

United States Patent

Jarmar

[15] 3,644,785
[45] Feb. 22, 1972

[54] ILLUMINATION ARRANGEMENT FOR RECORDING AND/OR REPRODUCTION IN COLOR

[72] Inventor: Sven O. Jarmar, Huddinge, Sweden
[73] Assignee: Sveriges Radio Aktiebolag, Stockholm, Sweden
[22] Filed: Oct. 3, 1969
[21] Appl. No.: 863,553

[30] Foreign Application Priority Data

Oct. 9, 1968 Sweden.....13595/68

[52] U.S. Cl.....315/298, 315/296, 315/297, 355/35, 355/37
[51] Int. Cl.....H05b 41/39
[58] Field of Search.....315/152, 153, 154, 296, 297, 315/298; 355/35, 37, 70, 88

[56] References Cited

UNITED STATES PATENTS

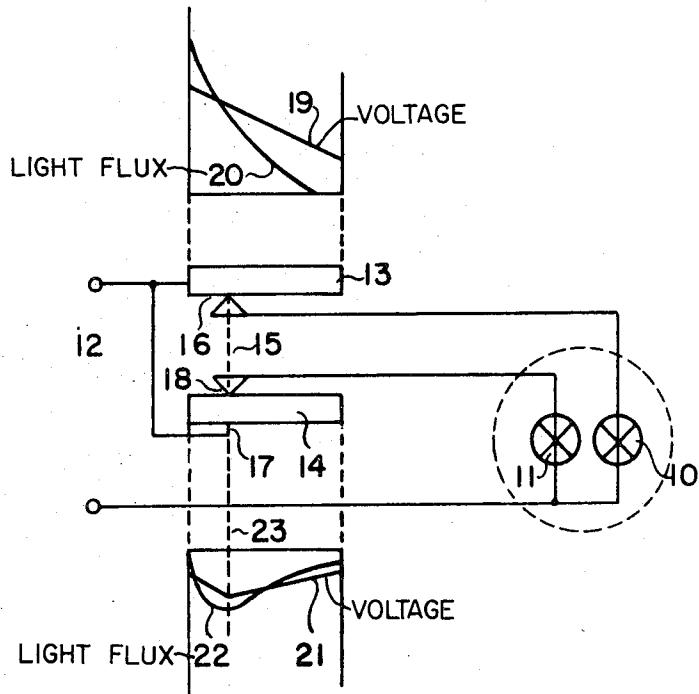
2,438,219 3/1948 Johnston.....355/37

FOREIGN PATENTS OR APPLICATIONS

506,727 5/1939 Great Britain.....355/88
253,968 12/1948 Switzerland.....355/37

OTHER PUBLICATIONS

"Brightness Variation Without change of Colour-Temperature," European Broadcasting Union Review, Part A-Technical, April 1969, No. 114, pp. 78 and 79.


Primary Examiner—Raymond F. Hossfeld
Attorney—Larson, Taylor and Hinds

[57]

ABSTRACT

An illumination arrangement for use in connection with picture recording or reproduction in color. The device automatically compensates for changes in the spectral composition of the light at various light intensities. In one embodiment, the device includes a first lamp and a second, smaller, lamp, the lamps being coupled such that a change in the color temperature in one direction of a first lamp is compensated for by a change in the color temperature of a second lamp, the change in the color temperature of the second lamp being such in its direction and amount, to compensate for the change in color temperature of the first lamp.

