WO 01/69390 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A 00 A

(10) International Publication Number

20 September 2001 (20.09.2001) PCT WO 01/69390 A2

(51) International Patent Classification’: GOG6F 11/36 (74) Agent: GAZDZINSKI, Robert, F.; Gazdzinski & Asso-
ciates, Suite A232, 3914 Murphy Canyon Road, San Diego,

(21) International Application Number: PCT/US01/40292 CA 92123 (US).

(22) International Filing Date: 14 March 2001 (14.03.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/189,521 15 March 2000 (15.03.2000) US
(71) Applicant: ARC CORES, INC. [US/US]; 6268 Santa

Teresa Boulevard, San Jose, CA 95119-1205 (US).

(72) Inventors: PENNELLO, Thomas, J.; 130 Van Ness,
Santa Cruz, CA 95060 (US). DAVIS, Henry, A.; Suite E,
2131 Delaware Avenue, Santa Cruz, CA 95060 (US).

@D

@84)

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SL, SK, SL, TJ, T™M,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, T], TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR DEBUGGING PROGRAMS IN A DISTRIBUTED ENVIRONMENT

@fﬂ Run loop

)

v

/00

Initialize each process's
pell delay to the
minimum value and its
aext poll time to now

j B

1

Set ran simulator to false
Set need steep to false

L~ 7%

56

Debugger
state

Ran
simulator

Is
process
Tunning

Va4

22

Hardware Sleep until check time

Simula: i j "t
imulate one instruction - = =
and check status { I’:\; cil?r?;sy
Set ran simulator to nue /: change its
poll defay
(B.._.__I 20 7/ _poll delay
/ I / :
l Set need sleep to true I Check process's status
Set next poll to (now + poll delay)
Set check time to min(check rime, next poll)

(57) Abstract: A method and apparatus for
debugging programs in a distributed environment,
such as a set of heterogeneous hardware processors
(integrated circuits or In-Circuit Emulators), and/or
software-based simulators. In one embodiment,
the method comprises identifying a plurality
of processes; initializing each of the processes;
executing with a single thread of control among
the processes; and continuously cycling among the
processes to obtain status information. A computer
program and apparatus for implementing the
aforementioned methodology are also disclosed.

wO 01/69390 A2 NI A0 O AR O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

5

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-1-

METHOD AND APPARATUS FOR DEBUGGING
PROGRAMS IN A DISTRIBUTED ENVIRONMENT

Priority
This application claims priority to U.S. provisional patent application Serial No.
60/189,521 filed March 15, 2000 and entitled “Method and Apparatus for Debugging
Heterogeneous Processors’”
Copyright
A portion of the disclosure of this patent document contains material which is subject to
copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and
Trademark Office patent files or records, but otherwise reserves all copyright rights
whatsoever.

Background of the Invention

1. Field of the Invention

The present invention relates to the field of debugging programs in a distributed
environment, such as a set of heterogeneous hardware processors (integrated circuits or In-

Circuit Emulators), and/or software-based simulators.

2. Description of Related Technology

The process of debugging software intended for operation in embedded applications is a
task that employs many different tools depending on the stage of software readiness. Programs
are often organized in a hierarchical fashion, but need not include such structure. While
structured programs are easier to debug because there is a reduced span of control within the
software, both structured and unstructured programs commonly employ similar programming
techniques including functions, subroutines, co-routines, and the like. Software-based
simulators are used to provide design engineers and programmers (hereinafter “engineers”)
with absolute control over the execution of the software to be debugged. This process permits

control at varying degrees of granularity ranging from a single line of code to larger blocks

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-

such as procedures, functions, and subroutines. Control includes among other facilities, the
ability to start and stop execution, report results and change memory contents.

Multiprocessor systems complicate the debugging process significantly as compared to
a unitary processor hardware environment. The most complex debugging environment is one in
which the processors used in the multi-processor hardware employ different instructions sets.
This condition is known to those skilled in the art as a heterogeneous multiprocessor system.

Heretofore, engineers have relied on diverse development environments, often provided
by many different vendors, to debug such heterogeneous systems. These diverse development
environments often provide different user interfaces, different commands, different
capabilities, and sometimes employ different underlying computer operating systems which
makes information transference between the systems challenging at best.

These conditions force engineers involved with debug to be less productive than would
otherwise be possible were the interfaces common between all of the different processors.
Further, each different system requires engineers to become conversant with its unique
capabilities and disabilities, which requires more learning time and results in reduced
productivity.

Additionally, the use of such heterogeneous development environments potentially
introduces more error, due largely to the fact that the development environment associated with
one of the heterogeneous processors utilizes one function for a given keystroke or other user
input, while a different environment may utilize an all together different function for that same
keystroke or input. Accordingly, the engineer must in effect maintain a “correlation table” for
the various functions and associated inputs depending on which development environment is
being used.

Based on the foregoing, what is needed is an improved method and apparatus for
debugging devices such as heterogeneous processors. Such method and apparatus would ideally
be readily adaptable to a number of different hardware/software environments, would allow for
ready transfer of information associated with one processor to the development/debug
environment of another, thereby facilitating side-by-side comparison of the operation of the
different processors. Such improved debug method and apparatus would also be readily adapted
to run on conventional microprocessor-based platforms, and accommodate inputs from both the

aforementioned hardware processes and simulation processes.

