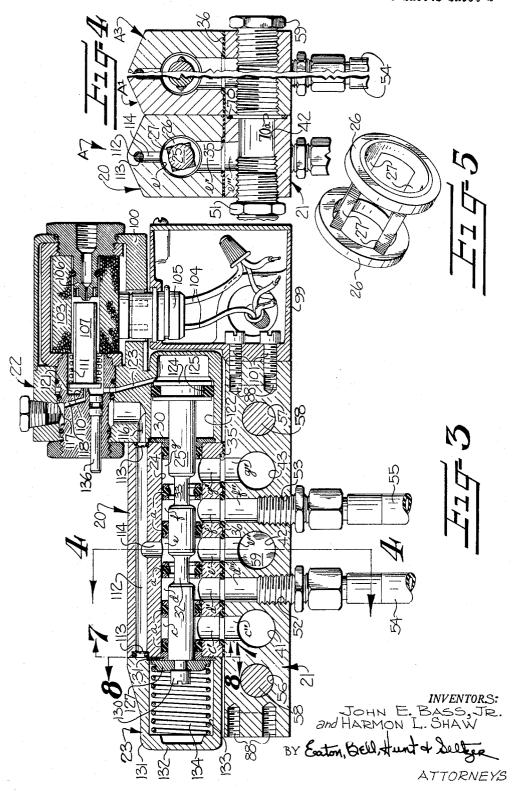

STACK VALVE ASSEMBLIES WITH INTERCHANGEABLE COMPONENTS

Filed Oct. 9, 1963


5 Sheets-Sheet 1

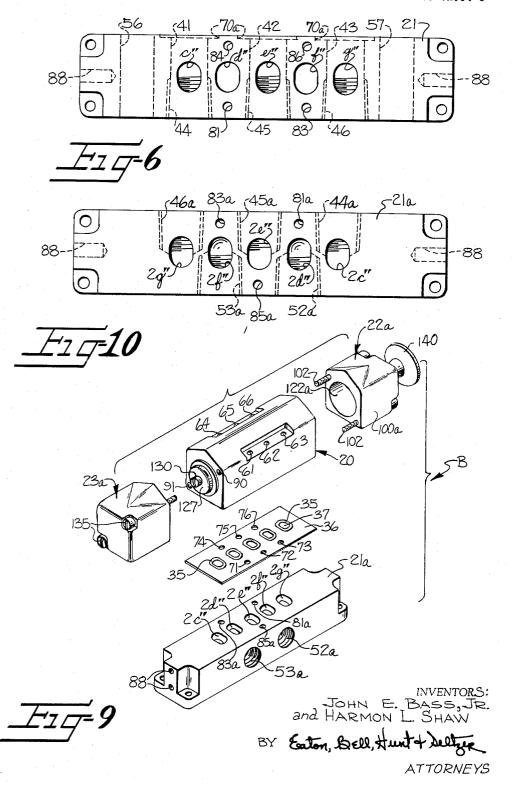
STACK VALVE ASSEMBLIES WITH INTERCHANGEABLE COMPONENTS

Filed Oct. 9, 1963

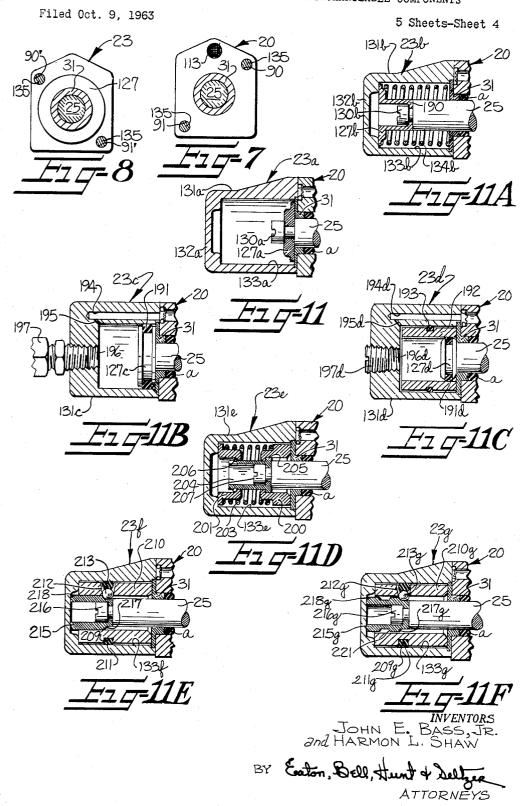
5 Sheets-Sheet 2

Nov. 2, 1965

J. E. BASS, JR., ETAL


3,215,158

লাভূ প্রাৰ্থ প্রায়ন্ত্র প্রায়েশ প্রায়েশ স্থানের


STACK VALVE ASSEMBLIES WITH INTERCHANGEABLE COMPONENTS

Filed Oct. 9, 1963

5 Sheets-Sheet 3

STACK VALVE ASSEMBLIES WITH INTERCHANGEABLE COMPONENTS

ATTORNEYS

STACK VALVE ASSEMBLIES WITH INTERCHANGEABLE COMPONENTS

Filed Oct. 9, 1963 5 Sheets-Sheet 5 163 22c -100c BY Eaton, Bell, Hunt + Julyer

1

3,215,158
STACK VALVE ASSEMBLIES WITH INTER-CHANGEABLE COMPONENTS
John E. Bass, Jr., and Harmon L. Shaw, Charlotte, N.C., assignors to Perfecting Service Company, Charlotte, N.C., a corporation of North Carolina
Filed Oct, 9, 1963, Ser. No. 315,017
3 Claims. (Cl. 137—269)

This invention relates to slide valves of the type characterized by axially movable pistons or valve cores, the axial shifting of which effects a change in the direction of flow of a fluid medium therethrough.

Many different types of slide valves have been devised heretofore which have included many parts which had 15 to be assembled at the site of use thereof. During such assembling, care had to be taken to ascertain the intended relative positions of the parts so they could be secured together and would function properly. Also, the prior types of slide valves have been devised for specific purposes and for operation by individual specific means.

It is an object of this invention to provide an improved universal interchangeable slide valve assembly which has greater flexibility of use and is more readily commercially produced and assembled at its site of use than 25 known prior art types of slide valve assemblies and which may be used individually or may be readily stacked in juxtaposed relation with like assemblies.

It is a more specific object of this invention to provide a slide valve assembly of the type described comprising 30 an elongate base adapted to have any fluid-conveying conduits of a fluid system attached thereto and wherein a valve body is secured to the base and is arranged to control the flow of fluid through the base, there being various intercommunicating passageways in the body and the base which are symmetrically arranged in such a manner that the body may extend in either longitudinal direction relative to and parallel to the base and cooperating passageways will still be communicatively alined. Symmetrically located fastener-receiving holes are also 40 provided in the base and the valve body, for the reception of screws therein, for securing the base and body together and facilitating interchangeability of the valve body with other like valve bodies.

It is still another object of this invention to provide a universal interchangeable valve assembly of the type described with a plurality of different types of valve-operating units adapted to be interchangeably secured to each end of the elongate valve body and wherein the different valve-operating units include means for shifting the valve core longitudinally within the elongate valve body.

Another object of the invention is to provide a valve assembly of the character described in which the width of the base is at least equal to or greater than the width of the valve body and in which ports extend transversely through the base to permit stacking the valve assembly in juxtaposed parallel relation with like valve assemblies.

The valve assembly of this invention is particularly devised for ease of maintenance, and quick and convenient modular replacement. The quick replacement of any malfunctioning subassemblies with like, properly functioning, subassemblies in accordance with this invention is a very important factor in automation. Heretofore, there have been instances in which an entire assembly line used in producing a given product had to be shut down for a considerable period of time during the replacement of malfunctioning parts of a valve assembly or during replacement of a complete valve assembly. On the other hand, the various subassemblies of the valve assembly of this invention may be replaced easily and quickly; with very nearly the facility of plug-

2

ging an electrical plug into the socket of an electrical receptacle, and within a fraction of the time which would be required to replace an entire valve assembly of conventional construction or to replace individual worn or damaged parts thereof, thus greatly contributing to economy of production in an assembly line.