18 Claims, 8 Drawing Figures

PATENTED FEB 22 1972

3,644,785

SHEET 1 OF 6

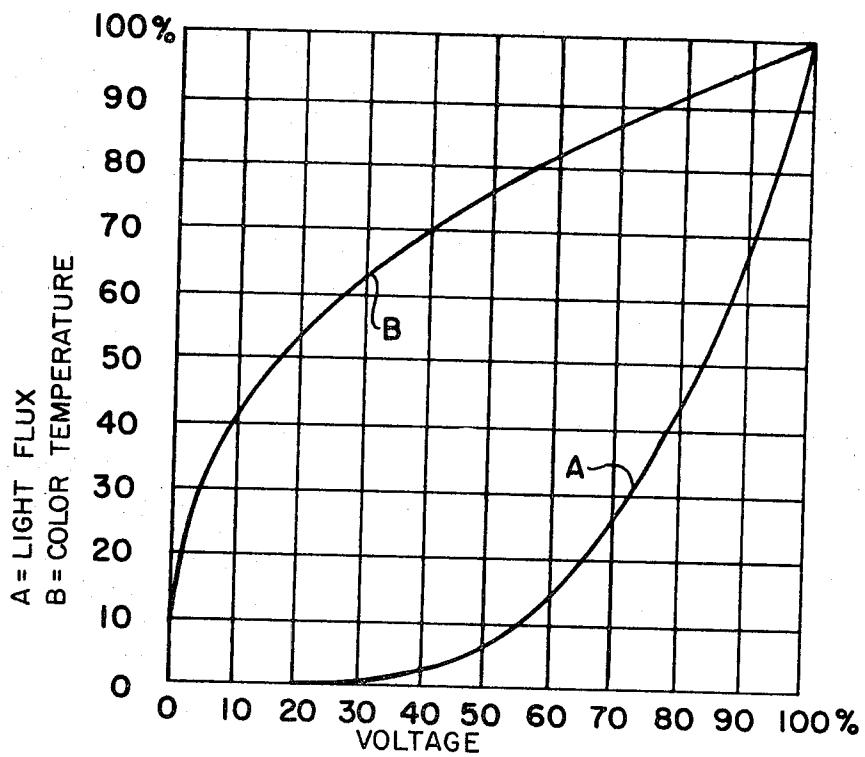


Fig. 1

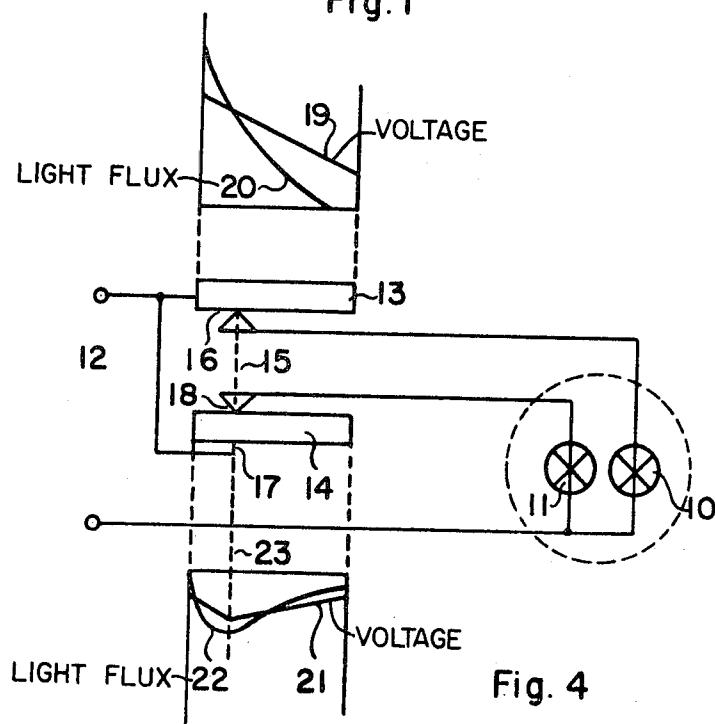


Fig. 4

PATENTED FEB 22 1972

3,644,785

SHEET 2 OF 6

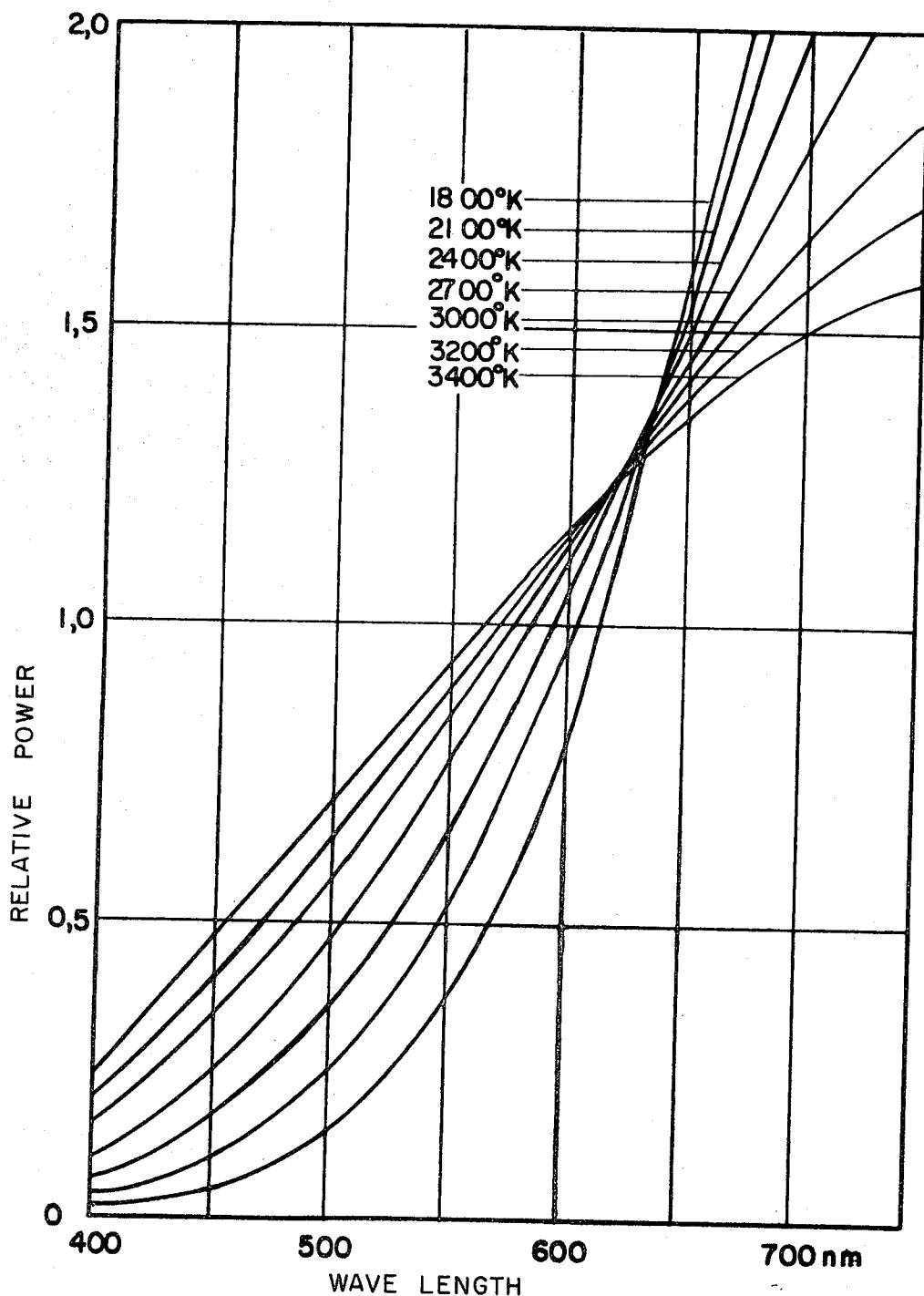


Fig. 2.

