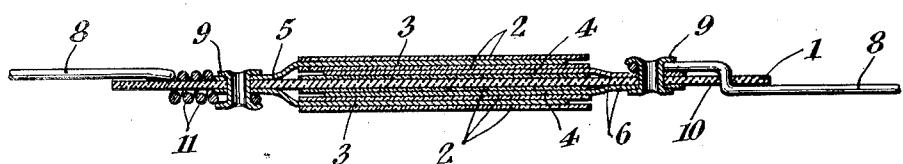
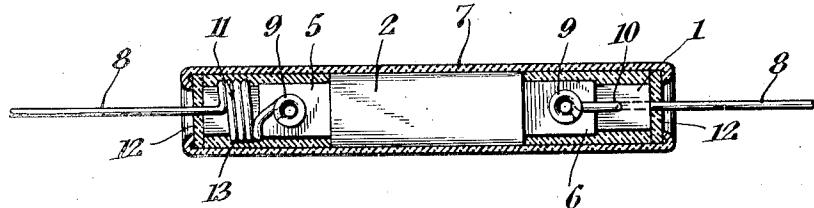


Aug. 14, 1934.


M. H. BENEDEK

1,970,269


ELECTRICAL CONDENSER

Filed Sept. 7, 1933

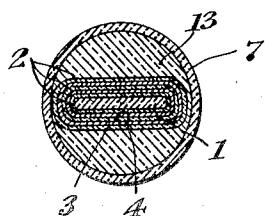

Fig. 1.

Fig. 2.

Fig. 3.

INVENTOR

Martin H. Benedek

BY
Ward Crowley & Neal

ATTORNEYS

UNITED STATES PATENT OFFICE

1,970,269

ELECTRICAL CONDENSER

Martin H. Benedek, Brooklyn, N. Y., assignor to
 Micamold Radio Corporation, Brooklyn, N. Y.,
 a corporation of New York

Application September 7, 1933, Serial No. 688,453

2 Claims. (Cl. 175—41)

The invention relates more particularly to condensers of the tubular type, that is where the active condenser elements are enclosed within a hollow or tubular insulating casing, and aims particularly to provide a simple and economical construction of the above character wherein wire terminals are employed. Further objects and advantages of the invention will be in part obvious and in part specifically pointed out in the description hereinafter contained which, taken in conjunction with the accompanying drawing, discloses a preferred embodiment of the invention; such embodiment, however, is to be regarded as merely illustrative. In the drawing—

Fig. 1 is a longitudinal section showing the internal parts of a condenser made in accordance with the invention.

Fig. 2 is a longitudinal section of the complete device and

Fig. 3 is a cross sectional view taken on the central portion of Fig. 2.

The invention is illustrated as applied to a condenser having an insulating base member 1, which carries dielectric strips 2 and conducting strips 3 and 4 respectively, which are of opposite polarity. The strips 2, 3 and 4, for example, may be wound or rolled about the insulating member 1.

The conducting strips 3 have portions 5 which extend beyond one edge of the dielectric sheets 2, at one end of the insulating member 1, and the conducting strips 4 have similar extending portions 6 at the opposite end of member 1.

The parts of the condenser above described are enclosed within a tubular insulating casing 7, as shown in Figs. 2 and 3, and wire terminals 8 extend outwardly through the opposite ends of casing 7, these terminals being bendable in all directions but sufficiently stiff to support the condenser in any desired position.

The inner ends of the terminals 8 are mechanically clamped against the extending portions 5 and 6 of the supporting strips; as shown rivets or eyelets 9 respectively extend through the opposite end portions of the insulating member 1, and the extending portions 5 and 6 of the conducting strips, these rivets being headed over to hold the terminals 8 in good electrical contact with the conducting strips. Preferably the terminals 8 are also interengaged with the respectively adjacent portions of the insulating member 1, to assist in keeping them in proper position. As shown at the right of Fig. 1, terminal 8 may be passed through an opening 10 in the insulating member 1 for this purpose, or may be coiled around the adjacent portion of the insulating member 1, as

indicated by numeral 11 at the left hand end of Figs. 1 and 2.

Preferably the ends of insulating casing 7 are closed by fasteners 12, as shown in Fig. 2, and the space within the casing 7 may be filled with suitable insulating composition 13 (Fig. 3).

While a specific embodiment of the invention has been described, it should be understood that changes may be made therein, without departing from the invention, within the scope of the appended claims.

I claim:

1. An electrical condenser comprising an elongated insulating member, alternating dielectric and conducting strips overlying an intermediate portion of said member, different conducting strips respectively extending beyond opposite edges of said dielectric sheets, a tubular insulating casing enclosing the above mentioned parts of the condenser, wire terminals extending through the opposite ends of said casing, the inner portions of said wire terminals respectively overlying the extending portions of said conducting strips, and clamping members respectively engaging said wire terminals and passing through the respectively adjacent portions of said first mentioned insulating member and extended portions of said conducting strips for electrically connecting said terminals respectively with the extending portions of said conducting strips.

2. An electrical condenser comprising an elongated insulating member, alternating dielectric and conducting strips overlying an intermediate portion of said member, different conducting strips respectively extending beyond opposite edges of said dielectric sheets, a tubular insulating casing enclosing the above mentioned parts of the condenser, wire terminals extending through the opposite ends of said casing, the inner portions of said wire terminals respectively overlying the extending portions of said conducting strips, and rivets engaging said wire terminals and passing through the respectively adjacent portions of said first mentioned insulating member and extended portions of said conducting strips, said rivets being headed over to compress the wire terminals respectively against the adjacent extending portions of the conducting sheets.

MARTIN H. BENEDEK. 105