Some of the objects of the invention having been stated, other objects will appear as the description proceeds, when taken in connection with the accompanying drawings, in which—

FIGURE 1 is a perspective view of a bank or stack of valve assemblies embodying a first form of the invention;

FIGURE 1A is a top plan view of one of the symmetrical valve bodies showing the fastener-receiving holes therein for the reception of screws to secure the same to a corresponding base;

FIGURE 2 is an enlarged transverse vertical sectional view taken substantially along line 2—2 in FIGURE 1;

FIGURE 3 is a longitudinal vertical sectional view through one of the valve assemblies taken substantially along line 3—3 in FIGURE 2 and showing details of two types of valve-operating units connected to opposite ends of the valve body;

FIGURE 4 is a fragmentary transverse vertical sectional view taken substantially along line 4—4 in FIGURE 3:

FIGURE 5 is a perspective view of one of the spacer elements or cages positioned in the longitudinal bore of the valve body of FIGURE 3;

FIGURE 6 is a top plan view of the valve base upon which the valve body is mounted in FIGURE 3;

FIGURES 7 and 8 (Sheet 4) are views of one end of one of the valve-operating units and the corresponding end of the valve body taken substantially along the respective lines 7—7 and 8—8 in FIGURE 3 and showing the arrangement of the fastener-receiving or screw holes therein;

FIGURE 9 (Sheet 3) is a partially exploded perspective view of a second form of valve assembly according to the present invention having a different type of base from that of the first form of the invention shown in FIGURES 1-6, and showing two other types of valve-operating units in association therewith;

FIGURE 10 is a top plan view of the valve base shown in FIGURE 9;

FIGURES 11 through 11F (Sheet 4) and 12 through 12E (Sheet 5) are longitudinal vertical sectional views of other types of valve-operating units which may be interchangeably connected to either end of the valve body in place of the valve-operating units shown in FIGURE 3.

Referring more specifically to the drawings, the first embodiment of the invention shown in FIGURES 1-8 includes a stack or bank of slide valve assemblies, each of which is shown as being of the same construction, although they may differ from each other in some respects as will be later explained. In this instance, there are four valve assemblies shown in FIGURES 1 and 2, indicated at A, A¹, A², A³, and only one of which will be described in detail, with like parts of each assembly being provided with the same reference characters, where applicable, to avoid repetitive description.

Essentially, each valve assembly A-A³ comprises an elongate valve body or housing 20, an elongate complementary base or block 21, a primary valve-operating control unit 22, and an auxiliary valve-operating unit 23. The valve body 20 is of elongate symmetrical construction and has a longitudinally extending bore 24 therein within which a spool valve core or piston 25 is mounted for longitudinal or axial sliding movement by means of a plurality of resilient O-rings a (FIGURE 3) which are held in spaced relationship by a plurality of spacing ele-

ments or cages b arranged in axial alinement. As shown in FIGURE 5, each cage is of open construction; i.e., each spacing element b includes a pair of end flanges or rings 26 which are interconnected by ribs or bars 27 of relatively small cross-sectional area. The spacer elements 5 b may be cast or molded from a suitable plastic mate-

Opposed ends of valve bore 24 are partially closed by plates 30, 31 which bear against the corresponding endmost O-rings a and which are slidably penetrated by 10valve core 25. Plates 30, 31 are held against opposed ends of valve body 20 by the corresponding operating units 22, 23.

The O-rings a and the flanges 26 of the spacer elements b divide the longitudinal valve bore 24 into five chambers 15 c-g. The valve core 25 is provided with a pair of spaced reduced neck portions 32, 33 which are so spaced and which are of such length relative to the axial length of chambers c-g that each of them establishes communication between an adjacent pair of said chambers when 20 valve core occupies one extreme position or another extreme position in the opposite direction. When the valve core 25 occupies an intermediate or neutral position, it prevents communication between any two of the adjacent chambers c-g.

From the standpoint of economy of production of the valve assembly as well as from a standpoint of assembly both at the time of manufacture of the valve assemblies and at the time of partial assembly or installation thereof at the site at which the valve assembly or assemblies 30 are to be used, it is an important feature of the present invention to provide the valve body 20 and the valve base 21 with passageways which are arranged symmetrically with respect to a first line extending transversely of of the valve body as well as with respect to a second line extending longitudinally of the valve body. This not only insures that valve bodies and bases, such as 20 and 21, may be manufactured identically as is desirable in the manufacture of any production item, but it facili- 40 tates the interchangeability of different valve bodies with different bases and permits the assembly of the valve body 20 with the valve base 21 regardless of which direction the valve body 20 may extend longitudinally with respect to the base 21. Also, in order to further facilitate the attachment of the valve body 20 to the base 21 and to facilitate stacking any desired number of the valve assemblies in juxtaposed side-by-side relationship, the elongate valve body 20 has a transverse width no greater than the width of the base.

The symmetrically arranged radial passageways in the valve body 20 of FIGURE 3 are indicated at c'-g' and their upper ends communicate with the respective chambers c-g formed in the longitudinally extending bore 24. The passageways c'-g' extend downwardly to the flat bottom surface of the valve body 20 and are suitably enlarged for receiving therein corresponding resilient O-ring portions 35 of a cast or molded resilient gasket 36 of the present invention and upon which the valve body 20 is positioned. Each O-ring portion defines a hole 37 through gasket 36, as shown in FIGURE 9. It is to be understood that conventional types of resilient O-rings may be substituted for the gasket, if desired.

In this instance, the centermost radial passageway e is located halfway between longitudinally opposed ends of valve body 20. The passageways d', f', and passageways c', g', are located equidistantly, respectively, from opposed sides of the passageway e' so that the passageways c'-g' are longitudinally spaced symmetrically with respect to a line halfway between longitudinally opposed ends of the valve body 20.

The base 21 of FIGURE 3 also has a plurality of vertically extending passageways c''-g'' extending downwardly 4

with the respective passageways c'-g' in the bottom of valve body 20.

Each valve body 20 is constructed so as to be used interchangeably with each base 21, and the valve bodies 20 are also constructed so each of them may be used interchangeably with a base of the type indicated at 21a in association with the valve assembly B shown in FIG-URE 9. Since the valve body and the valve core associated with the second form of the invention in FIGURE 9 are substantially the same as the valve bodies 20 and valve cores 25 in FIGURES 1-5 and 7, the valve body and core in FIGURE 9 shall bear the same reference characters, where applicable, as are applied to the valve bodies and valve cores in FIGURES 1-5 and 7.

The base 21a shown in FIGURES 9 and 10 is inter-Therefore, changeable with any one of the bases 21. base 21 may be termed as a primary base and base 21a may be termed as an auxiliary base. The primary bases 21 (FIGURES 1, 2, 3, 4 and 6 are particularly devised to accommodate the stacking of two or more of the valve assemblies, such as A through A3, in side-by-side juxtaposed relation, so as to control the flow of fluid from a common source to two or more independent fluidoperated devices. On the other hand, the auxiliary base 21a (FIGURES 9 and 10) is particularly devised for use in instances in which only a single valve assembly is required. Thus, as much of the description as has already been given for the primary base 21 also applies to the auxiliary base 21a and those elements of the base 21a which are identical to elements of the base 21 shall bear the same reference characters with the prefix "2" added, for purposes of comparison and to avoid repetitive description.

