

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2015-140181

(P2015-140181A)

(43) 公開日 平成27年8月3日(2015.8.3)

(51) Int.Cl.

B60T 7/12 (2006.01)
G08G 1/16 (2006.01)

F 1

B60T 7/12
G08G 1/16

テーマコード(参考)

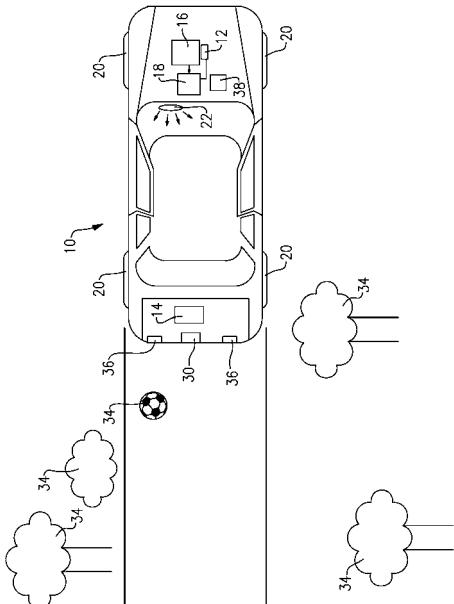
3D246
5H181

審査請求 有 請求項の数 15 O L 外国語出願 (全 31 頁)

(21) 出願番号 特願2015-15673 (P2015-15673)
 (22) 出願日 平成27年1月29日 (2015.1.29)
 (31) 優先権主張番号 61/933,083
 (32) 優先日 平成26年1月29日 (2014.1.29)
 (33) 優先権主張国 米国(US)
 (31) 優先権主張番号 14/603,490
 (32) 優先日 平成27年1月23日 (2015.1.23)
 (33) 優先権主張国 米国(US)

(71) 出願人 313005662
 コンチネンタル オートモーティブ システムズ インコーポレイテッド
 CONTINENTAL AUTOMOTIVE SYSTEMS, INC.
 アメリカ合衆国 ミシガン オーバーンヒルズ コンチネンタルドライブ 1
 1 Continental Drive,
 Auburn Hills, Michigan 48326-1581, USA
 (74) 代理人 100114890
 弁理士 アインゼル・フェリックス=ラインハルト

最終頁に続く


(54) 【発明の名称】衝突確信度に基づいてブレーキ介入を最小限にするための方法

(57) 【要約】 (修正有)

【課題】車両の運転者制御への介入を最小限にする方法を提供する。

【解決手段】車両10の減速を制御する方法において、少なくとも1つのセンサによって、前記車両10に近接するオブジェクト34を検出及び監視し、前記車両10の動きを監視し、前記車両10内に設けられた制御装置18によって、前記車両10と前記オブジェクト34との間の衝突確率を表している衝突確信度値を継続的に計算し、前記制御装置18によって、前記車両10と前記オブジェクト34との間の衝突を回避する前記車両の速度プロファイルを、前記衝突確信度値に基づいて決定する、ことを特徴とする方法。

【選択図】図1

【特許請求の範囲】**【請求項 1】**

車両の減速を制御する方法において、

少なくとも 1 つのセンサによって、前記車両に近接するオブジェクトを検出及び監視し、

前記車両の動きを監視し、

前記車両内に設けられた制御装置によって、前記車両と前記オブジェクトとの間の衝突確率を表している衝突確信度値を継続的に計算し、

前記制御装置によって、前記車両と前記オブジェクトとの間の衝突を回避する前記車両の速度プロファイルを、前記衝突確信度値に基づいて決定する、

ことを特徴とする方法。

【請求項 2】

前記速度プロファイルを、現在の衝突確信度値に基づいて決定する際に、

衝突確率の増加を表す、前記衝突確信度値の増加時の、前記速度プロファイルは、より小さい衝突確率を表している現在の衝突確信度値に基づいて決定された速度プロファイルに比べて、前記オブジェクトからより遠く離れたと所から前記車両の減速操作を開始するよう規定するように決定される、

ことを特徴とする請求項 1 記載の方法。

【請求項 3】

前記速度プロファイルは、前記車両と求めた衝突位置との間の距離に亘って実施される減速操作を、関連する制動操作が、前記距離に亘って、前記車両を前記衝突位置よりも前に停止させる最小の車両減速度を提供するように規定する、

ことを特徴とする請求項 2 記載の方法。

【請求項 4】

前記車両のブレーキを自動制動システムによって作動させ、

前記自動制動システムは、前記車両のブレーキを作動させるために電子ブレーキシステムへと命令を送信する、

ことを特徴とする請求項 2 記載の方法。

【請求項 5】

前記センサからのデータを制御装置によって分析し、検出された前記オブジェクトの特性と、前記オブジェクトが前記車両にとって回避すべき障害物であるか否かとを決定する、

ことを特徴とする請求項 1 記載の方法。

【請求項 6】

前記オブジェクトの動きの予測モデルを生成する、

なお、当該オブジェクトの動きの予測モデルは、前記オブジェクトの現在の位置及び動きに基づいた関連する確率値を有する、未来の時点における前記オブジェクトの可能な位置範囲を含むものである、

