(54) 发明名称
线缆及其制造方法

(57) 摘要
本发明公开了一种线缆及其制造方法。该线缆包括若干导体，包覆于导体外的第一绝缘层，包覆于第一绝缘层外表面上的金属屏蔽层及成型于线缆最外层的第二绝缘层。所述线缆金属屏蔽层外表面设有一磁性材料层。该线缆制造方法，其包括如下步骤：第一步；提供若干导体；第二步；在若干导体外压出成型一绝缘层；第三步；在绝缘层外编织出一金属屏蔽层；第四步；将磁性材料喷镀在金属屏蔽层外；第五步；在磁性材料层外表面上压出成型一绝缘层。该线缆制造方法，也可以包括如下步骤：第一步；提供若干导体；第二步；在若干导体外压出成型一绝缘层；第三步；在绝缘层外编织出一金属屏蔽层；第四步；在金属屏蔽层外压出成型一含有磁性材料的绝缘层。
1. 一种线缆，其包括若干导体、包覆于导体外的第一绝缘层、包覆于第一绝缘层外表
面的金属遮蔽层及成型于线缆最外层的第二绝缘层；其特征在于：所述金属遮蔽层由金属线
编织而成的金属编织层，所述线缆金属遮蔽层外表面设有一磁性材料层，所述磁性材料层
的一部分填充入金属编织层上的缝隙内。
2. 如权利要求1所述的线缆，其特征在于：所述磁性材料为铁氧体材料。
3. 如权利要求1所述的线缆，其特征在于：所述磁性材料层是喷镀在金属遮蔽层外。
4. 一种线缆制造方法，其特征在于：其至少包括如下步骤：
 第一步：提供若干导体；
 第二步：在若干导体外压出成型第一绝缘层；
 第三步：在绝缘层外包覆一金属遮蔽层；
 第四步：将磁性材料喷镀在金属遮蔽层外而形成一磁性材料层，所述磁性材料层的一部
 分填充入金属遮蔽层上的缝隙内；
 第五步：在磁性材料层外表面压出成型第一绝缘层。
5. 如权利要求4所述的线缆制造方法，其特征在于：所述磁性材料层为铁氧体材料，所
 述金属遮蔽层由金属线编织而成的金属编织层。
6. 一种线缆制造方法，其特征在于：其至少包括如下步骤：
 第一步：提供若干导体；
 第二步：在若干导体外压出成型第一绝缘层；
 第三步：在第一绝缘层外形成一金属编织层；
 第四步：在金属编织层外一次压出成型一含有磁性材料的第二绝缘层，所述第二绝缘
 层具有一内层和一外层，所述第二绝缘层的内层含有磁性材料且与金属编织层接触。
线缆及其制造方法

【技术领域】
[0001] 本发明是关于一种防电磁干扰 (Electromagnetic Interference, EMI) 的线缆及其制造方法，尤其是指一种在金属遮蔽层表面外有磁性材料层（Magnetic Material）的线缆及其制造方法。

【背景技术】
[0002] 现有防电磁干扰线缆揭示了在线缆外表面设置有铁氧体磁心 (Ferrite Core) 技术方案，该铁氧磁铁芯设置在靠近线缆连接器一端，用来防止外部电磁场干扰中心导体的信号，也可防止中心导体向外辐射电磁场。然而将铁氧体磁心安装至线缆会比较麻烦，且在一些应用场合会受到空间的限制，同时增加了线缆的重量及成本，由于铁氧体磁心突出于线缆的外表面，故其也容易受损。
[0004] 因此，需要一种改进的线缆来克服现有技术的不足。

