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COUNTING OF READ ACCESSES WITHIN DIVISIONS OF THE MEMORY

BACKGROUND

[0001] The following relates to the operation of re-programmable non-volatile
memory systems such as semiconductor flash memory, and, more specifically, to the

determination and management of error on such memories.

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly in
the form of EEPROM and flash EEPROM packaged as a small form factor card, has
recently become the storage of choice in a variety of mobile and handheld devices,
notably information appliances and consumer eclectronics products. Unlike RAM
(random access memory) that is also solid-state memory, flash memory is non-
volatile, and retaining its stored data even after power is turned off. Also, unlike
ROM (read only memory), flash memory is rewritable similar to a disk storage
device. In spite of the higher cost, flash memory is increasingly being used in mass
storage applications. Conventional mass storage, based on rotating magnetic medium
such as hard drives and floppy disks, is unsuitable for the mobile and handheld
environment. This is because disk drives tend to be bulky, are prone to mechanical
failure and have high latency and high power requirements. These undesirable
attributes make disk-based storage impractical in most mobile and portable
applications. On the other hand, flash memory, whether embedded, a solid state drive
(SSD) and in the form of a removable card is ideally suited in the mobile and
handheld environment because of its small size, low power consumption, high speed

and high reliability features.

[0003] Flash EEPROM is similar to EEPROM (electrically erasable and
programmable read-only memory) in that it is a non-volatile memory that can be
erased and have new data written or “programmed” into their memory cells. Both
utilize a floating (unconnected) conductive gate, in a field effect transistor structure,
positioned over a channel region in a semiconductor substrate, between source and
drain regions. A control gate is then provided over the floating gate. The threshold

voltage characteristic of the transistor is controlled by the amount of charge that is
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retained on the floating gate. That is, for a given level of charge on the floating gate,
there is a corresponding voltage (threshold) that must be applied to the control gate
before the transistor is turned “on” to permit conduction between its source and drain
regions. In particular, flash memory such as Flash EEPROM allows entire blocks of

memory cells to be erased at the same time.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons
are pulled from the substrate to the intervening floating gate. While the term
“program” has been used historically to describe writing to a memory by injecting
electrons to an initially erased charge storage unit of the memory cell so as to alter the
memory state, it has now been used interchangeable with more common terms such as

“write” or “record.”

[0006] The memory device may be erased by a number of mechanisms. For
EEPROM, a memory cell is electrically erasable, by applying a high voltage to the
substrate relative to the control gate so as to induce electrons in the floating gate to
tunnel through a thin oxide to the substrate channel region (i.e., Fowler-Nordheim
tunneling.) Typically, the EEPROM is crasable byte by byte. For flash EEPROM,
the memory is electrically erasable either all at once or one or more minimum

crasable blocks at a time, where a minimum erasable block may consist of one or
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more sectors and each sector may store 512 bytes or more of data.

[0007] The memory device typically comprises one or more memory chips that may
be mounted on a card or in a solid state drive (SSD). Each memory chip comprises an
array of memory cells supported by peripheral circuits such as decoders and erase,
write and read circuits. The more sophisticated memory devices also come with a
controller that performs intelligent and higher level memory operations and

interfacing.

[0008] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may be flash EEPROM or may
employ other types of nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, and 5,661,053, 5,313,421 and 6,222,762.
In particular, flash memory devices with NAND string structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also nonvolatile memory
devices are also manufactured from memory cells with a dielectric layer for storing
charge. Instead of the conductive floating gate elements described earlier, a dielectric
layer is used. Such memory devices utilizing dielectric storage element have been
described by FEitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile
Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp.
543-545. An ONO dielectric layer extends across the channel between source and
drain diffusions. The charge for one data bit is localized in the dielectric layer
adjacent to the drain, and the charge for the other data bit is localized in the dielectric
layer adjacent to the source. For example, United States patents nos. 5,768,192 and
6,011,725 disclose a nonvolatile memory cell having a trapping diclectric sandwiched
between two silicon dioxide layers. Multi-state data storage is implemented by
separately reading the binary states of the spatially separated charge storage regions

within the dielectric.

[0009] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a “page” of memory elements are read or programmed together. In existing memory

architectures, a row typically contains several interleaved pages or it may constitute

-3-



WO 2015/142513 PCT/US2015/018527

10

15

20

25

30

one page. All memory elements of a page will be read or programmed together.

[0010] In flash memory systems, erase operation may take as much as an order of
magnitude longer than read and program operations. Thus, it is desirable to have the
erase block of substantial size. In this way, the erase time is amortized over a large

aggregate of memory cells.

[0011] The nature of flash memory predicates that data must be written to an erased
memory location. If data of a certain logical address from a host is to be updated, one
way is rewrite the update data in the same physical memory location. That is, the
logical to physical address mapping is unchanged. However, this will mean the entire
erase block contain that physical location will have to be first erased and then
rewritten with the updated data. This method of update is inefficient, as it requires an
entire erase block to be erased and rewritten, especially if the data to be updated only
occupies a small portion of the erase block. It will also result in a higher frequency of
erase recycling of the memory block, which is undesirable in view of the limited

endurance of this type of memory device.

[0012] Data communicated through external interfaces of host systems, memory
systems and other electronic systems are addressed and mapped into the physical
locations of a flash memory system. Typically, addresses of data files generated or
received by the system are mapped into distinct ranges of a continuous logical address
space established for the system in terms of logical blocks of data (hereinafter the
“LBA interface”). The extent of the address space is typically sufficient to cover the
full range of addresses that the system is capable of handling. In one example,
magnetic disk storage drives communicate with computers or other host systems
through such a logical address space. This address space has an extent sufficient to

address the entire data storage capacity of the disk drive.

[0013] Flash memory systems are most commonly provided in the form of a memory
card or flash drive that is removably connected with a variety of hosts such as a
personal computer, a camera or the like, but may also be embedded within such host
systems or be in the form of a solid state drive. When writing data to the memory, the
host typically assigns unique logical addresses to sectors, clusters or other units of

data within a continuous virtual address space of the memory system. Like a disk
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operating system (DOS), the host writes data to, and reads data from, addresses within
the logical address space of the memory system. A controller within the memory
system translates logical addresses received from the host into physical addresses
within the memory array, where the data are actually stored, and then keeps track of
these address translations. The data storage capacity of the memory system is at least
as large as the amount of data that is addressable over the entire logical address space

defined for the memory system.

[0014] In current commercial flash memory systems, the size of the erase unit has
been increased to a block of enough memory cells to store multiple sectors of data.
Indeed, many pages of data are stored in one block, and a page may store multiple
sectors of data. Further, two or more blocks are often operated together as
metablocks, and the pages of such blocks logically linked together as metapages. A
page or metapage of data are written and read together, which can include many
sectors of data, thus increasing the parallelism of the operation. Along with such

large capacity operating units the challenge is to operate them efficiently.