ことを特徴とする請求項 1 記載の方法。

【請求項 7】

前記車両の動きを表している車両信号を監視することによって、車両経路を決定するための前記車両の予測モデルを生成する、

なお、当該車両の予測モデルは、関連する確率値を有する、可能な車両経路の範囲を画定し、かつ、当該車両の予測モデルは、前記車両と前記オブジェクトとの間の衝突確率を求めるために、当該車両の予測モデルを、前記オブジェクトの動きの予測モデルに関連させる、

ことを特徴とする請求項 6 記載の方法。

【請求項 8】

さらに、前記オブジェクトとの前記衝突確率が変化すると、減速操作中に前記衝突確信度値を再計算し、

10

20

30

40

50

再計算された前記衝突確信度値に基づいて、新しい望ましい速度プロファイルを決定し、

、前記新しい望ましい速度プロファイルに基づいて、前記車両のブレーキを作動させる、ことを特徴とする請求項2記載の方法。

【請求項9】

前記衝突確信度値が増加した場合には、前記衝突確信度値に基づいて選択された予め定められた制動曲線のセットに基づき、制動力をより早期に、より小さい減速度値で、より長い期間に亘って作動させ、

前記衝突確信度値が減少した場合には、前記衝突確信度値に基づいて選択された予め定められた制動曲線のセットに基づき、制動力をより後の時点に、より大きい減速度値で、より短い期間に亘って作動させる、

ことを特徴とする請求項2記載の方法。

【請求項10】

車両用自動制動システムにおいて、

前記車両を減速させるための車輪ブレーキを作動させることの可能な電子ブレーキシステムと、

前記車両内に設けられた制御装置とを含み、

当該制御装置は、

車両の動きを監視させるための命令と、

後退時衝突回避システムの少なくとも1つのセンサによって、前記車両に近接するオブジェクトを検出させるための命令と、

前記車両と前記オブジェクトとの間の衝突確率を表している衝突確信度値を計算させるための命令と、

前記車両と前記オブジェクトとの間の衝突を回避する前記車両の望ましい速度プロファイルを、計算された前記衝突確信度値に基づいて当該制御装置によって決定させるための命令と、

を生成することを特徴とする車両用自動制動システム。

【請求項11】

前記制御装置は、前記車両の減速度が前記衝突確信度値に反比例するように前記速度プロファイルを決定させるための命令を含む、

ことを特徴とする請求項10記載の車両用自動制動システム。

【請求項12】

前記制御装置はさらに、前記衝突確信度値が増加した場合には、前記衝突確信度値に基づいて選択された予め定められた速度プロファイルのセットに基づき、制動力をより早期に、より小さい減速度値で、より長い期間に亘って作動させるための命令を含む、

ことを特徴とする請求項10記載の車両用自動制動システム。

【請求項13】

前記制御装置はさらに、前記衝突確信度値が減少した場合には、前記衝突確信度値に基づいて選択された予め定められた速度プロファイルのセットに基づき、制動力をより後の時点に、より大きい減速度値で、より短い期間に亘って作動させるための命令を含み、

前記制御装置はさらに、前記制御装置によって決定された望ましい前記速度プロファイルに基づき、減速操作中に亘って、前記車両のブレーキを作動させるための命令を含む、

ことを特徴とする請求項10記載の自動制動システム。

【請求項14】

前記制御装置はさらに、

前記オブジェクトの現在の位置及び動きに基づいて、将来の時点における前記オブジェクトの可能な位置範囲を含む、前記オブジェクトの予測モデルを生成させるための命令と、

可能な車両経路の範囲を含む、前記車両の予測モデルを生成させるための命令と、

前記車両と前記オブジェクトとの間の衝突確率を求めるために、前記車両の予測モデル

10

20

30

40

50

を、前記オブジェクトの動きの予測モデルに関連させるための命令と、
を含むことを特徴とする請求項 10 記載の車両用自動制動システム。

【請求項 15】

前記制御装置はさらに、

前記オブジェクトとの前記衝突確率が変化すると、前記車両の減速中に前記衝突確信度
値を再計算させるための命令と、

計算された前記衝突確信度値に基づいて、新しい望ましい速度プロファイルを決定させ
るための命令と、

前記新しい望ましい速度プロファイルに基づいて、前記車両のブレーキを作動させるため
の命令と、

を含むことを特徴とする請求項 14 記載の車両用自動制動システム。

【発明の詳細な説明】

【技術分野】

【0001】

関連出願の相互参照

本出願は、2014年1月29日に出願された米国仮出願第 61/933,083 号の
優先権を主張するものである。

【0002】

技術分野

本開示は自動車に関し、特に自動車用の運転者支援システムに関する。

【背景技術】

【0003】

背景技術

センサ技術の進歩により、自動車用安全システムを改善することが可能となっている。
衝突を検出及び回避するための装置及び方法が利用可能になりつつある。このような運転
者支援システムは、車両に配置されたセンサを使用して、差し迫る衝突を検出する。この
システムは、様々な運転状況を運転者に警告して、衝突を防止又は最小限にすること
ができる。さらには車両の後進時に障害物となり得るものと運転者に警告するためにも、セン
サ及びカメラが使用される。このようなシステムは、自動走行又は半自動走行の状況下で
運転される車両の安全性を向上させるために特に有用である。