【发明内容】
[0005] 本发明之主要目的在于提供一种结构简单且具有良好防 EMI 效果的线缆。
[0006] 为达成上述目的，本发明采用如下技术方案：该线缆包括若干导体、包覆于导体外的第一绝缘层、包覆于第一绝缘层外表面的金属遮蔽层及成型于线缆最外层的第二绝缘层，所述线缆金属遮蔽层外表面设有一磁性材料层。
[0007] 本发明一种线缆制造方法，其包括如下步骤：第一步：提供若干导体；第二步：在若干导体外压出成型一绝缘层；第三步：在绝缘层外包覆一金属遮蔽层；第四步：将磁性材料喷镀在金属遮蔽层外；第五步：在磁性材料层外表面压出成型一绝缘层。
[0008] 本发明另一种线缆制造方法，其包括如下步骤：第一步：提供若干导体；第二步：在若干导体外压出成型一绝缘层；第三步：在绝缘层外形成一金属编织层；第四步：在金属编织层外压出成型一含有磁性材料的绝缘层。
[0009] 与现有技术相比，本发明线缆的优点在于：无需在线缆外表面设置铁氧体磁芯，从而减小线缆本身重量及成本，由于在线缆编织层外表面设有磁性材料，使线缆制程相对简单，且具有良好的防 EMI 效果。
【附图说明】
[0010] 图1是本发明线缆的立体示意视图。
[0011] 图2是本发明线缆另一实施方式的立体示意视图。

【具体实施方式】
[0012] 请参阅图1,本发明线缆1由内至外依次为若干导体10、包覆于导体10外的第一绝缘层20、包覆于第一绝缘层20外的金属遮蔽层30、喷镀在金属遮蔽层30外的磁性材料层40及包覆于磁性材料层40外的第二绝缘层50。
[0013] 若干导体10成环形排列于线缆1内部，导体10可为铜、镀镍铜及镀镍钢等材料中的一种，这些材料具有优异的导电性、高度的机械耐久性和极好的耐蚀性，故被广泛的用作电气导体。
[0014] 第一绝缘层20可通过压出成型的方式包覆于导体10外，将导体10与金属遮蔽层30相间隔，该第一绝缘层20主要目的是防止导体10外露而造成短路，第一绝缘层20材料可为铁氟龙(Teflon)或PE(Polyethylene)等材料。
[0015] 本实施方式中金属遮蔽层30是用铜线或镀锡铜线通过编织机编织形成的并包覆于第一绝缘层20外表面的金属编织层30。另，该金属编织层30也可以是一金属箔或金属带。本实施方式中，该金属编织层30用来防止外部电磁场干扰导体10的信号传输，也可防止导体10向外辐射电磁场。金属编织层30的屏蔽效果与其编织紧密程度相关，金属编织层30编织越紧密则屏蔽效果越好，金属编织层30表面的缝隙会影响金属编织层30的屏蔽效果。
[0016] 磁性材料喷镀于金属编织层30外表面，形成一磁性材料层40，磁性材料可为铁氧体材料。由于磁性材料层40覆盖于金属编织层30外表面，磁性材料可将金属编织层30表面的缝隙填充，且磁性材料具有高磁导率和良好的频率特性，该磁性材料层40的存在使线缆1具有更好的防EMI效果。
[0017] 第二绝缘层50压出成型于磁性材料层40外表面，该第二绝缘层50采用PVC材料，该材料具有良好的可挠性及抗机械破坏性，故磁性材料层40受到很好的保护。
[0018] 请参阅图2,本发明线缆2由内至外依次为若干导体10、包覆于导体10外的第一绝缘层20、包覆于第一绝缘层20外表面的金属编织层30及压出成型于金属编织层外表面第二绝缘层50。
[0019] 该实施方式与图1所示的实施方式区别在于是在金属编织层30外压出成型一含有磁性材料层501的第二绝缘层50’，该第二绝缘层50’内层为磁性材料层501与金属编织层30相接触并包覆在其外表面，第二绝缘层50’外层502为PVC材料所组成，对磁性材料层501起保护作用。第二绝缘层50’可通过一次压出成型于金属编织层30外表面，也可通过二次压出成型在金属编织层30外表面，先压出成型一磁性材料层501再压出成型外层502。由于磁性材料层501包覆于金属编织层30外，使线缆2具有良好的防EMI效果。
[0020] 本发明一种线缆1制造方法，其包括如下步骤:1)提供若干导体10;2)在若干导体10外压出成型一第一绝缘层20;3)在第一绝缘层20外编织出一金属编织层30;4)将磁性材料喷镀在金属编织层30外;5)在磁性材料层30外表面压出成型一第二绝缘层50。
[0021] 本发明另一种线缆2制造方法，其包括如下步骤:1)提供若干导体10;2)在若干
导体 10 外压出成型一第一绝缘层 20 ; 3) 在第一绝缘层外 20 编织出一金属编织层 30 ; 4) 在金属编织层 30 外压出成型一含有磁性材料的第二绝缘层 50'。