[0015] For ecase of explanation, unless otherwise specified, it is intended that the term
“block” as used herein refer to either the block unit of erase or a multiple block
“metablock,” depending upon whether metablocks are being used in a specific
system. Similarly, reference to a “page” herein may refer to a unit of programming
within a single block or a “metapage” within a metablock, depending upon the system

configuration.

[0016] In charge storing non-volatile memory devices, such as those based on
EEPROM or dielectric storage, the non-volatility is non-perfect and the data value
stored in an element can be degraded by leakage over time. Operations in one part of
the memory circuit can also affect data values in storage elements not being directly
acted upon. For example, capacitive coupling between memory cells on adjacent
word lines can lead “read disturbs” or “write disturbs” when a neighboring word line
is read or written. (Erase disturbs may also occur, depending on the granularity at
which cells are erased.) To maintain the integrity of data in such memory systems,

the effects of such disturbs need to be considered.
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SUMMARY OF THE INVENTION

[0017] According to a general aspect of the invention, a method is presented for the
operating of a non-volatile memory system having one or more memory circuits and a
controller circuit. The memory circuits each include one or more arrays of non-
volatile memory cells formed along word lines and the controller circuit manages the
storage of data on the memory circuit. For each of a first plurality of distinct
divisions of the one or more memory arrays the controller circuit maintains a count of
the number of times word lines of the corresponding division is accessed for a read
operation. In response to one of the counts for a corresponding division reaching a
first threshold value, subdividing the corresponding division is subdivide into a
second plurality of distinct first subdivisions. For each of the first subdivisions the
controller circuit subsequently maintains a count of the number of times word lines of

the subdivision is accessed for read operations.

[0018] Various aspects, advantages, features and embodiments of the present
invention are included in the following description of exemplary examples thereof,
which description should be taken in conjunction with the accompanying drawings.
All patents, patent applications, articles, other publications, documents and things
referenced herein are hereby incorporated herein by this reference in their entirety for
all purposes. To the extent of any inconsistency or conflict in the definition or use of
terms between any of the incorporated publications, documents or things and the

present application, those of the present application shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 illustrates schematically the main hardware components of a memory

system suitable for implementing the present invention.
[0020] FIG. 2 illustrates schematically a non-volatile memory cell.

[0021] FIG. 3 illustrates the relation between the source-drain current Ip and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may

be selectively storing at any one time.

[0022] FIG. 4A illustrates schematically a string of memory cells organized into an
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[0023] FIG. 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A.

[0024] FIG. 5 illustrates a page of memory cells, organized for example in the

NAND configuration, being sensed or programmed in parallel.

[0025] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state

memory cells.

[0026] FIGs. 7A-7E illustrate the programming and reading of the 4-state memory

encoded with a given 2-bit code.

[0027] FIG. 7F illustrates a foggy-fine programming for an §-state memory encoded

with a given 3-bit code.

[0028] FIG. 8 illustrates the memory being managed by a memory manager with is a

software component that resides in the controller.
[0029] FIG. 9 illustrates the software modules of the back-end system.

[0030] FIGs. 10A(i) — 10A(iii) illustrate schematically the mapping between a logical
group and a metablock. FIG. 10B illustrates schematically the mapping between

logical groups and metablocks.
[0031] FIG. 11 is a schematic representation of the process for a two level example.

[0032] FIGs. 12 and 13 provide further illustration of a hash tree to track read zones.

DETAILED DESCRIPTION

MEMORY SYSTEM

[0033] FIG. 1 to FIG. 10B provide example memory systems in which the various

aspects of the present invention may be implemented or illustrated.
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[0034] FIG. 1 illustrates schematically the main hardware components of a memory
system suitable for implementing the present invention. The memory system 90
typically operates with a host 80 through a host interface. The memory system is
typically in the form of a memory card, solid state drive (SSD), or an embedded
memory system. The memory system 90 includes a memory 200 whose operations
are controlled by a controller 100. The memory 200 comprises of one or more array
of non-volatile memory cells distributed over one or more integrated circuit chip. The
controller 100 includes an interface 110, a processor 120, an optional coprocessor
121, ROM 122 (read-only-memory), RAM 130 (random access memory) and
optionally programmable nonvolatile memory 124. The interface 110 has one
component interfacing the controller to a host and another component interfacing to
the memory 200. Firmware stored in nonvolatile ROM 122 and/or the optional
nonvolatile memory 124 provides codes for the processor 120 to implement the
functions of the controller 100. Error correction codes may be processed by the
processor 120 or the optional coprocessor 121. In an alternative embodiment, the
controller 100 is implemented by a state machine (not shown.) In yet another

embodiment, the controller 100 is implemented within the host.

Physical Memory Structure

[0035] With respect to the memory section 200, memory devices include volatile
memory devices, such as dynamic random access memory (“DRAM”) or static
random access memory (“SRAM”) devices, non-volatile memory devices, such as
resistive random access memory (“ReRAM?”), clectrically erasable programmable
read only memory (“EEPROM?”), flash memory (which can also be considered a
subset of EEPROM), ferroclectric random access memory (“FRAM”), and
magnetoresistive random access memory (“MRAM”), and other semiconductor
clements capable of storing information. Furthermore, each type of memory device
may have different configurations. For example, flash memory devices may be

configured in a NAND or a NOR configuration.

[0036] The memory devices can be formed from passive and/or active elements, in
any combinations. By way of non-limiting example, passive semiconductor memory

elements include ReRAM device elements, which in some embodiments include a
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resistivity switching storage element, such as an anti-fuse, phase change material, etc.,
and optionally a steering eclement, such as a diode, etc.  Further by way of non-
limiting example, active semiconductor memory elements include EEPROM and flash
memory device elements, which in some embodiments include elements containing a
charge storage region, such as a floating gate, conductive nanoparticles or a charge

storage dielectric material.

[0037] Multiple memory eclements may be configured so that they are connected in
series or such that ecach element is individually accessible. By way of non-limiting
example, NAND devices contain memory elements (e.g., devices containing a charge
storage region) connected in series. For example, a NAND memory array may be
configured so that the array is composed of multiple strings of memory in which each
string is composed of multiple memory elements sharing a single bit line and accessed
as a group. In contrast, memory elements may be configured so that each element is
individually accessible, e.g.,, a NOR memory array. One of skill in the art will
recognize that the NAND and NOR memory configurations are exemplary, and

memory elements may be otherwise configured.

[0038] The semiconductor memory elements of a single device, such as elements
located within and/or over the same substrate or in a single die, may be distributed in
two or three dimensions, such as a two dimensional array structure or a three

dimensional array structure.

[0039] In a two dimensional memory structure, the semiconductor memory elements
are arranged in a single plane or single memory device level. Typically, in a two
dimensional memory structure, memory elements are located in a plane (e.g., in an x-
z direction plane) which extends substantially parallel to a major surface of a substrate
that supports the memory elements. The substrate may be a wafer over which the
layers of the memory elements are deposited and/or in which memory elements are
formed or it may be a carrier substrate which is attached to the memory elements after
they are formed. As a non-limiting example, the substrate may include a

semiconductor such as silicon.