【0004】

本明細書に記載される背景技術の説明は、概して本開示の背景を提示することを目的と
する。その研究が本背景技術の章に説明される範囲にとどまる、本明細書に記名される發
明者の研究、並びに、その他の点でも出願時における先行技術として見なされ得ない、背景
技術の説明は、本開示に対する先行技術として明示的にも暗示的にも認められるもので
はない。

【0005】

概要

本開示の車両用自動制動システムは、他の可能なもののうち、車両を減速させるための
車輪ブレーキを作動させることの可能な電子ブレーキシステムと、制御装置とを含む。前
記制御装置は、前記車両の動きを監視させるための命令、及び、後退時衝突回避システム
の少なくとも 1 つのセンサによって、前記車両に近接するオブジェクトを検出させるため
の命令を含む。前記制御装置はさらに、前記車両と前記オブジェクトとの間の衝突確率に
に基づいて衝突確信度値を求めさせるための命令を含む。前記制御装置はさらに、前記車両
を障害物と衝突する前に停止させるために、前記車両を減速させるための望ましい速度
プロファイルを決定させるための命令を含む。

【0006】

車両の減速を制御する本開示の方法においては、他の可能なもののうち、少なくとも 1
つのセンサによって前記車両に近接するオブジェクトを検出及び監視し、前記車両の動き
を監視し、前記車両内に設けられた制御装置によって、前記車両と前記オブジェクトとの

10

20

30

40

50

間の衝突確率を表している衝突確信度値を継続的に計算する。前記制御装置は、前記車両と前記オブジェクトとの間の衝突を回避する、前記車両の速度プロファイルを、前記衝突確信度値に基づいて決定させるための命令を含む。

【0007】

種々の実施例は、図面に示された特定の構成要素を有しているが、本開示の実施形態は、それらの特定の組み合わせに限定されるものではない。種々の実施例のうちの1つの実施例のいくつかの特徴又は構成要素を、種々の実施例のうちの別の1つの実施例の特徴又は構成要素と組み合わせて使用することが可能である。

【0008】

本明細書に開示される特徴及びその他の特徴は、以下の説明及び図面から非常に良好に理解することができる。以下に、各図を簡単に説明する。

【0009】

図面の簡単な説明

本開示は、以下の詳細な説明及び添付の図面からより完全に理解されるであろう。

【図面の簡単な説明】

【0010】

【図1】本開示の自動制動システムを使用する車両の概略上面図である。

【図2】1つの実施例に基づく自動制動システムによって生成された、可能性のあるオブジェクトと、可能な車両経路とを示す概略図である。

【図3】制動操作のための複数の速度曲線を示す線図である。

【図4】制動操作のための速度曲線に対する衝突確信度による影響を示す線図である。

【図5】図4の制動操作のための減速曲線に対する衝突確信度による影響を示す線図である。

【図6】1つの実施例に基づく自動制動システムの処理ステップを概略的に示すフローチャートである。

【実施例】

【0011】

発明の詳細な説明

以下の説明は本質的に単なる例示であり、本開示、本開示の適用、又は、本開示の使用を限定することを意図するものではない。明確性を期するため、図面においては、同様の構成要素を識別するために同一の参照符号が使用される。

【0012】

図1を参照すると、運転者支援システム、特に自動制動システム12を有する車両10が概略的に図示されている。自動制動システム12は、自動走行及び半自動走行の車両運転中に車両10を制動するために使用することができる。特に自動制動システム12は、車両10の後退走行運転中に使用することができる。明細書全体に亘って、相対的な前進方向及び後退方向は、車両10の操作時に当該車両10の操作者が主として向かい合うこととなる方向に関連している。

【0013】

自動制動システム12は、後退時衝突回避システム14や電子制御ブレーキシステム(EBBS)16のような他の安全システムと共に使用することができる。各システム12, 14, 16は、共通の制御装置又は別個の制御装置18を使用することができる。

【0014】

自動制動システム12は、制動イベントを発生させる必要が生じた場合に、車両10が前進方向に走行しているのか、又は後退方向に走行しているのかを判定する。自動制動システム12、後退時衝突回避システム14、又は類似のシステムは、オブジェクト34が検出されると衝突確率を求める。衝突確率は、衝突確信度値を求めるために使用される。オブジェクト34と衝突する可能性が高くなればなるほど、衝突確信度値は高くなる。衝突確率が所定の閾値を上回った場合には、制御装置18は、少なくとも1つの車両衝突回避行動が必要であることを指示する。必要とされる行動は、オブジェクトが検出された場

10

20

30

40

50

合における運転者への警告の形態とすることができます、及び／又は、車両を減速又は停止するための自動制動システム 1 2 の作動とすることができます。車両 1 0 内に警告装置 2 2 を設置することができ、警告信号 2 2 は、オブジェクト 3 4 の存在を運転者に警告する照明光のような信号又は可聴信号を含むことができる。

【 0 0 1 5 】

引き続き図 1 を参照しながら図 2 を参照すると、本実施例に基づく自動制動システム 1 2 は、通常の状況下における運転者操作への介入を最小限にするためのアルゴリズムを含む。従って、本実施例に基づくブレーキシステム 1 2 は、運転者による制動操作より優先するため及び／又は運転者による制動操作を補完するために実施される自動制動行動のレベルを最小限にする。

