gene regulation	Ubiquitous	Nucleus	Neurogenesis
64	Serpin B12 (SERP INB12)	SEQ ID NO 64	NP_001294857.1 serpin B12 isoform 1 [Homo sapiens]	93 kDa	Signaling	Cardiac, bone	Nucleus	Vascular repair
65	Serpin B3 (SERPINB3)	SEQ ID NO 65	NP_008850.1 serpin B3 [Homo sapiens]	46 kDa	Proteolysis	Ubiquitous	extracellular	Inflammation
66	Serpin B4 (SERPINB4)	SEQ ID NO 66	NP_002965.1 serpin B4 isoform 1 [Homo sapiens]	45 kDa	Proteolysis	Ubiquitous	extracellular	Inflammation
67	SLT-ROBO Rho GTPase-activating protein 1 (SRGAP1)	SEQ ID NO 67	NP_065813.1 SLT-ROBO Rho GTPase-activating protein 1 isoform 1 [Homo sapiens]	45 kDa	Proteolysis	Ubiquitous	extracellular	Inflammation
68	Serum amyloid A-1 protein (SAA1)	SEQ ID NO 68	NP_954630.1 serum amyloid A-1 protein preprotein [Homo sapiens]	14 kDa	Inflammation	Ubiquitous	Blood	Inflammation

SUBSTITUTE SHEET (RULE 26)

FIG. 1H

69	Serum amyloid A-4 protein (SAA4)	SEQ ID NO 69	NP_006563.2 serum amyloid A-4 protein precursor [Homo sapiens]	15 kDa	Inflammation	Ubiquitous	Blood
70	Serum amyloid P-component (APCS)	SEQ ID NO 70	NP_001660.1 serum amyloid P-component precursor [Homo sapiens]	25 kDa	Inflammation	Ubiquitous	Blood

FIG. 1H
CONTINUED

TABLE 1

No.	Protein name (Gene name)	Amino acid sequence for detected protein	Accession number	MW (kDa)	Function	Tissue/Cell Specificity	Cell location	Role in brain repair process
71	Small proline-rich protein 2E (SPRR2)	SEQ ID NO 71	NP_001019380 2 small proline- rich protein 2E [Homo sapiens]	124 kDa	Signaling	Neuronal	Nucleus, Cytoplasm	Neurogenesis
72	Pre-mRNA-splicing factor SYF1 (XAB2)	SEQ ID NO 71	NP_064581 2 pre-mRNA-splicing factor SYF1 [Homo sapiens]	8 kDa	Cell adhesion	Epithelial cell layers, Skin	Cell membrane	Unknown
73	Small subunit process- ome component 20 homolog (UTP20)	SEQ ID NO 73	NP_055318 2 small subunit pro- cessome component 20 homolog [Homo sapiens]	318 kDa	Metabolism, proteolysis	Ubiquitous	Cytoplasm	Metabolism
74	Storkhead-box protein 2 (STOX2)	SEQ ID NO 74	NP_064610 1 storkhead-box protein 2 [Homo sapiens]	103 kDa	Gene regulation	Nucleus	Neuron	Neurogenesis
75	Transforming acidic coiled-coil-containing protein 2 (TACC2)	SEQ ID NO 75	XP_005269446 1 PREDICTED: transforming acidic coiled-coil- containing protein 2 isoform X1 [Homo sapiens]	309 kDa	Cell signaling	Ubiquitous	Nucleus, cytoplasm	Metabolism
76	Transmembrane and TPR repeat-containing protein 3 (TMTC3)	SEQ ID NO 76	NP_861448 2 transmembrane and TPR repeat-containing protein 3 [Homo sapiens]	104 kDa	Cell signaling	Ubiquitous	Golgi apparatus	Synaptogenesis

SUBSTITUTE SHEET (RULE 26)

FIG. 1

		SEQ ID			Cell signaling	Neurons in development	Nucleus	Neurogenesis
77	Tripartite motif-containing protein 44 (TRIM44)	NO77	NP_060053.2 tripartite motif-containing protein 44 [Homo sapiens]	38 kDa				
78	Ubiquitin-60S ribosomal protein L40 (UBA52)	SEQ ID NO78	NP_003324.1 ubiquitin-60S ribosomal protein L40 isoform 1 precursor [Homo sapiens]	15 kDa	Gene regulation	Ubiquitous	Nucleus	Metabolism