[0040] The memory elements may be arranged in the single memory device level in

an ordered array, such as in a plurality of rows and/or columns. However, the
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memory elements may be arranged in non-regular or non-orthogonal configurations as
understood by one of skill in the art. The memory elements may each have two or

more clectrodes or contact lines, such as bit lines and word lines.

[0041] A three dimensional memory array is organized so that memory elements
occupy multiple planes or multiple device levels, forming a structure in three
dimensions (i.e., in the x, y and z directions, where the y direction is substantially
perpendicular and the x and z directions are substantially parallel to the major surface

of the substrate).

[0042] As a non-limiting example, each plane in a three dimensional memory array
structure may be physically located in two dimensions (one memory level) with
multiple two dimensional memory levels to form a three dimensional memory array
structure. As another non-limiting example, a three dimensional memory array may
be physically structured as multiple vertical columns (e.g., columns extending
substantially perpendicular to the major surface of the substrate in the y direction)
having multiple elements in each column and therefore having elements spanning
several vertically stacked memory planes. The columns may be arranged in a two
dimensional configuration, e.g.,, in an x-z plane, thereby resulting in a three
dimensional arrangement of memory elements. One of skill in the art will understand
that other configurations of memory elements in three dimensions will also constitute

a three dimensional memory array.

[0043] By way of non-limiting example, in a three dimensional NAND memory
array, the memory elements may be connected together to form a NAND string within
a single horizontal (e.g., x-z) plane. Alternatively, the memory elements may be
connected together to extend through multiple horizontal planes. Other three
dimensional configurations can be envisioned wherein some NAND strings contain
memory elements in a single memory level while other strings contain memory
elements which extend through multiple memory levels. Three dimensional memory

arrays may also be designed in a NOR configuration and in a ReRAM configuration.

[0044] A monolithic three dimensional memory array is one in which multiple
memory levels are formed above and/or within a single substrate, such as a

semiconductor wafer. In a monolithic three dimensional array the layers of each

-10 -



WO 2015/142513 PCT/US2015/018527

10

15

20

25

30

level of the array are formed on the layers of each underlying level of the array. One
of skill in the art will understand that layers of adjacent levels of a monolithic three
dimensional memory array may be shared or have intervening layers between
memory levels. In contrast, two dimensional arrays may be formed separately and
then packaged together to form a non-monolithic memory device. For example, non-
monolithic stacked memories have been constructed by forming memory levels on
separate substrates and adhering the memory levels atop each other. The substrates
may be thinned or removed from the memory levels before bonding, but as the
memory levels are initially formed over separate substrates, such memories are not
monolithic three dimensional memory arrays. Further, multiple two dimensional
memory arrays or three dimensional memory arrays (monolithic or non-monolithic)
may be formed separately and then packaged together to form a stacked-chip memory

device.

[0045] Associated circuitry is typically required for proper operation of the memory
elements and for proper communication with the memory elements. This associated
circuitry may be on the same substrate as the memory array and/or on a separate
substrate. As non-limiting examples, the memory devices may have driver circuitry

and control circuitry used in the programming and reading of the memory elements.

[0046] One of skill in the art will recognize that this invention is not limited to the
two dimensional and three dimensional exemplary structures described but cover all
relevant memory structures within the spirit and scope of the invention as described

herein and as understood by one of skill in the art.

[0047] FIG. 2 illustrates schematically a non-volatile memory cell. The memory cell
10 can be implemented by a field-effect transistor having a charge storage unit 20,
such as a floating gate or a dielectric layer. The memory cell 10 also includes a

source 14, a drain 16, and a control gate 30.

[0048] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may employ different types of

memory cells, each type having one or more charge storage element.

[0049] Typical non-volatile memory cells include EEPROM and flash EEPROM.
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Examples of EEPROM cells and methods of manufacturing them are given in United
States patent no. 5,595,924. Examples of flash EEPROM cells, their uses in memory
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,053, 5,313,421 and 6,222,762. In
particular, examples of memory devices with NAND cell structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also, examples of
memory devices utilizing dielectric storage element have been described by Eitan et
al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE
Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545, and in United
States patents nos. 5,768,192 and 6,011,725.

[0050] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate
of a cell, a corresponding conduction current with respect to a fixed reference control
gate voltage may be detected. Similarly, the range of charge programmable onto the
floating gate defines a corresponding threshold voltage window or a corresponding

conduction current window.

[0051] Alternatively, instead of detecting the conduction current among a partitioned
current window, it is possible to set the threshold voltage for a given memory state
under test at the control gate and detect if the conduction current is lower or higher
than a threshold current. In one implementation the detection of the conduction
current relative to a threshold current is accomplished by examining the rate the

conduction current is discharging through the capacitance of the bit line.

[0052] FIG. 3 illustrates the relation between the source-drain current Ip and the
control gate voltage V¢ for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time. The four solid Ip versus Vg curves represent
four possible charge levels that can be programmed on a floating gate of a memory
cell, respectively corresponding to four possible memory states. As an example, the
threshold voltage window of a population of cells may range from 0.5V to 3.5V.
Seven possible memory states “07, “17, “27, “37, “4” “5”  “6”, respectively

representing one erased and six programmed states may be demarcated by partitioning
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the threshold window into five regions in interval of 0.5V each. For example, if a
reference current, IREF of 2 pA is used as shown, then the cell programmed with Q1
may be considered to be in a memory state “1” since its curve intersects with Iggr in
the region of the threshold window demarcated by VCG = 0.5V and 1.0V. Similarly,

Q4 is in a memory state “5”.

[0053] As can be seen from the description above, the more states a memory cell is
made to store, the more finely divided is its threshold window. For example, a
memory device may have memory cells having a threshold window that ranges from
—1.5V to 5V. This provides a maximum width of 6.5V. If the memory cell is to store
16 states, each state may occupy from 200mV to 300mV in the threshold window.
This will require higher precision in programming and reading operations in order to

be able to achieve the required resolution.

[0054] FIG. 4A illustrates schematically a string of memory cells organized into an
NAND string. An NAND string 50 comprises of a series of memory transistors M1,
M2, ... Mn (e.g., n=4, 8, 16 or higher) daisy-chained by their sources and drains. A
pair of select transistors S1, S2 controls the memory transistors chain’s connection to
the external via the NAND string’s source terminal 54 and drain terminal 56
respectively. In a memory array, when the source select transistor S1 is turned on, the
source terminal is coupled to a source line (see FIG. 4B). Similarly, when the drain
select transistor S2 is turned on, the drain terminal of the NAND string is coupled to a
bit line of the memory array. Each memory transistor 10 in the chain acts as a
memory cell. It has a charge storage element 20 to store a given amount of charge so
as to represent an intended memory state. A control gate 30 of each memory
transistor allows control over read and write operations. As will be seen in FIG. 4B,
the control gates 30 of corresponding memory transistors of a row of NAND string
are all connected to the same word line. Similarly, a control gate 32 of each of the
select transistors S1, S2 provides control access to the NAND string via its source
terminal 54 and drain terminal 56 respectively. Likewise, the control gates 32 of
corresponding select transistors of a row of NAND string are all connected to the

same select line.