10

【 0 0 1 6 】

本開示の実施例に基づくアルゴリズムは、センサから報告される、静止オブジェクト及び移動歩行者を含むオブジェクト、及び、検出された歩行者の予測される及び／又は可能性のある動き、及び、予測される及び／又は可能性のある運転者入力を、確率論的に分析する。現在の車両経路、及び、可能性のある運転者入力は、可能な車両経路の範囲を予測するために利用される。予測された車両経路と、予測された歩行者経路（又は静止オブジェクトの位置）とが交差する場合には、衝突の可能性が示される。検出された全ての起こり得る衝突のうちの 1 つが他のものよりも前に介入を必要とし、そして、その介入が実行されることとなる。

【 0 0 1 7 】

確率論的な分析は、可能な車両経路 4 0 の予測モデルの生成と、可能なオブジェクト経路 4 2 の予測モデルの生成とを含む。可能な車両経路 4 0 は、車両が引き続き、参照符号 4 6 A で示された車両経路によって概略的に図示された現在の車両経路に沿って進行する可能性、又は択一的に、運転者が車両 1 0 の進路を変更して、参照符号 4 6 B , 4 6 C , 4 6 D で概略的に示されるような代替経路に沿って進行する可能性を含む。

20

【 0 0 1 8 】

同様にして、オブジェクト経路の境界線 4 2 は、オブジェクト 3 4 の速度及び位置のような現在の特性に基づいて時間の経過と共に拡大する。オブジェクト 3 4 の位置は、可能な位置範囲であり、この範囲は、連続する将来の期間毎に絶えず拡大していく。拡大の速度、及び、可能な位置範囲は、将来の位置の不確実性を表しており、オブジェクトの分類に依存して変化し得る。可能な車両経路 4 0 に対する、可能性のあるオブジェクト 3 2 の位置に関して、オブジェクト 3 2 の初期位置から予測モデルが生成される。

30

【 0 0 1 9 】

衝突を示す、可能性のある交点を識別するために、車両経路 4 0 の予測モデルとオブジェクト経路 4 2 の予測モデルとが組み合わされる。この交点の位置は、将来の時点において起こり得る衝突を識別するため、及び、当該起こり得る衝突の重要度を決定するために利用される。

【 0 0 2 0 】

将来の時点において可能性のある交点が存在する場合には、予測される車両位置と当該交点との位置偏差、及び、予測されるオブジェクト位置と当該交点との位置偏差の双方によって、当該交点の重要度が決定される。衝突確信度値を求めるために、最も高い重要度を有する交点が使用され、この衝突確信度値が、起こり得る衝突に対応するためのシステム戦略に対して直接的に影響を与える。自動制動行動を、求められた衝突確信度値に基づいて修正することによって、車両の運転者制御への介入を最小限にすることができる。

40

【 0 0 2 1 】

制御装置 1 8 は、車両経路 4 0 の予測モデルとオブジェクト経路 4 2 の予測モデルとに基づいてアルゴリズムを実行する。アルゴリズムは、以下のループを実行する：起こり得る全ての衝突を予測する；検出されたそれぞれの衝突に対して、その衝突が起こる確信度を求める（相応する衝突確信度値を計算する）；検出された衝突のうちどれが最初に介入を必要とするか（最も関連性の高い衝突）を決定する；衝突の重要度と、衝突が起こる時

50

間とを考慮して、最も関連性の高い衝突に対する最適な制動応答を計算する。

【0022】

引き続き図2を参照しながら図3を参照すると、線図50は、車両速度52と時間54とに関連しており、車両の減速度62を図示している。衝突確信度値は、制動操作のための最大減速度を直接的に求めるために使用される。車両減速度の下限は、参照符号56で示されるように、衝突確信度値が高い場合に生じる。車両減速度の下限56は、比較的長い期間に亘って傾きが緩やかである。車両減速度の上限は、参照符号60で示されるように、衝突確信度値が低い場合に生じる。この種類の減速は衝突確率が低い場合に実施され、それゆえシステムは、制動操作を実施するために、衝突が起こる可能性がないことを期待してより長い時間待機する。確率の低いできごとが発生して衝突条件がより可能性の高いものになった場合には、より強い制動力が必要となり、その結果、より短い期間でより大きく減速される。

10

【0023】

減速度の上限56と下限60は、参照符号58で示された望ましい減速度速度プロファイルを画定するために利用され、この望ましい減速度速度プロファイルにより、当該望ましい減速度速度プロファイルを実現するための制動力が求められる。衝突位置と衝突確信度のレベルとを補償することにより、高い確率を有する衝突を防止するために、より早期に、より長い期間、より長い距離に亘って低減された減速度によって、制動を実施することが可能となる。その一方で、低かった衝突確率が将来の時点において増加した場合には車両を停止させるためにより積極的な制動力及び車両減速度が必要とされることとなる、という僅かな可能性は甘受しなければならない。システムは、衝突確信度値に反映される初期の衝突確率が低い場合には、より急勾配の積極的な減速が必要になるかもしれない予測する。

20

【0024】

図4を参照すると、線図64は、求められた衝突確信度値に基づく複数の速度プロファイルを示す。システム12, 14が、障害物と衝突する可能性があることを検出した場合、1つの回避行動として、衝突を防止するためにブレーキ20を作動させる自動制動システム12を使用することができる。

