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(57) Abstract: A system and a method are provided for performing an integrated uncertainty analysis on a system having interacting
& modules. The interaction of the modules includes data transfer between the modules with the output of one module being indicative
m of the input of another module. An uncertainty analysis is performed on each module based on given probability density functions
& of each input to the module. The uncertainty analysis may include developing a deterministically equivalent model for one or more
& modules. Data may be provided from one module to another in a uniform format. Thus, two or more modules may be integrated with

uncertainties in the inputs of one module being effectively propagated to the inputs of another module. A plurality of modules may

thus be modeled as a single integrated system. The integrated system may be replaced with a deterministically equivalent model,

preferably of a further reduced order. In this manner, key uncertainties in particular inputs may be isolated. Once these inputs are
g identified, resources may be effectively allocated to minimize the impact of those inputs on the variability of the results.
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METHOD AND SYSTEM FOR INTEGRATED UNCERTAINTY ANALYSIS

~ FIELD OF THE INVENTION
| [0001] ' The invention relates to analysis of uncertainties in a sysiem. Moré particﬁlarly, the
invention provides a method and a system for analyzing uncertainties for a set of

‘modules in a system in an integrated manner.

BACKGROUND

[0002] . Major challenges facing industry, particularly manufacturing industries, include
reduciﬁg lengthy time to mafket aﬂd’ improving the performance of existing capital
assets. For example, in the case of the chemical industry, reducinglthe typicai 5-7-year
development cycle f(_)r‘ a produét may result in significant advantages in the market. ‘In
industries with relatively short cy.cAles, lenormous' competitive pressures femain to
accelerate the development process. |

[oﬁos] | The devélopment or improvement ofei producfion facility generally ig’volves séveral
basic phases. These phases may include a technical feasibility analysis, detailed studies
of the processes, pilot scale testing, detailed engineering de'sign,. building a facility, and
continuous improvement of the facility. Many commercial software packages'are
available for various industries to assist in many of theée phases. For example, for the

~ chemical industry, computational fluid dynamics simulation packages are readily



[0004]

[0005]

{0006)

[0007]}
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available. Pur;her, project scheduliﬁg Soﬁware packages are available for general and
specific scheduling. |
One concern in each phase of the development cycle is .the level of uncertainties
involved. The commercial packages may genéré_lly provide a point solution for a setvlof
.inputs. In order to account for uncertainties at each level, an uncertainty analysis may
be required for each step or process. Such an uncertainty analysis may bg required to
~ determine the séurce of variations in the result of each step or process.
Uncertainty analyses may be 'performed using rn‘any‘known.methods. Por example, a
Monte Carlo analysis may be performed for each step or process of a system. A Monte
Carlo analysis may require a large number of simulations to be executed with the inputs
being varied according to their underlying probability density fuxiction. The result of
the Monte Carlo analysis isa distribution of the results as a function of the variations in
the inputs. On a large-scale project, however, such an analysis may be cumbersome for
some applications. | |
‘U.S. Patent No. 6,173,240 discloses a method by which Monte Carlo sampling may be

reduced. However, such an analysis provides results for only a single step.

SUMMARY OF THE INVENTION

The disclosed systems and methods are directed to analysis of uncertainties in a system.
Uncertainties in the inputs of a system and their effect on the outputs may be efficiently
analyzed by, for example, generating a simplified, yet accurate, model of the system.

2
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(0008}

[oobsj .

* [0010]

[0011]

[0012]

Additi.onally, the uncertainties in several components of the system may be anﬁlyzgd.
tbgethér, rather than individually, thereby allowing an efficient analysis of the system
as a whole. |

According to an aspect of the invention, a method of analyzing uncertainties in a system
having at least ;Wo modules includes propagating an uncertainty Qistribution associated
with each of a setof inputs through a module to produce a description of the
uncertainty in a set of outputs of said module.

Uncertainties may be uncontrollable variations in the inputs that may cause variations in
the outputs. Uncertainties may be distributed continuously or discretely over alrange of
values.

A module may be any compohent of a systerh of processes, mechanisms, or algorithms.
A module may include a process, a sub-process, a mechanism, an algorithm step, a
calculation, or a software package simulation. Further, a module rhay be a part of or

one or more processes, sub-processes, mechanisms, algorithm steps, calculations,

-simulations or other components.

Inputs are parameters that are used by one or more modules. Inputs may include, for
example, internal or external parameters that may be preset, brovided by a user, or
provided by another module.

Outputs are parameters that are generated by one or more modules. Outputs may

include parameters that are generated by a module in response to one or more inpﬁts.
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{0013}

{0014}

' [0015]

{0016]

[0017]

The method further includes generating a probabilistically equivalent model of the

~ module, the equivalent model producing a model of the outputs.

The probabilistically equivalent model may be a model of a module that is less complex

yet produces similar outputs for av given set of inpufs. Thus, the model of the outputs

‘generally approximates the set of outputs.

The method further includes providing the model of the outputs in a common data
architecture for use as inpufs by any other module in the system.

The common data architecture may be a forﬁat for presenting the data to any other
module in the system in such a mannér that it is readily acceptablé, including any
information regarding uncertainty distribution of a particular variable.

According to another aspect of the invention, a method of analyzing uncertainties in a
sys_tefn includes subétituting at least one of a plurality modules of a system with a
cofrespondihg probabilistically equivalent module model, the equivalent module model
adapted to propagate uncertainties in inputs of the module to outputs of the module;
The method further includes: providing outputs of each of the modules in a cOﬁnnon ,
data architecture for use as inputs by any other module, the architecture adaptéd to -
propagate uncertainties in the outputs to the inputs of the other module. The method
further includes substituting the plurality of modules with a single probabilistically
equivalem system model for propagating uncertainties in system inputs to system

outputs. The single probabilistically equivalent system model may be a single, less
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[0018]

[0019]

complex module that approximates the outputs, for a given set of inputs, of a system

* having two or more modules.
‘In another aspect of the invention, a system for generating an uncertainty analysis

- includes a module adapted to receive a set of inputs and to produce a set of outputs as a

function of the inputs. Each of the inputs has an associated uncertainty distribution.

As discussed above, the uncertainty distribution may be uncontrollable variations in the

input parameter. The system may further include means for propagating the uncertainty
distribution of the inputs through the module to produce an uncertainty in the outputs.

The means for propagating uncertainties through the module may be a process or

- algorithm for determining the effects of the input uncertainties on the outputs, and may'

include, for example, a Monte Carlo or Pattern Search analysis. The system further
includes means for genérating a probabilistically equivalent model of the module, the
equivalent model producing model outputs. The model outputs may be a set of oﬁtputs

that approxhnaté the outputs of the module given a set of inputs. The system further

.includes means for prbviding the outputs in a common data architecture for use as

inputs by any other module in tﬁe system.

In a further aspect of the invention, a system of analyzing uncertainties in a system
comprises means for generéting a probabilistically equivalent module model for at least
one of a plurality modules of a system. The equivalent module model is adapted to

propagate uncertainties in inputs of the module to outputs of the module. The system
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[0020]

[0021]

further includes two or more interacting modules and means for providing outputs of

“each of the modules in a common data architecture for use as inputs by any other

module. The architécture is adapted to propagate uncertainties in the outplits to the

.inputs of the other module. The system further includes means for generating a single

probabilistically equivalent system model for the plurality of modules for propagating

_uncertainties in system inputs to system outputs.

According to a further aspect of the invention, a system for generating an uncertainty

- analysis includes a modeling module adapted to receive a set of inp_uts and to produce a

set of outputs as a function of the inputs. Each of the inputs has an associated -

uncertainty distribution. The system includes an uncertainty propagation module

adapted to propagate the uncertainty distribution of the inputs through the modeling
module to produce an uncertainty in the outputs. An equivalent model generation

module is adapted to generate a probabilistically equivalent model of the modeling

- module, The equivalent model produces model outputs. The system further includes

an output generation module adapted to provide the outputs in a common data
architecture for use as inputs by any other module.