[0055] When an addressed memory transistor 10 within an NAND string is read or is
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verified during programming, its control gate 30 is supplied with an appropriate
voltage. At the same time, the rest of the non-addressed memory transistors in the
NAND string 50 are fully turned on by application of sufficient voltage on their
control gates. In this way, a conductive path is effective created from the source of
the individual memory transistor to the source terminal 54 of the NAND string and
likewise for the drain of the individual memory transistor to the drain terminal 56 of
the cell. Memory devices with such NAND string structures are described in United

States patent nos. 5,570,315, 5,903,495, 6,046,935.

[0056] FIG. 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A. Along each
column of NAND strings, a bit line such as bit line 36 is coupled to the drain terminal
56 of cach NAND string. Along each bank of NAND strings, a source line such as
source line 34 is couple to the source terminals 54 of ecach NAND string. Also the
control gates along a row of memory cells in a bank of NAND strings are connected
to a word line such as word line 42. The control gates along a row of select
transistors in a bank of NAND strings are connected to a select line such as select line
44. An entire row of memory cells in a bank of NAND strings can be addressed by
appropriate voltages on the word lines and select lines of the bank of NAND strings.
When a memory transistor within a NAND string is being read, the remaining
memory transistors in the string are turned on hard via their associated word lines so
that the current flowing through the string is essentially dependent upon the level of

charge stored in the cell being read.

[0057] FIG. 5 illustrates a page of memory cells, organized for example in the
NAND configuration, being sensed or programmed in parallel. FIG. 5 essentially
shows a bank of NAND strings 50 in the memory array 210 of FIG. 4B, where the
detail of each NAND string is shown explicitly as in FIG. 4A. A “page” such as the
page 60, is a group of memory cells enabled to be sensed or programmed in parallel.
This is accomplished by a corresponding page of sense amplifiers 212. The sensed
results are latches in a corresponding set of latches 214. Each sense amplifier can be
coupled to a NAND string via a bit line. The page is enabled by the control gates of
the cells of the page connected in common to a word line 42 and each cell accessible

by a sense amplifier accessible via a bit line 36. As an example, when respectively
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sensing or programming the page of cells 60, a sensing voltage or a programming
voltage is respectively applied to the common word line WL3 together with

appropriate voltages on the bit lines.

Physical Organization of the Memory

[0058] One important difference between flash memory and of type of memory is that
a cell must be programmed from the erased state. That is the floating gate must first
be emptied of charge. Programming then adds a desired amount of charge back to the
floating gate. It does not support removing a portion of the charge from the floating
to go from a more programmed state to a lesser one. This means that update data

cannot overwrite existing one and must be written to a previous unwritten location.

[0059] Furthermore erasing is to empty all the charges from the floating gate and
generally takes appreciably time. For that reason, it will be cumbersome and very
slow to erase cell by cell or even page by page. In practice, the array of memory cells
is divided into a large number of blocks of memory cells. As is common for flash
EEPROM systems, the block is the unit of erase. That is, each block contains the
minimum number of memory cells that are erased together. While aggregating a large
number of cells in a block to be erased in parallel will improve erase performance, a
large size block also entails dealing with a larger number of update and obsolete data.
Just before the block is erased, a garbage collection is required to salvage the non-

obsolete data in the block.

[0060] Each block is typically divided into a number of pages. A page is a unit of
programming or reading. In one embodiment, the individual pages may be divided
into segments and the segments may contain the fewest number of cells that are
written at one time as a basic programming operation. One or more pages of data are
typically stored in one row of memory cells. A page can store one or more sectors. A
sector includes user data and overhead data. Multiple blocks and pages distributed
across multiple arrays can also be operated together as metablocks and metapages. If
they are distributed over multiple chips, they can be operated together as megablocks

and megapage.

Examples of Multi-level Cell (“MLC”) Memory Partitioning
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[0061] A nonvolatile memory in which the memory cells each stores multiple bits of
data has already been described in connection with FIG. 3. A particular example is a
memory formed from an array of field-effect transistors, each having a charge storage
layer between its channel region and its control gate. The charge storage layer or unit
can store a range of charges, giving rise to a range of threshold voltages for each
field-effect transistor. The range of possible threshold voltages spans a threshold
window.  When the threshold window is partitioned into multiple sub-ranges or
zones of threshold voltages, each resolvable zone is used to represent a different
memory states for a memory cell. The multiple memory states can be coded by one
or more binary bits. For example, a memory cell partitioned into four zones can
support four states which can be coded as 2-bit data. Similarly, a memory cell
partitioned into eight zones can support eight memory states which can be coded as 3-

bit data, etc.

All-bit, Full-Sequence MLC Programming

[0062] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state
memory cells. FIG. 6(0) illustrates the population of memory cells programmable
into four distinct distributions of threshold voltages respectively representing memory
states “0”, “17, “2” and “3”. FIG. 6(1) illustrates the initial distribution of “erased”
threshold voltages for an erased memory. FIG. 6(2) illustrates an example of the
memory after many of the memory cells have been programmed. Essentially, a cell
initially has an “erased” threshold voltage and programming will move it to a higher
value into one of the three zones demarcated by verify levels vV, vV, and vVs. In
this way, each memory cell can be programmed to one of the three programmed state
“17, “2” and “3” or remain un-programmed in the “erased” state. As the memory gets
more programming, the initial distribution of the “erased” state as shown in FIG. 6(1)

will become narrower and the erased state is represented by the “0” state.

[0063] A 2-bit code having a lower bit and an upper bit can be used to represent each
of the four memory states. For example, the “0”, “1”, “2” and “3” states are
respectively represented by “117, “017, “00” and ‘10”. The 2-bit data may be read
from the memory by sensing in “full-sequence” mode where the two bits are sensed

together by sensing relative to the read demarcation threshold values rV,, rV, and rV;
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in three sub-passes respectively.

Bit-by-Bit MLC Programming and Reading

[0064] FIGs. 7A-7E illustrate the programming and reading of the 4-state memory
encoded with a given 2-bit code. FIG. 7A illustrates threshold voltage distributions
of the 4-state memory array when each memory cell stores two bits of data using the
2-bit code. Such a 2-bit code has been disclosed in US Patent Application No.
10/830,824 filed April 24, 2004 by Li et al., entitled “NON-VOLATILE MEMORY
AND CONTROL WITH IMPROVED PARTIAL PAGE PROGRAM
CAPABILITY”.