【0025】

決定された重要度に基づく衝突確信度値の使用により、システム12は、制動操作のための初期のピーク減速度を求める。線68で示されるように、検出された衝突の確信度値が低い場合には、システム12は介入までにより長い期間待機する。確信度値が低い値から後々高い値へと変化した場合、システム12は、衝突を回避するために必要な、より大きい減速度で応答するように構成されている。しかしながら衝突確信度値が反映しているように、衝突確率は低いので、回避行動は必要とされない可能性が非常に高い。この戦略によってまた、運転者は、反応するために追加的な時間が利用可能となるということが保証される。

30

【0026】

しかしながら線66によって示されるように、検出された衝突の確信度値が高い場合には、運転者が体験することとなる最大減速度を低下させるためにより早期に行動が実施され、介入は最小限となり安全性が向上する。より早期に制動することにより、激しい急制動による不快感を最小限に抑えることが可能となる。全てのシナリオにおいて介入が必要であるとは限らないので、ピーク制動減速度は衝突確信度値に応じて決まる。

40

【0027】

引き続き図4を参照しながら図5を参照すると、種々の衝突確信度の重要度を考慮した制動操作中における加速度が概略的に図示されている。異なる一連の制動操作に亘って運転者への介入を最小限にするために、衝突確信度値に基づいて制動の割合が求められる。高い確信度値又は高い重要度は、参照符号72で示されるようなより緩やかな減速を提供するために、より早期により少ない力でブレーキを作動させるようにシステム12をトリガする。確信度値が低い場合には、車両を停止するためにシステムが介入する必要は決し

50

てない。衝突が起こる確率が低いので、システムはより長い間待機し、その結果、参照符号 74 で示されるようにより大きい制動力、ひいてはより大きい減速が必要とされることとなる。

【0028】

例えば車両の動き、車両の移動によるオブジェクトの動きによって衝突確信度の数値が変化すると、望ましい制動減速操作及び制動減速比も変化する可能性がある。制御装置 18 は、オブジェクト 34 と車両 10 の動きに基づいて各予測モデルを継続的に更新し、制動操作中における確信度値の再計算を可能にする。

【0029】

引き続き図 1 及び 2 を参照しながら図 6 を参照すると、後退時衝突回避システム 14 を使用した場合に、車両 10 を制動するために自動制動システム 12 を使用することができる。後退時衝突回避システム 14 は、車両 10 の後退走行方向の景色を供給するために取り付けられるカメラ 30 を含む。カメラ 30 は、単眼カメラ、双眼カメラ、又は、車両 10 の後退走行経路の景色を供給可能な別の種類の検出装置とすることができます。カメラ 30 は、車両 10 の後退走行経路の景色を供給する任意の場所に取り付けることができる。画像 / データを分析し、画像内に存在する、車両 10 に対する障害となり得るオブジェクト 34 を識別するために、カメラ 30 に制御装置 18 を接続することができる。衝突回避システム 14 は、カメラ 30 の他にも、オブジェクト 34 の識別を支援するための他のシステム及びセンサを使用することができる。以下のようなシステム及びセンサを含むことができるが、これらには限定されない：近接センサ 36、LIDAR、レーダ、超音波センサ、GPS 38、無線センサ等。

【0030】

車両 10 が始動され、後退ギアへとシフトされると直ぐに、後退時衝突回避システム 14 が開始される。障害物が検出されると運転者に警告が与えられ、オブジェクトが障害物であると判定される確率が所定の閾値を上回る場合には、少なくとも 1 つの車両衝突回避行動も実施される。

【0031】

本実施例に基づく制御装置 18 は、センサ 36、カメラ 30、GPS システム 38 を用いて車両 10 に近接するオブジェクト 34 を検出させるための命令を含む。制御装置 18 はさらに、各予測モデルに基づいて生成されたオブジェクトとの衝突確率に基づいて、衝突確信度値を求めさせるための命令を含む。制御装置 18 はさらに、求められた衝突確信度値に対して制動力が反比例するように、制動操作のための望ましい制動力を決定させるための命令を含む。

【0032】

運転中に後退時衝突回避システム 14 は、参照符号 78 で示されるように速度、経路、及び、操舵角を含む車両の動きを検出する。検出されたパラメータは、参照符号 80 で示されるように制御装置 18 によって使用され、将来の時点における所定の距離に亘る車両経路の予測モデルが生成される。同時に、参照符号 82 で示されるようにカメラ 30、センサ 36、及び、他の検出システムが使用され、車両 10 に近接するオブジェクトが検出される。参照符号 84 で示されるように、車両に近接していると識別された各オブジェクトは分類分けされる。分類には、静止オブジェクトであるか又は移動オブジェクトであるかの識別、及び、移動オブジェクトである場合にはその移動速度及び移動方向の識別を含めることができる。近接するオブジェクトに関して得られた情報は、参照符号 86 で示されるように、将来のある時点における移動オブジェクトの可能性のある位置の予測モデルを生成するために利用される。予測モデルは、オブジェクトが歩行者であるか又は自転車運転者であるかといったオブジェクトの種類を鑑みて動きを考慮することができる。歩行者の動きを、歩行者が大人であるか子供であるかといった他の識別特性に基づいて予測することも可能である。