FIG. 1
CONTINUED

TABLE 1

No	Protein name (Gene name)	Accession number	MW (kDa)	Function	Tissue/Cell Specificity	Cell location	Role in brain repair process
79	von Willebrand factor (VWF)	NP_000543.2 von Willebrand factor protein	309	Cell adhesion	Ubiquitous	Cell membrane	Vascular repair
80	WD repeat-containing protein 87 (WDR87)	NP_001278077.1 WD repeat-containing protein 87 isoform 1	333	Cell signaling	Ubiquitous	Nucleus, cytoplasm	Neurogenesis
81	Zinc finger protein 652 (ZNF652)	NP_055712.1 zinc finger protein 652 [Homo sapiens]	70	Gene regulation	Blood, Heart	Nucleus	Neurogenesis

FIG. 1J

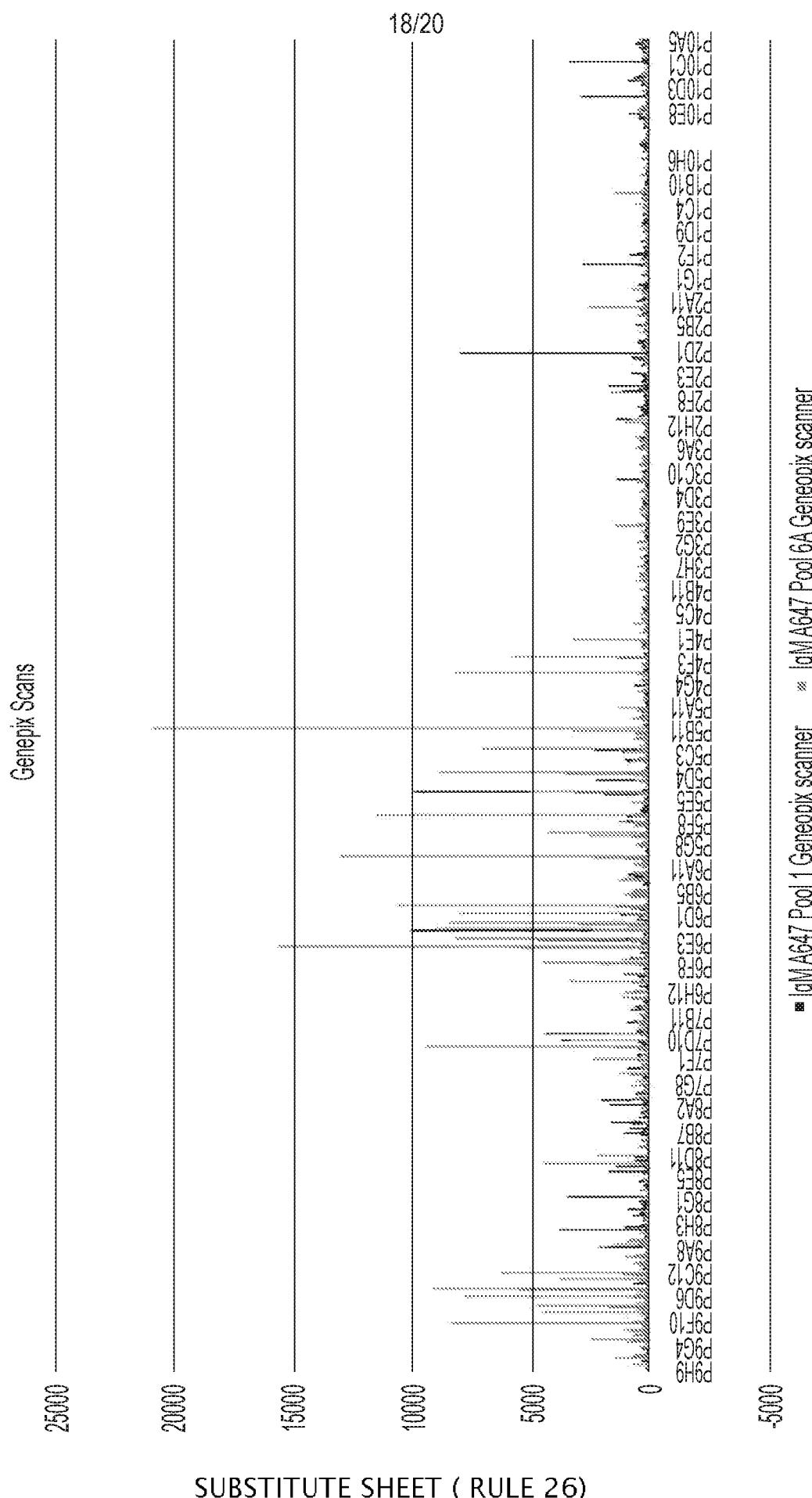


FIG. 2

Detection of Auto-antibodies to Candidate Biomarkers in Acute and Chronic (3 months) TBI patients relative to healthy controls.

