
(19) United States
US 2005.0246685A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0246685 A1
Braddock, JR. (43) Pub. Date: Nov. 3, 2005

(54) OBJECT ORIENTED ADN AND METHOD OF
CONVERTING ANON-OBJECT ORIENTED
COMPUTER LANGUAGE TO AN OBJECT
ORIENTED COMPUTER LANGUAGE

(76) Inventor: Daniel M. Braddock JR., Austin, TX
(US)

Correspondence Address:
George R. Schultz
Schultz & Associates, P.C.
One Lincoln Centre
5400 LBJ Freeway, Suite 1200
Dallas, TX 75240 (US)

(21) Appl. No.: 11/091,894

(22) Filed: Mar. 28, 2005

Related U.S. Application Data

(63) Continuation of application No. 09/753,192, filed on
Dec. 30, 2000.

Publication Classification

(51) Int. Cl." ... G06F 9/44
(52) U.S. Cl. .. 717/116

(57) ABSTRACT

A method for converting a non-object oriented language to
an object oriented language is shown. First, an existing
object oriented language must be Selected. Next, a non
object oriented language is Selected. This is the language the
programmer desires to be converted to an object oriented
language. The requirements for the new object oriented
language are then defined. Next, the Specific Syntax and
grammar are Selected. Then the object oriented extensions
are developed. The object oriented extensions allow for the
existing language and data structure to be developed coex
tensive in the object oriented environment. Next, the new
object oriented language is prepared based upon the criteria
outline previously. The Object Oriented ADN including an
application logic function, data types and Scopes, a class for
message instancing, client workload models, Server process
infrastructure, database models, operating System models,
Statistics capability, utility classes, and garbage collection.

dO

O2

exy s ns
doe - or ent ed
compu er environment

dens, s
o

-exis n9
nor - object
a re-ed computer
en ur or ryne M t

o

Ude he teauire menis
-er rew object
era e M ed compole r
renurer, rye

See ch compen! be.
syntax end
are mr^er

be velop object
or er-ed ex\ters has

Patent Application Publication Nov. 3, 2005 Sheet 1 of 33 US 2005/0246685 A1

OO

Tide M-ty ex's sing
evoject or e^ ed
Computer environment

O2

lder s (ex sing
non - object
or e M-ed compu-er
en V r or ryne M t

Ole

lde' Me Teau in e mens
rer Me M object
era e M ed compu le r
tenure, nr. e rh

08

select compensible
syntax en el
are mr^er

be velop object
or ey-ed ex\re Ms. Ams

risure A

Patent Application Publication Nov. 3, 2005 Sheet 2 of 33 US 2005/0246685 A1

2.

Dev e \op General
purpd st U y
c\ass es

Figure 3.

Z FIR[[10][H

US 2005/0246685 A1

NOIJLOCICIORILNI //

Nov. 3, 2005 Sheet 3 of 33

US 2005/0246685 A1 Nov. 3, 2005 Sheet 4 of 33 Patent Application Publication

ŒILV JLS CINV SEISSE OORHAI NGIW //

US 2005/0246685 A1 Nov. 3, 2005 Sheet 5 of 33 Patent Application Publication

Z FTHIO!!OIH

 = 3ASGIAIGHOETH Que}SuoO $g = 3AS LIV AACIN?S Que] suo O
* I = OASE LOOGIXOEI Quae]Sü00

