(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 102516130 A
(43) 申请公布日 2012.06.27

(21) 申请号 201110400424.3
(22) 申请日 2011.11.26

(71) 申请人 赤峰万泽制药有限责任公司
地址 024000 内蒙古自治区赤峰市红山区经济
开发区万泽大道 3 号

(72) 发明人 玥晓明 夏波 张海立

(51) Int. Cl.
C07C 279/26 (2006.01)
C07C 279/26 (2006.01)

(54) 发明名称
一种盐酸二甲双胍的制备方法

(57) 摘要
本发明公开了一种盐酸二甲双胍的制备方法，以 40%的二甲双胍为起始原料，经与盐酸成盐
反应生成盐酸二甲胺，盐酸二甲胺与双氟胺在溶
剂 N,N-二甲基甲酰胺中进行加成反应生成盐酸
二甲双胍的粗品，经过精制即获得盐酸二甲双胍。
本发明中的溶剂黏度不受温度影响，与产物分离
操作容易，并且该溶剂对反应物双氟胺能够溶
解，即使双氟胺在反应不完全的情况下，产物与溶
剂分离时也不会被分离出来，生产操作更容易，使
最终产品的纯度非常高。本发明生产操作简单容
易，原料利用率高，溶剂便宜易得，溶剂的市场价格
比现有技术中的溶剂低 2-3 倍，合成成本降低
30%左右，非常适用于工业化生产的盐酸二甲双胍
的制备方法。
1. 一种盐酸二甲双胍的制备方法，其特征在于：所述盐酸二甲双胍的制备方法包括如下步骤：

(1) 成盐反应：
以40%的二甲胺为起始原料，经与盐酸成盐反应生成盐酸二甲胺；
反应式如下：

\[\text{CH}_3\text{NH} + \text{HCl} \xrightarrow{20^\circ \text{C} \text{以下}} \text{CH}_3\text{NH} \cdot \text{HCl} \]

(2) 加成反应：
在溶剂N,N-二甲基甲酰胺中与双氰胺加成反应生成盐酸二甲双胍钠；经过80%的乙醇精制获得盐酸二甲双胍；
反应式如下：

\[\text{CH}_3\text{NH} \cdot \text{HCl} + \text{CN-NH}_2 \xrightarrow{135-140^\circ \text{C}} \text{N,N-二甲基甲酰胺} \rightarrow \text{CH}_3\text{N}=\text{NNH}_2 \cdot \text{HCl} \]

(3) 精制：
经过80%的乙醇精制获得盐酸二甲双胍，以二甲胺计总收率为75%—78%；
其中：
步骤(1)成盐反应将40%的二甲胺溶液加入反应釜内，降温至20°C以下，然后滴加浓盐酸溶液进行成盐反应，待pH值为1~2时，停止滴加盐酸；在20°C~25°C下保温反应4~12h，
保温反应完毕后升温减压蒸馏，冷却降温至10°C以下，使结晶析出，离心分离，干燥得盐酸二甲胺；
步骤(2)加成反应将N,N-二甲基甲酰胺加入反应釜内，搅拌状态下依次加入盐酸二甲胺和双氰胺，加料完毕后封罐，反应釜夹层通蒸汽开始升温，待升温至120°C—140°C时保温反应3h~24h；保温完毕后反应釜降温至30°C—35°C，使结晶析出，离心分离，干燥得盐酸二甲双胍粗品；
步骤(3)精制将80%乙醇加入反应罐内，搅拌加入盐酸二甲双胍粗品，加料完毕后封罐，
反应罐夹层通蒸汽开始升温，至物料完全溶解澄清后加入活性炭，回流，回流完毕后滤去活性炭，将滤液抽出反应罐，反应罐降温至10°C以下，使结晶析出，离心分离，干燥得盐酸二甲双胍。
一种盐酸二甲双胍的制备方法