PATENTED FEB 22 1972

3,644,785

SHEET 3 OF 6

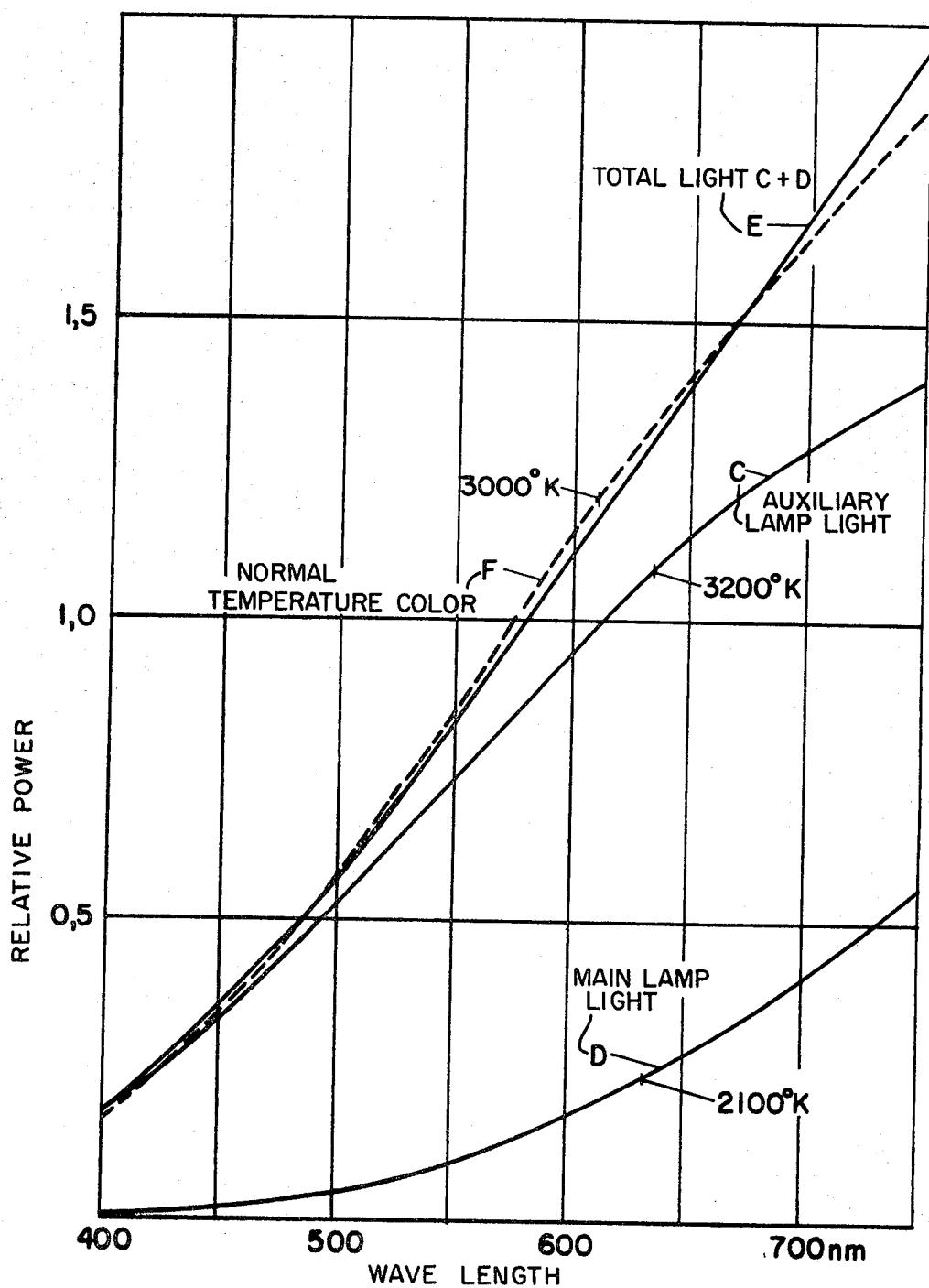


Fig. 3.

PATENTED FEB 22 1972

3,644,785

SHEET 4 OF 6

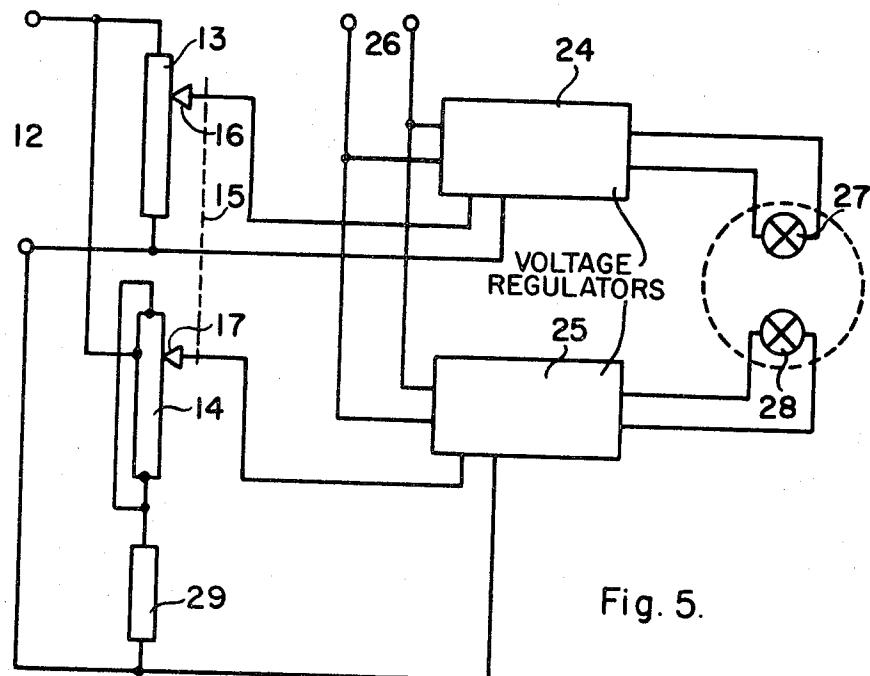


Fig. 5.