10

15

20

25

30

WO 01/69390 PCT/US01/40292

Summary of the Invention

The present invention satisfies the aforementioned needs by an improved method and
apparatus for debugging devices such as heterogeneous processors.

In a first aspect of the invention, an improved method for debugging programs in a
distributed environment is disclosed. In one exemplary embodiment the environment
comprises heterogeneous hardware digital processors (integrated circuits or In-Circuit
Emulators), and/or software-based simulators, and the method comprises: identifying a
plurality of processes; initializing each of the processes; executing with a single thread of
control among the processes; and continuously cycling among the processes to obtain status
information. Each "running" simulation process simulates the execution of a single instruction
for each status request. In a second exemplary embodiment, the method further comprises
initializing profile information, and incrementing the profile history after simulation
(simulator) or execution (hardware) of one instruction.

In a second aspect of the invention, an improved computer program useful for debugging
such distributed programs is disclosed. In one exemplary embodiment, the computer program
comprises a C** source code listing reduced to an object code representation and stored on the
magnetic storage device readable by a microcomputer, and adapted to run on the central
processing unit thereof. The computer program further comprises an interactive, menu-driven
graphical user interface (GUI), thereby facilitating ease of use. The basic design of the computer
program takes an object-oriented approach, with an abstract class defined to provide the interface
to an individual process within the target system.

In a third aspect of the invention, an improved debug architecture is disclosed. In one
exemplary embodiment, the improved debug architecture comprises a digital processor with a
debug process running thereon, at least one simulation process associated and in data
communication therewith, and at least one hardware process in data communication with the
processor, wherein the simulation and hardware processes are executed with a single thread of
control via the debig process.

In a fourth aspect of the invention, an improved apparatus for running the
aforementioned debug computer program is disclosed. In one exemplary embodiment, the

system comprises a stand-alone microcomputer system (e.g., IBM PC) having a display, central

10

15

20

25

30

WO 01/69390 PCT/US01/40292
4-

processing unit, data storage device(s), and input device. The apparatus is adapted to run one
or more of the aforementioned simulators and the debug program, and interface with one or

more hardware processes external to the apparatus via respective data interfaces. The engineer

may then debug the multiple hardware processes using the debug program and simulation

process(es), advantageously avoiding the need for multiple hardware/software environments

for the debug and simulation processes.

Brief Description of the Drawings

Fig. 1 is a logical flow diagram illustrating one exemplary embodiment of the general
debugging methodology employed the present invention.

Fig. 1a is logical flow diagram illustrating an alternate embodiment of determining the
sleep interval based on poll delay according to the invention.

Fig. 2 is a logical flow diagram illustrating a second embodiment of the debugging
methodology employed in the present invention, incorporating profile histories.

Fig. 2a is a logical flow diagram illustrating the use of the method of Fig. 2 to optimize
the systems performance of a multi-processor based system.

Fig. 3 is a block diagram of an exemplary multi-processor debugging architecture for
which the methodology of Fig. 1 may be applied.

Fig. 4 is a functional block diagram of one exemplary embodiment of a computer

system useful for running a computer program embodying the method of Fig. 1.

Detailed Description

Reference is now made to the drawings wherein like numerals refer to like parts
throughout.

As used herein, the term “processor” is meant to include any integrated circuit or other
electronic device capable of performing an operation on at least one instruction word including,
without limitation, reduced instruction set core (RISC) processors such as the ARC™ user-
configurable core manufactured by the Assignee hereof, central processing units (CPUs), and
digital signal processors (DSPs). The hardware of such devices may be integrated onto a single

piece of silicon ("die"), or distributed among two or more dies. Furthermore, various

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-5-

functional aspects of the processor may be implemented solely as software or firmware
associated with the processor.

As used herein, the term "process" refers to executable software that runs within a
processor environment. This means that the process is typically scheduled to run based on a time
schedule or system event. It will generally have its own Process Control Block (PCB) that
describes it. The PCB may include items such as the call stack location, code location,
scheduling priority, etc. The terms “task™ and “process” are often interchangeable with regard to
computer programs.

Similarly, a "task" as used herein generally refers to a process-like entity whose PCB is
referred to as a Task Control Block (TCB). A "thread" refers to a process having the same
properties as a task except that it runs within a task context and uses the task's TCB. Multiple
threads can run within the context of a single task. Threads are often more efficient than tasks
because they don't require as much time to be switched into CPU context when the task they

are associated with is already running.

Overview

In general, the present invention provides a flexible system for debugging programs in a
distributed environment. In one embodiment, such a distributed environment comprises a set of
heterogeneous hardware processors (integrated circuits or In-Circuit Emulators), and/or
software-based simulators; see the discussion with respect to Fig. 3 below.

The basic design takes an object-oriented approach with an abstract class defined to
provide the basic interface to an individual process within the target system. Among other
benefits, the use of an object-oriented approach allows language-independence at the design
level. Object-oriented programming is well understood in the computer programming arts, and

accordingly will not be described further herein.

The methods and instance variables of this abstract class fall into two categories: (i)
those relating to direct control of the target processor and examination of its state; and (ii) those

relating to synchronization and control of the individual processes by the debugging system.