According to a still further aspect of fhe invention, a system of anal-yzing uncertainties
in a system comprises an eqﬁivalent‘mddel generation module adapted to generate a
probabilistically equivalent subsystem model for at least one of a plurality of '

subsystems, the equivalent subsystem model being adapted to propagate uncertainties in
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inputs of the subsystem to outputs of the subsystem. The system further includes an

output generation module adapted to provide outputs of each of the subsystems ina

~ common data architecture for use as inputs by any other subsystem. The architecture is

adapted to propagate uncertainties in the outputs to the inputs of the other subsystem.

- The output generation module may be a module adapted to generate output in a _

: predétermine_d format which, for example, includes a readily acceptable means of

propagating uncertainty information. The system also includes an equivalent system
generation module adapted to generate a -single probabilistically equivalent system
model for the plurality of subsystems for propagating uncertainties in system inputs to
system outputs. |

In a yet further aspect of the invention, a program product comprises machme readable
program code for causing a machin¢ to perform method steps. Thé program product
may be, for example,'a séftware package adapted to run on a computer, PC, laptop,

mainframe or similar cdmputing device.. The program product may contain instructions

to be executed. The instrui:ﬁons may include a list of the method steps. The method

steps include propagating an uncertainty‘ distribution associated with each of a set of
inputs through a module to produce an uncertainty in a set of outputs of the module.
The method steps further include generating a probabilistically equivalent model of the

module, the equivalent model producing a model of the outputs. The method steps also
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[0023]

[0024]

. include providing the model of the outputs in a common data architecture for use as

inputs by any other module in the system.
According to another aspect of the invention, a program product comprises machine

readable program code for causing a machine to perform method steps, which include

~ substituting at least one of a plurality modules of a system with a corresponding

probabilistically equivalent module model. The equivalent module model is adapted to
propagate uncertainties in inputs of the rnodul¢ to outputs of the module. The method
steps also include providing outputs of each of the modules in a common data -

architecture for use as inputs by any other module. The architecture is adapted to

propagate uncertainties in the outputs to the inputs of the other module. The method

steps further include substituting the plurality of modules with a single probabilistically
equivalent system model for propagating uncef;aiﬁties in éystem inputs to system
outputs.

In a preferred embodiment, the probabilistically equivalent model is a determinis;ically
equivalent model. Similarly, the probabilisticaily equivalent system rﬁodel may be a
deterministically equivalent system model. A deterministically equivalent model may
be developed using the steps déscribed herein. The ‘de.termim'stically eqﬁivalent model
may be a reduced-order model, which is less complex than the actual module in that

relatively few inputs may be considered in generating the model outputs.
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In a preferred embodiment, propagating the uncertainty distribution includes using a
Monte Carlo or Pattern Search method. Monte Carlo and Pattern Search methods are

well known in the art and may include perturbing each of a plurality of variables to

_ obtain an output uncertainty.

At least one of the set of outputs may be incorporated into at least one of the set of
inputs in a feedback loop. Thé feedback loop allows using an output of a module to
determine one or mofe of -the inputs of the module in, for example, an iterative process.
In a preferred embodiment, an optimization module is provided for optimizing an

objective function. The optimization module is adapted to receive the system outputs

‘and to vary the system inputs. The optimization module may be a software package or

a routine for either maximizing or m1mm1zmg an objective function. The objective
fu.nction may bé any parameter or combinatioﬁ of parameters whose value is desired to -
be either minimized or maximized‘, In a preferred embodiment, the objective function
1S a weighfed function of two or more butput parameters. Thus, the variable to be

minimized or maximized may be a combination of several parameters.

BRIEF DESCRIPTION OF THE DRAWINGS
"t

In the following, the invention will be explained in further detail with reference to the
drawings, in which:
Figure 1 illustrates a block diagram of a module in a system according to one

embodiment of the invention;
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0o30)  Figure 2 illustrates a system having a plurality of interacting modules and hierarchical
levels of details according to one embodiment of the invenﬁoh; |

~ 0031] Figure 3A-3E illustrate a process according to an embodiment of the invention by
which a pfobabilistically equivalent model may be generated for one or more modules;

[09521 Figure 4 illustrates an example of a deterministically equivalent model produced by tfie
‘1-)roAcess illustrated in Figure 3;

roo33] Figure 5 illustrates an exemplary chemical system ixanementing an embodiment oAf the
invention; |

too34) Figure 6 illustrates a second exemplary chemiqél. system implementing an embodiment
of the invention;

[0035] Figufe 7A illustrates an exemplary cominon datﬁ _érchitecture for use writh a system
apcérding to an embodiment of the invention;

tooss) Figure 7B illustrates an exempléfy XML data file using the common data architecture
of Figuré 7A; and

ooar] Figure 8 illustrates a computer system on which embodiments of the invention may be -

implemented.

DESCRIPTiON OF CERTAIN EMBODIMENTS OF THE INVENTION

oo3s] Figure 1 illustrates a block diagram of a module in a system according to one
embodiment of the invention. The module 10 may be a process or a device in a system.

In one embodiment, the module 10 includes a portion of a process or a device. In

10
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[0039]

[0040]

another embodiment, the module 10 includes two or more processes or devices. The |
module 10 may be a simulation model, for example, of a device, a process, or a
subsystem in the system. A commercial simulation tool may be used to simulate the

model. The module 10 has a pluraiity of inputs 6 12 'resu'lting in a plurality of outputs

- y(6) 14. The inputs 6 12 may be a series of inputs defining, for example, the geometry

of a chemical reactor or reactive properties of the reactants in a chemical reactor. Each
input 12 may have a probability density function that may be represented as, for

example, a Gaussian or normal distribution. The probability density function of each

- input 12 may effect the distribution of one or more dutputs y 14.

Figure 2 illustrates a system according to one embodiment of the inventibn having a -
plurality of interacﬁng modules 16 a-g. As described above with reference to Figure 1,
each module has a plurality of inputs and outputs. As illustrated in Figufe 2, éach .
module may have a one or more giobal inputs, including outputs from othe; modules,
and one or more local inputs, such as global inputs 18b and local input 21b for module
A 16a. The local inputs may be independent of the outputs of other modules.

Figure 2 also illustrates an embodiment implementing the models in a hierarchical
structure. At a highest le\)el, a module 22 receiving input parameters 1s linkéd to a
second module 24, which may provide system-level output parameters. At the next
hierarchical level, the module 22 can be modeled with a refined structure having

modules 16a-16g. Similarly, the second module 24 and additional modules may be

11
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modeled using a refined structure. At another hierarchical level, one or more modules
in the refined structure may be represented in a further refined model. For example,

Figure 2 illustrates module E 16e being modeled with a further refined structure. It

will'be apparent to those skilled in the art that such a hierarchical structure may be

provided with any practical nuﬁber of levels as needed.

Iq one embodiment of the invention, each mo&ulc 16a-g may be replaced with axi
equivalent representation. The representation is prcfergbly a probabilistically
equivalent model. Such models may be. generaited according to the method described
below with reference to Figureé 3A-3.E.v

Now, with reference to Figs. 3A-3E, a process according to an embodiment of the
iﬁvention by which a probabilistically equivalent model may be generated-willrbe
descﬁbed. |

A wide variéty of engineering and pfobiems can be described by .systems of algebraic
or differential equations of the form: |

f(y,6)=0

N(y,6):0 > y(0) = (D

,
= 1(y,6,6)=0 ;y(0)=
- (,6.0=0 ;¥(0)=y,

where N is a model that takes as input a set of m parameters 6= {4,,4,,...,6,} , that

might include, for example, reaction rate constants, initial concentrations or
stoichiometric coefficients and produces as output an n-dimensional vector of state

variables y = {y1,y2,...,ya} that may be typically associated with, for example, species

12
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concentrations. There are three essential levels at which the parameter vector ©
influences the model predictions y(8). The first and easiest is the solution of the model

itself given a nominal set of parametér values 6 . There are numerous tools available to

accomplish this task (e.g., Kee er al. 1996). A slightly harder problem is to assess the

sensitivity, S, of differential changes in y around a nominal pointé . In this case both

the model (1) and the system of adjoint sensitivity equaﬁons:

ooy ot
| : oy 060 06
3015,y5) 1 doay ofoy of dy 0 i 8;#y(0)
.__.__._-_—-—=0 ;oz—-—- = .
| dt30 dyao a6 00, |1 if6;,=y(0)

must be solvéd. Again, there are robﬁsf methods (e.g., Kee et al. 1996; Dunker 1984,
Kramer et al. 1984) for solving (1) and (2) and, once the sénsiﬁvities have been found, -

they can be used to rank the relative importance of different parameters. (See, for

_example, Gao et al. 1995). The third, and most difficult, level, is to determine the ’

global response of the model when the parameters are varied over a much wider
range. In practice, not all values of the parameters may be equally likely, and the
challenge is to combine the model response with the parameter variability.