Z FIRIO OIH

US 2005/0246685 A1 Nov. 3, 2005 Sheet 6 of 33 Patent Application Publication

! L = 2ASCINEIXISVJ. Que}SuOO

US 2005/0246685 A1 Nov. 3, 2005 Sheet 7 of 33 Patent Application Publication

Z FIR[[10IH

19quum Nb3 NOINH Que?Su00

Z FIRIO!!OIH

US 2005/0246685 A1 Nov. 3, 2005 Sheet 8 of 33 Patent Application Publication

| Z EIRI[10IH

US 2005/0246685 A1

==// } (OASEIZITVILINI)2SeO

Patent Application Publication

Z ETRIQ OIH

US 2005/0246685 A1 Nov. 3, 2005 Sheet 10 of 33 Patent Application Publication

Z ETHI) OIH

US 2005/0246685 A1 Nov. 3, 2005 Sheet 11 of 33

{

Patent Application Publication

US 2005/0246685 A1 Nov. 3, 2005 Sheet 12 of 33 Patent Application Publication

US 2005/0246685 A1 Nov. 3, 2005 Sheet 13 of 33 Patent Application Publication

US 2005/0246685 A1 Nov. 3, 2005 Sheet 14 of 33 Patent Application Publication

US 2005/0246685 A1 Nov. 3, 2005 Sheet 15 of 33 Patent Application Publication

US 2005/0246685 A1 Nov. 3, 2005 Sheet 16 of 33 Patent Application Publication

US 2005/0246685 A1 Nov. 3, 2005 Sheet 17 of 33 Patent Application Publication

NOILOTICIORILNI // ===//

US 2005/0246685 A1 Nov. 3, 2005 Sheet 18 of 33 Patent Application Publication

{{JLV JLS CINÝ SEISSSIOOHd NCRV //

US 2005/0246685 A1 Nov. 3, 2005 Sheet 19 of 33 Patent Application Publication

US 2005/0246685 A1 Nov. 3, 2005 Sheet 21 of 33 Patent Application Publication

US 2005/0246685 A1

---- ------- --------- --------~--~--~// ==//
Nov. 3, 2005 Sheet 24 of 33 Patent Application Publication

£ ETH (10.IH

US 2005/0246685 A1

==========::===========================::~~======::=~~=~::~~==|/
Nov. 3, 2005 Sheet 25 of 33 Patent Application Publication

===//
US 2005/0246685 A1 Nov. 3, 2005 Sheet 26 of 33 Patent Application Publication

US 2005/0246685 A1

==//
Nov. 3, 2005 Sheet 27 of 33 Patent Application Publication

US 2005/0246685 A1 Nov. 3, 2005 Sheet 28 of 33 Patent Application Publication

------------// Jo?AB?3q JQAJ9S SHN // ---- - - - - - - - - - ------//

US 2005/0246685 A1 Nov. 3, 2005 Sheet 29 of 33 Patent Application Publication

US 2005/0246685 A1

º ETRIÍ 10.IH

Nov. 3, 2005 Sheet 30 of 33 Patent Application Publication

- - - - - - - ------------ - --~~~~ ~~// -- - - ------ - - ------~- - -----f/

US 2005/0246685 A1 Nov. 3, 2005 Sheet 31 of 33 Patent Application Publication

£ EINITIOIH

US 2005/0246685 A1 Nov. 3, 2005 Sheet 32 of 33 Patent Application Publication

US 2005/0246685 A1 Nov. 3, 2005 Sheet 33 of 33

== //

Patent Application Publication

US 2005/0246685 A1

OBJECT ORIENTED ADN AND METHOD OF
CONVERTING ANON-OBJECT ORIENTED
COMPUTER LANGUAGE TO AN OBJECT
ORIENTED COMPUTER LANGUAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a continuation of U.S.
patent application Ser. No. 09/753,192 entitled “Object
Oriented And and Method of Converting a Non-Object
Oriented Computer Language to an Object Oriented Com
puter Language' filed on Dec. 30, 2000.

REFERENCE TO COMPUTER PROGRAM
LISTING APPENDIX SUBMITTED ON

COMPACT DISC

0002. A Computer Program Listing Appendix submitted
on Compact Disc is included and the material contained on
the Compact DiscS is hereby incorporated by reference.
0.003 Copies 1 and 2 of the discs include the following:

Name Size Type Last Modified

adm30. 26 KB L File 12/30/2OOO
adn30.y 99 KB YFle 12/30/2OOO
ADNinterpreter30.sim 517 KB SIMFle 12/30/2OOO
ADNparser30.sim 411 KB SIM File 12/30/2OOO
Dbms 72 KB Text Doc. 12/30/2000
Server 2O KB Text Doc 12/30/2OOO
Software Util30.sim 163 KB SIM Fle 12/30/2OOO
user extensions 5 KB Text Doc. 12/30/2OOO
Utilities 56 KB Text Doc. 12/30/2OOO

FIELD OF THE INVENTION

0004. The field of the invention relates to converting a
non-object oriented computer language to an object-oriented
computer language more particularly, the invention relates
to converting a non-object oriented computer language to an
object-oriented computer language while maintaining exist
ing code Structure and data Structures.

BACKGROUND

0005 Computer languages have evolved over time as
computer Systems have become more complex and as
instruction execution Speed has increased. Society is becom
ing more dependent on computer Systems and advance
computer-programming languages. However, before the last
decade, most computer programs were written in non-object
oriented languages. The non-object oriented computer lan
guages implemented Simple logic Statements which allowed
the following: basic data input and output operations, imple
mentation of Subroutines which could be called and returned
from, and the focus of the programmer to be placed on the
procedures of the language or the program. Within the last
Several years however, a paradigm shift has occurred toward
programming in an object-oriented language. In an object
oriented language, the programmer focuses on the data in the
program and the methods that manipulate that data rather
than focusing on the procedures of the language. Object
oriented languages are usually easier to understand.
Examples of object-oriented language include C++ and
Java.