Instance variables relating to direct control of the target processor include, inter alia,

setting and examining register values and the contents of memory; starting, stopping, and

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-6-

“single-stepping” the processor; setting hardware-controlled breakpoints; and similar
operations. Registers are often employed by engineers (or the output of compilers) to hold
working variables; i.e., those that are being operated upon. These registers frequently contain
values of substantial interest to the design engineer/programmer. Consequently, it is important
for the debug environment to provide access to such register values. Many programming errors
may be temporarily corrected by a skilled engineer through affording the ability to modify the
contents of these registers. Such is often the case with programmatic loop constructs that either
terminate prematurely or fail to terminate at the intended time. By modifying a register value,
the engineer performing the debugging task may be able to permit the program to proceed
further in the program sequence while producing correct results. This ability significantly
reduces development time by permitting the engineer to make changes that are local in scope,

yet have a global impact on the functioning of the software.

So-called “single stepping” of a processor, whether as a simulation process or a hardware
process, permits engineers to follow the execution of the software to determine where
implementation or design errors exist. Generally accepted debugging practice is defined, inter
alia, in 1EEE 1008-1987 IEEE Standard for Software Unit Testing and terms in IEEE Std
610.12-1990, Standard Glossary of Software Engineering Terminology (ANSI).

Synchronization and control variables include, infer alia, time of last status check; the
current delay between status checks; whether the process is running in a simulator or in

hardware; the processor type and options; and similar parameters.

In the present embodiment of the invention, individual subclasses are defined for each
supported processor, In-Circuit Emulator (ICE), or simulator with each subclass being
implemented generally as a dynamically loadable library. By creating individual subclasses for
each processor, it is possible to dynamically link processors into the system without the need to
recompile or otherwise reconfigure the static structure of the debug environment. The use of a
dynamically loadable library permits changes to be made while the debugger is in operation
without necessarily halting the execution of other processors. Further, this permits the engineer
performing debug activities to simulate the failure of one or more procesors by selectively
switching them out of the debug environment. In addition, it is possible to substitute the

operation of actual hardware in place of a simulator or in-circuit emulator to permit continuous

10

15

20

25

WO 01/69390 PCT/US01/40292
-
debugging as more information is gathered.

Some digital processor families reserve a section of the processor instruction set for so-
called "extended operations" or “extensions” which are typically implemented in customized
sections of the hardware to perform application-specific functions such as Viterbi decode, FFT,
and the like. To handle these extended operations in the debugger, the processor instance class
for those processor types defines a further interface to dynamically loadable libraries which
embody one or more of the possible extended operations. When the instance is an interface to a
hardware processor, the libraries provide the functions for displaying the extension instruction

in machine code listings.

When the instance is a software simulator, the extension library must also provide the
implementation of the instruction itself. It will be appreciated that software simulators operate
by implementing the logical operation of hardware in software. Hardware functions are
performed by sequences of software isntructions in the simulator. State information and
registers are assigned specific memory locations in the simulation software memory space.
Within the ARC design environment, the hardware extension library contains the HDL model
for the hardware used during the compilation phase. Since the extension may also be
implemented during the debug phase by a software simulator, it is necessary to also provide

this software in the extension library.

When debugging, each process will normally be in one of two states. It may be stopped,
with execution suspended while the user examines and possibly modifies the process state
before continuing. Alternatively, the process may be running, in which case it executes
instructions until it reaches a breakpoint, error condition, a certain amount of time has passed,
or the user manually requests the operation be suspended. It will be recognized that the
foregoing list of conditions under which a running process is terminated is not all inclusive;

other situations where the process terminates may exist.

When running, it is desirable for the process to execute, as nearly as possible, at the
speed with which execution would occur if it were not running under the control of a debugger.
In this way, the actual operation of the process on the device is most closely simulated.

However, it is also desirable to rapidly and continuously update the status displays for the user.

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-8-

In practice, obtaining status information from hardware processors often takes a large amount
of time as compared to the execution of a single instruction; so the use of continuous status
requests would significantly impair performance. Conversely, when running in a simulator,
obtaining the status has relatively little impact; some care must be taken, however, to keep
multiple simulations synchronized as though they were running on parallel hardware
processors. Furthermore, it is desirable that the debugger itself run as efficiently as possible to

reduce the impact on any other programs which may be concurrently executing.

To address the foregoing issues, the debugger of the present invention executes with a
single thread of control which, when in "run" mode, continuously cycles among the various
processes obtaining status information. Each "running" simulation process will simulate the
execution of a single instruction for each status request. Associated with each running
hardware process is an indication of when the status was last checked, and a variable delay
interval indicating when it should next be checked. This association occurs as a consequence of
employing an object oriented language such as C++, but may also be implemented by use of
explicit parameters passed via function or subrountine calls. Alternatively, the association may
be made completely explicit by use of a common data structure such as mailboxes, message
buffers and simlar communications protocols commonly used by operating systems to manage
such data. In the instance where all such running processes are executing on hardware
processors, then each iteration through the status loop further includes an idle period designed

to delay the debugger until at least one process is ready to be checked.

Methodology

Referring now to Fig. 1, the generalized method of debugging distributed programs
according to the present invention is described. The exemplary embodiment of Fig. 1 is
described in terms of a computer program, although it will be recognized that such program is
only one means for implementing the method of the invention. For example, certain portions
of the functionality described herein could be implemented in hardware if desired.