【0033】

これらの予測モデルが生成されると、これらは参照符号 88 で示されるように制御装置

10

20

30

40

50

18によって利用され、所定の時間に対する衝突確信度値が求められる。本実施例における衝突確信度の数値は、各予測モデルに基づく、車両と検出されたオブジェクトとの衝突確率に関する指標を提供している重要度の値である。

【0034】

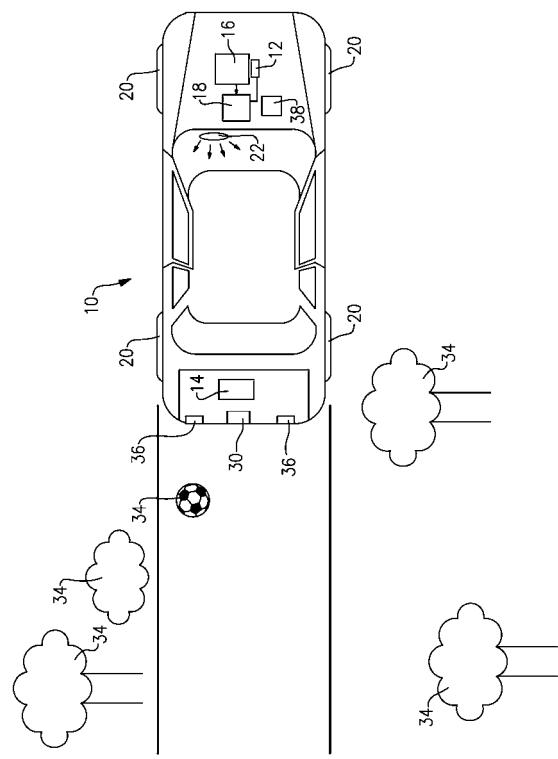
後退時衝突回避システム14が、障害物と衝突する可能性があることを検出すると、衝突を防止するために1つの回避行動として、参照符号92で示されるように、自動制動システム12にブレーキ20を作動させるよう命令することができる。制動の割合は、参照符号90で示されるように、衝突確信度に反比例する割合に基づいて求められる。制御装置18は継続的に各予測モデルを更新し、それによって、戻る矢印94によって示されるように衝突確信度値を更新する。例えば車両の動き、車両の移動によるオブジェクトの動きによって衝突確信度の数値が変化すると、望ましい制動の割合も変化する可能性がある。

10

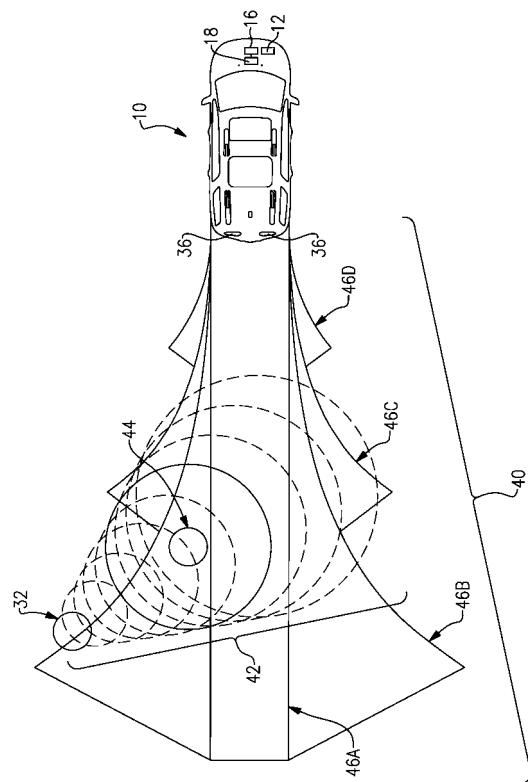
【0035】

後退時衝突回避システム14のための制御装置18は、衝突確信度値を求め、その一方で、自動制動システム12のための別個の制御装置は、望ましい制動の割合を求めることができる。択一的に、同じ1つの制御装置18が両方又は一方の機能を実施するようにしてもよい。