As best shown in FIGURES 3 and 6, the primary base and located halfway between longitudinally opposed ends 35 21 also is provided with three laterally extending fluid conducting or conveying ports 41, 42 and 43 which extend all the way through the base 21 and whose medial portions communicate with the respective passageways c''e", g". For purposes of description only, the transverse ports 41, 43 may be termed as exhaust ports and port 42 may be termed as a supply port. It should be noted that the axes of passageways e" and port 42 intersect each other and the axes of the ports 41, 42 are spaced equidistantly from opposed sides of the axis of the centrally located port 42. Corresponding ends of all the ports 41-43 are internally threaded or tapped, as at 44, 45, 46, so that corresponding ends of pipes or conduits may be threadedly connected thereto. All the ports 41-43 are spaced the same distance below the flat upper surface of base 21.

In this instance, a fluid inlet conduit or pipe 50 has its coupling 51 threaded into the threaded portion 45 of the port 42 of that base 21 associated with the valve assembly A in FIGURE 1. The ports 41, 43 simply serve as exhaust ports, in alternation, when the apparatus is used for controlling the flow of air. Of course, if the apparatus is to be used for controlling the flow of liquid, the threaded ends 44, 46 of the base 21 associated with valve assembly A may have suitable fluid return conduits, not

shown, threadedly connected thereto.

Although the lower ends of passageways c", e", g" terminate at their juncture with the transverse ports 41, 42, 43, it will be observed in FIGURE 3 that the passageways d'', f'' extend all the way through the block or base 65 21 and have their lower portions threaded or tapped, as at 52, 53, for the reception of the threaded upper ends or fittings of a corresponding pair of service conduits 54, 55. The threaded lower portions 52, 53 of the vertical passageways d'', f'' may be termed as service ports. Two of the service conduits 54, 55 are connected to and extend downwardly from each of the bases 21 of assemblies A-A³ in the same manner as that shown in FIGURE 3, and each pair of conduits 54, 55 may be connected to a separate fluid-operated device, such as a double-acting or from the flat upper surface thereof and which register 75 single-acting cylinder, a hydraulic motor, an air motor, or the like. One of the service conduits 54, 55 may be omitted if the fluid-operated device is in the form of a single-acting cylinder.

Opposed end portions of each base 21 are provided with transverse connector holes 56, 57 therethrough (FIGURES 3 and 6) which are also spaced equidistantly from the transverse center line of the fluid conveying port 42 to facilitate interconnecting a plurality of the bases 21 in side-by-side juxtaposed relation as shown in FIGURE 2. It will be observed in FIGURE 2 that, when a plurality of the bases 21 are disposed in side-by-side juxtaposed relation, the corresponding connector holes 56, 57 have a series of connector shafts therein, each of which is indicated at 58 and each of which is of a length no greater than, and preferably less than, the width of each base 21. 15 It is apparent that all the connector holes 56, 57 are spaced the same distance below the flat upper surface of base 21. Since all the bases 21 have their fluid conveying ports 41-43 threaded at one end only thereof, the bases 21 associated with the assemblies A, A¹, A² have the threaded ends of all the fluid conveying ports 41, 42, 43 thereof facing in the same direction. However, the endmost base 21 opposite from the inlet conduit 50 is turned end-for-end with respect to the remaining bases 21 so that both ends of the stack or bank of valve assemblies A-A3 will have threaded portions 44-46 of the transverse fluid conveying ports 41-43 exposed for reception of the threaded ends of corresponding conduits or for the reception of suitable threaded plugs, such as the plug 59 shown in FIGURE 4, as desired. It should be noted that the plug 59 of FIGURE 4 closes that end of the port 42 of the base 21 associated with valve assembly A³ opposite from that end of the port 42 of the base 21 of valve assembly A to which the conduit 50 is connected. Thus, conduit 50 then communicates with all the cen- 35 trally located passageways e'' in all the bases 21 (FIG-URE 3).

Now, since the base 21 of assembly A³ is turned endfor-end with respect to the bases 21 of the assemblies A, A¹, A², it will be observed in FIGURE 2 that the connecting hole 56 of the base 21 of valve assembly A³ is alined with the connector holes 57 in the remaining bases 21. This is one reason why it is important that each base 21 is formed symmetrically or that at least the passageways, holes and/or ports therein are formed symmetrically with 45 respect to a given transverse line about midway of the length of each base 21 and with respect to a longitudinal line corresponding substantially to, and extending parallel with, the axis of the valve core 25 thereabove.

All of the connector holes 56, 57 in the bases 21 should 50 be of substantially the same diameter so that all the connector shafts 58 may also be of substantially the same diameter so as to be slidably received in the corresponding holes 56, 57. Each of the connector shafts has an internally threaded bore 58a in one end thereof (FIG- 55 URE 2) and a reduced externally threaded portion 58b on the other end thereof so that adjacent ends of adjacent shafts 58 are interconnected by threading the externally threaded portion of each shaft 58 into the internally threaded bore 58a of any adjacent shaft 58 im- 60 mediately adjacent the same. Of course, one of the endmost shafts 58 then has its externally threaded portion 58b extending outwardly beyond the outer surface of the corresponding base 21 while the shaft 58 at the other end of the corresponding series has its internally 65 threaded bore 58a exposed adjacent the outer surface of the opposite base 21.

Accordingly, one of the two endmost shafts 58 (FIG-URE 2) has a nut N threaded thereon and engaging the outer surface of the corresponding adjacent outermost base 21 and being threaded onto the corresponding reduced threaded portion 58b. The other endmost shaft 58 has a screw S threaded thereinto and engaging the outer surface of that base 21 which is most remote from the outer surface of the base 21 engaged by the nut N, thus 75 ports 52a, 53a.

securely fastening all of the bases and the remaining portions of the corresponding assemblies $A,\,A^3$ together.

From the foregoing description, it is apparent that. when several of the bases 21 are secured together in the aforesaid manner, all the transverse ports 41 are in alinement with each other, all of the transverse ports 42 are in alinement with each other, and all of the transverse ports 43 are in alinement with each other so that, in effect, three composite ports or channels are formed throughout the group of valve assemblies. If the fluid medium to be controlled by the valve assemblies A-A3 is air, both ends of the passageways formed by the respective series of ports 41, 43 may remain open. However, if the fluid medium is liquid or may not be exhausted into the atmosphere, either end of each of the composite passageways formed by the alined transverse ports 41, 43 may be closed by a plug similar to the plug 59 and the other end thereof may have a return line connected thereto in the manner heretofore described. In 20 the latter instance, base 21 of assembly A3 may be turned end-for-end relative to the other bases 21.

In either event, in order to prevent the leakage of fluid between the adjacent bases 21 at the junctures of adjacent transverse ports 41, 42, 43, a resilient O-ring 70 is provided between each adjacent pair of bases 21 at the juncture of each adjacent pair of transverse ports 41-43. It will be observed in FIGURES 4 and 6 that a shallow circular recess 70a is formed in the side of each base 21 opposite from that side which has the threaded portions 44-46 therein and which is substantially concentric with each of the transverse ports 41-43. The depth of each recess 70a should be less than half the thickness of the corresponding O-ring 70 so as to provide an effective seal between adjacent bases 21 at the adjacent transverse ports 41-43. When base 21 of assembly A3 is turned end-forend relative to the other bases (FIGURE 4), it is apparent that two O-rings 70, or a double-thickness O-ring, may be provided in the recesses 70a then facing each other.

As heretofore stated, when only a single valve assembly is required, the auxiliary base 21a (FIGURES 9 and 10) is substituted for a corresponding base 21. The auxiliary base 21a differs from the first form 21 in that the various ports which are adapted to have fluid conveying conduits connected thereto do not extend all the way through the base 21a as is the case with respect to the ports 41-43 of each base 21 (FIGURES 1, 2, 3, 4 and 6).