Figure 3A more clearly illustrates this challenge. Depending on the choice of nominal

~

value ¢ , the local sensitivities S can have different signs and, at the point where the

parameter has its most likely value, the model response may not be very sensitive. The

13
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problem of determining the distribution of possible outcomes y(8) given the uncertainty
is more complex. If the probability density function of the input parameters is described
by the joint probability distribution f#6) (illustrated in Fig. 3B), then what is needed is .

the distribution of the predicted outputs y . Unfortunately, except for the simplest cases,

~ there no simple way to find this distribution.

As a way of illustrating some of the complexities associated with incorporating
uncertainties consider a simple first chemical decay of the form 4 —* 5 with a reaction

rate k. The kinetics of the concentration of a species A can be described by a first order

differential equation:

_‘?!6% =—koy(®) ; y(O)=y, : 3

where y, is the initial condition. For this very simple case the solution and the

associated sensitivity are given by:

YO =y @
d e .
=2 ==ty (5)
k

If k is an uncertain variable described by nofrnal probability distribution with mean of
ko and standard deviation £ i.e. K ~ N{ko, k1] then the probability density

function £, ,,[¥(%,¢)] of the solution for y(k,t), when k is constant throughout the

solution, but uncertain, can be found analytically:

14
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: 2

o 1 n 2% |
4 Yo . ~

= —  _exp| -— : 00 < y(k,t) < 6

kotonzz Y| Z| kt yiD) ©

f;(k.l)

Quite clearly even,thoughv the parameter value is normally distributed the density

 function for the solution is lognormal. Given the prbbability distribution function f it is

possible to characterize the uncertainty in terms of the moments. For example, the

expected value or mean of y(8) is givén by (see Papoulis, 1991):

E[y(8)]= [ (O [y @Ny(8) = [ #(O)f,(6)db,...d6,  (7)
— ’ ——

0

and the r-th central moments by

cm, = EL(8) - ELy(O)Y 1= [ -] (0) - EVOY fo(O)dk,...dk,  (8)

6
For the particular case (6) the expected value is given by:

1
(-Iconik,’ t’)

Ely(k,0)] = [y fy(R)dk = yoe ©
. :
There are several points that can be drawn from this example. The first is that solution

using the mean value of the rate constant is not the same as the expected value i.e.

y.e ™ # E[y(k,t)]. Of even more relevance is that as soon as t > 2k / k12 then the.

solution for the expected value of the concentration has an exponential increase. The
reason for this is that when a normal distribution is used to describe the uncertainty in

the rate there is a finite probability that the rate can become negative. In practice

15
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considerable care must be given to the choice of the parameter distributions to ensure
that any sample has a physically realistic value.

- foosm If the analytic solution to. £, ,[¥(@)] is not available then the key practical problem in

characterization of uncertainties is evaluating the multi-dimensional integrals (7-8). A
~ wide variety of methods have been developed and one of the simplest is the classical -
Monte Carlo method where the multi-dimensional integral is replaced by a finite

summation of the form:

. N, . .
ELO)]= || 10),(0)8,..d8, =~ 2 ¥(68) (10)

6 A
where y(6i) is the model prediction corresponding to the i-th sample point drawn from

the distrjbutioh f,(6) and N: is the number of sample points needed to achieve

statistically stable estimates Qf the moments. Although Monte Carlo methods (MCM)
can be used for dealing with implicit models, these methods can be prohibitively
expensive, especially when the computational cost is already high. Cleé.rly alternative
approaches, Whiéh can produce results at less computatidnal cost, are of g?eat interest.
os1]  Some of the methods that have been developed to treat this problem include the
perturbation method (Lax, 1980), the method of moments (Morgan etal., 1992),
Neumann expansions (Adomian, 1980; Ghanem and Spanos, 1991), the hierarchy
method (Lax, 1980), the semi-group operator method (Serrano and Unny, 1990), and
the spectral-based finite element method (Ghanem and Spanos, 1991). In order to use

these methods the mathematical models must be explicit functions of the parameters and

16
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the equations must be readily for manipulation. For many practical problems these

. constraints can be very restrictive. Some of the sampling based methods that use

[0052]

~ solutions to the models that have been developed include the stratified or pattern search

] . : )
methods such as the Latin Hypercube Sampling (LHS) (McKay et al., 19769; Derwent,

' 1987), the Fourier Amplitude Sensitivity Test (FAST) (Cukier et al., 1973, 1975, 1978;

McRae et al., 1982; Koda et al. 1979), and the Walsh amplitude sensitivity procedure

(WASP) (Pierce and Cukier, 1981). In practice even using the best sarhpling

~ procedures described in the previous section the number of runs needed to achieve
stable statistics can be prohibitively expensive.

| Traditionally, the approach to the treatment of uncertainty has been to first build the

model and then probe its response by varying the parameters. An alternative approach

is to integrate the uncertainty at the outset. In a classic paper Wiener (1938) developed

~ the optimal representation of a random variable in terms of a series called a

. “polynomial chaos” expansion (PCE):

Y@= TaHE@E@ L@ (1D
where w is the stochastic event, a; are constant coefficients and Hi ére‘functionals‘
whose m arguments are known probability density functions {£,(w),&,(®),---,&,(@)}.
The polynomial chaos expansion, has the following fquf properties (Tatang, 1995): (1)

Any square-integrable random variable can be approximated as closely as desired by a

polynomial chaos expansion; (2) The polynomial chaos expansion is convergent in the

17
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mean-square sense; (3) The set of orthogonal polynomials is unique given the

‘probability density function; (4) The polynomial chaos expansion is unique in

representing the random variable. The probabilisfic fo_rm (11) is analogous toa-

‘conventional Fourier series where a function is expanded in terms of a linear -

combination of sine and cosine basis functions. In practice only a finite number of

terms M in (11) are used:

@5 SR L@ G@]
Given the general form (12), the next steps are to define the functionals (H:), functions
(&) and solve for the coefficients a: of the ﬁnite expansion. The simplest way to
determine the ai'f is to use the method of weigh.ted‘ residuals (MWR) (See, for example, N

Villadseh and Michelsen, 1978). The weighted residual is defined as the difference

between the exact solution and the result when the series expansion is substituted into

~ the model. For the general form (1) the j-th weighted residual is given, after a suitable

change of variables from 8 — £ by

R;(&) = {NHOW&O- A& 5 j=12....m 13
where Rj(w) is tﬁe j-th residual and the W}( w) are weighting coefficients associated With
each of the uncertain parameters in the model. If the expansion y(€&) satisfies (13)
exactly then the residual is zero. Depending on the choice of weighting function and
minimization method used to find the coefficients a: the method is known as a least

squares, Galerkin, or collocation based MWR schemes.
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In this case the coefficients a: are determined by setting the residual to be orthogonal to

the space spanned by the probabilistic basis functions used in the expansion. The

probabilistic form of the inner product of the residual and the weighting function, -

Wi(E), is set to zero:

+0

W 51= oo [ R (G W EurrorsE) [y Erros YA oGy =0 5 jk=1200m

| | (14)
The integral (14) is defined for eaph of the M+1 basis polynomials Hi. Once the

integrals have been evaluated the system of M+1 deterministic equations can then be

solved simultah_eously for the coefficients ai. Two wéighting functions are typically

- used in practice a Galerkin and a collocation formulation.:

| g (& E,) Galerkin |
ch(fp,'fm)s (15)
' 5, (&-¢) Collocation
In the Galerkin case the orthogonal trial functions are used as the weighting functions.