Nov. 3, 2005

0006. In an object-oriented system, you solve your prob
lem in terms of objects which occur in the context of the
problem and objects are almost everything in common
object-oriented Systems. Objects allow you to define entities
relevant to your particular program rather than Strictly
expressing your Solution to a problem essentially in terms of
characters and numbers as is required by non-object oriented
language.

0007. A class is a term used to describe a specification for
a collection of objects with common properties. A class is
also a collection of data and methods that operate on that
data. The data and methods describe the behavior and state
of an object. Classes are hierarchical, that is Subclasses
inherit behavior from the classes above it. A class describes
the requirements for a collection of objects and may be
thought of as a template which defines what makes up the
particular object. A class definition of an object lists all the
parameters that the programmer needs to define the object of
that particular class. Instance variables or attributes of a
class are commonly used to define these parameters. Objects
can include the methods that operate on it as well as the data
that defines the object. This allows for ease in programming.
Typically, object-oriented programs take longer to design
than non-object oriented programs, as care must be taken to
design the classes that will be necessary for your program,
however, object-oriented programs are also much easier to
maintain and expand.

0008 However, many businesses have spent consider
able time, effort and money in developing computer pro
grams to control all aspects of their organizations. Many of
these programs were developed using Standard program
ming techniques that were available prior to the develop
ment of object-oriented design. AS Such, businesses must
consider the time necessary and the cost associated with
modifying or replacing existing programs with easier to
maintain object-oriented programs. Therefore, any advance
ment in the ability to convert a non-object oriented language
program to an object-oriented language program would be
advantageous.

SUMMARY OF THE INVENTION

0009 Object Oriented ADN and a method for converting
a non-object oriented language to an object oriented lan
guage is shown. First, an existing object oriented language
must be Selected. An object oriented language is Selected to
provide for ease of translation with regard to Syntax and
grammar. Second, the non-object oriented language is
Selected. This is the language the programmer desires to be
converted to an object oriented language. The requirements
for the new object oriented language are then defined. The
requirements can be expressed in a document including a Set
of enhancements to be made to the existing language. Next,
the Specific Syntax and grammar are Selected. The object
oriented extensions are then developed. The object oriented
extensions allow for the existing language and data structure
to be developed coextensive in the object oriented environ
ment. Programs written in the existing language are still
executable in the new object oriented language. Finally, the
new object oriented language is prepared based upon the
criteria outlined previously.
0010. The Object Oriented ADN including an application
logic function, data types and Scopes, a class for message

US 2005/0246685 A1

instancing, client workload models, Server process infra
Structure, database models, operating System models, Statis
tics capability, utility classes, and garbage collection.

BRIEF DESCRIPTION OF THE DRAWINGS

0.011 Abetter understanding of the present invention can
be obtained when the following detailed description of one
exemplary embodiment is considered in conjunction with
the following drawings, in which:
0012 FIGS. 1A-1B are flow diagrams of the conversion
to object oriented environments process,
0013 FIG. 2 is an exemplary embodiment of the existing
ADN language code; and
0.014 FIG. 3 is an exemplary embodiment of the new
object oriented ADN language code.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

0.015. In the description which follows, like parts are
marked throughout the Specification and drawings with the
Same reference numerals, respectively. The drawing figures
are not necessarily drawn to Scale and certain figures may be
shown in exaggerated or generalized form in the interest of
clarity and conciseness.
0016 FIGS. 1A-1B illustrate a method of converting a
non-object oriented computer environment to a new object
oriented computer environment. The process begins with
Start 100 on FIG. 1A. Next, in Step 102, the existing
object-oriented computer environment must be identified.
An existing object-oriented computer environment would
include commercially available object-oriented languages
such as Java, which is provided by Sun Microsystems Inc.
Typical benefits of a commercially available object-oriented
computer language include improved application extendibil
ity, maintainability, data hiding and encapsulation which
makes code reuse easier, and the ability to allow the user
additional power and flexibility to implement complex
applications. Further, if Java is Selected, the automatic
garbage collection feature and associated object reference
counting design is particularly useful in certain languages,
especially simulation language. Java's Syntax is also based
on C++ language Syntax. Java's Selection may also be
appropriate if the legacy language is also based on C or C++
language Syntax. Next, in Step 104, the non-object oriented
computer environment is identified. The non-object oriented
computer environment includes languages which implement
Structure other than the object-oriented methodology and are
desired to be converted to an object oriented System. Thus,
older existing languages which pre-date the use of object
oriented analysis and design are potential candidates for this
conversion. In one embodiment, the Application Definition
Notation (ADN) language would fall in this category as
ADN is a special purpose programming language for Script
ing the behaviors of clients and Servers and is not written in
an object oriented form. ADN was especially designed for
use with a simulation tool and includes the features to handle
concurrency, message passing, Simulation time manage
ment, and Simulated resource usage. The ADN features
include C-like assignment in control flow Statements, Vari
ables having different Scopes and lifetimes, concurrent pro
gramming using threads and processes, Simulation control