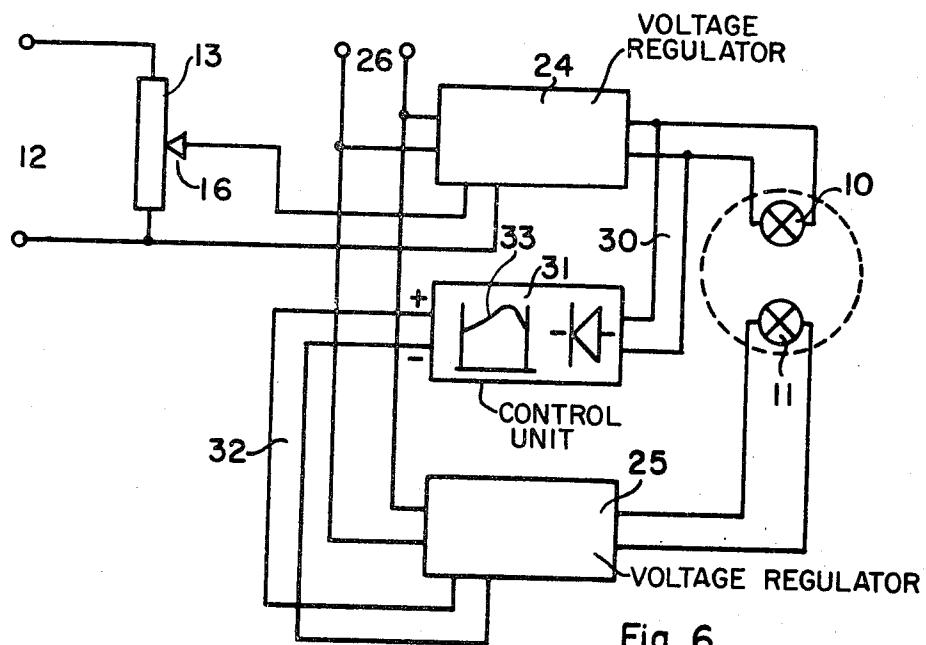
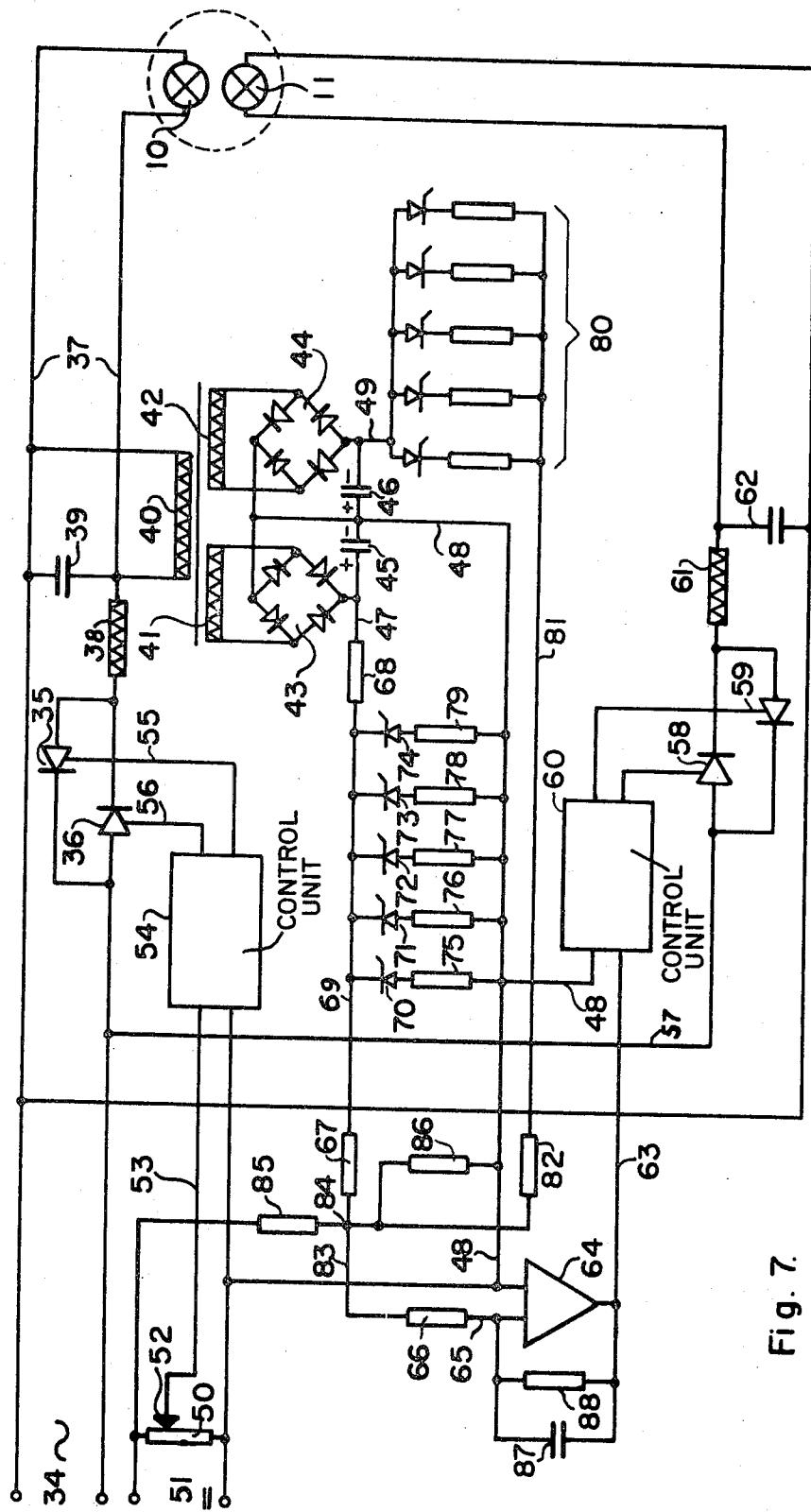



Fig. 6.

PATENTED FEB 22 1972

3,644,785

SHEET 5 OF 6

四七

PATENTED FEB 22 1972

3,644,785

SHEET 6 OF 6

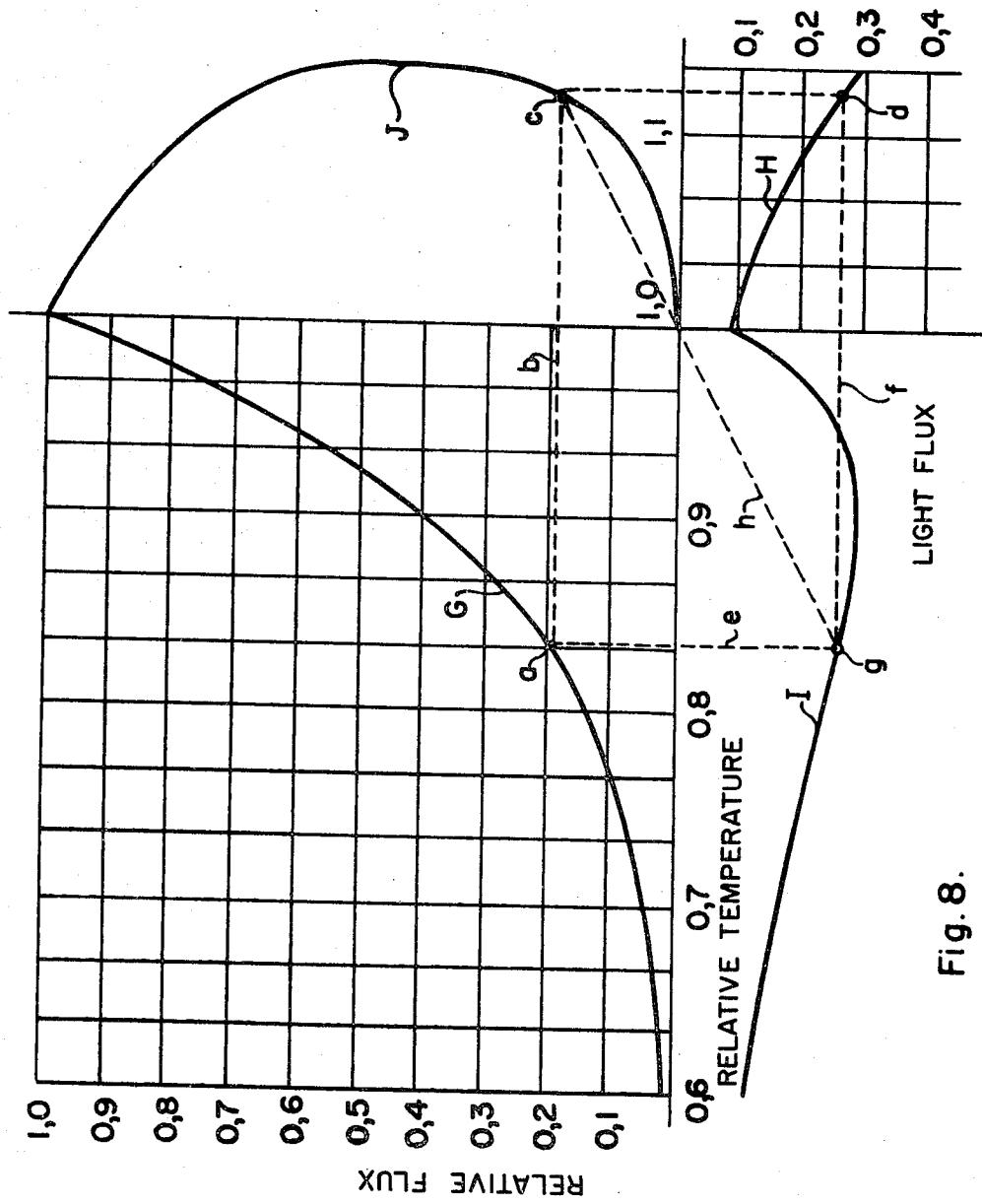


Fig. 8.