As best shown in FIGURE 10, one side of auxiliary base 21a is provided with three internally threaded transverse ports 44a, 45a, 46a which are of sufficient depth only to insure that they properly communicate with the respective passageways 2c", 2e", 2g". The other side of auxiliary base 21a is provided with two internally threaded transverse ports 52a, 53a which are also of sufficient depth only to insure that they properly communicate with the respective passageways 2d", 2f". It should be noted that none of the ports 44a-46a, 52a, 53a extend entirely through the auxiliary base 21a and none of them communicate with others of the transverse ports in base 21a.

When the auxiliary base 21a is used in place of any one of the bases 21, the two service conduits 54, 55 may be connected to the ports 52a, 53a and the fluid inlet conduit 50 may be connected to the centrally located port 45a so that either of the bases 21, 21a may be used interchangeably with any one of the valve bodies 20.

It is important to note that the ports 44a, 45a, 46a, 52a, 53a are arranged in symmetrical relationship with respect to a transverse line approximately halfway between opposite ends of base 21a; i.e., the port 45a is located at a point substantially halfway between opposed ends of auxiliary base 21a, the ports 52a, 53a are located equidistantly either side of the axis of the port 45a and the ports 44a, 46a are also located equidistantly from opposed sides of the port 45a, but are spaced further apart than the ports 52a, 53a.

In order to facilitate securing each valve body 20 to either base 21 or 21a, opposed side portions of each valve body 20 are provided with a plurality of equally spaced symmetrically arranged fastener-receiving holes (FIG-URE 1A), the fastener-receiving holes being arranged in rows which straddle the longitudinal bore 24 (FIGURE 3) through each valve body 20. In this instance, three fastener-receiving holes are provided in each row adjacent each side of the valve body 20, the holes in one such row being indicated at 61, 62, 63 and the holes in 10 the other row being indicated at 64, 65, 66. The centermost holes 62, 65 in each valve body 20 are located at a point halfway between longitudinally opposed ends of

The holes 61, 63 are transversely alined with respect 15 to the holes 64, 66, but the distance between the holes 61, 63 and 64, 66 is greater than the maximum diameter of the central ports 45, 45a in the respective bases 21, 21a and the distal edges thereof are spaced closer together than the distance between the proximal surfaces of the 20 ports 44, 46 and 44a, 46a of the bases 21, 21a. The fastener-receiving holes 61-66 are also spaced equidistantly from a line extending longitudinally of the body 20 (FIG-URES 1A and 9).

The fastener-receiving holes 61-66 in each body 20 are 25 arranged in the aforesaid manner so as to insure that each valve body may be fastened to either base 21 or 21a at a plurality of points so as to insure a tight seal between each valve body and the corresponding base. In this connection, it will be noted that the gasket 36 is also provided with two rows of fastener-receiving holes, each row of which includes three holes which are spaced so as to register with the holes 61-66 in each valve body 20. The holes in the gasket 36 corresponding to the holes 61-66 in valve body 20 are indicated at 71-76, respectively, 35 in FIGURE 9.

It is apparent that the gasket 36 may be positioned in either longitudinal direction with respect to the corresponding valve body 20, since the holes 71-76 therein are symmetrically arranged. In other words, the holes 74-76 may be alined with the respective holes 63, 62, 61 and the holes 71-73 may be alined with the respective holes 66, 65, 64 with equal facility. Referring to FIG-URE 6, it will be observed that the primary base 21 has four internally threaded fastener-receiving holes 81, 83, 45 84, 86 therein symmetrically arranged so they may register with the respective holes 61, 63, 64, 66 in the corresponding valve body 20 or they may register with the respective holes 66, 64, 63, 61 with equal facility so that fasteners in the form of screws 87 (FIGURE 1) may be inserted through the holes 61, 63, 64, 66 in body 20 and holes 71, 73, 74, 76 in gasket 36 and threaded into the corresponding holes 81, 83, 84, 86 in a corresponding primary base 21 for securing each valve body 20 to the first form of valve base 21.

Referring to FIGURE 10, it will be observed that the second form of valve base 21a also has internally threaded fastener-receiving holes 81a, 83a, 85a therein symmetrically arranged with respect to the row of passages 2c''-2g''and spaced so as to register with either the three holes 60 61, 63, 65 or the three holes 64, 66, 62 in the corresponding valve body 20, depending upon which longitudinal direction the valve body 20 may be positioned on the base 21a. Of course, once a valve body is positioned upon auxiliary valve base 21a, suitable screws, identical to the screws 87 in FIGURE 1, for example, may be positioned in the corresponding holes 61, 63, 65, or 64, 66, 62, as the case may be, and in corresponding holes in gasket 36, and their ends may be threaded into the corresponding holes \$1a, \$3a, \$5a in base 21a.

It is thus seen that all the valve bodies 20, the gaskets 36, and the bases 21, 21a may be used interchangeably in forming multiple or single valve assemblies. Opposed ends of both bases 21, 21a are each provided with a pair URES 3, 6, 9 and 10) to accommodate securing to either end of either base 21 or 21a a form of primary valveoperating control unit to be later described. Each end of each valve body 20 is provided with a pair of diagonally opposed internally threaded holes $\hat{90}$, 91 therein which are spaced equidistantly from the axis of the corresponding valve core 25.

8

Holes 90, 91 are provided to facilitate interchangeably securing various types of valve-operating units, including a portion of the aforementioned primary valve-operating unit mentioned heretofore, to either or both ends of each valve body 20. There are many different types of valveoperating units to be later described which may be connected to opposed ends of the valve bodies 20, depending upon the purpose for which the resultant valve assem-

The primary and auxiliary valve-operating units shown connected to opposed ends of the valve body 20 in FIG-URES 1, 2 and 3 will now be described.

blies are to be used.

Each primary valve-operating control unit 22 comprises two casings 99, 100 of built-up construction. The lower casing 99 serves an an electrical wire terminal box and is secured to one end of the corresponding base 21 by means of a pair of screws 101 threaded into the corresponding pair of holes 88. Casing 100 is a composite control casing secured to one end of the corresponding valve body 20 as by screws 102, only one of which is shown in FIGURE 1 (see FIGURE 2), and which are, of course, threaded into the corresponding holes 90, 91 (FIGURE 7) in one end of the body of assembly A.

The upper outer portion of each casing 100 (FIGURE 3) has a solenoid coil 103 therein to opposed ends of which electrical conductors 104 are connected through the medium of an electrical connector 105 fixed in the upper wall of casing 99. The conductors 104 associated with the coil 103 of each primary valve-operating unit 22 may be connected to a source of electrical energy through a separate switch means, not shown, as desired.

The coil 103 surrounds a tubular exhaust valve 106 and a portion of a solenoid plunger 107 normally biased away from valve 106 and toward an inlet valve or orifice 110 by a compression spring 111. Each valve body 20 has a longitudinally extending channel 112 in its upper portion whose opposed ends are preferably provided with small screens or filters 113 therein and whose central portion communicates with the chamber e through the medium of a radial passage 114. In FIGURE 3, channel 112 is shown alined with a passage 116 in the control casing 100 of valve-operating unit 22. Passage 116 communicates with an annular chamber 117 formed in each casing 100 (FIGURE 2). Annular passage 117 also communicates with a port 118 which opens at valve 110.

Valve 110 opens into a chamber 121 within which one end of solenoid plunger 107 and its spring 111 are positioned. Chamber 121 communicates with a cylindrical chamber or cylinder 122 by means of a passage 123. Cylindrical chamber 122 has a piston 124 therein which carries an annular seal or O-ring 125 for engaging the inner surface of cylindrical chamber 122. Piston 124 bears against and need not be secured to or formed integral with the corresponding end of valve core 25.