As illustrated in Fig. 1, the method 100 generally comprises the steps necessary to
repeatedly obtain the status of each running processor in sequence, subject to the

aforementioned conditions. If any of the running processors are being simulated, the

10

15

20

25

30

WO 01/69390 PCT/US01/40292
9.

simulation of the illustrated embodiment will be advanced by one instruction before its status is
checked. To allow processes running on hardware to run as efficiently as possible, they will
only be checked when a specified per-process time interval has elapsed since the previous
check. This time interval may be varied (either statically, such as by merely changing the
duration of the interval, or dynamically, such as based on the output of an associated algorithm
which calculates a time interval based on other parameters), and is set according to the
attributes of the paticular process and hardware. At the end of each check cycle, if it is
determined that all running processes are executing on hardware, and none of the running
processes are ready to be checked, a predetermined delay may be invoked to prevent
unnecessary passes through the check loop. Similar to the per-process interval period, the
predetermined delay may be varied (statically or dynamically) as well.

In step 102, the poll delay associated with each process is initialized. As used herein,
the term "poll delay" refers to the minimum time period between retrievals of processor status
information for display to the user. In the present embodiment, the poll delay is initialized to
the minimum value, and its next poll time set to "now". As used herein, the term "now" is used
to indicate the current point in time at which "now" is referenced. Next, in step 104, the "ran
simulator" value is set to "false", and the "need sleep" value also set "false". The "ran
simulator" and "need sleep" values determine the desirability of introducing a delay before the
next cycle of processor status checks.

In step 104, the debugger state is determined; if in "run", the program proceeds to step
106, where for each process, the run status of that process is determined (step 108). If the
debugger is in a state other than run (e.g., stop) , then the process returns as shwon in Fig. 1.
For each process, if the process is running, the process type is next determined in step 110.
The term “process type” as used herein refers to whether the processor is running in the
simulation or hardware environment.

If the process type is the simulation environment, the program proceeds to step 112,
where the simulated processor is advanced through one instruction cycle. The simulated
processor’s status is subsequently checked. The "ran simulator” value is then set to "true", and
the program returns to step 108 again for the next process.

In the hardware environment (step 110), the value of the "next poll" is determined per

step 114; if it represents a time in the future relative to the present time, the "need sleep” value

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-10-

is set to "true" per step 116, and the program returns to step 108 again. This in effect delays the
program for a predetermined time until the next polling opportunity is available, as previously
described. If the value of the next poll is the current time or a time in the past, the polling
opportunity is immediately available, and the status of the process is checked per step 120. The
value of "next poll" is set to the current time plus the processor's poll delay per step 120 as
well. The "check time" value is also set to the minimum of the current "check time" or the
"next poll" value in this step 120 as well. Note that the status check of step 120 may change
the poll delay value to better balance the need to display processor status with the desire to
minimize the use of system resources. This need is determined by monitoring the curent
systems resource availability and comparing that to the amount that may be required to perform
both the display function and other functions that mnay be operating concurrently. This
monitoring is well known to those skilled in the art of operating systems design as part of “load
balancing,” Proper load balance may be determined by a number of techniques known to those
of ordinary skilled in the art of operating systems design, the specific techniques of which ar
not relevant to the present invention. For example, such techniques are taught in “Operating
Systems Principles” by Per Brinch Hansen, Prentice Hall 1973. After these operations have
been completed, the program returns to step 108.

After the foregoing steps 110 through 120 have been completed for each process, the
program checks the value of the "ran simulator” variable per step 122 to determine whether any
of the running processes are executing in simulators. If so, the program advantagously returns
immediately to step 104 so that the simulation(s) will run as quickly as possible, as is desired in
order to most closely replicate the actual operating conditions of the simulated device. If no
running processes are executing in simulators, then the program proceeds to step 124 to
determine if any of the hardware processes were not yet ready to be checked, as indicated by
the "need sieep" value set to “true”. If all hardware processes have been checked, the program
returns to step 104. If at least one hardware process was not ready to be checked, the program
sleeps until the next "check time" per step 126. At the next check time, the program awakes
and returns to step 104.

It will be recognized that while the aforementioned poll delay and “need sleep”
intervals are described in terms of predetermined, fixed time periods, these intervals may

alternatively be variable in nature, depending on the value of other parameters or the existence

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-11-

of other circumstances within the hardware/simulation environments. For example, in one
alternate embodiment, the value associated with the “need sleep” interval is algorithmically
determined based on analysis of the value of the “next poll” determination in step 114.
Specifically, as illustrated in Fig. 1a, the current time (referenced to the time when step 114 is
executed) is subtracted from the value of the “next poll” determined in step 114 to arrive at a
minimum delay value before the polling of that device is available. In this fashion, the “need
sleep” interval is dynamically adjusted based on the next available polling opportunity, thereby
reducing an “extra” delay introduced by a fixed sleep interval.

In another embodiment, the required sleep interval is determined based on statistical
analysis of historical data obtained either from past debug operations for the hardware
environment under analysis, from operating history generated immediately prior to the poll
delay determination in step 114 (such as using a moving “window” technique of the type well
known in the art), or some combination thereof. Numerous types of statistical/historical
analyses and associated algorithms are known to those of ordinary skill in the programming
arts, and accordingly are not described further herein.