ILLUMINATION ARRANGEMENT FOR RECORDING AND/OR REPRODUCTION IN COLOR

In color photography and color recording for reproduction by means of television and in many similar cases, a control of the light intensity must take place successively. This control, as a rule, takes place by changing the voltage fed to an incandescent lamp. However, it is well known that at a change of this voltage the color distribution in the spectrum of said incandescent lamp is also changed, usually in such a way that an essentially stronger proportion of red light will be created, the lower the voltage is chosen. This variation in color distribution within the used light, of course, may be compensated for by a change of the sensitivity of the recording apparatus for different colors. As a rule, this simple method is for practical reasons not available, because one cannot repeatedly change film in a camera so that the used film will be of the correct chemically optical composition, and also one cannot work with suitable adjustment filters, nor can one during a recording for television change the amplification of the three basic color amplifiers, because the changes in light intensity which occur will usually happen too often, too quickly, and too unexpectedly.

Therefore, there is a strongly felt need for an illumination arrangement, which is created in such a way that it will automatically at all existing light intensities give one single spectrotechnical composition of the light.

In this connection it will be helpful to discuss the term "color temperature," which is rather difficult to define but which is often used in the art. A typical temperature of the incandescent wire in a lamp will be about 3,000° K. At this temperature the lamp will give off a light, which has a predetermined spectral composition, which is often understood to be completely white, although this is certainly far from correct. If one decreases the voltage, then the temperature of the incandescent wire will also decrease, and simultaneously the color of the incandescent wire is changed, or, as one could also express it, the gravity point of the illumination given off is displaced in a direction towards red. One then says, that the lamp has got a lower color temperature, which should, as a matter of fact, be understood the way that the lamp has got a lower temperature, which is combined with such a change of color, which regularly will enter at a decrease of the temperature. In a corresponding way, a lamp may of course also be given a higher color temperature, whereby the gravity point within the color spectrum will be displaced in direction into the blue or violet.

In the vicinity of the normally existing color temperatures one counts with a tolerance amount of about $\pm 100^{\circ}$ C., which means, that no disturbing color error setting will exist in the reception, if the temperature should vary upwardly or downwardly by the said amount of tolerance of 100° C. This tolerance value, of course, will not have validity at lower color temperatures, which differ very essentially from the normal color temperature.

The present invention now refers to an illumination arrangement, by means of which one may control the color intensity and the illumination by changing the voltage without thereby changing the color temperature to a further extent than a change within the allowed limits of tolerance.

According to the invention, at least two lamps are arranged in such a coupling that a change of the color temperature in one direction of one, essentially greater, lamp will be followed by a change of the color temperature of the other, essentially smaller, lamp, the latter change being so adapted as to its direction and amount, that it causes a compensation of the change of color temperature of the first-mentioned lamp.

The first-mentioned lamp will in the following be called the "main lamp", whereas the latter lamp will be called the "compensation lamp." However, it is obvious that the invention is not limited to one single main lamp and one single compensation lamp, but that complete batteries of lamps of each kind may exist, and that the lamps in one and the same battery may not even necessarily be subjected to the same color temperature change. On the other hand, one can, of course, also sim-

plify the form of execution in the way that one will use one single lamp unit which, in a way known per se, for lamp, "known from the automobile head lamp, contains two incandescent wires. Such modifications, of course, will also fall within the scope of the present invention.

The light fluxes from the two lamps should be combined into one single light beam. By suitable adaption between the light intensities of the two partial light beams one can then change the color of each partial light beam, so that in spite of the variations in the light intensity of the total light flux, its color, or as one used to say, its color temperature, will remain constant. By this is meant that the color composition will remain constant at a state corresponding to the normal color temperature of the lamps, although the color temperature of the one lamp has increased and the color temperature of the other lamp has decreased. As a matter of fact, one is here placed before an equilibrium relation with the desired color temperature as a reference point. A weak light flux in a greater temperature difference from the desired temperature thus may compensate as far as regards the color composition a smaller temperature difference in the other direction of a stronger light flux and vice versa.

The invention will be further described below in connection with the attached drawings, which show different embodiments of the invention. However, it is understood that the invention is not limited to the arrangements thus shown in the drawings and further described below, but that other modifications may occur within the frame of the invention.

30 In the drawings:

FIG. 1 shows a normal diagram showing the variation of the color temperature as well as of the light flux with a change of the voltage of an incandescent lamp.

FIG. 2 shows a family of curves, indicating the spectral energy distribution in wavelength with the incandescent temperature as an arbitrary magnitude, measured as a function of the relative power, and

FIG. 3 shows one of the curves of the curve family according to FIG. 2 as well as the corresponding curve for a light flux composed of the flux from two lamps according to the invention, as the sum of the two partial light fluxes also shown in FIG. 3.

FIG. 4 shows a simple arrangement, by means of which one may with allowable approximation achieve a substantially constant color temperature independently of the variation in light flux, whereas

FIGS. 5 and 6 show a couple of different arrangements, more advanced for the same purpose, in block diagram.

FIG. 7 shows a complete diagram of a system of the last mentioned kind, in which, however, such means which are already commonly known have been shown in block diagram for simplification of the description.

FIG. 8 finally, shows an auxiliary diagram, which may be used for the calculation of the numerical values of the magnitudes contained in the diagram according to FIG. 7.

The diagram according to FIG. 1 refers to a known lamp having an incandescent wire, the normal temperature of which was 3,000° K. at normal voltage. The voltage scale runs along the horizontal axis and is divided into percent of the normal voltage. Also the vertical axis is divided into percent of the normal value, viz regarding the curve A of the light flux and regarding the curve B of the color temperature. It is seen, that the one curve is concave upwardly, whereas the other one is strongly convex upwardly.