The other end of valve core 25 in FIGURE 3 has a disk 127 suitably secured thereto, as by a screw 130. Disk 127 is a part of the auxiliary valve-operating unit 23, the housing of which is indicated at 131 and is of cup-shaped 65 form. Housing 131 (FIGURES 1, 3 and 8) includes an end wall 132 and is secured to the corresponding end of the corresponding valve body 20 by a pair of screws 135 which extend through holes 90', 91' alined with the respective threaded holes 90, 91 (FIGURE 7) in the end of valve body 20. The housing 131 of each auxiliary valveoperating unit 23 (FIGURES 1 and 3) has a cavity 133 therein within which a compression spring 134 is positioned. One end of compression spring 134 bears against disk 127 and the other end of compression spring 134 of vertically spaced internally threaded holes 88 (FIG- 75 bears against the outer end wall 132 of the housing 131.

The method of operation of the assembly A of FIG-URE 3 will now be given assuming that the supply conduit 50 is connected to a source of compressed air, not shown, and the service conduits are connected to opposed ends of a double-acting cylinder, for example. the parts occupy the position shown in FIGURE 3, compressed air flows into the lateral port 42 of base 21 in FIGURE 3 from conduit 50 and then flows upwardly through passageways e", e' and into chamber e. Comcore 25, into chamber d, and through the vertical passageways d', d" into service conduit 54. At the same time, compressed air is returned from the double-acting cylinder, not shown, through conduit 55, passageways f'', f', exhausted through lateral port 43.

Upon energization of the coil 103 of primary valveoperating unit 22, plunger 107 moves out of engagement with valve 110 and into engagement with valve 106 (FIG-URE 3) to prevent air from being exhausted through 20 valve 106 as it opens valve 110. In so doing, this permits compressed air to flow from lateral port 42, through the alined passageways e", e', through chamber e, through radial passageway 114, through channel 112, through passages 116, 117, 118 and through valve 110 into 25 the chamber 121. Compressed air then flows from the chamber 121 through passage 123 and into cylindrical chamber 122 adjacent the outer surface of piston 124.

This causes piston 124 and valve core 25 to move from right to left in FIGURE 3 in opposition to compression 30 spring 134 so that the neck portions 32, 33 then communicate with the respective chambers c, d and e, f, respectively. It is apparent that this reverses the direction of flow of the compressed air through the service conduits 54, 55 since compressed air enters the chamber 35 e of the valve assembly A in FIGURE 3 in the manner heretofore described, then flows from chamber e into chamber f and through passageways f', f'' to the service conduit 55 as compressed air is exhausted from service conduit 54 through passageways d'', d', chamber d, c, 40 passageways c', c'' and the lateral port 41.

When coil 103 is subsequently deenergized, spring 111 moves solenoid plunger 107 against valve 110 and opens valve 106 so that compressed air may be exhausted through valve 106 and is prevented from entering chamber 121 through valve 110. Thus, compression spring 134 then moves the valve core 25 from left to right to the position in which it is shown in FIGURE 3 as air to the right of piston 124 is exhausted through passage 123, chamber 121, through the central portion of coil 103 and through valve 106 to the atmosphere. It is apparent that each of the valve assemblies A1, A2, A3 may be operated in the same manner as that just described for the valve assembly A.

In the event that it is desired to manually operate any one or more of the primary valve-operating units 22, the composite casing 100 is provided with a manually operable plunger 136 (FIGURES 2 and 3), one end of which projects outwardly from casing 100 and the other end of which is enlarged and is normally spaced from the corresponding end of solenoid plunger 107. Thus, in order to manually operate the primary valve-operating control unit 22 shown in FIGURE 3, an operator merely depresses plunger 136 and moves the same against solenoid plunger 107, thus moving plunger 107 out of engagement with the open end of valve 110 and into engagement with the corresponding open end of valve 106.

The valve core 25 will then be operated in the same manner as was the case when the solenoid coil 103 was 70 energized. Of course, chamber 121 is so formed that plunger 136 will not close the upper end of passage 123 when it is moved inwardly against solenoid plunger 107. As soon as the operator releases plunger 136, spring 111 will again return solenoid plunger 107 to the posi- 75 with the exception that the compression spring therein

tion shown in FIGURE 3 and the pressure then existent in chamber 121 will return manually operable plunger 136 to the position shown in FIGURE 3.

In FIGURES 11 through 11F and 12 through 12E, there are shown various types of valve-operating units 23a-23g and 22a-22f which may be used interchangeably and in various combinations in place of the valveoperating units 22, 23 shown in FIGURES 1, 2 and 3. The valve-operating units shown in FIGURES 12 through pressed air then flows past the neck portion 32 of valve 10 12E may each be used as a control unit in place of the primary valve-operating unit 22 of FIGURE 3. The valve-operating units shown in FIGURES 11 through 11F may serve as auxiliary valve-operating units in place of the valve-operating unit 23 of FIGURE 3. Although chambers f, g, through passageways g', g" and is thus 15 all of the primary valve-operating units shown in FIG-URES 3 and 12 through 12E cannot be used in combination with some of the auxiliary valve-operating units 23 through 23g shown in FIGURES 3 and 11 through 11F, the primary valve-operating control units 22 through 22f of FIGURES 3 and 12 through 12E may be used in combination with certain of the auxiliary valve-operating units 23 through 23g shown in FIGURES 3 and 11 through 11F, as will be later explained. The primary valveoperating unit 22 of FIGURE 3 may be used with the auxiliary valve-operating units 23c, 23d, 23e of FIG-URES 11B, 11C and 11D, as desired. It is important to note that all of the valve-operating units shown in FIGURES 11 through 11E and 12 through 12F have housings which are of generally similar configuration to that of the housing 131 of auxiliary valve-operating unit 23 (FIGURE 3) and all of them have holes arranged therein in the manner of the holes 90', 91' of the auxiliary valve-operating unit 23 (FIGURE 8) so that all the valveoperating units may be used interchangeably with each of the valve bodies 20.

The primary and auxiliary valve-operating units 23a, 22a shown in respective FIGURES 11 and 12 are the same valve-operating units which are shown in association with the valve body 20 in the illustration of the second form of valve assembly shown in FIGURE 9 and will now be described in detail.

The valve-operating units 22a, 23a of FIGURES 9, 11 and 12 are provided for use in instances in which movement of valve core 25 in both directions longitudinally thereof is to be effected manually. Accordingly, the primary valve-operating unit 22a includes a cup-shaped housing 100a of substantially the same form as the housing 131 of valve operating unit 23 (FIGURE 3). Housing 100a is secured to one end of one of the valve bodies 20 by the screws 102 (FIGURE 9) and has a cavity 122a therein within which a pair of washers 124a are positioned, the innermost of which bears against valve core 25 and which may bear against the corresponding washer 30 held against the corresponding end of body

20 by the corresponding housing 100a.

A control knob 140 has a threaded stem 141 integral therewith or suitably connected thereto and which is threaded into the corresponding end of valve core 25. In order to maintain the knob 140 in spaced relation from the washers 124a, a spacing sleeve 142 is provided therebetween which surrounds the stem 141 and loosely extends through the wall 143 of housing 100a opposite from the valve core 25. The washers 124a may serve to limit the extent of longitudinal movement of valve core 25 and control knob 140, since one of the washers 124a engages the fixed washer 30 upon movement of the valve core 25 in one direction and the other washer 124a engages the end wall 143 of housing 100a when valve core 25 and knob 140 are moved in the opposite direction. Valveoperating unit 22a may also be used when any one of the valve-operating units 23, 23b, 23e, 23f or 23g is mounted on the other end of the corresponding body 20.

The valve-operating unit 23a (FIGURES 3 and 11) is identical to the valve-operating unit 23 of FIGURE 3

12 11

is omitted, since valve-operating unit 23a simply serves as a shield to prevent foreign matter from accumulating on the elements 127a, 130a and between the washers 127a, 31. Accordingly, those parts of operating unit 23a which are the same or similar to parts of the valveoperating unit 23 shall bear the same reference characters with the letter "a" added, to avoid repetitive description.