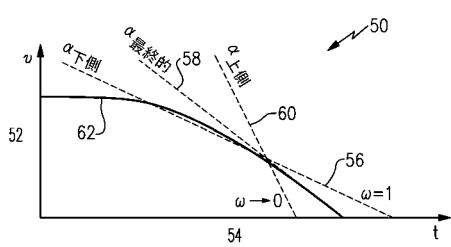
【0036】

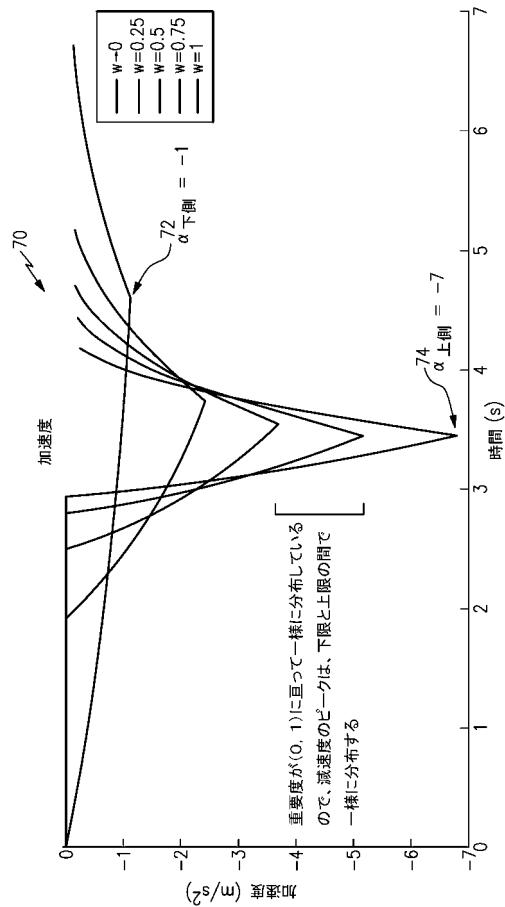

このようにして、本実施例に基づく後退時衝突回避システム14は、車両経路40の予測モデルと、検出されたオブジェクト42の予測モデルの双方を利用して、いつ、どのように制動操作を行うかを決定するために利用される衝突確信度又は重要度を決定する。

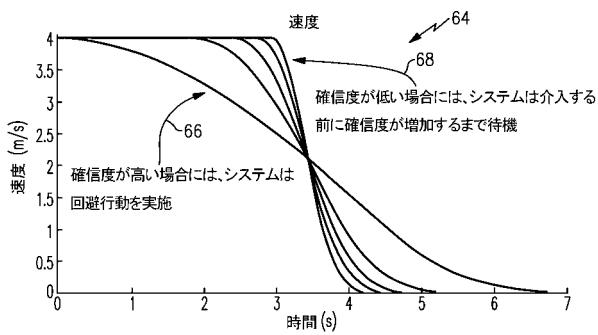
20

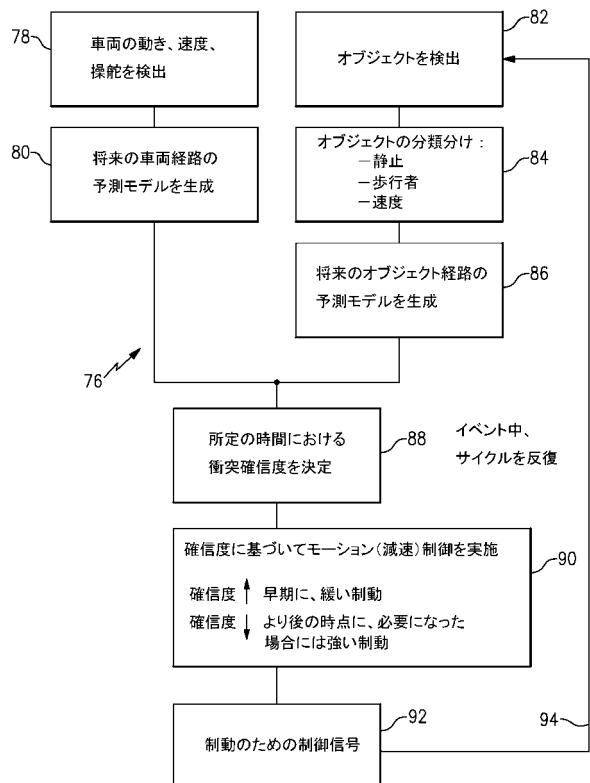

【0037】

以上、本発明を実施するための最良の形態を詳細に説明してきたが、本開示の正当な範囲はこれらの形態に限定されるべきではない。なぜなら、本発明に関連する分野に精通する当業者であれば、添付の特許請求の範囲内において、本発明を実施するための種々異なる複数の択一的手段及び実施形態が存在することが明確に理解されるからである。


【図 1】


【図 2】


【図 3】


【図 5】

【図 4】

【図6】

フロントページの続き

(74)代理人 100099483

弁理士 久野 琢也

(72)発明者 デイヴィッド レスリー アグニュー

アメリカ合衆国 ミシガン クラークストン サウス エストン ロード 7715

(72)発明者 グラハム ラニア フレッチャー

アメリカ合衆国 ミシガン ロイアルオーク ロイアル アヴェニュー 1206

F ターム(参考) 3D246 DA01 EA18 GB30 GB37 GC05 GC16 HA13A HA25A HA48B HA86A

HB12A HB13A HB15A HB25A HC02 HC07 JA02 JA03 JA12 JB51

JB53 LA72Z LA73Z

5H181 AA01 CC03 CC04 CC11 CC12 CC14 FF05 LL02 LL07 LL08

LL09

【外國語明細書】

METHOD FOR MINIMIZING AUTOMATIC BRAKING INTRUSION BASED ON COLLISION CONFIDENCE

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to United States Provisional Application No. 61/933,083 filed on January 29, 2014.

TECHNICAL FIELD

[0002] The present disclosure relates to automotive vehicles, and more particularly to driver assistance systems for automotive vehicles.

BACKGROUND

[0003] Advancements in sensor technology have led to the ability to improve safety systems for vehicles. Arrangements and methods for detecting and avoiding collisions are becoming available. Such driver assistance systems use sensors located on the vehicle to detect an oncoming collision. The systems may warn the driver of various driving situations to prevent or minimize collisions. Additionally, sensors and cameras are also used to alert the driver of possible obstacles when the vehicle is traveling in reverse. Such systems are especially useful for increasing safety in vehicles which operate under autonomous or semi-autonomous conditions.