FIG. 3

20/20

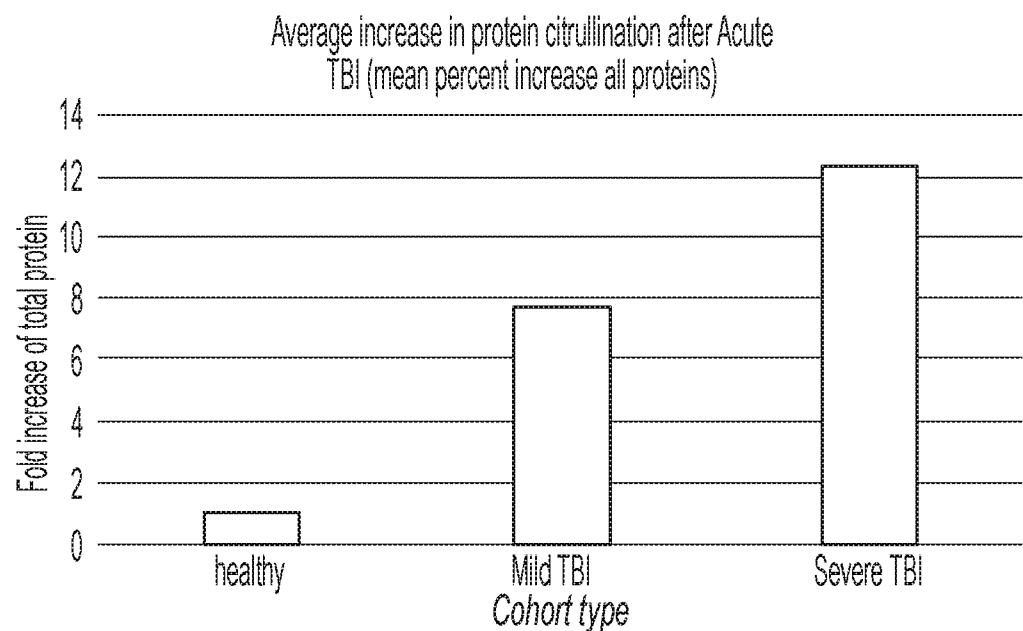


FIG. 4

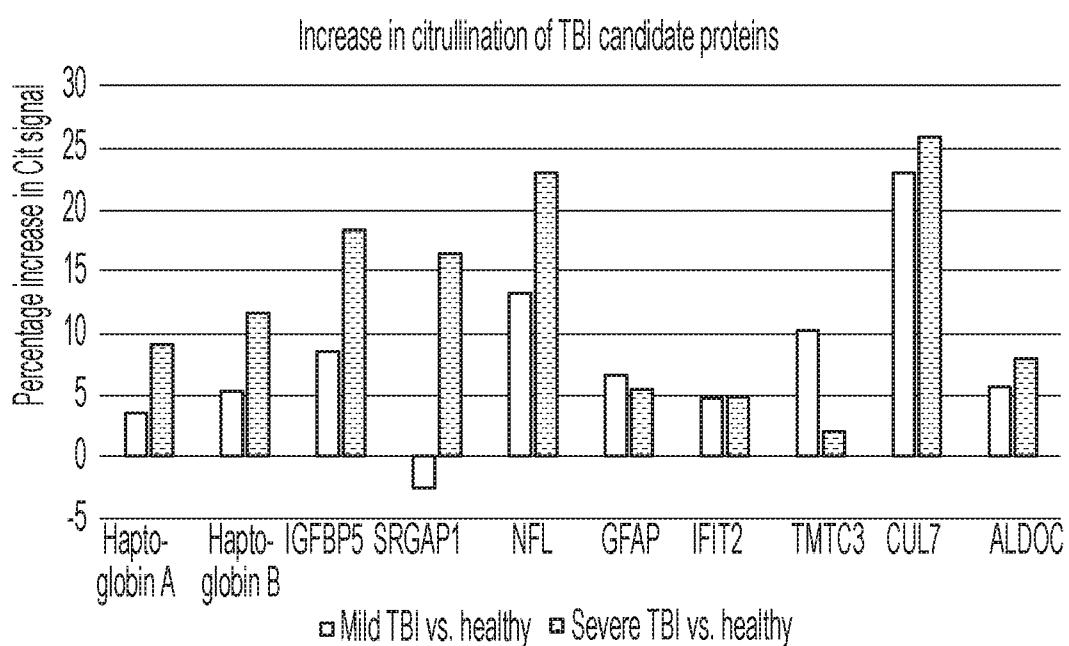


FIG. 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 18/61372

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - G01N 33/68, G01N 33/535, G01N 33/566, C12Q 1/68 (2019.01)

CPC - G01N 33/566, G01N 33/573, G01N 2800/28, G01N 2800/52, C12Q 6200/118, C12Q 2600/158

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History Document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History Document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