The valve-operating unit 22b of FIGURE 12A, when mounted on one end of a valve body 20, may be used when either of the valve-operating units 23 or 23e is mounted on the other end of a valve body 20. Unit 22b includes a housing 100b having a cavity 122b and a washer 124b therein, which are similar to the elements 100a, 122a, 124a of valve-operating unit 22a. Washer 15 124b is secured to the corresponding end of valve core 25 by a screw 144. The valve-operating unit 22b is particularly adapted to be operated by a cam 145 and should be used with an auxiliary valve-operating unit capable of yieldably urging the valve core 25 from left 20 to right in FIGURE 12A, such as the valve-operating unit 23 (FIGURE 3) or 23e (FIGURE 11D).

The valve-operating unit 22b also includes a hollow or tubular plunger 147 whose reduced outer portion is mounted for longitudinal sliding movement in the end 25 wall 143b of housing 100b and which has a ball 150 loosely mounted therein. The outer end of plunger 147 is restricted at 151 to limit outward movement of ball 150. The inner surface of ball 150 engages a disk 152 which bears against one end of a compression spring 153 within tubular plunger 147. The other end of spring 153 bears against a disk 154, which, in turn, bears against a snap ring 155 fixed in the plunger 147. The inner end of plunger 147 simply bears against washer 124b.

It is apparent that the plunger 147 reciprocates in ac- 35 cordance with the configuration of the cam 145 and, in the event of a high surface on cam 145 tending to move the plunger 147 inwardly beyond the extent to which it may move when the washer 124b is positioned against washer 30, the ball 150 may then recede relative to the tubular plunger 147. When unit 22b is used with unit 23e, it would only move valve core 25 between neutral position and the position establishing communication between chambers c, d in valve body 20 in FIGURE 3, as will become apparent in the description of unit 23e. Unit 22b may be used also with another unit identical to unit 22b mounted on the opposite end of a valve body 20.

The primary valve-operating unit 22c of FIGURE 12B is provided for fluid-pressure operation of the valve core 25 in one direction and may be used in combination with the auxiliary valve-operating unit 23 of FIGURE 3 for returning the valve core 25 to its normal quiescent position. The valve-operating unit 22c includes a housing 100c having a cavity 122c therein (FIGURE 12B) within which a piston 124c and an encircling O-ring c are positioned. The piston 124c bears against and need not be fixed to or formed integral with valve core 25. Piston 124c may be identical to the piston 124 of FIGURE 3.

The outer wall 143c of housing 100c has an internally threaded passageway 157 therein for receiving the threaded end of a conduit 160 leading from a suitably controlled source of compressed air or other fluid under pressure. It is apparent that, when pressure is introduced into chamber or cavity 122c through conduit 160, piston 124c and valve core 25 are moved from right to left in FIGURE 12B and, when fluid pressure is released from the chamber 122c through conduit 160, the spring 134 (FIGURE 3), for example, may return valve core 25 to its original position shown in FIGURE 12B. It is apparent that two of the valve-operating units 22c may be 70 used on opposite ends of a valve body 20, or unit 23e may be used with unit 22c.

The primary valve-operating unit 22d of FIGURE 12C also includes a housing 100d having a cavity or chamber core 25 loosely extends. The extension 161 also loosely extends through the outer wall 143d of housing 122d. The valve-operating unit 22d is particularly adapted to be foot-operated and may be used in combination with an auxiliary valve-operating unit of the type indicated at 23 (FIGURE 3), 23c (FIGURE 11B), 23d (FIGURE 11C), or 23e (FIGURE 11D).

The extension 161 may be suitably secured to or formed integral with valve core 25 and has a limiting washer 124d fixed thereon which may serve to limit movement of valve core 25 in the same manner as that described for the washers 124a of FIGURE 12. The outer end of extension 161 has a link 162 pivotally connected thereto, the other end of which is pivotally connected to a foot pedal 163 pivotally mounted, as at 164, on an arm 165 formed integral with and projecting upwardly and outwardly at an angle from the housing 100d.

FIGURE 12D shows another form of primary valveoperating unit 22e devised for manual operation of the valve core 25 and which may be used with any one of the units 23, 23a, 23b, 23e, 23f or 23g (FIGURES 3, 11, 11A, 11D, 11E and 11F). Valve-operating unit 22e of FIGURE 12D comprises a housing 100e having an outer wall 143e defining a cavity or chamber 122e therein within which a washer 124e is positioned. In this instance, washer 124e is held against the corresponding end of valve core 25 by a shifting block 167 whose reduced portion extends through washer 124e and is threaded or otherwise suitably secured to the corresponding end of valve core 25.

Shifting block 167 has a vertically extending hole 170 therethrough in which the rounded lower end of a manually operable shifting rod or lever 171 is positioned. A medial portion of shifting rod 171 extends through a hole 172 formed in a projection 173 on the upper portion of housing 100e. Shifting rod 171 is pivotally mounted, as at 174, within the hole 172 and has a suitable knob 175 on its upper end adapted to be grasped by an operator for manipulating the shifting rod 171. A suitable resilient boot 176 encircles projection 173 of housing 100e and the shifting rod 171 to prevent dust or other foreign matter from entering chamber 122e, through hole 172.

The primary valve-operating unit 22f of FIGURE 12E is particularly devised so the valve core 25 normally will be maintained in neutral or closed position and may be moved from right to left by positive fluid pressure or from left to right by suction. The elements 100f, 122f, 124f, 125f. 143f, 157f of unit 22f are substantially the same as the respective elements 100c, 122c, 124c, 125c, 143c and 157 of the valve-operating unit 22c in FIGURE 12B.

The outer end portion of chamber 122f of housing 100f is reduced and has a sleeve 180 fixed therein which is restricted, as at 181, and within which the flanged outer portion 182 of a cup member 183 has longitudinal sliding movement. Flange 182 normally bears against the restriction 181 of sleeve 180 under the influence of a compression spring 184, one end of which bears against the outer wall 143f of housing 100f and the other end of which bears against the bottom h of the cup member 183. The annular bottom h of cup member 183 fits in an annular recess 185 formed in the outer portion of piston 124f. One end of a fluid-conveying conduit 186 is threadedly secured in the threaded passageway 157f and the other end of suction tube or conduit 186 may be connected to a suitably controlled source of fluid pressure or suction, not shown.

In its intended use, one of the valve-operating units 22f would be mounted on each end of a valve body 20 and each conduit 186 would be connected to a means, not shown, for alternatively introducing fluid pressure into and exhausting pressure from each housing 100f. Thus, in the absence of fluid pressure in either conduit 186, valve core 25 would occupy neutral or closed position. Upon fluid pressure then being introduced into one of the housings 100f through its conduit 186, the piston 122d therein through which an extension 161 of valve 75 124f therein would be forced away from the adjacent

cup member 183 and against washer 30 (or 31). Upon the fluid pressure subsequently being exhausted from the latter housing 100f, the spring 184 in the other of the housings 100f would return valve core 25 to neutral position.

Valve-operating unit 22f also may be used with any one of the valve-operating units 22, 23c, 23d, or 23e (FIG-URES 3, 11B, 11C and 11D). The threaded passage-way 157f may remain open, without pipe 186 connected thereto, when units 22 and 22f are combined on opposite ends of a common valve body 20. The manner of operation of valve-operating unit 22f when used with any of the units 22, 23c, 23d or 23e is apparent from the foregoing description and will not be repeated here.

It is apparent that, upon the application of suction 15 within the sleeve 180 and cup member 183 and if unit 22f is used with a unit 23a or 23e (FIGURES 11 and 11D), the valve core 25 may move from left to right in FIGURE 12E. Such movement of the valve core 25 may be assisted by using an auxiliary valve-operating unit of the 20 type indicated at 23 in FIGURE 3 in combination with the valve-operating unit 22f of FIGURE 12E, if desired. Upon releasing negative pressure or suction from conduit 186 and chamber 122f, it is apparent that spring 184 will then return valve core 25 to the position shown in FIG- 25 URE 12E.