Referring now to Fig. 2, an alternate embodiment of the method of Figs. 1-1a is
described. Optimizing systems performance in a single processor system is a relatively simple
matter of moving applications code to better utilize the CPU, modifying the code to better
reflect the systems capabilities, and/or developing a new algorithm for the specific
circumstances under which the system is operating. For multiple processor systems, however,
this process becomes much more complicated. Each individual processor can be optimized for
locally optimum performance but the systems may still have suboptimal performance. The
methodology 200 of Fig. 2 advantageously permits engineers to perform both local and global
optimizations across multiple processors based on the execution history of the system when
data representative of “real world” inputs is supplied. Alternatively, real world data may be
supplied to the system for the purpose of collecting execution history profiles. These profiles
may identify: (i) individual instructions of a program running on a specific processor; (ii)
sequential blocks of code running on a specific processor, and (iii) functions, subroutines or
other information determined by the engineer to be valuable during the optimization process.
Such information may include, for example, patterns of register references, number of memory

references, patterns of memory reference, and the like.

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-12-

In the modified run loop of Fig. 2, the aforementioned profile history is initialized
during the beginning of the run loop (step 203), and profile history collected (steps 213, 215)
after both the simulations step and hardware execution step. These two profile history data
collection functions simply record execution information specified by the engineer for later
presentation. The modified run loop of Fig. 2 operates in the same manner as that of Figs. 1-1a
in all other respects.

Referring now to Fig. 2a, the method 200 of Fig. 2 is employed as a step in the method
250 of optimizing the performance of a mutliprocessor system. The run loop function of Fig. 2
is performed to gather execution history as may be determined by the user’s selection of
information to be gathered (step 252). These results are then examined (step 254) to determine
which if any processors are relatively overloaded, and which if any are relatively underloaded.
Portions of executable code may be rearranged within the scope of a single processor’s
program space, restructured so as to consume fewer resources, or partitioned across processors
so as to more economically computer the desired result (step 256). The aforementioned
improvements to the performance of the multi-processor based system are well known to one
of ordinary skill in the art of programming multi-processor systems and is not further discussed
here. Once the improvements are made, the run loop function is again executed (step 258) to
gather execution history data that will prove or disprove the performance. The process
continues iterating until the performance goals determined by the user have been met, or the
user has determined that the goals can not be met.

It will be recognized that while the foregoing example and description with respect to
Figs. 1, la, 2, and 2a herein is cast in terms of a specific series of steps for accomplishing the
desired result (i.e., debugging in a distributed environment), various permutations of this series
of steps, including substitution and/or addition of other steps, may be used consistent with the
invention disclosed herein. Accordingly, the scope of the disclosed invention should be
determined by the claims appended hereto, without respect to specific embodiments or
limitations presented within the foregoing discussion.

Referring now to Fig. 3, one exemplary multiprocessor debugging architecture 300 for
which the foregoing method may be used is described. The architecture 300 generally
comprises a debugger/simulator process 302, and a plurality of hardware processes 304 each

operatively coupled via respective data paths 306 and control paths 308 to the

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-13-

debugger/simulator 302. Note that the control paths 308 are unidirectional, whereas data may
flow both to and from the hardware processes 304 via the data paths 306. It will be recognized
that, depending on the type of hardware platform employed to implement the
debugger/simulator 302 (see Fig. 4 below for one exemplary embodiment), various types of
data and control pathway hardware may be employed, such as RS-232, IEEE-1394 "Firewire",
or even fiber or wireless links, so long as any required timing relationships are preserved.
Alternatively, the debugger/simulator 302, including data and control paths, may be physically
integrated with the hardware processes, such as by being disposed entirely within a single
silicon substrate. For example, the debugger/simulator may be employed as an algorithm
running on a RISC processor, CISC microprocessor, digital signal processor (DSP), or other
digital processor associated with the individual hardware processes.

The debugger/simulator 302 of Fig. 3 comprises a plurality of individual simulator
processes 310, operatively coupled to a debugger process 312 via additional respective data
paths 314 and control paths 316. The debugger and simulator processes 310, 312 in one
embodiment comprise software implementing the foregoing methodology, although it can be
appreciated that at least portions of the methods of Figs. 1 and 2 may be embodied in firmware
or even hardware if desired.

Each simulator process 310 (1 through N) of Fig. 3 is representative of a single instance
of a simulator that functions as the target central processing unit (CPU) of the complete system.
Each simulator process 310 may implement any instruction set architecture as is needed by the
actual designed heterogeneous multiprocessor system. Simulation processes may be used for a
number of reasons including unavailability of hardware, a desire to control systems debug such
that hardware transient behaviors are not present, and for reasons of cost. Likewise, each
hardware process 304 represents a single instruction set architecture within the heterogeneous
multiprocessor system. These processes may be actual physical semiconductor devices, or an
in-circuit emulator (ICE) of the type well known in the art. Hardware processes may be used
when fast execution is desired, debugging of hardware interfaces is taking place, or the actual
operation of the hardware is in some way different that that exhibited by the simulation model.

Each of these processes, either hardware or software, may implement any desired
instruction set architecture or a fixed function operation. Examples of an instruction set

architecture include but is not limited to: Intel 8080, 8086, 8036, Pentium, Motorola 68000,

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-14-

68030, PowerPC, Texas Instruments TMX320C6100 and the like. Fixed function operations
may include, but it not limited to: special purpose hardware such as Viterbi decode, digital
filters, noise shapers, FFT, and the like.