技术领域
[0001] 本发明属于医药化学合成技术领域，具体的说是涉及一种高纯度、低成本、易操作的盐酸二甲双胍生产方法。

背景技术
[0002] 盐酸二甲双胍（Metformin Hydrochloride）是一种降血糖的常用药，用于非胰岛素依赖型糖尿病，具有提高Ⅱ型糖尿病患者血糖耐受性，降低基础血糖和餐后血糖的作用。盐酸二甲双胍的作用机理不同于其它类型的口服降血糖药，它可以减少肝糖的产生，降低小肠对葡萄糖的吸收，并且可通过增加外周组织对葡萄糖的摄取和利用从而提高胰岛素的敏感性。与磺酰脲类药物不同的是，盐酸二甲双胍不会对Ⅱ型糖尿病患者产生低血糖症。盐酸二甲双胍治疗后，胰岛素的分泌保持不变，而降低空腹胰岛素水平及每日血浆胰岛素水平，因此被大部分医师广泛地用于治疗Ⅱ型糖尿病。盐酸二甲双胍的结构式为：

\[
\begin{align*}
\text{CH}_3 & \quad \text{N} \\
\text{NH} & \quad \text{NH} \\
\text{HCl} & \quad \text{NH}_2 \cdot \text{HCl}
\end{align*}
\]

[0003] 上个世纪中期科学家发现胍类物质能够降低血糖的作用后，先后开发出苯乙双胍、丁双胍和二甲双胍，并且二甲双胍在1957年首次用于临床。在随后的盐酸二甲双胍工业化生产中，国内外报道（专利US20110021634、CN200610081627、X、WO2010146604）及倪文浩、陈燕杰、方文彦等人的生产方法中采用的合成路线为：二甲胺溶液与盐酸反应制备盐酸二甲胺，盐酸二甲胺与双氰胺反应制备盐酸二甲双胍，然后通过精制处理得到盐酸二甲双胍。其合成路线为：

\[
\begin{align*}
\text{CH}_3 & \quad \text{NH}_2 \quad \text{HCl} \quad \rightarrow \quad \text{CH}_3 \quad \text{NH} \quad \text{HCl} \\
\text{CH}_3 & \quad \text{NH} \quad \text{HCl} \\
\text{CN} & \quad \text{NH} \quad \text{NH}_2 \quad \rightarrow \quad \text{CH}_3 \quad \text{N} \quad \text{NH} \quad \text{NH}_2 \quad \text{HCl}
\end{align*}
\]

[0004] 在盐酸二甲双胍的合成路线中，只是在第二步合成中采用的溶剂不同，而结果就生产出不同收率和质量的盐酸二甲双胍，例如在外国专利文献US20110021634、WO2010146604中第二步合成反应的溶剂为C1-C4的醇类；中国专利文献CN200610081627、X、W02010146604中第二步合成反应的溶剂为异戊醇、正戊醇、正己醇、环己醇、乙二醇、丙三醇等溶剂，方文彦报道的第二步合成反应不采用溶剂而是直接采用溶剂法。在上述的第二步合成反应中采用异戊醇、正戊醇、正己醇、环己醇、乙二醇、丙三醇几种醇类作为溶剂，而几种醇类的理化特性存在以下缺点：低沸点类例如甲醇、乙醇在室温下黏性低，但是其沸点均小于85℃而达不到反应的温度要求，高沸点类例如：异戊醇、正戊醇、正己醇、环己醇、乙二醇、丙三醇在室温或低温时其黏性较强，使用其作为溶剂在反应完成后降温析晶生成产物时，由于溶剂异戊醇、正戊醇、正己醇、环己醇、乙二醇、丙三醇低温
发明内容

[0006] 本发明为了避免现有技术存在的不足，提供一种高纯度、低成本、易操作的盐酸二甲双胍生产方法。

[0007] 本发明是通过以下技术方案实现的:其包括如下步骤:

[0008] (1) 成盐反应:

[0009] 以40％的二甲胺为起始原料，经与盐酸成盐反应生成盐酸二甲胺；

[0010] 反应式如下:

\[
\text{CH}_3\text{NH}^+ + \text{HCl} \rightarrow \text{CH}_3\text{NH}^+\cdot\text{HCl} \quad (20^\circ\text{C以下})
\]

[0011] (2) 加成反应:

[0012] 在溶剂N,N-二甲基甲酰胺中与双氰胺加成反应生成盐酸二甲双胍粗品，经过80％的乙醇精制获得盐酸二甲双胍；

[0013] 反应式如下:

\[
\text{CH}_3\text{NH}^+\cdot\text{HCl} + \text{CN-} \rightarrow \text{CH}_3\text{NNH}_2 \quad (135-140^\circ\text{C})
\]

[0014] (3) 精制:

[0015] 经过80％的乙醇精制获得盐酸二甲双胍；以二甲胺计总收率为75％-78％；

[0016] 其中:

[0017] 步骤(1) 成盐反应将40％的二甲胺溶液加入反应釜内，降温至20℃以下，然后滴加浓盐酸溶液进行成盐反应，待pH值为1-2时，停止滴加盐酸；在20℃-25℃下保温反应4-12h，保温反应完毕后升温减压蒸馏，冷却降温至10℃以下，使结晶析出，离心分离，干燥得盐酸二甲胺；

[0018] 步骤(2) 加成反应将N,N-二甲基甲酰胺加入反应釜内，搅拌状态下依次加入盐酸二甲胺和双氰胺，加料完毕后封罐，反应釜夹层通蒸汽开始升温，待升温至120℃-140℃时
保温反应 3h-24h；保温完毕后反应釜降温至 30℃-35℃，使结晶析出，离心分离，干燥得盐酸二甲双胍粗品；

[0021] 步骤 (3) 精制将80％乙醇加入反应罐内，搅拌加入盐酸二甲双胍粗品，加料完毕后封罐，反应罐夹层通蒸汽开始升温，至物料完全溶解澄清后加入活性炭，回流，回流完毕后滤去活性炭，将滤液抽入反应罐，反应罐降温至 10℃以下，使结晶析出，离心分离，干燥得盐酸二甲双胍。

[0022] 本发明的有益效果是：本发明盐酸二甲双胍的制备方法在加成反应中使用N，N-二甲基甲酰胺为溶剂，替代传统工艺中采用异戊醇、正戊醇、正己醇、环己醇、乙二醇、丙三醇做溶剂，其优点是：溶剂的黏度不受温度影响，与产物分离操作容易；并且该溶剂对反应物双氧胺能够溶解，即使双氧胺在反应不完全的情况下，产物与溶剂分离时也不会被分离出来，生产操作更容易，使最终产品的纯度非常高，有关物质双氧胺检测量一般均小于十万分之五以下，产品质量能够符合英国药典（BP）、美国药典（USP）要求。本发明生产操作简单容易，原料利用率高，溶剂便于易得，溶剂的市场价格比现有技术中的溶剂低 2-3 倍，合成成本降低 30％左右，非常适合工业化生产的盐酸二甲双胍的制备方法。

具体实施方式

[0023] 下面结合实施例对本发明做进一步的详细说明。

[0024] 一种盐酸二甲双胍的制备方法，其包括如下步骤：

[0025] (1) 成盐反应：

[0026] 以40％的二甲胺为起始原料，经与盐酸成盐反应生成盐酸二甲胺；

[0027] 反应式如下：

\[
\begin{align*}
\text{CH}_3\text{NH} + \text{HCl} &\quad \text{20℃以下} \quad \text{CH}_3\text{NH} \cdot \text{HCl} \\
\end{align*}
\]

[0029] (2) 加成反应：

[0030] 在溶剂N，N-二甲基甲酰胺中与双氧胺加成反应生成盐酸二甲双胍粗品，经过80％的乙醇精制获得盐酸二甲双胍；

[0031] 反应式如下：

\[
\begin{align*}
\text{CH}_3\text{NH} \cdot \text{HCl} + \text{CN-SH} + \text{NH}_2 &\quad \text{N,N-二甲基甲酰胺} \quad \text{135-140℃} \quad \text{CH}_3\text{NH-SH} \cdot \text{HCl} \\
\end{align*}
\]

[0033] (3) 精制：

[0034] 经过80％的乙醇精制获得盐酸二甲双胍；以二甲胺计总收率为 75％-78％；

[0035] 其中：

[0036] 步骤 (1) 成盐反应将40％的二甲胺溶液加入反应釜内，降温至 20℃以下，然后滴加浓盐酸溶液进行成盐反应，待 pH 值为 1-2 时，停止滴加盐酸；在 20℃-25℃下保温反应
4-12h，保温反应完毕后升温减压蒸馏，冷却降温至10℃以下，使结晶析出，离心分离，干燥得盐酸二甲胺；