When 'collocation is used & (€ - ¢) are Dirac delta functions which force the residual to

vanish at the collocation points ¢ = {c1,¢z,...,cx). While in either case the multi-

dimensional integrals (14) need to be evaluated, careful choice of the functionals Hi, the

weighting functions W« and the independent functions can considerably simplify the

process.
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(00571 Polynomial chaos expansions are “problem specific” because of the definition of
orthogonality in stochastic systems. Similar to the concept of orthogonal vec;.tors
spanning the vector space, parameter specific orthogonal polynénﬂals are derived such
that their roois are spread over the high probability region of the parameter. Two
stochastic functions gi(&) and gj(&) are o,rfhogonal when their inner product, defined
using the probability distributivon of the stochastic variable £, Yanishes The definition of |
orthogonal polynomials is: °

1 ifi=j
0 otherwise

FAGEAGFAGE ST/ 5;:{ (16)

where gi(x) is the i-th order orthogonal polyhornial. Note that the polynomials are
derived solely from the probability density function of the model barameters. In
general, problem-specific orthogonal polynorials can be derived by algorithms such as

- ORTHPOL, following the recurrence relations (Gautschi e al. 1994):

g—l(x). =0, _ .
g()(x) = 19 . (17)
(@ = (x—a,)g,(x)— Bi&i (%),
k = OlL..,n

where the coefficients c«, f can be expressed in terms of the orthogonal polynomials

following the Gram-Schmidt orthogohalization procedure:

R 1111 (k 2 0)
<& &k >
',Bo=<go’go> (18)
<g,.9, >
Bo=—Su8 2 (k2))
< 8k-1:8ka1 2
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rooss} The inner product used above is in the form of Riemann-Stieltjes integral
<g:8;>= | &g, (NdAX) (19)
where the function A(x) is the indefinite integral of the weighting function. Several

different types of orthogonal expansions are summarized in Table 1.

Table 1 |
Probability Polynofnial for Support Range
Density Function - Orthogonal Expansion '
Gaussian distribution , Hermite ‘ | (-0, + )
Gamma distribution Laguerre (0, + )
Beta or Uniform distribution | Jacobi or Legendre Bounded such as (0, 1)

0oss] As an illustration of the process consider the simple case A —* 5 described earlier.

: Thé basic idea is to approximate y(t) using a polynomial expansion of the form:
NOESOEDRAGEA) : ‘ (20)
i=0 .

where the g;(£) are the basis functionals and yi(z) are the time varying coefficients in
the expansion. For the particular case of Hermite polynomials the expansion is of the

form:

Y(O=Y,(O) + 3, (DE + y, 0)E* =D+ y; ()& =38) + y, ()" - 687 +3)+... (21)

oos0} Applying the variational procedure described-in the previous section produces a set of

linear ordinary differential equations for the coefficients:
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[0062]

AQQ +By()=0 (22)
dt

where A is the identity matrix and elements of B for the first four terms in the

-expansion is given by:

k, k, 0 O

“\k k, 2k O

B= (23)’ )
0 k k, 3k
0 0 k kK

The key point to note about (22) is that the equations for the uncértainty coefficients are
Aof the same structural form as the original model and so. its ﬁumerical solver can be
used for both forms.

In the collocation zipproach the residual (14) is forced to,vénish at cx, the collocation
points thus satisfyipg the model elxactly até =g, E=a0,.., &= CM+1. For an M-th
order polynomiél chaos expansion, the collocation points {cx} are the roots of gM+_1(§).A
Collocation points are chosen in a manner analogous to the Guassian quadrature method
'lfor evaluating integrals. In the collocation rnethbd, instead of solving once a large
system like (22), the détefministic model is solved M +1 times at each of the
collocation points cx. The resuit isasetof M+1 detérministic equations for different

Cx:
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ICAEDIAGEACY

y(e) = Z)’i(t)gi(ck.) (24)

i=0

_.}?(CM;-I) = ZY;’Q)&(%{H) »

After the model has been solved at each of the collocation points the set of simultaneous

.. linear equationé (24) can be solved for the coefficients yo, ... ym. A key advantage of

the collocation procedure is that it can be applied to “black box” type models where the

‘model equations are not known explicitly because the method it requires only the

solution of the model at specific vaiucs of the parameters.
This method, and the associated properties are completely generalizable to systems with

many stochastic parameters. For example, if the parameters are independent:

i=1

£ (& Epnln) = £ (ED (&) o £ (€ =T15,©) (25)

Assuming y is a function of N independent random variables, y = y(&, &, ..., «fm)", an

M-th order polynomial chaos approximation ¥&, &, ..., &m) of y is written as:
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V(&L E )=y + Zyi;gl &)+ Zy,'zgz <) +Zzyiljlgi(§i)gj(§2) + Zyi3g3(§i)

i=0 j<i
linear second order bilinear third order
N X ] N
+Zzyi2j1g2(§i)g1(§j)+Zzyilj2gl(§i)g2(§j) o (26)
i=0 j<i =0 j<i : :
second orderin &, firstin £, first order in §;, second in &
+ ZZ Z Yijua & (£)8.,)g (£,) + higher order terms.
i=0 ji k=j=i
trilinear

ose] The choice of collocation points for higher order éystem warrants further discussion.
Uniess all the pfoss product terms are included in the expansion, only Séieg:ted
collocation points will be used to determine the PCE coefficients. In order to handle
this situatioh a formal procedure has been developed to choose systeniatically the
.collocation points used in the solution pro;:edure. Consider first a two parameter case.

| The collocation points for each parameter are placed in order of decreasing probability.

'In. the case when the probability is equal (e.g. , in a uniform distribution), the points
are organized in increasing distance from the mean. The first pair of points, which
contains the most probable values for all the parameters among the collocation points
(c1, ¢3), is termed the anchor point (£,,,..). For each increasing order of
approximation', the corresponding variablé’s collocation point is perturbed. Therefore,
the pairs of points (c1, ¢3), (c2, ¢3), and (c1, ¢4) are chosen for an approximation which

has a constant term and the first order terms in & and &. If the there is a bilinear term
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g1(&)g1(&) is used in the approXimation, the point (cz2, cs) will also be used in the

~ coefficient evaluation process.

Given the discussion in the previous section there is a clear need for an automatic

procedure to simplify the choice of the appropriate numbers of terms in the expansion

of the model output variables. Using an error correction mechanism embedded into -

mo;t- ordinary differentiallequations solvers the truncatioh erro'r of the response surface
representatioﬂ is éstimated by comparing the M-th order predic.tio'nm the (M +1)-th |
order predic;tion. The model is evaluated at the collocations points (':.orr‘esponding to the
(M+1)-th ofdef approximation and then the mo.del solutions are compared to the

approximation obtained from the M-th order PCE at those points. The error at each of

~ the (M +1)-th order collocation pbints is defined as the square of the distance between

[0088]

[0069]

the exact solution and the M-th order approximation:

| & = "J’i _},}i"2 . (27)

Two specific metrics are used; the sum square root (SSR) error and the relative sum

square root (RSSR) error as:

SSR=\/ . ZH Jeé ?
(M +2) f Ganchor) (29

SSr e1ror
E(p)

The error measures in (28) can be used to guide the decision of whether more terms are

RSSR =

needed in the PCE. The accuracy and number of terms required for the response
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surface approximation depends on the goal of the analysis. This procedure is

implemented in a computer program that guarantees the convergence of the PCE series

- with increasing order. Interactions between the parameters can also be elucidated. The

order of approximation is increased until the error is negligible. However, excessive

number_ of model runs to evaluate coefficients sometimes can makes this approach
computationally ‘intensviye. It is possible to analyze the error contributiqn from each of
the variables by evaluatiﬁg the indiyidual terms, and select \‘/ariables that contribute to
the error as térgets for higher order representation. Physical insights can also be used
to guide the selection énd__uSe of cross prbduct terms. One procedure for error control is
shown iﬁ Figure 3C

Once the coefficients in the polynomial chaos expansion have been determined there are
several other useful properties than can be determined including the ‘probability density
function of the outputs, cbnﬁdence intervals, moment information, and variance |
apportionment to identify the critical input variables. For exampl¢, one simple way to
obtain the probability distribution of a response variable from the PCE representation is
by Monte Carld .(MC») éampling of the expansion itself. In esseﬁce fhe PCE |
approximation can be viewed as a reduction of .the original output variable. Where MC
sampling of the original complex model is prohibitively expensive, MC sampling of a
linear combination of algéi)raic terms containing the random inpﬁt variables provides a

viable alternative for understanding the behavior of the random output variable. This
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[0072]

method can als be used to derive the cumulative density function (CDF). To generate a
CDF, the output samples are sorted in ascending order and the limits of each fractile

are recorded. The confidence intervals can also be determined using the sorted samples.