Accordingly, the present invention is advantageously compatible with systems
represented by only simulator processes or hardware processes, as well as those that are
represented by a combination of simulation and hardware processes. These processes may be
homogeneous or heterogeneous in nature, thereby providing the engineer with additional

flexibility not present in prior art techniques.

Apparatus for Implementing Methodology

Referring now to Fig. 4, one embodiment of a computing device capable of
implementing the debugging methods (in the form of a computer program) discussed
previously herein with respect to Figs. 1-2a is described. It is noted that the foregoing methods
are readily reduced to source code listings in any useful higher level programming language,
such as for example C™, and subsequently compiled, by one of ordinary skill in the computer
programming arts. Appendix I hereto provides one such exemplary source code listing.

The computing device 400 comprises a motherboard 401 having a central processing
unit (CPU) 402, random access memory (RAM) 404, and memory controller 405. A storage
device 406 (such as a hard disk drive or CD-ROM), input device 407 (such as a keyboard or
mouse), and display device 408 (such as a CRT, plasma, or TFT display), as well as buses
necessary to support the operation of the host and peripheral components, are also provided.
The method of Fig. 1 are embodied in the form of an object code representation of a computer
program and stored in the RAM 404 and/or storage device 406 for use by the CPU 402 during
analysis, the latter being well known in the computing arts. Alternatively, the computer
program may reside on a removable storage device (not shown) such as a floppy disk or
magnetic data cartridge of the type also well known in the art. The user (not shown) analyzes
the data input from the various sources (such as heterogeneous processors) by inputting
initiating operation of the computer program via the program displays and the input device 407
during system operation. Alternatively, the system may be configured to automatically accept
(and store if desired) the various data inputs and run the computer program when sufficient

data exist, or on a periodic or ongoing basis. Many such alternative are possible, each being

10

15

20

25

30

WO 01/69390 PCT/US01/40292
-15-

well within the skill of the ordinary practitioner. Analyses and/or formatted data generated by
the program are stored in the storage device 406 for later retrieval, displayed on the graphic
display device 408 for viewing by the user, or output to an external device such as a printer,
data storage unit, other peripheral component via a serial or parallel port 412 if desired.

It may be appreciated that any number of types of infromation may be displayed on the
graphic display device. The following is illustrative and not prescriptive for such data
infromation. The actual proram code executed by the process may be displayed in source code
format, assembly languag format, or a numerical radix based format where the radix
corresponds to a word size or other informnative division of data..Execution traces of
addresses, address ranges, data values, subroutine entry/exit and the ike may also be displayed.
For some debug envirnoments interprocessor commnnications and internal program or
processor state information may be displayed. The forgoing infromation may be displayed in a
vairety of forms convenient to the user such as bar garphs, histograms, “eye charts”, flowcharts,
or textual forms.

One preferred embodiment of the hardware used in conjunction with the debugger
program previously described herein is based on the industry standard IBM Personal Computer
architecture operating on an Intel microprocessor. Such a computer generally comprises a
display mechanism such as a CRT display, input devices such as a keyboard and mouse,
storage media such as a hard disk drive, communications ports to communicate with any
external hardware such as target hardware boards or in-circuit emulators (ICEs). Other
alternatives include workstations manufactured by Sun Microsystems of Mountain View
California based on the Sun SPARC microprocessor. These workstations employ peripherals
such as those listed above for the IBM Personal Computer but operate internally on a different
microprocessor, systems bus, and UNIX-based operating system. However, these examples are
merely illustrative, and not prescriptive of the type of hardware on which the invention can
operate. In addition to the so-called “clone” machines of the above named companies, there are
many other alternative personal computers and workstations upon which the invention can
operate. These include those manufactured by Hewlett-Packard, Intergraph, Data General,
Apple Computer, and others.

While the above detailed description has shown, described, and pointed out novel

features of the invention as applied to various embodiments, it will be understood that various

WO 01/69390 PCT/US01/40292
-16-

omissions, substitutions, and changes in the form and details of the device or process illustrated
may be made by those skilled in the art without departing from the invention. The foregoing
description is of the best mode presently contemplated of carrying out the invention. This
description is in no way meant to be limiting, but rather should be taken as illustrative of the
general principles of the invention. The scope of the invention should be determined with

reference to the claims.

10

15

20

25

30

35

40

45

50

55

WO 01/69390 PCT/US01/40292

-17-

APPENDIX |
Copyright © 2000-2001 Metaware Software, Inc. All rights reserved.

NOINLINE void check_for_completion(

void each()->(common RCE*)! // Set of command processors.
common RCE *only this one, bool &running,
bool &repeat check 1mmed1ately,
unsigned *sleep_tlmep 0) {
if (sleep_timep) *sleep timep = 0;
// Polling. If all the running processes are non-simulators, should
// sleep in-between polling. Otherwise, can run the simulators
// and check the real machine in between, as long as wait long enough
// so as not to burden the real machine. 1i.e., the loop is:
/7 repeat

// for each running R do

// if R is a simulator, check its status.