[0065] FIG. 7B illustrates the lower page programming (lower bit) in a 2-pass
programming scheme using the 2-bit code. The fault-tolerant LM New code
essentially avoids any upper page programming to transit through any intermediate
states. Thus, the first pass lower page programming has the logical state (upper bit,
lower bit) = (1, 1) transits to some intermediate state (x, 0) as represented by
programming the “unprogrammed” memory state “0” to the “intermediate” state
designated by (x, 0) with a programmed threshold voltage greater than DA but less
than Dc.

[0066] FIG. 7C illustrates the upper page programming (upper bit) in the 2-pass
programming scheme using the 2-bit code. In the second pass of programming the
upper page bit to “0”, if the lower page bit is at “1”, the logical state (1, 1) transits to
(0, 1) as represented by programming the “unprogrammed” memory state “0” to “1”.
If the lower page bit is at “0”, the logical state (0, 0) is obtained by programming from
the “intermediate” state to “3”. Similarly, if the upper page is to remain at “1”, while
the lower page has been programmed to “0”, it will require a transition from the
“intermediate” state to (1, 0) as represented by programming the “intermediate” state

to “2”‘

[0067] FIG. 7D illustrates the read operation that is required to discern the lower bit
of the 4-state memory encoded with the 2-bit code. A readB operation is first
performed to determine if the LM flag can be read. If so, the upper page has been

programmed and the readB operation will yield the lower page data correctly. On the
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be read by a readA operation.

[0068] FIG. 7E illustrates the read operation that is required to discern the upper bit
of the 4-state memory encoded with the 2-bit code. As is clear from the figure, the
upper page read will require a 3-pass read of readA, readB and readC, respectively

relative to the demarcation threshold voltages Da, Dy and De.

[0069] In the bit-by-bit scheme for a 2-bit memory, a physical page of memory cells
will store two logical data pages, a lower data page corresponding to the lower bit and

an upper data page corresponding to the upper bit.

Foggvy-Fine Programming

[0070] Another wvariation on multi-state programming employs a foggy-fine
algorithm, as is illustrated in FIG. 7F for a 3-bit memory example. As shown there,
this another multi-phase programming operation. A first programming operation is
performed as shown in the top line, followed the foggy programming stage. The
foggy phase is a full 3-bit programming operation from the first phase using all eight
of the final states. At the end of the foggy, though, the data in these states is not yet
fully resolved into well-defined distributions for each of the 8 states (hence, the

“foggy” name) and is not readily extractable.

[0071] As cach cell is, however, programmed to near its eventual target state, the sort
of neighboring cell to cell couplings, or “Yupin” effect, described in US patent
number 6,870,768 are presenting most of their effect. Because of this, when the fine
program phase (shown on the bottom line) is executed, these couplings have largely
been factored in to this final phase so the cell distributions are more accurately
resolved to their target ranges. More detail on these subjects is given in US patents
numbers 6,870,768 and 6,657,891 and in the US patent application entitled “Atomic
Program Sequence and Write Abort Detection” by Gorobets et al. having attorney
application number 12/642,740, which was filed December 18, 2009, and which

presents a “diagonal” first-foggy-fine method.

Binary and MLC Memory Partitioning
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[0072] FIG. 6 and FIG. 7 illustrate examples of a 2-bit (also referred to as “D2”)
memory. As can be seen, a D2 memory has its threshold range or window partitioned
into 4 regions, designating 4 states. Similarly, in D3, each cell stores 3 bits (low,
middle and upper bits) and there are 8 regions. In D4, there are 4 bits and 16 regions,
etc. As the memory’s finite threshold window is partitioned into more regions, the
resolution and for programming and reading will necessarily become finer. Two

issues arise as the memory cell is configured to store more bits.

[0073] First, programming or reading will be slower when the threshold of a cell must
be more accurately programmed or read. In fact in practice the sensing time (needed
in programming and reading) tends to increase as the square of the number of

partitioning levels.

[0074] Secondly, flash memory has an endurance problem as it ages with use. When
a cell is repeatedly programmed and erased, charges is shuttled in and out of the
floating gate 20 (see FIG. 2) by tunneling across a dielectric. Each time some
charges may become trapped in the dielectric and will modify the threshold of the
cell. In fact over use, the threshold window will progressively narrow. Thus, MLC
memory generally is designed with tradeoffs between capacity, performance and

reliability.

[0075] Conversely, it will be seen for a binary memory, the memory’s threshold
window is only partitioned into two regions. This will allow a maximum margin of
errors. Thus, binary partitioning while diminished in storage capacity will provide

maximum performance and reliability.

[0076] The multi-pass, bit-by-bit programming and reading technique described in
connection with FIG. 7 provides a smooth transition between MLC and binary
partitioning. In this case, if the memory is programmed with only the lower bit, it is
effectively a binary partitioned memory. While this approach does not fully optimize
the range of the threshold window as in the case of a single-level cell (“SLC”)
memory, it has the advantage of using the same demarcation or sensing level as in the
operations of the lower bit of the MLC memory. As will be described later, this
approach allows a MLC memory to be “expropriated” for use as a binary memory, or

vice versa. How it should be understood that MLC memory tends to have more
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stringent specification for usage.

Binary Memory and Partial Page Programming

[0077] The charge programmed into the charge storage element of one memory cell
produces an electric field that perturbs the electric field of a neighboring memory cell.
This will affect the characteristics of the neighboring memory cell which essentially is
a field-effect transistor with a charge storage element. In particular, when sensed the
memory cell will appear to have a higher threshold level (or more programmed) than

when it is less perturbed.

[0078] In general, if a memory cell is program-verified under a first field environment
and later is read again under a different field environment due to neighboring cells
subsequently being programmed with different charges, the read accuracy may be
affected due to coupling between neighboring floating gates in what is referred to as
the “Yupin Effect”. With ever higher integration in semiconductor memories, the
perturbation of the electric field due to the stored charges between memory cells

(Yupin effect) becomes increasing appreciable as the inter-cellular spacing shrinks.

[0079] The Bit-by-Bit MLC Programming technique described in connection with
FIG. 7 above is designed to minimize program disturb from cells along the same
word line. As can be seen from FIG. 7B, in a first of the two programming passes,
the thresholds of the cells are moved at most half way up the threshold window. The
effect of the first pass is overtaken by the final pass. In the final pass, the thresholds
are only moved a quarter of the way. In other words, for D2, the charge difference
among neighboring cells is limited to a quarter of its maximum. For D3, with three

passes, the final pass will limit the charge difference to one-eighth of its maximum.

[0080] However, the bit-by-bit multi-pass programming technique will be
compromised by partial-page programming. A page is a group of memory cells,
typically along a row or word line, that is programmed together as a unit. It is
possible to program non overlapping portions of a page individually over multiple
programming passes. However, owning to not all the cells of the page are
programmed in a final pass together, it could create large difference in charges

programmed among the cells after the page is done. Thus partial-page programming
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would result in more program disturb and would require a larger margin for sensing

accuracy.