The auxiliary valve-operating unit 23b in FIGURE 11A is quite similar to the valve-operating unit 23 of FIGURE 3 with the exception that it is so arranged as to normally urge the valve core 25 outwardly, rather than inwardly, 30 with respect to the corresponding end of a valve body 20. Accordingly, the elements of valve-operating unit 23b corresponding to like elements of valve-operating unit 23 will bear the same reference characters with the letter "b" added, to avoid repetitive description. However, in- 35 stead of the washer 127b being positioned in engagement with the washer 31, it will be observed in FIGURE 11A that the washer 127b has a tubular extension 190 which is preferably of substantially the same diameter as the valve core 25 and which is secured to the valve core 25 by 40 the screw 130b. Thus, the compression spring 134b is positioned between and in engagement with the proximal surfaces of the washers 31 and 127b so that compression spring 134b urges the valve core 25 from right to left in FIGURE 11A while, conversely, the spring 134 urges valve core 25 from left to right in FIGURE 3. Unit 23b may be used with unit 22e (FIGURE 12D).

The auxiliary valve-operating units 23c, 23d of respective FIGURES 11B and 11C are quite similar to each other with the exception that the piston of valve-operating unit 23d has a smaller effective surface area than the 50 piston of valve-operating unit 23c, although both of the housings thereof may be identical. The housings 131c, 131d and the chambers 133c, 133d of the respective auxiliary valve-operating units 23c, 23d may be identical to the housing 131 and the chamber 133 of the auxiliary valve-operating unit 23 shown in FIGURE 3. However, instead of the corresponding end of the valve core 25 being provided with a washer, such as is indicated at 127 shown in FIGURE 3, a relatively large piston 127c is positioned against, but need not be, the corresponding end of valve core 25 in the valve-operating unit 23c in FIG-URE 11B and a relatively small piston 127d is positioned against, but need not be secured to or formed integral with, the valve core 25 in the valve-operating unit 23d in FIGURE 11C.

The pistons 127c, 127d are encircled by respective resilient sealing rings or O-rings 191, 191d. The O-ring 191 engages the inner surface of the chamber or cavity 133c in FIGURE 11B. However, the O-ring 191d (FIGURE 11C) engages the inner surface of a reducing sleeve 192 of lesser length than the depth of cavity 133d and which is positioned in sealing engagement with the inner peripheral surface of cavity 133d by means of a resilient ring 193.

The upper portions of the housings 131c, 131d are provided with respective longitudinally extending passages 194, 194d which are so positioned that they are in alinement with the passage 112 in the valve body 20 when they are alternatively connected to the corresponding end of a body 20. The outer ends of passages 194, 194d are closed and respective relatively small passages 195, 195d establish communication between the outer portions of the passages 194, 194d and the outer ends of the respective cavities 133c, 133d of the housings 131c, 131d.

The outer end walls 132c, 132d of housings 131c, 131d (FIGURES 11B and 11C) have respective internally threaded holes 196, 196d therein. The threaded hole 196 is shown with one end of a conduit 197 threaded therein which is adapted to be connected to or is a part of a suitable valve mechanism, not shown, for selectively exhausting pressure from the chamber 133c. The threaded hole 196d (FIGURE 11C) has a threaded plug 197d positioned therein.

In instances in which the valve-operating unit 23c (FIG-URE 11B) is to be used, two of them are used, one of them being secured to each end of a valve body 20. Thus, assuming that one of the valve-operating units 23c is connected to each end of the valve body 20 in FIGURE 3 in place of the valve-operating units 22, 23, as long as pressure is prevented from escaping from the two chambers 133c, equal pressure is maintained in each chamber 133c between the pistons 127c and the outer walls 132c of the housings 131c, since pressure is conveyed from chamber e of the valve body 20 through passageway 114 and channel 112 (FIGURE 3) through the passages 194, 195 into the respective chambers 133c in the two units

It follows that, upon pressure being released from either of the chambers 133c, through its conduit 197, and not being released from the other of the chambers 133c, the pressure in said other chamber 133c will move the corresponding piston 127c and the valve core 25 toward that chamber 133c from which pressure is being released. Thus, it is apparent that the valve core 25 may be moved in either direction, depending upon which of the two chambers 133c has pressure released therefrom.

The valve-operating unit 23d is particularly adapted to be used in combination with the primary valve-operating unit 22 of FIGURE 3. In this instance, since the surface area of piston 191d (FIGURE 11C) is substantially less than that of piston 124 (FIGURE 3), it follows that the introduction of pressure into the chamber 122, in the manner heretofore described, causes the valve core 25 to move from right to left in FIGURE 3. However, upon deenergization of coil 103, and the return movement of solenoid plunger 107 to where it closes valve 110, fluid pressure from chamber e of valve body 20 will be transmitted through passages 114, 112, 194d, 195d into chamber 133d of valve-operating unit 23d and will thus return valve core 25 to the position of FIGURE 3. When valve 110 is opened and valve 106 is closed (FIGURE 3), by energization of the coil 103, even though the same amount of pressure will be present in both of the chambers 133d and 122 (FIGURES 11C and FIGURE 3, respectively), the larger surface area of piston 124 as compared to that of piston 127d will cause the valve core 25 to move from right to left in FIGURE 3.

The valve-operating unit 23e of FIGURE 11D is provided for normally yieldably maintaining the valve core 25 in a neutral position in which the larger portions of valve core 25 prevent communiction between any of the chambers c-g of valve body 20. However, the valve core 25 can then be moved in one or both directions from the neutral position either mechanically or manually, such as by means of any one of the valve-operating units 22 through 22f shown in FIGURES 3 and 12 through 12E, for example.

To this end, it will be observed in FIGURE 11D that the cavity or chamber 133e of housing 131e of auxiliary 75 valve-operating unit 23e has a pair of flanged cup-like

15

spring seats 200, 201 therein whose flanges are engaged by opposed ends of a compression spring 203. proximal end portions or bottoms of the spring seats 200, 201 are slidably penetrated by a plunger 204 having suitable abutments 205, 206 thereon which engage the distal surfaces of the bottoms of the cup-like spring seats 200, 201. The inner end of plunger 204 is secured to the corresponding outer end of valve core 25 by means of a screw 207.

It is apparent that, when force is applied to the valve 10 core 25 tending to move the same from right to left in FIGURE 11D, spring 203 is compressed as spring seat 200 moves from right to left therewith so that, upon such force being removed from valve core 25, valve core 25 will return to the position in which it is shown in FIGURE 15 11D. Conversely, when force is applied to valve core 25 from left to right in FIGURE 11D, spring seat 201 will move from left to right with valve core 25 and will thus return the valve core 25 to its neutral position shown in FIGURE 11D when the latter force is removed from 20 valve core 25.

The valve-operating units 23f, 23g shown in FIGURES 11E and 11F are provided for yieldably locking a valve core 25 in different positions to which it may be moved by the knob 140 or control lever 171 of the respective 25 valve-operating units 22a, 22e of FIGURES 12 and 12D, for example. Valve-operating units 23f, 23g include respective housings 131f, 131g which are substantially the same as or identical to housing 131 of valve-operating unit 23 (FIGURE 3), and which have respective chambers or cavities 133f, 133g therein within which respective peripherally grooved sleeves 210, 210g are positioned.