【0037】步骤 (2) 加成反应将 N,N- 二甲基甲酰胺加入反应釜内，搅拌状态下依次加入盐酸二甲胺和双氯胺，加料完毕后封罐，反应釜夹层通蒸汽开始升温，待升温至120℃-140℃时保温反应3h-24h；保温完毕后反应釜降温至30℃-35℃，使结晶析出，离心分离，干燥得盐酸二甲双氯粗品；

【0038】步骤 (3) 油制将 80%乙醇加入反应罐内，搅拌加入盐酸二甲双氯粗品，加料完毕后封罐，反应罐夹层通蒸汽开始升温，至物料完全溶解澄清后加入活性炭，回流，回流完毕后滤去活性炭，将滤液抽入反应罐，反应罐降温至10℃以下，使结晶析出，离心分离，干燥得盐酸二甲双氯。

【0039】实施例 1：

成盐反应：将真空泵抽三甲胺水溶液 520Kg 入反应罐内，开动搅拌，夹套通冷盐水，降温至20℃以下，并控制温度在20℃以下开始滴加盐酸 500Kg 后，测 pH 值，若 pH = 1-2，停止滴加盐酸，若 pH ≥ 2，继续滴加盐酸至 PH = 1-2。滴加完毕后，在20-25℃保温反应12h。保温完毕后升温减压蒸馏，蒸出水 590Kg 后，将上批母液用真空泵抽入反应罐内，通冷却水降温至40℃以下，通冷盐水降温至10℃。待结晶完全析出，将物料放入离心机内，甩滤，离心甩滤脱液至无液体流出，将湿料在烘干中均匀铺设2-4cm 厚，温度在90-100℃，干燥 10-12h，得盐酸二甲胺 453.4kg，收率 97.3%。

【0040】加成反应：将真空泵抽 N,N- 二甲基甲酰胺 440Kg 入反应罐内，开动搅拌，由加料口均匀加入盐酸二甲胺 260Kg，双氯胺 250Kg。加料完毕，封罐，夹层通蒸汽开始升温；升温至135-140℃，保温 12h，自然降温至60-65℃，通冷却水降温至30-35℃。待结晶完全析出，将物料放入离心机内，甩滤，离心甩滤脱液至无液体流出，将湿料在烘干中均匀铺设2-4cm 厚，温度在90-100℃，干燥 10-12h，得盐酸二甲双氯 455.0kg，收率 92.30%。

【0041】精制：80%乙醇 756Kg 用真空泵抽乙醇入反应罐内，开动搅拌，由加料口加入盐酸二甲双氯粗品 210Kg，加料完毕，封罐，夹层通蒸汽开始升温，至物料完全溶解澄清，加入活性炭 3Kg，回流 30 分钟；回流完毕，滤去活性炭，将滤液抽入反应罐，通冷却水降温至25-35℃，通冷盐水降温至10℃以下。待结晶完全析出，将物料放入离心机内，甩滤，离心甩滤脱液至无液体流出，将湿料在烘干中均匀铺设2-4cm 厚，温度在90-100℃，干燥 10-12h，得盐酸二甲双氯 191.1kg，收率 91.0%。

【0042】实施例 2：

【0043】实施例 3：

【0044】成盐反应、精制同实施例 1。

【0045】加成反应：将真空泵抽 N,N- 二甲基甲酰胺 520.0kg 入反应罐内，开动搅拌，由加料口均匀加入盐酸二甲胺 260Kg，双氯胺 375Kg。加料完毕，封罐，夹层通蒸汽开始升温；升温至 135-140℃，保温 12h；保温完毕，自然降温至60-65℃，通冷却水降温至30-35℃。待结晶完全析出，将物料放入离心机内，甩滤，离心甩滤脱液至无液体流出，将湿料在烘干中均匀铺设2-4cm 厚，温度在90-100℃，干燥 10-12h，得盐酸二甲双氯 456.0kg，收率 86.3%。