[0081] In the case the memory is configured as binary memory, the margin of
operation is wider than that of MLC. In the preferred embodiment, the binary
memory is configured to support partial-page programming in which non-overlapping
portions of a page may be programmed individually in one of the multiple
programming passes on the page. The programming and reading performance can be
improved by operating with a page of large size. However, when the page size is
much larger than the host’s unit of write (typically a 512-byte sector), its usage will be
inefficient. Operating with finer granularity than a page allows more efficient usage

of such a page.

[0082] The example given has been between binary versus MLC. It should be
understood that in general the same principles apply between a first memory with a
first number of levels and a second memory with a second number of levels more than

the first memory.

LOGICAL AND PHYSICAL BLOCK STRUCTURES

[0083] FIG. 8 illustrates the memory being managed by a memory manager with is a
software component that resides in the controller. The memory 200 is organized into
blocks, each block of cells being a minimum unit of erase. Depending on
implementation, the memory system may operate with even large units of erase
formed by an aggregate of blocks into “metablocks” and also “megablocks”. For
convenience the description will refer to a unit of erase as a metablock although it will
be understood that some systems operate with even larger unit of erase such as a

“megablock” formed by an aggregate of metablocks.

[0084] The host 80 accesses the memory 200 when running an application under a
file system or operating system. Typically, the host system addresses data in units of
logical sectors where, for example, each sector may contain 512 bytes of data. Also,
it is usual for the host to read or write to the memory system in unit of logical clusters,
cach consisting of one or more logical sectors. In some host systems, an optional

host-side memory manager may exist to perform lower level memory management at
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the host. In most cases during read or write operations, the host 80 essentially issues a
command to the memory system 90 to read or write a segment containing a string of

logical sectors of data with contiguous addresses.

[0085] A memory-side memory manager 300 is implemented in the controller 100 of
the memory system 90 to manage the storage and retrieval of the data of host logical
sectors among metablocks of the flash memory 200. The memory manager comprises
a front-end system 310 and a back-end system 320. The front-end system 310
includes a host interface 312. The back-end system 320 includes a number of
software modules for managing erase, read and write operations of the metablocks.
The memory manager also maintains system control data and directory data
associated with its operations among the flash memory 200 and the controller RAM

130.

[0086] FIG. 9 illustrates the software modules of the back-end system. The Back-
End System mainly comprises two functional modules: a Media Management Layer

330 and a Dataflow and Sequencing Layer 340.

[0087] The media management layer 330 is responsible for the organization of logical
data storage within a flash memory meta-block structure. More details will be

provided later in the section on “Media management Layer”.

[0088] The dataflow and sequencing layer 340 is responsible for the sequencing and
transfer of sectors of data between a front-end system and a flash memory. This layer
includes a command sequencer 342, a low-level sequencer 344 and a flash Control
layer 346. More details will be provided later in the section on “Low Level System

Spec”.

[0089] The memory manager 300 is preferably implemented in the controller 100. It
translates logical addresses received from the host into physical addresses within the
memory array, where the data are actually stored, and then keeps track of these

address translations.

[0090] FIGs. 10A(i) — 10A(iii) illustrate schematically the mapping between a logical
group and a metablock. The metablock of the physical memory has N physical
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sectors for storing N logical sectors of data of a logical group. FIG. 10A(i) shows the
data from a logical group LG;, where the logical sectors are in contiguous logical
order 0, 1, ..., N-1. FIG. 10A(ii) shows the same data being stored in the metablock
in the same logical order. The metablock when stored in this manner is said to be
“sequential.” In general, the metablock may have data stored in a different order, in

which case the metablock is said to be “non-sequential” or “chaotic.”

[0091] There may be an offset between the lowest address of a logical group and the
lowest address of the metablock to which it is mapped. In this case, logical sector
address wraps round as a loop from bottom back to top of the logical group within the
metablock. For example, in FIG. 10A(iii), the metablock stores in its first location
beginning with the data of logical sector £&. When the last logical sector N-/ is
reached, it wraps around to sector 0 and finally storing data associated with logical
sector k-1 in its last physical sector. In the preferred embodiment, a page tag is used
to identify any offset, such as identifying the starting logical sector address of the data
stored in the first physical sector of the metablock. Two blocks will be considered to

have their logical sectors stored in similar order when they only differ by a page tag.

[0092] FIG. 10B illustrates schematically the mapping between logical groups and
metablocks. Each logical group 380 is mapped to a unique metablock 370, except for
a small number of logical groups in which data is currently being updated. After a
logical group has been updated, it may be mapped to a different metablock. The
mapping information is maintained in a set of logical to physical directories, which

will be described in more detail later.

FINDING READ DISTURBS

[0093] Due to capacitive coupling between memory cells on adjacent word lines,
voltage levels used while accessing data on one word line can affect data quality on
the neighboring word line, non-accessed word. This can occur in both write

3

operations, leading to “write disturbs”, and in read operation, leading to “read
disturbs”. There are a number of techniques are known for dealing with program
disturbs, including altering voltage ramp rates (see, for example, US patent number
6,717,851), altering the order in which word lines are written (see, for example, US

patent number 7,986,554), using foggy-fine algorithms (discussed above), or various
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post-write read verifications (see, for example, US patents and patent publication
numbers 8,634,240 and 2013-0028021). This section considers techniques for
determining word lines more likely to be suffering from a read disturbs, where reads
to a localized zone of the memory can cause undetected disturbances in neighboring

word lines within a block.

[0094] A number of approaches can be used to address this problem. One is to use
block read counters in RAM on the controller, which can give a fair approximation
when a block may become disturbed by reads.. This solution consumes a pretty fair
amount of memory space (at least 4 bytes per block times the number of blocks in the
system). In an SSD with 256K blocks, this can equate to about a 1MB of space to
track simple read counters, which is a significant amount of relatively expensive
controller RAM. Even when using this amount of RAM, a major problem with block
counters is that they do not provide the granularity to know which word lines caused
the problem and that the threshold is set extremely low. When the threshold for the
block trips, the whole block is scrubbed (i.e. copied), which leads to premature
cycling. With the scheme presented here, the system can detect specifically which
word line was read, moves that data and neighbor data, but can leave the rest of the

block intact.

[0095] Another approach is a read patrol (see US patents and patent publication
numbers 7,012,835; 7,477,547, 7,616,484; and 2009/0172258), ecither randomly or
serially sampling written blocks with valid data to look for read disturbs. This
method uses extra background power and may not find hot zones in time (as this is
dependent upon the amount of background time) or at all. The read patrol takes a
significant amount of time to get coverage of the full device. Also, the read patrol
itself contributes to the read disturb, the problem it is trying to solve. Reading
neighboring word lines periodically for host reads can help to detect potential read
disturbs, but adds additional power and latency to host operations. Additionally,
reading neighbor word lines is subject to noise error and becomes cumber in trying to

detect and identify hot read data addresses.