Sleeves 210, 210g are of substantially the same length as the depth of the corresponding cavities 133f, 133g so the sleeves 210, 210g are locked against axial movement 35 in the cavities 133f, 133g. Medial portions of the sleeves 210, 210g have respective annular grooves 209, 209g therein within which respective resilient O-rings 211, 211g are positioned. The sleeves 210, 210g also have respective radially extending chambers or holes 212, 212g therein 40within which respective detents or balls 213, 213g are loosely positioned. The holes 212, 212g are preferably tapered inwardly so that they are of smaller diameter at the inner walls of the sleeves 210, 210g than they are at the outer surfaces of the sleeves, and the balls 213, 213g 45 are of slightly larger diameter than the smallest diameter of the holes 212, 212g so that they cannot pass entirely through the holes 212, 212g. The O-rings 211, 211g bear against the outer surface of and normally yieldably urge the respective balls 213, 213g inwardly.

In FIGURE 11E, the valve core 25 has a plunger 215 fixed thereon, as by a screw 216. The plunger 215 is of slightly greater diameter than the valve core 25 and is slidably movable within the corersponding sleeve 210. Opposed ends of plunger 215 are beveled at 217, 218 and the beveled surfaces 217, 218 are so spaced that, when valve core 25 occupies its extreme left-hand position as shown in FIGURE 11E, the outer end of plunger 215 bears against the outer wall 132f of housing 131f and is retained in this position by the detent or ball 213.

On the other hand, upon sufficient pressure being applied to the valve core 25 from left to right to FIGURE 11E, ball 213 is forced into the hole 212 and subsequently drops against the beveled surface 218 to maintain the valve core 25 in the other of its two positions. It is apparent that, upon the application of sufficient force to valve core 25 from right to left in FIGURE 11E, ball 213 will again recede into the hole 212 until the beveled surface 217 again moves into engagement therewith.

The left-hand end of the valve core 25 in FIGURE 70 11F also has a plunger 215g fixed thereto by a screw 216g and which is also provided with beveled surfaces 217g, 218g on opposite ends thereof. The plunger 215g may be identical to plunger 215 with the exception that it is provided with an annular groove 221 in the periphery 75 from said supply port, said base also having a separate

16

thereof which is preferably substantially centrally located between the two beleved surfaces 217g, 218g.

The valve-operating unit 23g is operated in exactly the same manner as that described for the valve-operating unit 23f with the exception that the annular groove 221 in plunger 215g serves to yieldably lock the valve core 25 in an intermediate position. By referring to FIGURE 3, it is apparent that when the valve core 25 occupies intermediate position, this blocks communication between any of the adjacent chambers c-g.

It is thus seen that we have provided an improved valve construction which is adapted to interchangeably accommodate many different types of valve-operating mechanisms and wherein the valve bodies 20, bases 21, 21a and gaskets 36 may be assembled interchangeably without regard for which direction either end of the valve body 20 may be facing with respect to the ends of the valve bases 21, 21a due to the symmetrical arrangement of the various ports, passages and passageways, through or in the valve bodies 20, the gaskets 36 and the bases 21, 21a and also due to the symmetrical arrangement of the fastener-receiving holes in the valve bodies 20, the gaskets 36, the bases 21, 21a and in the various housings of the valveoperating units, thus greatly facilitating the commercial production and use of valve assemblies according to this invention.

In the drawings and specification there have been set forth preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only, and not for purposes of limitation, the scope of the invention being defined in the claims.

We claim:

1. In a slide type valve assembly, an elongate base having a flat upper surface, said base having a transverse supply port and a pair of transverse exhaust ports straddling and being equally spaced from said supply port, said supply port being located halfway between opposed ends of said base, all of said ports being spaced the same distance below said upper surface, said base also having a pair of substantially vertically extending service passageways therethrough straddling and equally spaced from said supply port, said base also having a separate base passageway extending downwardly from said flat upper surface to each exhaust port and said supply port, the upper ends of said passageways being located symmetrically with respect to a longitudinal line halfway between laterally opposed sides of said base and with respect to a transverse line halfway between opposed ends of said base, an elongate valve body having a longitudinal bore therethrough, an axially movable spool valve core in said bore, means dividing said bore into five chambers, said body having a flat lower surface and a separate second passageway extending downwardly from each chamber and opening at the lower surface of said body, said second passageways being spaced the same distance from each other as said base passgeways and said service passageways so as to register with corresponding base passageways and service passageways, means removably securing said body to said base with the flat surface of said body facing the flat surface of and extending parallel with said base, the centermost of said second passageways being located halfway between longitudinally opposed ends of said body, and all of said second passageways being located symmetrically with respect to a longitudinal line halfway between laterally opposed sides of said body.

2. In a slide type valve assembly, an elongate base having a flat upper surface, said base having a transverse supply port in one side thereof and a pair of transverse exhaust ports in said one side straddling and being equally spaced from said supply port, said supply port being located halfway between opposed ends of said base, said base also having a pair of transverse service ports in the other side thereof straddling and being equally spaced

base passageway extending downwardly from said flat upper surface to and communicating with each port. the upper ends of said base passageways being located symmetrically with respect to a longitudinal line halfway between laterally opposed sides of said base, an elongate valve body having a longitudinal bore therethrough, an axially movable spool valve core in said bore, means dividing bore into five chambers, said body having a flat lower surface and a separate second passageway extending downwardly from each chamber and opening at the lower surface of said body, 10 said second passageways being spaced the same distance from each other as said base passageways so as to register with said base passageways, means removably securing said body to said base with the flat surface of said body facing the flat surface of and extending parallel with said 15 base, the centermost of said second passageways being located halfway between longitudinally opposed ends of said body, and all of said second passageways being symmetrically arranged with respect to a longitudinal line halfway between laterally opposed sides of said body.

3. In a slide type valve assembly, a plurality of similar elongate bases each having a flat upper surface, each base having a transverse supply port and a pair of transverse exhaust ports straddling and being equally spaced from said supply port, each supply port being located halfway between opposed ends of each base, all of said ports being located the same distance below said flat upper surface, each base also having a pair of substantially vertically extending service passageways therethrough straddling and equally spaced from the respective supply port, each base also having a separate base passageway extending downwardly from its flat upper surface to each respective exhaust port and the supply port, the upper ends of said passageways in each base being located symmetrically 35 with respect to a longitudinal line halfway between laterally opposed sides of the respective base and with respect to a transverse line halfway between longitudinally opposed ends of said base, an elongate valve body for each base having a longitudinal bore therethrough, an axially 40 HENRY T. KLINKSIEK, Examiner.

movable spool valve core in each bore, means dividing each bore into five chambers, each body having a flat lower surface and a separate second passageway extending downwardly from each chamber and opening at the lower surface of the respective body, said second passageways of each body being spaced the same distance from each other as the upper ends of said passageways in each base so as to register with corresponding base passageways and service passageways of any one of said bases, means removably securing each body to a corresponding base with the flat surface of each body facing the flat surface of and extending parallel with the corresponding base, the centermost of said second passageways being located halfway between longitudinally opposed ends of each body, all of said second passageways of each body being located symmetrically with respect to a longitudinal line halfway between laterally opposed sides of the respective body, said bodies each being of no greater transverse width than the respective bases, and means securing said bases together in juxtaposed side-by-side relation with the transverse ports of each base alined with respective transverse ports of the adjacent base or bases.

References Cited by the Examiner

UNITED STATES PATENTS

CNIED STATES FATENTS			
5	2,295,111	9/42	Hemmings 251—367 X
	2,486,087	10/49	Wright 137—596.13
	2,586,906	2/52	Beckett et al 137—625.65
0	2,651,324	9/53	Hodgson et al 137—596.12
	2,679,241	5/54	Dickson.
	2,834,368	5/58	Gray 137—271
	2,869,567	1/59	Carlson 137—596.13 X
5	2,955,617	10/60	Collins 137—625.64
	3,000,397	9/61	Schmiel 137—596.13
	3,060,970	10/62	Aslan 137—625.69
	3,076,477	2/63	Brandenberg 137—625.6
	3,111,139	11/63	Beckett et al 251—367 X
	3,152,614	10/64	Carls 137—625.69

M. CARY NELSON, Primary Examiner.