It is also seen from FIG. 1, that at a decrease of the voltage from its normal value, the light flux according to the curve A will sink very strongly, whereas, on the other side, the color temperature will sink only rather slowly in the beginning, later on however still quicker. When the voltage has been decreased to about 20 percent, the light flux, by which is meant the flux of the light, observable by the human eye, is mainly equal to zero. Simultaneously the color temperature has decreased to about 53 percent. Below this value, the radiation from the incandescent lamp will thus mostly have infrared

character, said radiation not being visible to the human eye. The change, which took place from normal color temperature (100 percent) to the color temperature (53 percent) corresponding to red and infrared radiation, however, is so great that it cannot be allowed. Also an essentially smaller variation will essentially exceed the allowed range of tolerances. This is most easily seen, regarding that the voltage value, which has been indicated by 100 percent corresponds to 3,000° K., and that the tolerance range was put at $\pm 100^\circ$ corresponding to 3.3 percent.

Detailed statements about the displacement of the different light wave lengths and the relative power represented by them at different temperatures of the incandescent wire will be seen from FIG. 2. The relative power thereby is plotted along the vertical axis, whereby the normal value is assumed to be at 1.0. The curves, thus, show its variation up to the double of the normal value. The simultaneously occurring wave length displacement is read along the horizontal axis.

The curve shown in FIG. 2, valid for a color temperature of 3,000° K., is reproduced in FIG. 3 by a dotted line. It is now assumed that a main lamp, the color temperature of which has been decreased to 2,100° K. by lowering its voltage and light flux, should get a compensation for its loss of color temperature by means of an auxiliary lamp, having the color temperature of 3,200° K. By the equilibrium relation already mentioned, which, of course, is approximate one may get the result that the lamp the color temperature of which is 2,100° K. should give about 18 percent of the total light flux whereas the other lamp should give about 82 percent. Curve D in FIG. 3 now has a surface integral, which is 18 percent of the surface integral of the curve in FIG. 2 corresponding to the temperature 2,100° K., whereas the curve C has a surface integral representing 82 percent of the surface integral of the curve, which applies in FIG. 2 to 3,200° K. Adding now the two curves C and D, you will get the curve E. This rather exceedingly well agrees with the normal color temperature curve, which is thus reproduced by the dotted curve F. Assuming that the curve F as to its contents of light power represents the maximum light of the lamp combination, then, of course, the real value of the curve E will be essentially less than the curve F. The two curves, however, only indicate relative values, which means that their surface integrals have been made equal in order that one should be capable of comparing them and of seeing if they have the same or essentially different color temperatures.

A simple control device which can be used for a rather coarse manual control of the two lamps is shown in FIG. 4. The main lamp is there indicated by 10 and the compensation lamp by 11. Both of these lamps are connected to the power mains 12 through one resistor 13 or 14, resp. These two resistors are variable and are controlled in common by means of one single control means, indicated by the dotted line 15. The resistor 13 is arranged as a conventional rheostat, so that when its slider 16 is moved to the right in the drawing, then the resistance will increase and consequently the voltage remaining for the incandescent wire of the lamp 10 will decrease. The main conductor, however, is not connected to the terminal of the resistor 14 of the compensation lamp 11 but to an intermediate point 17. When the slider 18 of the resistor 14 is exactly opposite to this connection point 17, the compensation lamp will therefore get full voltage, but if one moves the control means 15 in the one direction or in the other one, resistance will be connected in series with the compensation lamp, and its current will decrease. The purpose of this will be further explained below in connection with FIG. 8.

When the slider 16 is moved over the rheostat 13 the voltage is changed, for instance according to the curve 19 (FIG. 4), and simultaneously the light flux is changed according to the curve 20 (FIG. 4). The corresponding curves for the function of the rheostat 14 are formed, as far as regards the voltage by the curve 21 and as far as regards the light flux by the curve 22. The curve 22 is calculated in a way, which will be evident from the following, so that it will cause as far as possible com-

70
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780

also been replaced by a voltage divider coupled resistor, also this will be subjected to a constant current, and only the control voltage, without any substantial consumption of current, will be derived to the voltage regulator 24.

This arrangement may be further improved by causing the control voltage of the main lamp 10 to determine in cascade coupling the control voltage of the compensation lamp 11, see FIG. 6. Also in this case the control voltage is obtained between the conductors 12, but the voltage required for feeding the lamp is obtained from the main 26. Two voltage regulators are provided as was the case according to FIG. 5, but in this case only the voltage regulator 24 is controlled by means of the potentiometer 13 with the slider 16. The output voltage from the voltage regulator 24 is in this case conducted over the conductors 30 to a control unit of such character, that it will revert the control voltage between the conductors 30 to a control voltage of another value between a pair of conductors 32, running to the voltage regulator 25. The control unit 31 is of such a character that the output voltage from the voltage regulator 24 will be reverted according to a nonlinear function in agreement with curve 33, the horizontal axis of which represents the input voltage over the conductors 30, and the vertical axis of which represents the output voltage over the conductors 32. Consequently, lamp 10 will be provided with a variable voltage, the value of which is determined by the voltage regulator 24 in agreement with the adjustment of the potentiometer 13, whereas simultaneously but in a controlled nonlinear relation, the lamp 11 is provided with a voltage, suitable for the compensation.

It should be explained in this connection why curve 33 in FIG. 6 or the curve 22 in FIG. 4, resp., has the shape, seen in the figures concerned. When the voltage of the lamp 10 is decreased, the color composition of the light produced by lamp 10 changes to a state, containing more red and less blue and violet. For compensation thereof the voltage of the compensation lamp should be increased, so that it shows a color, containing proportionally less red and more blue and violet. Initially one therefore increases the voltage of the compensation lamp, simultaneously as one decreases the the voltage of the main lamp. At a given decrease of the voltage of the main lamp, this will perhaps still show a stronger participation of red light, but simultaneously the light intensity of the main lamp has decreased so strongly, that the composition lamp will give off a continuously increasingly proportion of the total light flux. If one should thereafter continue to increase the voltage of the compensation lamp and to decrease the voltage of the main lamp, then the reddish light of the main lamp would play a completely subordinated roll in comparison with the successively increased light intensity of the compensation lamp, and the total light flux would be overloaded by blue and violet light from the compensation lamp. It is therefore necessary, at a given value of the voltage relation between the two lamps, to decrease the voltage of the compensation lamp, so that this will have regained its normal color temperature at the moment, that the main lamp becomes completely dark, in other words the voltage of the compensation lamp should at this moment again have been decreased to its initial value. The light from the compensation lamp will therefore be the only remaining light.