- For example, a 90% confidence interval will be the range of the empirical samples

after the highest aqd lowest 5% of the samples are discarded. If a probability density
function is needed, the range of tﬁe response. var.iab'les is divided into bins or intervals
and the frequency of occurrénce in each interval is counted ba;ed on the‘_same
procedures used to generate histograms.

One application of particular importance is the determjnatidn of the moments of the
output probability distribution aﬂd their application to the analysis of variance. The -

moments of the distribution can be determined empirically from the MC samples; or

they can be calculated directly from the PCE coefficients, using the definition of the n-

th central moment (cma). The evaluation of moments is simplified 'by the orthogonal
properties of the polynomials. For example, if:

Y = U + U1 qu( &) +u2 ga( &), (29)
the mean value is equal to yo, and the variance of the random variable is described by
o2 = A1u12 + A;;_u%
A= [e} EDpe G, Ag = [83,(82)pe (E2)dEs.

Higher moments can also be determined from the coefficients of higher order terms.

(30)

The relationship between the PCE coefficients and the variance suggests the utility of

the PCE approximation for variance analysis. The contribution of each input parameter
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can be determined from the relevant terms in the approximation. In (30), the variance
contribution (VC) from & is Ai ui?, while the VC from & is A2 u2®. Any cross terms

are apportloned among the variables involved. Thls kind of analysis is partlcularly

useful for identifying input variables whose uncertainties have strong effects on the

. uncertain outputs.

Consider an simple series reaction mechanism of tﬁe form 4 —%>B—fr C where ki |
and k2 are uncertain parameters described by the norxtlal distributions k: = N[O.S,O. 1]
and k2 = N[2.0,0.5]. The initial condit‘ions are tA(O)]= 100, [B(0)] =[C(0)]=0. Once
the reactions t:ommence, the concentrations of A, B, and C are uncertain because of the

uncertain rate constants. Set out below are the steps in applying the collocation

_procedure for uncertainty analysis.

Step 1. Specify Uncertain Parameters. In this example, the probability distributions of
ki and k: are assumed to be independent.and Gaussian. The polynomial chaos
expansions are simply:

ki = ki + ki1 .
k2 = ka0 + k& (31)

where ko = 0.5, k2o = 2. 0 are the mean values of ki and k2, and ku = 0.1 and k21 =
0.5 are the standard deviations. Methods for developing PCE forms for other
probability distributions are tlescribed in Tatang (1995).

Step 2. Generate Problem-specific polynomial chaos expansions. Since the explicit

forms of distributions of k; and k2 are known, orthogonal polynomials chaos {g:} can be
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“generated such that the inner products, defined by [; g:(5)g (&) f:(£)dS , are zero,

where f:(&) is the PDF of the uncertain variables & or &. For standard normal

distributions, the PCE are simply orthogonal Hermite polynomials deﬁned by:

Ho(&) =1,

Hi(&) =&, _ :

Hyd =& -1, | (32)
Hy®=& -3¢ |

Etc.

wore] Step 3. Approximate Uncertain Output& Using Polynomial Chaos Exfansion. The _
model bﬁtputs, éoncen;ratibns A(&,t), B(&, &t), C(&1, &, t), are expressed as linear.’ '
combinations of the orthogonal polynomials determined in Step 2. These expressions
are known as the polynomial chaos expansions (PCE) for the uncertain outputs, and to
| first order, are given by: |

A= Ay A H )+ A H E) + AHE)+ AH, )+ A H EVH (E) .o

. | constant linear terms ' second order terms bilinear term
B=B,+B.H (£)+B,H (&) +BH, (&) +B,H,(&,)+BH (§)H (§;) + ... (33)

C=C, +C,H,(§‘)+C2H,(fz)+C3H2(§1)+C4H2(§2)+C5Hl(§1)H1(§2)+...
The concentrations of A, B, and C, and the coefficients, Ao, Ai, ..., Bo, By, ..., Co, Ci,
... are all functions of time. At each”time point, the number of coefficients, hence the
number of sirnultaneoug equations for their solution, is determined by the order of the
polynomial approximation. The higher the order of the approximation, the better the

approximation. In practice the procedure is to start with a low order expansion and to
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. increase the order iterativély as needed. Linear PCE representations for 4, B, and C,

using Hermite polynomials, are given by:

A%, B t) = A1)+ ADE, + A (1)E,
B(E,&, 1) = By(t)+ B,(t ), + By(1)E, (34)
C(g,,gz,r)= Co(t)+ C,,(t)§l+ Cz(’)ﬁ;- -

| [0077] .St,ep 4. Find the Collocation Points. Collocation points aré selected_to solve for the
coefficients, Aé, Ai, Az, Bo, Bi, B, Co,_ C, »and C, in thé approximation (33). For a

~ linear approximation, the coliocation points are determined by the roots of the second
order polynomial. Hz(&) = & - 1; therefore, & ==1. Since & and &2 are Gaussians and
are symmetric about zero, the four pairs of collocaﬁon points '( +1, £1) are equal in
.probability and equal in distance to _the'mean (0, 0). The point (&1, &) = (i, lj_ié '
designated as the anchdr point, the point with the highest probability. In this example,

| the points (-1, 1) and (1, -1) are also chosen.' These correspond to (k1, kz2) pair's‘of |
(kio+ ki1, k2o+ kai), (k:o- ki1, ko+ ka1), and (ko+ ki, vkzo - ka1), as iisted in Table 2.

Table 2

Points at Which to Solve Model Ky (By) ks (E2)
(ky =0.5+£0.1&, ko =2.0+0.5 E_,z) ' ‘

(c1) - Anchor point 0.6(1) - 2.5(1)
(cy) - First perturbation of k; 04 (-1 25
(cs) - First perturbation of k 0.6 (1) 1.5 (-1)
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Step 5. Solve the Model at the Collocation Points. The model is formulated to take the

uncertain parameters k: and k: as external inputs. Solutions for A(i), B(t), and C() are

evaluated for each pair of (ki, k2) found in Step 4. The original model solver is used

~ “as is”, since the model equations are exactly satisfied at the collocation points.

[0079]

'Step 6. . Solve for the Coefficients olexpa'nsion from Model Results. The model

solutions for A(1), B(t), and C(z) are equated to simple algebraic equations in (27) for '

each of the collocation points (k:, k2) listed in Table 2. The resulting time-dependent

equations for the coefficients Ao, A1, A2, Bo, Bi, By, Co, Ci, and C: are evaluated

~ numerically at the selected time points. At each time point, the algébraic equations (24)

are solved simultaneously for the unknowns. Since the concentration of A does not

depend on the uncertain rate constant kz, the coefficient Az(?) in is exactly zero atall

' times.

[ooso]

Step 7 Estimate the Error of Approximation. The error of the linear PCE can be

 evaluated for each species at any given time based on the solutions at the roots of the

~ third order Hermite polynomial (collocation points for the second order PC‘E). The

roots to the third order approximation are § =0, * V3 and the corresponding points
for each parameter combination are shown in Table 3 for a second order

approximation.
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Table 3 .

Points at Which to Solve Model - | . ki (&) k2 (E2) .
. (kl =0.5%£0.1 E_,l k2 = 20i 0.5 §2)
(c4) - Anchor point ’ 0.5(0) 2.0 (0)
(cs) - First perturbation of k; . 0.673 (v/3) - 200
(ce) - Second perturbation of k; - 0.327 (-4/3) 2.0 (0)
(c7) - First perturbation of k; : 0.5 (0) . 2.866 (V/3)
(cg) - Second perturbation of k; - 05(0) 1.134 (; NED)

* An example error calculation is shown in Table 4 for species B at time 1.0 units (when

*the concentration of B is at its maximum).