See Search History Document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X -- Y	US 2017/0145506 A1 (UNIVERSITY OF ROCHESTER) 25 May 2017 (25.05.2017) para [0007], [0026], [0066], [0068], [0069], [0071], [0072], [0073], [0079], [0101], [0129], Table 4A	1-5, (8-10)/(1-5) --- 7, (8-10)/(6-7)
X -- Y	WO 2016/205828 A2 (CEDARS-SINAI MEDICAL CENTER) 22 December 2016 (22.12.2016) para [0015], [0052], [0067], [0069], [0070], [0111], Table 1B	6 --- 7, (8-10)/(6-7)

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 05 March 2019	Date of mailing of the international search report 26 MAR 2019
Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 Facsimile No. 571-273-8300	Authorized officer: Lee W. Young PCT Helpdesk: 571-272-4300 PCT OSP: 571-272-7774

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 18/61372

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 11-14, 19-65, 68-70 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

- see extra sheet for Box No. III Observations where unity of invention is lacking -

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-10

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 18/61372

Continuation of:
Box No. III. Observations where unity of invention is lacking

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I: claims 1-10, drawn to a method of diagnosing a neurological or brain injury in a subject.

Group II: claims 15-18, drawn to a composition comprising a plurality of biomarker binding agents.

Group III: claims 66-67, drawn to a method treatment of post-TBI syndromes.

The inventions listed as Groups I, II and III do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Special Technical Features

Group I includes the special technical feature of a method for diagnosing a neurological or brain injury or assessing therapeutic efficacy, not required by Groups II and III.

Group II includes the special technical feature of a composition/kit comprising a solid substrate and a plurality of binding agents that specifically bind to a plurality of protein biomarkers in a protein biomarker panel, not required by Groups I and III.

Group III includes the special technical feature of a method treatment of post-TBI syndromes, based on stratification of the patient, not required by Groups I and II.

Common Technical Features

The inventions of Groups I-III share the technical feature of detecting whether one or more protein biomarkers in a protein biomarker panel, are present in a biological sample obtained from the subject by contacting the sample with one or more antibodies or antigen binding fragments thereof that specifically bind the one or more protein biomarkers, or peptide biomarkers derived therefrom; measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptide biomarkers derived therefrom, in a control sample.

However, these shared technical features do not represent a contribution over prior art in view of US 2017/0145506 A1 to University of Rochester (hereinafter 'Univ Rochester').

Univ Rochester teaches (instant claim 3) a method of diagnosing a neurological or brain injury in a subject (para [0071], methods for diagnosing brain injury, assessing the severity of brain injury, and assessing the recovery from brain injury by detecting differentially expressed biomarkers in a biological sample obtained from a subject who has experienced head trauma as compared to a control or reference sample.), the method comprising: detecting whether one or more protein biomarkers in a protein biomarker panel, or peptide biomarkers derived therefrom (para [0072], measure the level of differentially expressed marker expression products, such as RNA and protein, to measure the level of one or more differentially expressed marker expression products.), are present in a biological sample obtained from the subject by contacting the sample with one or more antibodies or antigen binding fragments thereof that specifically bind the one or more protein biomarkers, or peptide biomarkers derived therefrom (para [0073]). Typical diagnostic methods focusing on proteins include binding techniques such as ELISA, immunohistochemistry, microarray and functional techniques such as enzymatic assays.); measuring the levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, present in the biological sample relative to the levels of the same proteins, or peptide biomarkers derived therefrom, in a control sample (para [0069]). In one embodiment, the method comprises determining that the level of one or more biomarkers listed in Table 4A is upregulated in a biological sample obtained acutely after head trauma as compared to control. In one embodiment, the method comprises determining that the level of one or more biomarkers listed in Table 4B is downregulated in a biological sample obtained acutely after head trauma as compared to control.); and diagnosing a neurological or brain injury in the subject when the measured levels of the one or more protein biomarkers, or peptide biomarkers derived therefrom, are increased or decreased in the subject's sample relative to the control levels (para [0069]); wherein the protein biomarker panel comprises a plurality of biomarkers selected from the group consisting of: (A) a subset of one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more, protein biomarkers selected from protein Nos. 1-81 from Table I (Table 4A, haptoglobin; Table 6, SON, Table 8B, S100A8, ENO1; corresponding to protein NO: 43 (haptoglobin), 58 (SON), 60 (S100A8), 34 (ENO1).).

As said technical features were known in the art at the time of the invention, these cannot be considered special technical features that would otherwise unify the groups.

Groups I, II and III therefore lack unity under PCT Rule 13 because they do not share a same or corresponding special technical feature.