There is no difficulty to calculate or to graphically construct a curve according to which the voltage of the compensation lamp should vary in the above-mentioned way, once one knows the curves for the mutual dependence of the voltage and the color temperature as well as the light flux existing at each individual voltage from each of the lamps. The construction of the curve 22, FIG. 4, or the curve 33, FIG. 6, therefore is a purely graphical construction step, which every man skilled in the art may execute, once he has knowledge about the principle of the present invention. FIG. 7 shows a complete wiring diagram of a system according to the invention, which principally agrees with the system shown in block diagram in FIG. 6. The main for operation of the lamps is here indicated by 34. This main is an alternating current main of 75

constant voltage. For each of the two lamps 10 and 11 there is a pair of controlled rectifiers 35 and 36 as well as 58 and 59, which are connected in the traditional way in pairs in parallel with each other but in opposite directions. One of these rectifier pairs is controlled by means of the control unit 54, and the other rectifier pair is controlled by means of the control unit 60. Such control units are priorly known for other purposes. They work in such a way, that a variation of the adjustment on the input sides of the control units causes a variation of the time displacement of ignition pulses, which are fed over the conductors 55 and 56 to the controlled rectifiers 35 and 36 or by means of corresponding conductors are fed to the controlled rectifiers 58 and 59. The control procedure manifests itself in the present case in a direct voltage, which is fed to the control unit 54 or 60, resp. over the conductor 53 or 63, resp., controlling the magnitude of the output voltage obtained after the rectifiers 35 and 36 or 58 and 59, resp. Between the controlled pairs of rectifiers 35 and 36 or 58 and 59, resp., on the one hand, and the lamp 10 or 11, on the other hand, there is an equalization filter comprising a series inductance 38 with parallel condenser 39 and a series inductance 61 with parallel condenser 62, resp. Thereby, the path of current to the two lamps 10 and 11 is described. It will now be described, how the voltage to the two lamps 10 and 11 may be controlled.

The potentiometer 50 is connected to the direct voltage between the terminals 51, which is exclusively used for a control voltage. It is without any decisive importance to this invention, how this control voltage is created, but it may suitably be created by rectification of the voltage in the main 34 after suitable down-transformation. The slider 52 on the potentiometer 50 is connected to the conductor 53, and this conductor runs to the control unit 54 and in this way controls the voltage of the lamp 10.

From the conductors 37, between which there is lamp voltage, also voltage is derived to a transformer, the primary winding 40 of which being magnetically coupled to two secondary windings 41 and 42 insulated from each other. Each secondary winding is connected to its individual full-wave rectifier, for instance as shown in the drawing, a Graetz-bridge 43 or 44, resp. The minus terminal of the bridge 43 is connected to the plus terminal of the bridge 44, whereas the plus terminal of the bridge 43 and the minus terminal of the bridge 44 are connected to each other through a couple of equalization condensers 45 and 46, so that negative voltage is obtained at the conductor 49, so that the conductor 48 will function as ground, and so that positive voltage is obtained at the conductor 47. These voltages should be used for controlling the voltage to the lamp 11, but as they are directly proportional to the voltage across the lamp 10, these voltages must first be varied, so that the voltage feeding the lamp 11 will be adapted to the form of the curve 22 in FIG. 4 or the curve 33 in FIG. 6, resp., which are determined in advance with knowledge about the properties of the lamps 10 and 11.

The control unit 60 in this case is controlled by the voltage difference between the conductor 48, on the one hand, and a conductor 63, on the other hand. The conductor 63 is fed from an amplifier 64, the one input side of which being formed by the conductor 48 and the other input side being formed by the conductor 65. In the conductor 65, a protection resistor 66 is connected, and the other terminal of this resistor is connected through the conductor 83 to the contact point 84. Between the point 84 and the conductor 48, a further resistor 68 is interconnected, and the current through this resistor consequently determines the voltage which is fed to the one input circuit of the amplifier 64. In addition to the current thus running to the conductor of the amplifier 64. In addition to the current thus running to the conductor 48 from the direct current terminals 51 through resistor 85 and the resistor 86, a component of current will also run from the condenser 45 through the resistors 68 and 67 and the point 84, and this component will further tend to run through the resistor 86 to the conductor 48. The second component of current runs in the opposite direction through the conductor 48, the resistor 86,

the resistor 82 and the conductor 81 and the Zener-diode unit 80 to the condenser 46, provided that the path through the Zener-diode unit 80 interconnected in the arrangement is open. Between the conductors 69 and 48 a further battery of Zener-diodes 70-74 is arranged, tuned for different ignition voltages. Each of the Zener-diodes 70-74 is connected in series with a resistor 75-79. Both of the Zener-diode batteries thus are composed by a number of Zener-diodes, connected mutually in parallel but tuned for different ignition voltages, each having its individual series resistor.

The function of the arrangement as described up to this point is as follows:

When adjusting the potentiometer 50 to a lower voltage for the lamp 10, the voltage across the condensers 45 and 46 also decreases. At full voltage on the lamp 10 the voltages across the condensers 45 and 46 is maximum, and all of the Zener-diodes are then conductive. The current, which the voltage across the condenser 45 tries to press through resistor 86, then is equal to the current which the voltage across the condenser 46 tries to press through the same resistor, although in the opposite direction. These two components of current then compensate each other, and only the current from the terminals 51 will flow through the resistor 86. When the voltages across the condensers 45 and 46 decrease due to a readjustment of the potentiometer 50, however one Zener-diode after the other in 80 is extinguished. As a consequence thereof, the component of current which the voltage across the condenser 46 tends to press through the resistor 86 quickly decreases. The second component of current from the condenser 45, on the other hand, does not decrease as quickly, because initially the resistor in this circuit is not changed. A continuously increasing current will therefore flow through the resistor 86 from the point 84 in the direction towards the conductor 48. Thus, the effect will be achieved that a decreasing voltage to the lamp 10 will cause an increasing voltage over the resistor 86. When the last Zener-diode in the aggregate 80 has been extinguished, there is a maximum of current through the resistor 86. As the voltage drop over the resistor 86 by means of the amplifier 64 influences the control unit 60, the voltage on the lamp 11 has also increased to its maximum value.

At continuous decrease of voltage on the lamp 10 with the decrease of voltage on the condensers 45 and 46 following therefrom, a second Zener-diode unit will get into operation. One diode after the other one will be nonconductive, which causes, the voltage on the conductor 69 and therefore also across the resistor 86 to decrease less than the voltage on the condenser 45 and thus also less than the voltage on the lamp 10. When the voltage on the lamp 10 has decreased to zero, only the current from the terminals 51 will flow through the resistor 86 that current is the same value as the one which existed at the beginning of the decrease of the light intensity. The lamp 11 therefore has in this position regained the same voltage which it has when the lamp 10 had maximum voltage.