【0046】实施例 4：

【0047】成盐反应、精制同实施例 1。

【0048】加成反应：将真空泵抽 N,N- 二甲基甲酰胺 765.0kg 入反应罐内，开动搅拌，由加料
口均匀加入盐酸二甲胺 260 Kg, 双氯胺 250 Kg。加料完毕，封罐，夹层蒸气开始升温；升温至 135-140°C，保温 12h；保温完毕，自然降温至 60-65°C，通冷却水降温至 30-35°C。待结晶完全析出，将物料放入离心机内，甩滤，离心甩滤脱液至无液体流出，将湿料在烘盘中均匀铺设 2-4 cm 厚，温度在 90-100°C，干燥 10-12h，得盐酸二甲双胍 408.3 Kg，收率 77.3%.

【0049】实施例 4：

【0050】成盐反应，精制同实施例 1。

【0051】加成反应；用真空泵抽 N, N- 二甲基甲酰胺 440 Kg 入反应罐内，开动搅拌，由加料口均匀加入盐酸二甲胺 260 Kg, 双氯胺 250 Kg。加料完毕，封罐，夹层蒸气开始升温；升温至 120-125°C，保温 12h；保温完毕，自然降温至 60-65°C，通冷却水降温至 30-35°C。待结晶完全析出，将物料放入离心机内，甩滤，离心甩滤脱液至无液体流出，将湿料在烘盘中均匀铺设 2-4 cm 厚，温度在 90-100°C，干燥 10-12h，得盐酸二甲双胍 400.1 Kg，收率 81.2%。

【0052】实施例 5：

【0053】成盐反应，精制同实施例 1。

【0054】加成反应；用真空泵抽 N, N- 二甲基甲酰胺 440 Kg 入反应罐内，开动搅拌，由加料口均匀加入盐酸二甲胺 260 Kg, 双氯胺 250 Kg。加料完毕，封罐，夹层蒸气开始升温；升温至 135-140°C，保温 8h；保温完毕，自然降温至 60-65°C，通冷却水降温至 30-35°C。待结晶完全析出，将物料放入离心机内，甩滤，离心甩滤脱液至无液体流出，将湿料在烘盘中均匀铺设 2-4 cm 厚，温度在 90-100°C，干燥 10-12h，得盐酸二甲双胍 382.4 Kg，收率 77.6%。

【0055】实施例 6：

【0056】成盐反应，精制同实施例 1。

【0057】加成反应；用真空泵抽 N, N- 二甲基甲酰胺 440 Kg 入反应罐内，开动搅拌，由加料口均匀加入盐酸二甲胺 260 Kg, 双氯胺 250 Kg。加料完毕，封罐，夹层蒸气开始升温；升温至 145-150°C，保温 12h；保温完毕，自然降温至 60-65°C，通冷却水降温至 30-35°C。待结晶完全析出，将物料放入离心机内，甩滤，离心甩滤脱液至无液体流出，将湿料在烘盘中均匀铺设 2-4 cm 厚，温度在 90-100°C，干燥 10-12h，得盐酸二甲双胍 312.0 Kg，收率 63.4%。

【0058】实施例 7：

【0059】成盐反应，精制同实施例 1。

【0060】加成反应；用真空泵抽 N, N- 二甲基甲酰胺 920 Kg 入反应罐内，开动搅拌，由加料口均匀加入盐酸二甲胺 260 Kg, 双氯胺 250 Kg。加料完毕，封罐，夹层蒸气开始升温；升温至 135-140°C，保温 8h；保温完毕，自然降温至 60-65°C，通冷却水降温至 30-35°C。待结晶完全析出，将物料放入离心机内，甩滤，离心甩滤脱液至无液体流出，将湿料在烘盘中均匀铺设 2-4 cm 厚，温度在 90-100°C，干燥 10-12h，得盐酸二甲双胍 397.7 Kg，收率 80.7%。

【0061】最后应当说明的是，以上内容仅用以说明本发明的技术方案，并非对本发明保护范围的限制，本领域的普通技术人员对本发明的技术方案进行的简单修改或者等同替换，均不脱离本发明技术方案的实质和范围。