// else if R is hardware, if we've waited

// long enough since last check, check it

// else early = min(early,R's last check time + min wait)
// end for

// if there were no simulators, sleep (current time-early)
!/ end repeat

//

// With the GUI this process will be different. The GUI will issue
// status checks periodically.

running = FALSE;
repeat _check immediately = FALSE;
bool ran a simulator = FALSE, need_sleep = FALSE;

unsigned earliest we can check hardware = (unsigned)-1;
unsigned now() { return

get _system().get 1llio().walltime milliseconds(); }

bool changed status = FALSE, somebody wants checking always = FALSE;
changed_status = FALSE;
somebody wants checking_always = FALSE;
for R <- each() do {
if (only this one != 0 && only this_one != R) continue;
dbg && printf ("check for completlon on %s\n",
R.get_system().get_name());
if (R.get_process() == 0) continue;
dbg && printf("checking process [%d]:\n",R.rce number);
dbg && (R.display processes(),0);
bool was_executing = R.get_process().is_executing();
void check status() {
if (!R.get _system() .is_simulator())
dbg && prlntf(""status check on HW [%d] %s\n",R.rce number,
R.get system().name());
R.status (0, FALSE, !was_executing);
}
System *R_system = R.get system();
0 && printf("system %s wase %d csa %d\n",
R_system.name () ,was_executing, R_system.check status_always);
if (R _system.check status_always)
somebody wants checklng always = TRUE;
if (was_executing || R_system.check status_always) {
// Warning: each time you do a status check, process
// could have terminated, so verify that process is non-zero.
if (R_system.is simulator()) {

10

15

20

25

30

35

40

45

50

55

60

WO 01/69390

-18-

check _status():
ran_a simulator = was_executing
// Either was executing or is now executing.

|| R.get_process() && R.get_process().is_executing();

}
else {

unsigned Now = now();

unsigned POLL _WAIT = R.get_process().get_key().delay.
get_poll delay();

if (FALSE && globals.trace_sleep) {

printf (" [%$d]POLL WAIT comes back as %d ",

R.get_ rce number, POLL WAIT);

printf("delta is %d ",Now - R.time_since_ last poll):
printf("earliest %d\n",earliest we can_check hardware);

}

if (Now - R.time_since last poll >= POLL WAIT) {
// printf("polling [%d]\n",R.get_rce_ number());
check_status();

Now = now(); // Status might have taken a while.

R.time since_ last_poll = Now;

// Now get the next value of delay, which may have
// gone down (e.g., hostlink) or up. This has

// the necessary side effect of changing the delay.
if (R.get_process())

POLL_WAIT =
R.get_process{().get_key() .delay.current_poll delay();
}
else need_sleep = TRUE;
unsigned earliest = R.time_since_ last poll + POLL_WAIT;
earliest_we_can_check hardware = _min(
earliest we can_check hardware,earliest);
}

bool is executing =

// The process may have died as a result of checking status.

R.get process() && R.get_process().is_executing();
running = running || is_executing;
changed status |= was_executing != is_executing;
}
Process *process = R.get_process();
dbg && process && printf("!pic %d cd %d\n",
process.is_executing(), R.completion_delayed);:
// The process may have died as a result of checking status.
if (process && !process.is_executing()) {
if (R.completion_delayed) {
// Bnnounce status.
dbg && printf("Call step completion\n");
R.step_completion(R.completing stmt_step, TRUE);
}

process.get key().delay.minimize poll_delay({();
}

//

repeat check_immediately = TRUE;

}

if (!ran a_simulator && need_sleep && running) {

unsigned Now = now();

if (Now > earliest_we_can_check_hardware);

else {
unsigned sleep time = earliest_we_can_check hardware-Now;
if (sleep timep) {

PCT/US01/40292

10

WO 01/69390

-19-

// printf("!not sleeping for %d; let GUI do
it.\n",sleep_time);

*sleep_timep = sleep time;

}

else {

get_system().get_llio().sleep(sleep_time);

// printf("!sleep for %d\n",sleep time);

}

PCT/US01/40292

10

15

20

25

WO 01/69390 PCT/US01/40292
20-

WE CLAIM:

1. A method of debugging a plurality of distributed programs, comprising:
identifying a plurality of processes;
initializing each of said processes;
executing with a single thread of control among said processes; and
continuously switching between said processes to obtain status information
relating thereto.
2. The method of Claim 1, wherein the act of identifying a plurality of processes
comprises identifying at least one simulation process and at least one hardware process.
3. The method of Claim 2, further comprising analyzing said status information to

identify at least one or more occurrences or errors within at least one of said distributed

programs.
4. The method of Claim 2, further comprising:
defining at least one object class,
defining at least one first object subclass for said at least one hardware process;
and
defining at least one second object subclass for said at least one simulation
process.
5. The method of Claim I, wherein the act of executing comprises providing at

least one first instance variable adapted for control of at least one of said plurality of processes.

6. The method of Claim 5, further comprising dynamically changing polling times
associated with said at least one of said plurality of processes based on the status thereof.

7. The method of Claim 5, further comprising defining an interface to a first
library for said at least one hardware process.

8. The method of Claim 7, further comprising accessing said first library via said
interface in order to provide functions relating to at least one extension instruction.

9. The method of Claim 8, further comprising defining an interface to a first

library for said at least one simulation process.

10

15

20

25

30

WO 01/69390 PCT/US01/40292
21-

10. The method of Claim 8, further comprising accessing said first library via said
interface in order to provide functions relating to at least one extension instruction, including
the implemention of said at least one extension instruction.