FIG. 8, finally, indicates method for determining the curve according to which the voltage on the compensation lamp should vary, and for guidance in the dimensioning of the Zener-diodes as well as of their resistances. The diagram is made in a so-called diagonale diagram. Thus, there are four quadrants having mutually different tasks. The quadrant above the horizontal axis and at left of the vertical axis contains a curve G, which is plotted according to the properties of the main lamp 10. The horizontal axis indicates the relative color temperature of said lamp, whereas the vertical axis indicates the relative light flux of the main lamp. In the quadrant situated at right of the vertical axis and below the horizontal axis, the light flux of the auxiliary lamp is indicated by the curve H along the vertical axis in a direction downwardly, said light flux being measured in relation to the maximum value of the light flux of the main lamp, and the horizontal axis forms a direct continuation of the scale situated at left of the vertical axis. The curve to be determined is situated in the quadrant, which is positioned under the horizontal axis but at the left of the vertical axis. This curve I thus forms the locus of the light

flux of the auxiliary lamp in relation to the color temperature of the main lamp, plotted in direction downwardly along the vertical axis. Finally, a pure auxiliary curve, which is required for the construction, is placed in the quadrant situated above horizontal axis and at the right of the vertical axis. This curve is indicated by J.

Given curves thus are G and H. The sought curve is I. The curve J only is an auxiliary curve without other importance for the invention than the one which will be evident from the following description of the plotting construction.

In this plotting construction one starts from a given, deliberately chosen point on the curve G, for instance the point a. A horizontal line b is drawn from this point to a point c on the auxiliary curve J, which is assumed by guessing, and from this point a vertical line is drawn downwardly, until it hits the curve H in the point d. One now draws a vertical line e from the point a, also a horizontal line f from the point d. If the point c has been correctly chosen, then the crossing point g between the lines e and f should be situated on the curve I. The check that the construction is correct is obtained by drawing a so-called checking diagonale h through the points c and g. If this runs through the origin, then one has accidentally chosen the point c correctly, but normally one cannot count on success the first time, but one has to use a plotting method, by which one will successively get closer to the correct points. After one has in this way determined a first point on the sought curve I one will have to make the same plotting construction starting from another point on the curve G, and successively one will then get the locus for all of the points g obtained, which will together form the sought curve I. Guided by this curve one may thereafter construct the parts of the arrangement, which should indicate the correct voltage to the compensation lamp dependent upon the voltage of the main lamp, so that the combined light flux will get constant color temperature.

I claim:

1. Illumination apparatus to be used in connection with picture recording or reproduction in color comprising a first lamp, a second lamp smaller than said first lamp, means for varying the color temperature of said first lamp, means for varying the color temperature of said second lamp, and coupling means for said color temperature varying means such that a change in the color temperature varying means such that a change in the color temperature of said first lamp causes a change in the color temperature of said second lamp, the latter change being sufficient indirection and amount to compensate for the former change.

2. Illumination apparatus according to claim 1 wherein the normal operating color temperature of said first lamp is substantially the same as that of said second lamp.

3. Illumination apparatus according to claim 1 wherein said means for varying the color temperature of said first lamp comprises means for changing voltage to change the light intensity thereof, wherein said means for varying the color temperature of said second lamp comprises means for changing voltages to change the light intensity thereof, said coupling means being arranged to increase the voltage to said second lamp when the voltage to said first lamp is decreased from maximum until a point of at least approximate equilibrium between the color temperatures of these lamps is reached, and to thereafter decrease the voltage to said second lamp on further decrease in voltage to said first lamp.

4. Illumination apparatus according to claim 1 wherein said means for varying the color temperature of said first lamp comprises means for varying the voltage to said first lamp comprising a first variable resistor and said means for varying the color temperature of said second lamp comprises means for varying the voltage to said second lamp comprising a second variable resistor.

5. Illumination apparatus according to claim 4 wherein said first and second resistors each comprise slide means for varying the resistance value thereof, and wherein said coupling means comprises a member linking said slides.

6. Illumination apparatus according to claim 4 wherein at least one resistor comprises a wound resistance wire with a variable winding spacing, the spacing of the windings being such that the color temperature of the combined light from said first and second lamps is substantially constant over the range of resistance values of said resistors.

7. Illumination apparatus according to claim 4 wherein said means for changing voltage of said first and second lamps each further comprises a voltage regulator electrically connected to said variable resistor and to said lamp.

8. Illumination apparatus according to claim 7 wherein the means for changing voltage of said second lamp further comprises a fixed connected in series with said variable resistor.

9. Illumination apparatus according to claim 3 wherein said means for changing the voltage to said first lamp comprises a first variable resistor, and said means for changing the voltage to said second lamp comprises a control unit responsive to the output voltage of said first variable resistor to produce a control unit output voltage fed to said second lamp, the latter output voltage compensating for the color temperatures of said first lamp determined by the setting of said first variable resistor.

10. Illumination apparatus according to claim 9 wherein said means for changing the voltage to said first lamp further includes a voltage regulator controlled by the output voltage of said variable resistor, and wherein said means for changing the voltage of said second lamp further includes a voltage regulator controlled by the output voltage of said control unit.

11. Illumination apparatus according to claim 9 wherein said control unit is supplied with direct current from a first voltage supply and wherein said first and second lamps are each supplied with alternating current from a second voltage supply.

12. Illumination apparatus according to claim 10 wherein each of said voltage regulators comprises two controlled

rectifiers connected in parallel in the line supplying current to its respective lamp, said rectifiers being connected in electrically opposite directions.

13. Illumination apparatus according to claim 12 wherein said means for changing the voltage to said second lamp comprises a transformer, the primary winding of which is connected into the conductor supplying current from said voltage regulator to said first lamp, the secondary winding thereof being connected to a rectifier for feeding rectified voltage to said control unit.

14. Illumination apparatus according to claim 13 wherein the voltage from said secondary winding is connected to said control unit through a plurality of Zener rectifiers graded by means of ignition voltage resistors, the rectifier grading providing the correct characteristics for compensation of a change in the color temperature of said first lamp.

15. Illumination apparatus according to claim 14 wherein said transformer includes two secondary windings each being connected to one set of Zener-rectifiers along with control voltage controlled resistors one of said set of Zener rectifiers being intended to cause a rise of voltage to said second lamp required in the beginning of the control range, whereas the other set of Zener rectifiers is intended to cause the decrease of the voltage to said second lamp required at the end of the controlled range, said two sets of graded Zener rectifiers being for this purpose connected in directions electrically opposite to each other.

16. Illumination apparatus according to claim 15 further comprising an amplifier connected in the conduit between the Zener rectifiers and the control unit for said second lamp.

17. Illumination apparatus according to claim 13 wherein said rectifier comprises a double wave rectifier.

18. Illumination apparatus according to claim 17 wherein said rectifier comprises a Graetz-bridges.