Nov. 3, 2005

and resource usage Statements, input/output Statements and
a wide variety of built in functions. Next the requirements
for the new object-oriented computer environment must be
defined in Step 106. A requirements document can be
produced from a set of enhancement requests and an under
Standing of the non-object oriented computer environment.
Further, basic requirements Such as reusability would factor
in the determination of defining the requirements. The
requirements document can be used to identify any future
functionality or improved functionality of the non-object
oriented computer environment. Also, the requirements
document can identify functionality present in the non
object oriented computer environment which will be
advanced through the modification or conversion to the
object-oriented computer environment. Next in Step 108,
compatible grammar and Syntax is Selected. The grammar
and Syntax of the new object-oriented computer environ
ment must be compatible with the non-object oriented
computer environment. The compatibility is necessary as the
non-object oriented computer environment language is to be
extended to provide the new object-oriented capabilities.
The beginning of the Selection of the grammar and Syntax
occurs in Step 102 during the identification of an existing
object-oriented computer environment. The existing object
oriented computer environment should be Selected So that a
Standard object-oriented language specification is available
and can be used as a reference document. Within this
reference document, the use of the Semantics of the refer
ence language can be used as a guide to ensure that the
functionality is implemented as part of the object-oriented
conversion. Further, when the Syntax or grammar is not
exact, then the non-object oriented computer environment
Syntax should be followed as closely as possible to minimize
the effort in determining the new object-oriented capabili
ties. Any language key words not present in both the existing
object-oriented computer environment and the non-object
oriented computer environment should be reserved for use in
Subsequent implementation. Next, the object-oriented exten
sions are developed in Step 110. The object-oriented exten
Sion design should satisfy Several goals. First, the object
oriented computer environment should not burden the
legacy System user in cases where the new OO functionality
is not used. The interface to the new OO features should
appear natural and easy to learn for the legacy System user.
Second, the object oriented features of the new object
oriented computer environment should be able to access the
non-object oriented computer environment information So
that existing applications can take full advantage of the new
object oriented functionality. The non-object oriented com
puter environment application integrity should be preserved
through the internal creation and management of key Struc
tures including Structures as processes, threads and/or mes
SageS.

0017. In one embodiment, to preserve the integrity of the
legacy System while giving the user more control, an object
implementation was designed to include a header Structure
and a data Structure. The object header Structure was defined
for use by all objects in the design. The mapping of all
user-defined information is made to Secondary Structure. The
object header points to either a user defined Structure or a
non-object oriented computer environment data Structure.
By this approach, the non-object oriented computer envi
ronment information can be accessed in the same way as
other object-oriented information. Second the object refer