[0096] The exemplary embodiments presented here use a hash tree to track read zones

and find hot read arcas of the flash. The hash tree uses a small footprint of memory
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area and can provide more accuracy than a simple block counter, depending on the
tree’s design level. The hash tree can help isolate regions of the flash that the host is
reading. Depending on the embodiment, the tree can be designed to be tall or short,

with more branches or more singular, the tree can be symmetric or asymmetrical.

[0097] Initially, when the tree starts, only one level is used, level 0. Level 0 can be a
single set of N 4-byte counters. As a zone is hit by reads, the read counter is
incremented. When the zone reaches a certain threshold, the zone is elevated to level
1. When the zone is elevated to level 1, its space is broken into further zones in level
1. This provides more accuracy for detecting the hot space of a zone. A pointer can
be used to indicate which zones have been elevated. After a zone is elevated, its root
can still increment to help keep track of its read count. The threshold to eclevate can

be modified as the tree fills up.

[0098] The clevation of the zones can continue up the tree, where each level hash can
have one or more children nodes. Because space is limited in an embedded device,
when a different zone in a lower node becomes hotter, an eviction should take place at
some point so that the tree cannot grow without bounds. When an eviction happens,
the zone is collapsed down and a new zone is elevated in the tree for more analysis.
During an eviction the zone read count is still preserved, but the tree information is

lost.

[0099] The number of levels will depend on the implementation. As zones reach the
tree tips, and reaches the highest threshold, the zone can placed on a read patrol list
for further evaluation for read scrub. More detail on scrub, refresh, and patrol
operations can be found in US patents and patent publication numbers 7,012,835;

7,477,547, 7,616,484; and 2009/0172258.

[0100] To maintain the tree structure and level counts, periodically the tree and its
parameters can be saved to the non-volatile memory on the memory section. Then on
power up the table can be loaded from the non-volatile memory back to controller

RAM.

[0101] To avoid counter saturation, the tree can be pruned back by some amount

periodically. The pruning will occur with block erases, hot read data migration, and,
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alternatively, when certain hot count (number of erases) milestones are reached. This
process can be referred to as a “tree leveling”, where when the program/erase counter
reaches a certain level, the whole tree can be pared back. If the device is evenly wear
leveled, then all the blocks in the system shall vary in hot count by no more than
percentage variation. (More detail on where leveling is given in US patents and
patent publication numbers 7,353,325; 7,441,067; 7,120,729; and 2010-0174845.)
Using this knowledge, certain hot count checkpoints can be established to prune down
the tree. The pruning of the tree can be a global reset, or pairing the counters by a
percentage, or pairing the tree by a fixed amount. The tree can be pruned whenever
the stem threshold is crossed (causing a block, word line, logical group, or other

structure corresponding to that level’s zone to reach the scrub list).

[0102] When an area is detected hot, the hot area (and its neighboring word lines) can
either be refreshed to a new block (leaving the rest of the block intact), or the whole
block can be scrubbed. The hot data can either be refreshed to a separate zone, so as
to not trip the tree up as the reads continue, or it can just migrate naturally. If
migrating naturally then nothing special needs to be done in the event that a hot read
zone becomes cold. The separate zone for hot data can be managed in various ways
to reduce the resultant amount read disturbs. For example, the data can be stored in
binary format, use different margins, be stored with one or more unused word lines
between the word lines storing data, and so on. For any of these arrangements, the
detection of potential read disturbs can lead to the eviction of a partial block of data,
including the immediate neighbor word lines, or recycling of the entire block with
possible special handling of the hot read data. If the hot read data cools later, it can

rejoin the regular pool.

[0103] In one set of embodiments, after a zone is detected hot, and the neighbors are
checked and scrubbed, the hot data can be tracked logically using a separate table.
Tracking this data separately can provide the advantage of detecting when the data
becomes cold, and can help from having the same data trigger branching in the tree

after scrubbing. The hot data would still need to be tracked for future read disturbs.

[0104] If the tree is used to track the device physically and an erase occurs within a

zone, the read counters can be rolled back by a defined algorithm amount to account
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for the fact that a portion of that zone has been refreshed. Depending on the
embodiment and the level, a branch of the tree can represent a logical group (4KB, for
example), a die’s WL, a series of WLs, or a series of blocks. As erases occur on units
of blocks, the branch that represents that block would need to collapse down to the
block level if necessary. At the time of collapse, a new branch can be elevated or the

elevation can occur on the next read to that set.

[0105] As read disturbs are the result of operations on physically adjacent word lines,
the exemplary embodiments are based on tracking physical addresses of the zones at
cach level. An alternative embodiment is to have the tree track the addresses logically
instead of physically, with any writes to a zone/branch should have a decrementing

effect on the counters.

[0106] Some of these concepts are illustrated with respect FIGs. 11-13. FIG. 11 is a
schematic representation of the process for a two level example. Generally, level 0
zones can be die, portion of a die, number of blocks, and so on down to a group of
word lines. The zones at the highest level (level 1 in this example) can be as small as
individual word lines. (In this discussion, “zone” is not meant, or at least not
necessarily meant, to correspond to the sort of zone structure described in US patent
number 6,901,498, for example, but is being used more generally for physical
memory regions such as die, block, word line and soon.) In the example of FIG. 11
the level 0 zone is taken as some number of blocks and the level 1 zone is taken as

some fraction of the blocks of the level 0 zone.

[0107] At lower part of FIG. 11 are the level 0 counters 501, each of the read
counters corresponding to one or zones 0 to N. For example, counter 503 tracks the
number of times the blocks 505 of zone 0 are accessed for a read. In this example,
Zone 0's blocks are split into level 1 zones for further analysis, there can be several
level 1 counters. As shown to the left, when a counter reaches a threshold for the
level the corresponding zone’s block are moved up a level for further evaluation.
When a zone moves up in levels, the count can either be evenly distributed to its

subparts, reset to 0, or a separate master zone counter maintained.

[0108] At level 1, the elevated level 0 zone is sub-divided into a set of level 1 zones

with corresponding counters 511: for example, Zone A of blocks 515 is monitored
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using counter 513. The counters of level 1 are checked against the level’s threshold
and moved up as needed to the level or on a list for read scan, where, depending on
the implementation, the system can repeat the narrowing process to get down to a
group of blocks, a group of WLs, or even to the smallest read/write granularity as
based on the system’s ECC unit (referred to variously as a flash management unit,
FMU, a codeword, or ECC page). When a block is erased, and the block is at a higher
level (such as level 1 in FIG. 11), the zone can be shifted down a level. The
collapsing of elements can be based on the comparison of other counters, block
erasures, or as part of a tree levelling procedure. A collapsing of one branch can
cause division in another branch. The root nodes can be evaluated on a tree collapse,
or if no free zone counters are available, then the whole tree could be re-evaluated on
any collapse, where priority can be given to the zone with the highest counter or the

most recent counter.