Table 4
- C4 Cs - Cg ‘ C7 Cg
| Exact solution 15.7065 18.9602 11.5320 11.6369 .| 22.4998 -

Approximate Solution | 16.4583 19.5191 13.3975 10.4192 | 22.4974
Error at Point (c;) -0.7518 -0.5589 | --1.8655 1.2177 0.0024

Probability of Point 0.1591 0.0356 0.0356 | 0.0356 | 0.0356

Expected Value of B 16.4583

Error (RSSR) 0.036

Error (SSR) ©0.591

Table 5 shows that the relative error of the linear approximétion of the response surface

is about 4%.
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Table 5

Appfoximation Order Number of Model Runs Error Error
(Including error evaluation) | (RSSR) (%) (SSR)
1 8 3.64 0.591
2 (square terms only) o 12 . : 1.69 ’ 0.271
2 (complete) 14 087 0.139
3 (complete) 22 012 0.019

4 (complete) _ 32 0.02 0.004

5 (complete) : 44 0.003 | 0.0005

This percentage number by itself is not an absolute measure of the “goodness” of the
approximation. When the expected value is close to zero, the RSSR can grow in an
-unboﬁndcd manner and caﬁﬁon should be used in interpreting the error estimates.
Step 8. Increase the Order of Approximation. One way to d‘ecrease the error of the
TeSponse éurface approximation, and henée éf the uncertainty eStirriates, is to increase
the order of the polynoﬁﬁal chaos app'roximatibn. Including highef order terms and .
cross product terms have the obvious utility of capturing curvature of thé response
surface better. There is an additional advantage. Based on the choice of collocation
points, as described in Step 4, increasing the number of terms also increase the “spatial
coverage” of the collocation i)oints, rnaking.the estimate applicable over a wider range
of values of the uncertain linputs. The errors associated wifh different orders of

approximation for the concentration of B at time = 1 are presented in Table 5.
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(0082) Step 9: Variance Analysis. Using the formulation described in (29-30) the mean and
the variance, of the spread, of the response are of particular‘ interest. Figurev 3C shows
thé expected values of the uncertain output concentratiéns A, B, and C with error bars

‘ representing the standard deviation of the PDF estimate. The solid lines are the
nominal solution, that is, the deterministic solution éalculated‘using ki=05and k: =
2.0, thé best estimate 6f the input rate constants. The contribution to the total variance |
from each of the paréuneters is als'o shown in Figure 3C. Several points are worth
noiting. Fifst, the expected valués are not always équal to the nominal solution based
on the best estimates of ki and kz. In fact, the expected solution in an uricerfainty
analysis can deviate significantly from the nominal solution in complex and highly non-
linear mechanisms. Second, output uncertainties do not always increése with time. In
this example, the ‘initi.al condition are certain, and uncertainties of the concentrations. at
the Beginning of the simulation are small. Since all reactions are irreversible, the end
point is also certain: A and B disappear, and C asymptotically approaches the initial
conceﬁt;ation of A due tb the conservation of mass. This explains the decrease of
uncertainties towards the end of the simulation. The transienﬁ po-rtionlof the reaction is
most uncertain for all three species, indicating the uncertainties of the exact timing of
the reactions and the cbncéntration proﬁles. Uncertainties of the three species are iﬁtér-

related, because total mass is certain and conserved. When compounds A and B are
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depleted, the concentration of C is certain to approach the initial condition of A. When
the concen;rations of A and B are uncertain, C is bound to be uncertain as Qell.

From the individual PCE coefficients, the contribution of any particular uncertain
parameter to the output variance can be calculated. The PCE coefficients give

information regarding the “global sensitivity” of the response variable to the parameter.

- Figure 3D depicts the variance analysis for the intermediate species B. Both ki and k2

contribute to uncertainties in the concentrations of B. Although the uncertainty of k2 is
higher than that of k1, both in absolute and relative terms, the variance contributions of

k2 is not always dominant.  In the very beginning of the reaction, k; dominates the

variance, reflecting the sensitivity of the concentration of B to the rate constant of the A

—> B reaction when the concentration of B is low. As B builds up, the rate of the BA
—> C reaction increases. At this stage, the concentration of B becomes more sensitive
to k2 than k1. The uncertainty in k2 translates fo concentration uncertainty of
concentration of species B. Such analysies proves to be ﬁseful in identifying key input
parameters that affect the uncertainties of the model predictions.

Another application of the ﬁolynomial chaos expansion represents the distribution of the
response variable as a ﬁmctic_mal of the uncertain input parameters. Monte Carlo
sampling procedures can be applied to saﬁlpling the polynomial chaos expansion to
obtain the probability density function of the output. With this approach, the overhead

computer resource required to run a Monte Carlo analysis is small compared to the time
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taken to solveAthe model at the collocation points. For example, a 39-term PCE takes

1.8 seconds to solve and sample. If the model takes two hours to run, a overhead time '

of several seconds is negligible, and the time savings of using DEMM instead of Monte
Carlo is the ratio of the number of model runs needed for the two methods.

In a further embodiment, after increasing thg ord¢r of the approximation, the algorithm
niay determine whether cer;ain inputé may be ignored dﬁe to negligible uncertaiﬂty
effect. In this manner, asr.educed—order‘, deterministically equivalent model may be

_achieved.. As indicated in Figure 4, a module 41 having 20 global inputs and 50 local

Inputs may be represented by a deterministically equiValént model 43 having only 2

global inputs and 3 local inputs, for example. Thus, the modeling of the module 41

may be accomplished with greater efficiency while maintaining deterministic

-equivalence.

Once a deterministically equivaient model has been created for each module, the

modules may communicate with each other while maintaining proper propagation of the

* input uncertainties.

{0087]

Figure 5 illustrates a system 500 according to an éxemplary embodiment of the
invention for'perforrriing an integrated uncertainty analysis for a chemical reactor
system. The system 500 may be an integrated collection of modules, each module
being a simulation of a particular aspect of the system with system-specific inputs. A .

geometry module 510 may be provided to simulate the geometry of a chemical reactor.

36



~ [0088]

[0089]

WO 2005/008379 PCT/US2004/021494

The geometry module 510 may be a commercially available sqftware package for
simulating structurai geomefry. A kinetics module 520 may be provided to 'simula‘t'e the
Kinetic interaction or movements of reactants involved in the chemical reactor system.
The geometry rnodule 510 and the kinetics module 520 may provide inputs to a feactér
model hodule 530 for simulating the reaction of the reactants in a chemical reactor.
The reactor quel may be a commercially available software package such as Chemkin.

The reactor model module 530 may pruvide inputs to a computational fluid dynamics
(CFD) module 540. The CFD module 540 fnay simulate the fluid dynamics of the
reactﬁhts and products through a chemical reactor. A software package such as '
STARCD may be used to siruuiate the fluid dynamics. Outputs of one or more modules

may be used to prov1de inputs to a process engmeermg module 550. Although Flg 5

_only illustrates outputs from the CFD rnodule 540 being used for mputs into the process

engineering module 550, inputs may be received directly from other modules such as
the kinetics module 520 and the reactur module 530.

Fig. 6 illustrates a further embodiment of the system illustrated in Fig. 5. In the
embodiment of Fig. 6, an economics module 560 is added to simulate the economic
aspects of the deéign or design improvements of the reactor system. The economics
module 560 may be a commercially available software package such as Icarus with

system-specific inputs.
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Further, an optimization module 570 may be incorporated to perform an optimizaﬁon n
the design of the reactor syétem. The optimization module 570 may also be‘ a
commercially available software package 570 gnd may include any of a variety of
commonly known opfimization algorithms, such as recursive quadratic programming or

sequential quadratic programming. As indicated by the dotted lines in Fig. 6, the

‘optimization module may perform an iterative optimization using the outputs of the

chemical reactor system and by tweaking the inputs to the reactor system. The
optimization performed by the optimization module may be used to accomplish any of

several objectives such as, for example, determining an optimal resource allocation.