US 2005/0246685 A1

ence type was added to the Semantics of the non-object
oriented computer environment generic variable So that it
was able to access any type of information in the new
object-oriented computer environment. Next in Step 112 on
FIG. 1B, the general purpose utility classes were developed.
No general purpose utility classes existed in the non-object
oriented computer environment. Therefore, to drive the full
functionality of object-oriented operations, the general pur
pose utility classes must be added. Next in Step 114 the new
object-oriented computer environment is prepared. In pre
paring the new object-oriented computer environment, the
requirements defined, the grammar and Syntax Selected, and
object-oriented extensions must be considered to implement
and develop the new object-oriented computer environment
to accomplish the goals of completeneSS and ease of use.
These Steps of preparing the new object-oriented computer
environment and in particular, the actual code generation, is
not listed herein for brevity as various methods are available
for code generation once the requirement Specifications,
grammar and Syntax Selected, and object-oriented exten
Sions are developed. Any of various common code genera
tion techniques are uSable and their use does not detract from
the spirit of the invention. The method ends in Step 116.
0018 Referring now to FIGS. 2 and 3, examples of the
ADN code and object-oriented ADN code are shown respec
tively. FIG. 2 includes a portion of the ADN code which was
prepared prior to the conversion to the object-oriented ADN.
The file shown is the system. ADN. FIG. 3 shows the
object-oriented ADN code for the System. ADN after con
version to the object-oriented ADN. Through the method
described previously, the ADN code was transformed to
object-oriented ADN. The object-oriented ADN however,
Still possesses many of the same parameters and data Struc
tures contained in the original ADN. For example, on page
2 of FIGS. 2 and 3, the variable constants INITIALIZESvc
202 and 302 are set to Zero in both figures. However, on
page-7 of FIG. 3, the object-oriented functionality and
Syntax can be seen when the classes are address through the
use “PUBLIC" statements 304. Further, on page-7, the class
and instance variables are declared 306. However, as can be
seen on page-9 of FIG. 3 and page-8 of FIG. 2, the ADN
program language which was used in the pre-object-oriented
and 204, is present in the object-oriented and 308. Therefore,
implementing the method describe herein, the functionality
and data accessibility was imported from the non-object
oriented language to an object-oriented language.
0019. The controlling code for the object oriented ADN,
which was prepared according the to method described
previously, is attached hereto as Attachment A. The object
oriented ADN is a programming language for Simulating the
behavior of computer systems. The object-oriented ADN
now Supports multiple object-oriented features including
classes, inheritance, constructors, method overloading,
packages, interfaces and abstract classes. The class describes
a collection of data objects (i.e. constant, variables and
arrays) and methods (i.e. behaviors, functions and construc
tors) that may use data objects. The definitions may include
constants, variables, arrayS, behaviors, functions and con
Structors. If the declaration of an object is preceded by the
keyword “public', then the object is visible outside the class.
Otherwise the object is only visible within the class. The
class is nothing but a template. Defining a class allocates no
Storage to the data objects in the class. It is the instances of
the class that allocate Storage and manipulate the data.

Nov. 3, 2005

0020. A constructor is a special function within a class
that is evoked automatically when a class is instantiated. The
name of the constructor must be the same as the name of the
class. The body of the constructor must execute in Zero
Simulation time. Simulation time is calculated, not recorded
as actual time. Simulation time is the amount of time
necessary to accomplish a task if the task was being done in
an actual computer System. AS the Software is simulating the
computer System, the Software can execute tasks with Zero
Simulation time, thus that time is not included in the time
analysis of the computer System. Simulation time is impor
tant because performance Statistics are calculated from the
Simulation times at which events occur. Simulation time is
maintained in a double precision floating point variable that
measures the number in Seconds from when the Simulation
begin.

0021. A behavior is a collection of ADN code that is
invoked as a procedure. Its body may take Simulation time
to execute. It can take parameters as inputs and can return
multiple values as outputs. A variable is declared by Speci
fying its type, its name, and an optional initial value. A
constant is a variable or array whose value cannot change
during execution. A constant is created by preceding the
declaration of a variable or array with the keyword “final'.
0022. A class is instantiated using the new operator.
Instantiating a class creates a new instance of the class by
allocating the needed Storage, invokes a constructor for the
class with the provided parameter values and returns a
reference or pointer to newly created instance.
0023. Within a class there may exist multiple functions or
multiple behaviors having the same name, as long as each
function or behavior has different number of parameters.
This is called “Method Overloading”. When an overloaded
function or behavior is invoked, the version having the same
number of parameters as values being passed is invoked.
Method Overloading allows implementing Several varia
tions on a method and can be used in place of a Single
method having a variable number of parameters.

0024. A package is a collection of constants, variables,
arrayS, behaviors, functions, classes and interfaces. A pack
age is used to group related objects, making Some of the
objects Visible outside of the package and hiding others
within the package. A package is not instantiated. The
objects in a package are referenced using their simple
names. If the declaration of an object in a package is
preceded by the word “public', then that object is visible
outside the package. Otherwise, the object is visible only
within the package. If the same name appears in multiple
package directives, all the objects are considered to be a part
of the same package. This allows a package to be defined in
a non-contiguous pieces spanning Several files.

0025 Several key ADN features in existence before the
object-oriented extension were enhanced during the conver
Sion, adding Significant value to the objected-oriented ADN.
The features are as follows:

0026 Application Logic. Originally, ADN application
logic was exclusively implemented in ADN global behaviors
that resemble conventional programming Subroutines.
Simple logic Statements were provided for conditional test
ing, looping, and data input and output operations. Perfor
mance Statements were provided to account for hardware

US 2005/0246685 A1

resource usage. Simulated Send and receive Statements were
provided for inter-process communication. A set of built-in
utility functions rounds were available to behaviors.