11. The method of Claim 2, wherein the act of continuously switching comprises
cycling between said processes in repeated succession.

12. The method of Claim 2, wherein the act of initializing comprises:

initializing a first process resident on a first hardware processor; and

initializing a second process on a simulator.

13. The method of Claim 1, further comprising:

defining a plurality of individual subclasses for each of said plurality of
processes; and

implementing at least a portion of said subclasses as a dynamically loadable
library.

14. A system for debugging heterogenous processors, comprising:

a processor having at least one debug process running thereon, and at least one
simulation process associated and in data communication with said at least one debug
process; and

at least one hardware process in data communication with said at least on debug
process;

wherein said at least one simulation and hardware processes are controlled via a
single thread.

15. The system of Claim 14, wherein said processor comprises a digital processor
embodied as an integrated circuit, and said at least one debug process comprises a computer
program adapted to run on said integrated circuit.

16. The system of Claim 15, further comprising at least one external port adapted
for said data communication with respective ones of said at least one hardware processes.

17. The system of Claim 16, wherein said at least one simulation process comprises
a computer program running on said digital processor.

18. The system of Claim 17, further comprising a plurality of dynamically loadable
libraries, at least a portion of said libraries being adapted for communication with said at least

one debug process.

10

15

20

25

30

WO 01/69390 PCT/US01/40292
22

19. The system of Claim 14, further comprising a first storage device adapted for
use therewith, said storage device comprising:
a storage medium configured to store a plurality of data thereon; and
a plurality of data stored thereon, said data comprising a computer program
adapted to run on said processor, and configured to debug one or more other computer
programs using the method comprising:
identifying a plurality of software processes including said at least one
simulation process and said at least one hardware process;
initializing each of said plurality of processes;
executing with a single thread of control among said processes; and
continuously switching between said processes to obtain status
information relating thereto; and
a second storage device adapted to at least temporarily store said status
information for use by said at least one debug process.
20. A method of optimizing the operation a multi-processor system comprising a
plurality of software processes, comprising:
initializing each of said processes;
executing with a single thread of control among said processes;
iteratively obtaining execution profiling information from at least a portion of
said processors; and
optimizing the operation of said system based at least in part on said execution
profiling information.
21. A method of debugging a plurality of processors using a debug process, said
debug process being in data communication with said processors, comprising:
initializing each of said processors;
executing with a single thread of control among said processors using said
debug process;
establishing a minimum polling time for each of said processors; and
obtaining status information from each of said processors based at least in part

on said polling interval.

WO 01/69390

1/6:

¥

&= . Run loop
f

—dl Y&
> ¢

PCT/US01/40292

/00

Initialize each process's
poll delay to the

[

minimum value and its
next poll time to now

Set ran simulator to false
Set need sleep to false

L~ /7T

T \g/

For each

Debugger
state

/06

Ran
simulator

T UNS

process

Is
process
running

Simulator

process

Sy
Simulate one instruction

and check status
Set ran simulator to frue

' 3

/70

Hardware

) 2@

Sleep until check time

L
| The status
t poll check may
next po /| change its
6 yop | 7 polldelay
L 4) [' ' VL/
Set need sleep to rrue Check process's status

Set next poll to (now + poll delay)
Set check time to min(check time, next poll)

N7

&, /

WO 01/69390

2/6

/4
DErERMINE
AVEXT
Poll

D &7 memme
C 2T

TrmE&

1

S e&7e4c7

csezan]
e o
AT Lo (M)

Se T
S L &S TAT

_é- Mer). DE2ay

PCT/US01/40292

A~ é. /q

WO 01/69390

Initialize each process's
poll delay to the
minimum value and its
next poll time to now

}

- 3/6

PCT/US01/40292

2J0

Run loop

—:(f:—
Set ran simulator to false
Set need sleep to false

ZAIT AL &
ROFL L&

/%Smuj

Is

process Yes

For each
process

Debugger

state 222

Ran
simulator

running

Simulate one instruction
and check status
Set ran simulator to hue

213

p 220
27 \

Sleep untit check time

Hardware

process

L
204 L
e status
| The stat
t poll < now check may
nextpo /| change its
/ poll_qela_y

i) I Y4

Check process's status

Set next poll to (row + poll delay)
Set check time to min(check time, next poll)

& . 2.

WO 01/69390 4/6. PCT/US01/40292

Csmf) 77¢. 22

250

A
\ “ ent doop '’

(Fré. 2) I~ 282

25
v
D

¢

A AREseers

70 DeETAvmNG
Lo5D sl
T L2s5 \
(S70/,~°

Mabu:‘(?,

codg - 256

PCT/US01/40292

5/6.

WO 01/69390

$og

E 94+

Z oL

oL

/

+0E
.N &
pTeH ¢ L« —
900
o
o
o
8t
<«
7 SS2201] jo11U0D
aremprey | —
| ssadold _ jonuo)d
srempreH | 7
208

$S3001d
12933nqaJ

TR N $S2001]
f w — v lofeuuig
e
o
2l
" °
g\MN
Tonuos - 7 859001
¢ T3 P Jope[nuIg
#IE
TR —P [$83201g
A — \v Joe[nuug
)

QQM\

PCT/US01/40292

6/6

WO 01/69390

204)ﬂf&g
FomIq
FoCyoL T c

r\l\lgr.l|

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