[0109] From level 1, a zone Zone X with counter 521 is moved to the candidate list
for read scan to check for rad disturb effects. If this zone is narrowed down to a word
line or series of word lines, these can be placed on a “burning zone” list for frequently

accessed zones.

[0110] FIG. 12 looks the situation in more detail. At bottom is the sct of zone
counters for Level 0, where Zones 0-N can represent the entire plane, die, chip, or
device capacity. Based on the count values, as these reach the corresponding
thresholds the counters of the set can be partitioned into equal sized zones for level 1.
FIG. 12 shows the case when Q zones (two of which are shown) from level 0 have
been elevated to level 1, each subdivided into X zones with a corresponding counter.
For example, Zone 0 from level 0 is here broken into multiple smaller zones Zone A
to Zone A+X at level 1. The counters for the zones of level 1 are similarly used to
determine when to move a zone of level 1 to level. For example, Zone A+1 is here
broken into multiple (X again in this example) smaller zones in level 2. If, say, Zone
‘E+1’ then has a high count value, it can then be sent to the read scan to check for

read disturb effects.

[0111] FIG. 13 is similar to FIG. 12, but for a slightly different scenario. FIG. 13

shows two of the level 0 zones (zones 0 and N) each subdivided into a set of level 1
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zones, cach of which then has two zones (zones A+1 and A+X, zones B and B+1)
further split into sets of level 2 zones. A symmetrical hash tree may be easier for

firmware/hardware to maintain, although asymmetrical trees can be used as well.

[0112] For any of the embodiments, the techniques of this section can help to
determine locations of possible read disturbs with fewer reads to the device and less
use of power. Hot read zones can be found accurately with a smaller memory
footprint than in other counter solutions. This can help to avoid un-necessary

scrubbing of data and blind background patrolling.
Conclusion

[0113] The foregoing detailed description of the invention has been presented for
purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are
possible in light of the above teaching. The described embodiments were chosen in
order to best explain the principles of the invention and its practical application, to
thereby enable others skilled in the art to best utilize the invention in various
embodiments and with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the claims

appended hereto.
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IT IS CLAIMED:

1. A method of operating a non-volatile memory system having one or more
memory circuits and a controller circuit, the memory circuits each including one or
more arrays of non-volatile memory cells formed along word lines and the controller
circuit managing the storage of data on the memory circuit, the method comprising:

for each of a first plurality of distinct divisions of the one or more memory
arrays maintaining by the controller circuit a count of the number of times word lines
of the corresponding division is accessed for a read operation;

in response to one of the counts for a corresponding division reaching a first
threshold value, subdividing the corresponding division into a second plurality of
distinct first subdivisions; and

subsequently maintaining by the controller circuit for each of the first
subdivisions a count of the number of times word lines of the subdivision is accessed

for read operations.

2. The method of claim 1, further comprising;:

in response to one of the counts for a corresponding subdivision reaching a
second threshold value, further subdividing the corresponding subdivision into a third
plurality of distinct first sub-subdivisions; and

subsequently maintaining by the controller circuit for each of the first sub-
subdivisions a count of the number of times word lines of the sub subdivision is

accessed for read operations.

3. The method of claim 1, wherein the first plurality of distinct divisions were
previously formed by subdividing one of a plurality of structures formed of such

divisions in response to a number of accesses for read operations.

4. The method of claim 1, further comprising;:
in response to one of the counts for a corresponding subdivision reaching a
second threshold value, placing the corresponding one of the subdivisions a list of

subdivisions on which to perform a data scrub operation.

5. The method of claim 1, further comprising;:
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in response to one of the counts for a corresponding subdivision reaching a
second threshold value, performing a scrub operation on the corresponding one of the

subdivisions.

6. The method of claim 1, further comprising;:
in response to one of the counts for a corresponding subdivision reaching a
second threshold value, relocating the data from the corresponding one of the

subdivisions to a different location on the memory circuits.

7. The method of claim 6, wherein the different location on the memory

circuits is reserved by the controller circuit for frequently accessed data.

8. The method of claim 7, wherein the location reserved by the controller
circuit for frequently accessed data is managed differently by the controller circuit

than other portions of the memory circuits.

9. The method of claim 8, wherein data is stored in a binary format in the

location reserved for frequently accessed data.

10. The method of claim 8, wherein data is stored on non-adjacent word lines

in the location reserved for frequently accessed data.

11. The method of claim 7, wherein the relocated data is subsequently evicted
from the location reserved for frequently accessed data in response to determining that

the frequency of being accessed for the relocated data is decreased.
12. The method of claim 6, wherein the data relocated includes one or more
frequently accessed word lines and one or more word lines adjacent the frequently

accessed word lines.

13. The method of claim 6, wherein the relocating the data from the

corresponding one of the subdivisions includes the relocation of an entire erase block.
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14. The method of claim 1, wherein the controller circuit includes a volatile

memory in which are maintained the values of the counts.

15. The method of claim 14, wherein the controller circuit periodically saves

the count values to non-volatile memory on the memory circuits.

16. The method of claim 15, wherein on power up, the controller circuit loads
the count values saved in non-volatile memory into the volatile memory on the

controller circuit.

17. The method of claim 1, wherein the memory circuits are flash memory

circuit and the divisions correspond to a plurality of erase blocks.

18. The method of claim 1, wherein the memory circuits are flash memory

circuit and the subdivisions correspond to a plurality of erase blocks.

19. The method of claim 1, wherein the memory circuits are flash memory

circuit and the divisions correspond to an erase blocks.

20. The method of claim 1, further comprising:
subsequently discontinuing of the maintaining by the controller circuit for one
or more of the first subdivisions the count of the number of times word lines of the

subdivision is accessed for read operations.

21. The method of claim 20, wherein the discontinuing is in response to the
value of the counts being discontinued relative to others of the counts of the first

subdivision.

22. The method of claim 20, wherein the discontinuing is in response to the

corresponding division being erased.

23. The method of claim 20, wherein the discontinuing is in response to the

number of counts being maintained.
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24. The method of claim 1, wherein the memory circuits are flash memory

circuit and the subdivisions correspond to an erase blocks.

25. The method of claim 1, wherein the divisions correspond to a set of word

lines.

26. The method of claim 1, wherein the subdivisions correspond to a set of

word lines.

27. The method of claim 1, wherein the memory circuits include a plurality of

dies and the divisions correspond to a die.

28. The method of claim 1, wherein the arrays are of a NAND-type of

architecture.

29. The memory of claim 1, wherein the arrays are of an architecture having a
three dimensional memory array that is monolithically formed as a plurality of
physical levels of memory cells, a physical level having an active layer disposed
above a silicon substrate, the memory cells in communication with operating

circuitry.
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