0027. After Object Oriented ADN, application logic
could also be defined in class behaviors providing logic
encapsulation, a key feature in Object Oriented ADN reus
ability. In addition, the user-defined Object Oriented ADN
function was introduced in both global and class-contexts.
The Object Oriented ADN function is limited to Zero simu
lated time logic that can be invoked within the context of an
expression evaluation. The class-context function is equiva
lent to the traditional Object Oriented method. The class
constructor, a special function, was added for the initializa
tion of a newly instantiated object. This can be seen through
a comparison of the application logic 206 of the pre-Object
Oriented ADN shown in FIG. 2 with the application logic
310 of the Object Oriented ADN shown in FIG. 3.

0028 Data Types. Before Object Oriented ADN, data
consisted of type-leSS constants, variables, and arrays that
took on the type of the data currently being held. Valid data
types were Integer, Real, String, and Undefined. To conserve
memory, 1, 2, 4, 8, and 16 bit array elements were also
available. ASSociative arrays provided a means of Storing a
data values with a String value as a Subscript.

0029. After Object Oriented ADN, the former type-less
variables are given the type designation of Generic. The
object reference is added to the generic type. In addition,
Strongly typed variables of Integer, Real, String, and class
type are added to provide the same data type capability
available in traditional Object Oriented languages Such as
Java. Examples can be seen in the adn.y file attached as the
computer program listing appendix Submitted on compact
disk and include the following:

array init list: expr
{SS = 1; }

array init list, expr
{SS = $1+1; }

array init list,

data element type: GENERIC
{SS = (Inst *)GENERIC; }

VARIABLE
{SS = (Inst *)GENERIC; }

| CONST
{

modif= FINAL mo;
SS = (Inst *)CONST:

| STROP
{SS = (Inst *)STROP; }

| REALOP
{SS = (Inst *)REALOP; }

INTOP
{SS = (Inst *)INTOP; }

|TYPE
{SS = (Inst *)S1; }

| STRING
{

SS = (Inst *)$1; data element token = STRING;

ASSOCATIVE

{SS = (Inst *)ASSOCIATIVE: }
| DATUM

{SS = (Inst *) DATUM: }

Nov. 3, 2005

-continued

INTOPICONST BIT
{

if (stremp($2, “16”) == 0) {
SS = (Inst *)INTEGER16:

else if (stremp($2, “8”) == 0) {
SS = (Inst *)INTEGER8;

else if (stremp($2, “4”) == 0) {
SS = (Inst *)INTEGER4;

else if (stremp($2, “2) == 0) {
SS = (Inst *)INTEGER2;

else if (stremp($2, “1”) == 0) {
SS = (Inst *)INTEGER1;

else {
yyerror(“Invalid Integer modifier);

data element type2: /* null */
{ SS = (Inst *)GENERIC; }

| GENERIC
{SS = (Inst *)GENERIC; }

| STROP
{SS = (Inst *)STROP; }

| REALOP

INTOP
{SS = (Inst *)INTOP; }

| TYPE
{ SS = (Inst *)S1; }

| STRING
{ SS = (Inst *)$1; data element token = STRING; }

ASSOCATIVE

{ SS = (Inst *)ASSOCIATIVE: }
INTOPICONST BIT

if (stremp($2, “16”) == 0) {
SS = (Inst *)INTEGER16:

else if (stremp($2, “8”) == 0) {
SS = (Inst *)INTEGER8;

else if (stremp($2, “4”) == 0) {
SS = (Inst *)INTEGER4;

else if (stremp($2, “2) == 0) {
SS = (Inst *)INTEGER2;

else if (stremp($2, “1”) == 0) {
SS = (Inst *)INTEGER1;

else {
yyerror(“Invalid Integer modifier);

0030) Data Scope. Before Object Oriented ADN, the
available data Scopes consisted of model global including
behavior names, Simulated file, table and indeX names;. In
addition there were process local, thread local, and behavior
local data Scopes.

0031. After Object Oriented ADN, the data scopes were
expanded to include package Scope 312, class Scope 314,
and object instance Scope 316. These added data Scopes
provide the data hiding and logic encapsulation necessary in
the creation of reusable model components.

US 2005/0246685 A1

0032) Process and Thread Instances. Before Object Ori
ented ADN, proceSS and thread Structure instances were
created and managed by internal logic. Selected State data
was accessible through a set of built-in functions.
0033. After Object Oriented ADN, classes were defined
for processes and threads. Examples can be seen in the
Utilities.adn file attached as the computer program listing
appendix Submitted on compact disk and include the fol
lowing, noting that the constructors are native and private:

If-----------------------------------
// *** process and thread support ***
If-----------------------------------
If must match front end of t Process structure definition
in Software Util
// allows any defined fields to be accessed by ADN
public final class ses. Thread:

private integer reserved;
private Integer object ptr; if ptr to associated

t Object
private ses SharedMessageQueue

fSharedMessageOueue;
private native constructor ses. Thread(); // used internally

public final class ses. Process:
private integer object ptr; if ptr to associated

t Object
private ses. Thread fMainThread:
private ses. SharedMessageQueue fSharedMessageQueue;
native private constructor ses. Process(); // used internally

0034 Message Instances. Before Object Oriented ADN,
message Structure instances were created and managed by
internal logic. Selected State data was accessible through a
set of built-in functions.