As seen from the illustrated systems of Figs. 5 and 6, a system may include a variety of

commércially available packages. Such packages oftén_ are not adaptable to interact

with each other. Fo; example, the output from the reactor model 530 using Chemkin
may not be acceptable as input by the CFD module 540 using STAR CD. This problem
may be further complicated by the need to communicate uncertainty mforrnatlon for the
various parameters. To this extent, a.common data architecture may be applied to‘
allow the data and the uncertainties to be propagated between the various modules.

One such data architecture using XML i,s described in US Patent Application titled
“METHOD AND APPARATUS FOR INFORMATION EXCHANGE FOR
INTEGRATION OF MULTIPLE DATA SOURCES”, Attorney Docket No. 037010-

0106, filed concurrently herewith and incorporated herein by reference in its entirety.
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Figs. 7A and 7B illustrate an embodiment of a data architecture and an exemplary XML
data file. The data architecture illustrated in Fig. 7A is adapted to accommodate any
one of a group of uncertainty distributions. An element calied “name” 710 is provided

to identify the type of distribution for a particular variable. In the example illustrated

- in Fig. 7B, the “name” of the distribution is PDF, or pfobability density function.

Another elemént called “description” 720 is provided to further describe the
distribution. For example, in the example of Fig. 7B, several types of PDF
distributions may be possible, including a “normal” distribution. Other PDF
distributions may include exponential PDF distribution. Depending on the “néme” and
the “descri.ption” of the uncertainty distribution 6f the particular variable, one or more
description elements may be provided to ciescribe the actuall distribufion. In this regard,
Figure 7A illustrates the data architecture as including an attribute list 730 which is a

function of the “name” and “description” parameters. For example, the example'

- illustrated in Fig. 7B has a normal PDF distribution, re_quiring that the mean and the

{0092]

standard deviation be specified in order to completely describe the distribution. -

Similarly, other uncertainty distribution types may ‘be specified for each variable. For
example, the uncertainty distribution of a variable having an exponential PDF

distribution may be described by providing a mean value. Other distribution types that
may be described using this common data architecture may include a polynomial chaos

expansion, a list of points, or a histogram. Thus, the uncertainty distribution of each

39



WO 2005/008379 PCT/US2004/021494

[0093]

[0094]

" {009s}

variable, input or output may be associated with the variable itself in, for example, a

database.

The above-described methodology has been shown to use random variables. It is

contemplated within the scope of the invention to allow utilization of random proc'esses,,

for example, using Karhunen-Lo&ve series expansions, which are well known to those

skilled in the art. For details on Karhunen-Loéve series expansions, reference may be

made to Papoulis, A. Probability, Random Variables, and Stochastic Processes, 31d
Edition, McGraw Hill, NY, 1991, as well as to Tatang,_M.A., Direct Incorporation of

Uncertainty in Chemical and Envirohmen_tal Engineering Systems, Ph.D. Thesis,

| Department of Chemical Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts, 1995, each of which is hereby incorporated by reference.
With each module being able to effectively communicate its outputs to all other
modules in a common data architecture, the optimization process may be automated.

In a further embodiment of the invention, the entire system of processes and subsystems

‘may be modeled as a single system by creating a deterministically equivalent model, as

described above for individual modules. In this regard, the global inputs into the
system may now be treated as the inputs 10 illustrated in Fig. 1. With an equivaient
model for each module, propagation of data and uncertainties through each module is
assured, while the common data architecture ensures propagation between the modules.

Thus, an integrated uncertainty analysis may be performed on an entire system with
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the system including all aspects of the design process, including economics, for
‘example. |
foose] Although an embodiment of the invention is described above as being applied in the
chemical environment, embodiments of the invention may be employed in a broad
variety of applications. Some possible areas and industries for application include,
without lmﬁtétion, financial éﬁalyées, oil industry, various types of networks including
- computer networks, transportation, circuit simulation, project scheduling, and decision

analysis.

 10097) For example, in the financial arena, when alternative investment proposals are
considered, there are often many uncertainties to b¢ considered including market size,
selling price, financing availability, etc. If financial risk is to be managed effectively,._it
is critical to be able tb assess the relative contributions of different sources of
uncertainties. For example, in a net present value (NPV) calculation, there are often
uncertainties in the future cash flows and the discount rafe that, in turn, lead to |
uncertainties in the p%bject valuation. Using a method or system for uncertainty
analysis according to an embodiment of the present invention,b it is possible to
determine the NPV probability distribution and the contributions of individual terms to
the variance in the valuation. Such information is important for developing risk
mitigation strategies or to determine where additional resources might be allocated to

reduce the overall risk. Similar analyses may be applied to a broad spectrum of
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financial instruments including options pricing, portfolio management, insurance
pricing, etc.‘ |
oss] An embodiment of the application may' also be applied to the area of logistics and
_ transportation networks. A common problem in managing the logistics of moving
products from factories to warehouses to markets is to manage the shipping costs when
there are uncertainties ip customer demands, raw material suppliers and the availability
of shipping capacity. The uncertainty analysis methods and systems according to
embodiments qf the present invention, together the mathematical programming
formulaﬁons of the logistics problem,. may be used to develop robust production
schedulés, inventory managément béliéies and identify optimal ways to allocate
shipping. |
- j0099] As a further example, an erribodixﬁent of the invention may be applied to simulations of
.electronic circuits. Electronic circuits are typiéally compbsed of many subsystems. At -
the lowest level, the components might be transistors, cépacitdrs or resistors and, at a
higher level of integration, the subsystems could be amplifiers or inverters. The
electrical properties of these devices can be .unCCrtain, which m turn leads to
uncertainties in the overall system performance. Current circuit simulators, such as
SPICE, cannot propagate effects of component uncertainties on determining the
probability distribution of predicted outputs from the simulation model. The

uncertainty analysis methods and systems according to embodiments of the present
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invention may treat the circuit simulator as a black box and identify component
uncertaintie‘s that are influencing the outputs. |
Mechanical and structural analyses may also employ embodiments of the present
invention. Finite elements are.widely used'tq study fhe statics and dynamics _‘o‘f
cdmplex systems made up of simple components. The imcertainty analysis methods and
_systems:accordipg to embodiments of the bresent invention may treat uncertainties in
the external ioaclings and physical properties and determine how they affect the
predictions of the numerical model. AEmb.odiments of the present invention, .in

combination with Karhunen Loeve decomposition, can also account for spatial and

~ temporal variations in the intake parameters.

Another example of an application of an embodiment of the invention is the analysis of

decisions. Structuring and analyzing a complex decision involves many uncertainties.

' When models are used to describe the project elements, or there are uncertainties in

decision outcomes, there is a need to identify the component parts that have the most
influence on the outcomes. A knowledge of the probability density function of the
outcomes as described above with réference to the embodiments of the present
invention enables the investor to manage the risk aéross a portfolio of projects.

An embodiment of the invention may be .impleme,nted ona proéessor such as the
computer system illustrated in Fig. 8. The computer system 800 comprises a computer

such as a desktop unit 810 or a laptop. Processing is performed by a central processor
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[00103]

unit (CPU) 820. The CPU 820 may receive electrical péwér from a power supply 821
connected to an external power source. | o

A hard drive 822- may be proyided tb store data and instructions in a non-voiatile
l_nemory, for example. Further, a random access merhory 824 is provided. to
temporarily store instructions for the CPU. The random access memory 824 may be

provided with stored instructions by, for example, an executable residing on the hard

| drive 822 or on an external storage medium such as a floppy disk or a CD-ROM 828.

[00104]

[00105]

Information on the CD-ROM 828 rﬁay be accessed by the CPU 820 via a CD-ROM
drive 826. Otherv drives may be pr_ovidéd to access information from other types of
external storage media.

The CPU 820 rhay receive instructions, commands or data from an external user
through input devices such as a keyboard 830 and a mouse 840. The CPU 8l20 may

display status, results or other information to the user on a monitor 850.