0035). After Object Oriented ADN, a class was defined for
the message. Through this class, message fields may be
accessed by the ADN user. The server classes use this class
to handle the routing of Service requests to the correspond
ing Service behavior. Instances of the message class are
accessible in the operating System logic where message
activity is intercepted. Examples can be seen in the Utili
ties.adn file attached as the computer program listing appen
dix Submitted on compact disk and include the following,
noting that the constructors are native and private:

If------------------------
// *** message support ***
If------------------------
If must match t Msg structure definition in
Software Util...Message.sim
public final Class ses. Message {

private native constructor ses. Message(msg ptr)
Returns(msg ref);

public native static function associatedMsg(msg ptr)
Returns(msg ref);
public native function sendToHardware(target id,Kbytes)
Returns();

private Integer object ptr; // ptr to associated
t Object
private Integer statStack; if t StatStack *
private Real send time;
private Real receive time;
private Real reply time;

public Real message bytes;

Nov. 3, 2005

-continued

public Datum data; // struct Datum *, also
int ndata

private Integer nextMsg; if t Msg
public Integer sending proc Sn;
public Integer receiving proc sn;

private Integer client proc sn;
private Integer timeout proc sn; // CO means stale

public Integer msg protocol; //protocol
private Integer iDbTransaction; if associated
transaction of sending

proc
private Integer msg. type; if t MsgType type;
private Integer 1 bit forward;
private Integer 1 bit SvcState;
private Integer 1 bit local;
private Integer 1 bit xfrDb;
private Integer 2 bit passCount;

0036) Client Workload. Before Object Oriented ADN, the
logic for a client workload was generated as an ADN
behavior executing under a special user proceSS. Client
Workloads initiated the execution of behavior logic on a
computer. Workloads could include human factor think time
or could be expressed in terms of inter-arrival time.
0037. After Object Oriented ADN, the default function
ality remains unchanged. By adding State data and additional
logic, a user can define significantly more complex work
load models. For example, the public factory behavior 318
of FIG. 3 is shown. A client workload object can be created
in a similar manner.

0038) Server Process. Before Object Oriented ADN,
Server processes were Specified through a graphical user
interface (GUI) which in turn generated ADN behaviors
according to internally defined patterns and user Supplied
information. Services are specified by ADN behaviors Sup
plied by the modeler.
0039. After Object Oriented ADN, server process infra
Structure was designed and implemented as ADN classes.
The new Server infrastructure can be seen in Server.adn
attached as the computer program listing appendix Submit
ted on compact disk

0040 Database Server. Before Object Oriented ADN, a
built-in Oracle model provided the only significant database
modeling capability. This feature allowed for the definition
of cache Size, block size, and individual named tables and
indexes sizes. The Semantics for a database transaction were
Supported in terms of Starting and committing a transaction
and collecting response Statistics per transaction type. A
transaction could be defined in the logic of a behavior to use
Select, insert, update, and delete operations on table rows.
Operations Such as update could optionally Simulate row
level locking. Distributed, central, and parallel Oracle model
functions were Supported.

0041 After Object Oriented ADN, users can create mod
els that involve significant data modeling. An example of the
database Server modeling capability can be seen indbms.adn
attached as the computer program listing appendix Submit
ted on compact disk.
0042 Operating System. Before Object Oriented ADN, a
default parameterizeable operating System model was Sup

US 2005/0246685 A1

plied with the product. A user could create a modified
operating System model although there was a Substantial risk
that the integrity of the model infrastructure would be
compromised.

0043. After Object Oriented ADN, the operating system
model logic was encapsulated in an operating System class.
With this new design, a user can Safely extend the operating
System without disturbing the original logic. Examples
include the base operating system functionality 320 of FIG.
3 and a user defined operating System extension shown in
user extensions.adn attached as the computer program list
ing appendix Submitted on compact disk.

0044 Statistics. Before Object Oriented ADN, all statis
tics were built-in. The user was able to control which
Statistics would be collected and reported.

0045. After Object Oriented ADN, a user definable sta
tistics capability was implemented as a set of Object Ori
ented ADN classes. A user defined query of built-in statistics
during simulation was also added. Examples can be seen in
the Utilities.adn file attached as the computer program
listing appendix Submitted on compact disk and include the
following:

public class ses. Statistic {
fi?constants
static final integer discrete = 0;
static final integer continuous = 1;
static final integer delta = 0;
static final integer absolute = 1;
// state fields (must match t Statistic in ADNparser. Statistic
private integer fHandle;
private integer fType;
private string fName:
private integer fNpercentiles; // for

liveDistribution
If interface to Workbench statistic accessor methods
If---
public native function count() returns(number samples);
public native function deviation() returns(deviation);
public native function duration() returns (duration);
public native function maximum() returns(maximum value);
public native function minimum() returns(minimum value);
public native function mean() returns(mean value);
public native function name() returns(name string);
public native function reporting (state) returns();
public native function sample(value) returns();
public native function sampleAbsolute(value) returns();

blic native function type() returns(type string);
blic native function value() returns(last sample);
blic native function variance() returns(variance);

private native Function defineDiscrete(prefix) returns();
ivate native Function defineContinuous(prefix) returns();

private native Function registerQueryStatistic() returns();
public native Function is Active() returns();
public native function registerService(serviceRef serviceName)
returns();
ff constructors
If------------
If used by ses. StatisticsManager.createOueryStatistic
//note: locateStatistic sets statType and statHandle
public Constructor ses. Statistic(aName) {

fName = aname:
fType = 2; If query stat type
this.registerQueryStatistic();

public Constructor ses. Statistic(aName, aIntervalWidth) {
fName = aname:
fType = discrete;

Nov. 3, 2005

-continued

public function createIntervalStatistic(aName, aIntervalWidth) {
ses Statistic tIntervalStat:
generic tStatMgr = ses gStatMgr; I? Overcome lookahead
problem
tIntervalStat = new ses. Statistic(aName, aIntervalWidth);
this.add interval (“#UDD%d#” + aname, aIntervalWidth,
tIntervalStat);
tStatMgr.fdiscreteStatisticGroup.insertStatistic(tIntervalStat);
return(tIntervalStat);

If used by ses StatisticsManager.createDiscreteStatistic and
If ses StatisticsManager.createContinuousStatistic
public Constructor ses. Statistic(alJxxPrefix, aname, aType) {
fName = aname:
fType = aType;
switch (fType) {

case(discrete) {
this.defineDiscrete(al JxxPrefix);

case(continuous) {
this.defineContinuous(al JxxPrefix);

default {
Error “Invalid statistic type, must be discrete or
continuous.';

0046) Utility Classes. Before Object Oriented ADN, there
were no general-purpose utility classes.

0047. After Object Oriented ADN, several utility classes
were added, including the following: a list class for handling
lists of objects, a list iterator class for accessing individual
objects in a list; a Semaphore class for use in controlling
access to data; and logic that can only be processed by one
thread at a time. Examples can be seen in the Utilities.adn
file attached as the computer program listing appendix
Submitted on compact disk.

0048 Garbage Collection. Before Object Oriented ADN,
memory management of all dynamically created Structures
Such as processes, threads, and messages were built-into the
modeling System.

0049. After Object Oriented ADN, memory management
of the objects can be explicitly instantiated by a user. A
System of object reference counts and automatic garbage
collection were implemented based on the Java language
Semantics. The following functions were included and can
be seen in ADNparser30.sim attached as the computer
program listing appendix Submitted on compact disk: init
gc proc, incr ref count, decr ref count, and object de

stroy.

0050. Many of the advancements of the Object Oriented
ADN are disclosed herein, however, the Object Oriented
ADN code is attached as the computer program listing
appendix Submitted on compact disk, which is hereby incor
porated by reference.

0051. The foregoing disclosure and description of the
invention are illustrative and explanatory thereof and Vari
ous changes to the size, shape, materials, components, and
order may be made without departing from the Spirit of the
invention.

US 2005/0246685 A1

1. A computer System for Simulation modeling, the com
puter System comprising:

an object oriented programming language;

application Software written in the object oriented pro
gramming language, wherein the application Software
Simulates computer Systems,

in which the object oriented programming language fur
ther comprises:

an application logic function;

data types and Scope, wherein the data types and Scope
include data types and Scope of a non-object oriented
programming language,

a class for message instancing.

Nov. 3, 2005

2. The computer system of claim 1 wherein the object
oriented programming language further comprises:

client workload models,
Server process infrastructure;
database models,
operating System models,
Statistics capability;
utility classes, and
garbage collection.
3. The computer system of claim 2 wherein the object

oriented programming language is Object Oriented ADN.

k k k k k