While particular embodiments of the present invention have been disclosed, it is to be
understood that various different modifications and combinations are possible and are -
contemplated within the true spirit and scope of the appended claims. There is no

intention, therefore, of limitations to the exact abstract or disclosure herein presented.
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CLAIMS

What is claimed is:

A method of analyzing uncertainties in a system having at least two modules,
co.r'nprising:‘

propagating an uncertainty distribution associated with each of a set of inputs
through a module to produce an uncertainty in a set of outputs of said module;

generating a probabiiistically equivalent model of said module, said equivalent
model produci_hg a model of said outputsA; and

providing said mode! of said outputs in a common data architecture for use as

inputs by any other module in said system.

The method according to claim 1, wherein said probabilistically equivalent model is a

deterministically equivalent model.

The method according to claim 2, wherein said deterministically equivalent model is a

reduced-order model.

The method according to claim 1, wherein said propagating said uncertainty

distribution uses a Monte Carlo method.

The method according to claim 1, wherein at least one of said set of outputs is

incorporated into at least one of said set of inputs in a feedback loop.

A method of analyzing uncertainties in a system, comprising:
substituting at least one of a plurality modules of a system with a corresponding
probabilistically equivalent module model, said equivalent module model adapted to-

propagate uncertainties in inputs of said module to outputs of said module;
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providing outputs of each of said modules in a common data architecture for use

- as inputs by any other module, said architecture adapted to propagate uncertainties in

said outputs to said inputs of said other module; and -

substituting said plurality of modules wiﬁh a single probabilistically equivalent

- system model for propagating uncertainties in system inputs to system outputs.

* The method according to claim 6, further comﬁrising:

providing an optimization module for optimizing an objective. function, said
optimization module adapted to receive said system outputs and to vary said system’

inputs.

The method according to claim 7, wherein said objective function is a weighted

function of two or more output parameters.

- The method according to claim 6, wherein said probabilistically equivalent module

model is a deterministically equivalent model.

The method according to claim 9, wherein said deterministically equivalent model is a

reduced-order model.

The method according to claim 6, wherein said probabiliSticélly equivalent system

model is a deterministically equivalent model.

The method according to claim 11, wherein said deterministically equivalent model is a

reduced-order model.

A system for generating an uncertainty analysis, comprising:
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a module adapted to receive a set of inputs and to produce a set of outputs as a

function of said inputs, each of said inputs having an associated uncertainty 4

distribution;

means for propagating said uﬁccrtainty distribution of said inputs through said
module to produce an uncertainty in said outputs |

means for generating a probablhstxcally equwalent model of said module said

equivalent model producing model outputs; and

means for providing said outputs in a common data architecture for use as inputs

by any other module in said system.

The system according to claim 13, wherein said probabilistically equivalent model is a

" deterministically equivalent model.

The system according to claim 14, wherein said deterministically equivalent model is a

reduced-order model.

‘The system according to claim 14, wherein said means for propagating said uncertainty

distribution uses a Monte Carlo method.

A system of analyzing uncertainties in a system, comprising:

means for generating a probabilistiéally equivalent module model for at least one
of a plurality modules of a system, said equivalent module model being adapted to
propagate uncertainties in inputs of said module to outputs of said module;

means for providing outputs of each of said modules in a common data
architecture for use as inputs by any other module, said architecture adapted to
propagate uncertainties in said outputs to said inputs of said other module; and

means for generating a single probabilistically equivalent system model for said
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plurality of modules for propagating uncertainties in system inputs to system outputs.

The system according to claim 17, further comprising:

an optimization module for optimizing an objective function, said optimization

-module being adapted to receive said system outputs and to vary said system inputs.

The system according to claim 18, wherein said objective function is a weighted

function of two or more output parameters.

The system according to claim 17, wherein said probabilistically equivalent module

.model is a deterministically equivalent model.

The system according to claim 20, wherein said deterministically equivalent model is a

reduced-order model.

The system according to claim 17, wherein said probabilistically equivalent system

model is a deterministically equivalent model.

The system according to claim 22, wherein said deterministically equivalent model is a

reduced-order model.

A system for generating an uncertainty analysis, comprising:

a modeling module adapted to receive a set of inputs and to produce a set of

outputs as a function of said inputs, each of said inputs having an associated uncertainty

- distribution;

an uncertainty propagation module adapted to propagate said uncertainty

distribution of said inputs through said modeling module to produce an uncertainty in
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said outputs;

an equivalent model genefation module adapted to generate a probabilistically
eqﬁivalent model of said modeling module, said equivalent model producing said
outputs; and

an output generation moduie adapted to provide said outputs in a common data

architecture for use as inputs by any other module.

The system according to claim 24, wherein said probabilistically equivalent model is a

~ deterministically equivalent model.

The systerri according to claim 25, wherein said deterministically equivalent model is a

reduced-order model.

‘The system according to claim 24, wherein said uncertainty propagation module uses a

Monte Carlo method.

A system of analyzing uncertainties in a systérn, comprising:

an equivalent model generation module adapted to generate a probabilistically
equivalent subsystem model for at least one of a plurality. of subsystems, said equivalent
subsystem model being adapted to propagate uncertainties in inputs of said subsystem to
outputs of said subsystem; ’ |

an output generation module adapted to provide outputs of each of said

subsystems in a common data architecture for use as inputs by any other subsystem,

“said architecture being adapted to propagate uncertainties in said outputs to said inputs

of said other subsystem; and

an equivalent system generation module adapted to generate a single

probabilistically equivalent system model for said plurality of subsystems for

51



29.

30.

31.

32.

33.

34.

35.

WO 2005/008379 PCT/US2004/021494

propagating uncertainties in system inputs to system outputs.
The system according to claim 28, further comprising: _
an optimization module for optimizing an objective function, said optirnization

module being adapted to receive said system outputs and to vary said system inputs.

The system according to claim 29, wherein said objective function is a weighted

function of two or more output parameters.

The system according to claim 28, wherein said probabilistically equi_valent subsystem

model is a deterministically equivalent model.

The system according to claim 31, wherein said deterministically equivalent model is a

.reduced-order model.

The system acéording to cléim 28, wherein said probabilistically equivalent system

model is a deterministically equivalent fnodel.-_

The ‘system according to claim 33, wherein said deterministically equivalent model is a

reduced-order model.

A program product, compriéing machine readable program code for causing a machine

~ to perform folldwing method steps:

- propagating an uncertainty distribution associated with each of a set of inputs
through a module to produce an uncertainty in a set of outputs of said module;
generating a probabilistically equivalent model of said module, said equivalent

model producing a model of said outputs; and
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providing said model of said outputs in a common data architecture for use as

- inputs by any other module in said system.

The program product according to claim 35, wherein said probabilistically equivaleixt

model 1is a deterministically e_quivalént model.

The program product according to claim 36, wherein said deterministically equivalent

- model is a reduced-order model.

‘The program product according to claim 35, wherein said propagating said uncertainty

distribution uses a Monte Carlo method.

A program product, comprising machine readable program code for causing a machine
to perform following method steps, comprising:

substituting at least one of a plurality modules of a system with a correspondin'g
probabilistically equivalent module model, said equivalent module model adapted to
propagate uncertainties in inpuis of said module to outputs of said module;

providing outputs of each of said modules in a common data architecture for use |
as inbuts by any other module, ‘s.aid architectureAadapted to propagate uncertainties in
said outputs to said inputs of said other module; and

-substituting said plurality of modules with aA single probabilistically equivalent

system model for propagating uncertainties in system inputs to system outputs.

The program product according to claim 39, wherein said program code causes a
machine to further perform the following method step, further cofnprising:
providing an optimization module for optimizing an objective function, said

optimization module adapted to receive said system outputs and to vary said system
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inputs.

The program product according to claim 40, wherein said objective function is.a

weighted function of two or more output parameters.

The program product according to claim 39, wherein said probabilistically equivalent |

module model is a deterministically equivalent model.

The program product according to claim 42, wherein said deterministically equivalent

model is a reduced-order model.

The program product according to claim 39, wherein said probabilistically equivalent

system model is a deterministically equivalent model.

The program product according to claim 44, wherein said deterministically. equivalent

model is a reduced-order model.
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