[0004] The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.

SUMMARY

[0005] A disclosed automatic braking system for a vehicle includes, among other possible things, an electronic brake system capable of applying wheel brakes to decelerate the vehicle and a controller. The controller includes instructions for monitoring vehicle motion and detecting an object proximate to a vehicle with at least one sensor of a reverse collision avoidance system. The controller further includes instructions for determining a collision confidence value based upon the probability of a collision between the vehicle and the object. The controller further includes instructions for determining a desired velocity profile for decelerating the vehicle to stop the vehicle prior to collision with the obstacle.

[0006] A disclosed method of controlling deceleration of a vehicle includes, among other possible things, detecting and monitoring an object proximate to a vehicle with at least one sensor, monitoring motion of the vehicle and calculating continuously a collision confidence value indicative of a probability of a collision between the vehicle and the object with a controller located within the vehicle. The controller includes instructions for determining a velocity profile of the vehicle that avoids a collision between the vehicle and the object with the controller based on the collision confidence value.

[0007] Although the different examples have the specific components shown in the illustrations, embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.

[0008] These and other features disclosed herein can be best understood from the following specification and drawings, the following of which is a brief description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:

[0010] FIG. 1 is a schematic illustration of a top view of a vehicle utilizing a disclosed automatic braking system;

[0011] FIG. 2 is a schematic illustration of possible object and vehicle paths generated by the example automatic braking system.

[0012] FIG. 3 is a graphical illustration of several velocity curves for a braking maneuver;

[0013] FIG 4. is a graphical illustration of the effect of collision confidence on velocity curves for a braking maneuver;

[0014] FIG 5. is a graphical illustration of the effect of collision confidence on deceleration curves for the braking maneuver of FIG. 4; and

[0015] FIG 6. is a flow diagram schematically illustrating processing steps of the example automatic braking system.

DETAILED DESCRIPTION

[0016] The following description is merely exemplary in nature and is in not intended to limit the disclosure, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements.

[0017] Referring to Figure 1, a vehicle 10 including a driver assistance system, in particular an automatic braking system 12 is schematically shown. The automatic braking system 12 may be used to brake the vehicle 10 during autonomous and semi-autonomous vehicle operations. In particular, the automatic braking system 12 may be used when the vehicle 10 is performing a reverse driving operation. Throughout this specification the relative forward and reverse directions are in reference to the direction in which an operator for the vehicle 10 would primarily be facing when operating the vehicle 10.

[0018] The automatic braking system 12 may be used along with other safety systems, such as reverse collision avoidance system 14 and an electronic brake system (EBS) 16. A common or separate controller 18 may be used by the systems 12, 14 and 16.

[0019] The automatic braking system 12 determines when a braking event needs to occur, whether the vehicle 10 is travelling in a forward or a reverse direction. The automatic braking system 12, the reverse collision avoidance system 14, or a similar system determines a probability of collision when an object 34 is detected. The probability of collision is used to determine a collision confidence value. The more likely a collision with the object 34 the higher the collision confidence value. If the probability of collision exceeds a predetermined threshold, the controller 18 indicates that at least one vehicle collision avoidance action is required. The required action can be in the form of a warning to a driver when an object is detected and/or the automatic braking system 12 may be actuated to slow or stop the vehicle. A warning device 22 can be installed within the vehicle 10 and include a signal such as a light that is illuminated or an audible signal that alerts the driver to the presence of an object 34.

[0020] Referring to Figure 2 with continued reference to Figure 1, the example automatic braking system 12 includes an algorithm for minimizing intrusion on driver operation under ordinary circumstances. Accordingly, the example braking system 12 minimizes the level of automatic braking actions taken that override and/or supplement driver braking operations.

[0021] The example disclosed algorithm performs a probabilistic analysis of sensor-reported objects including fixed objects and moving pedestrians, expected and/or possible motion of a detected pedestrian, and expected and/or possible driver input. Current vehicle path and potential driver input is utilized to predict a range of potential vehicle paths. If a predicted vehicle path and predicted pedestrian path (or a static object's position) intersects then a potential collision is indicated. Of all of the potential collisions that are detected, one will require intervention before the others, and that one will be acted upon.

[0022] The probabilistic analysis includes generating a predictive model of possible vehicle paths 40 and a predictive model of possible object paths 42. The possible vehicle paths 40 include the possibility that the vehicle may continue along its current path as is shown schematically by vehicle path indicated at 46A, or alternatively that the driver may turn the vehicle 10 such that it proceeds along an alternate path such as is schematically indicated at 46B, 46C and 46D.

[0023] Similarly, the object path boundaries 42 expand over time based on a current characteristic of the object 34 such as speed and position. For each successive future time period, the location of the object 34 is an ever increasing range of possible locations. The rate of the expansion and range of possible locations represents an uncertainty of the position in the future and can change dependent on a classification of the object. From the initial position of the object 32 a predictive

model is generated for possible locations of the object 32 relative to possible vehicle paths 40.

[0024] The predictive model of the vehicle path 40 and the predictive model of the object path 42 are combined to identify possible intersecting points that are indicative of a collision. The location of the intersecting point is utilized to identify a potential collision at a future time and to determine a weight for the potential collision.

[0025] Given a possible intersecting point at a future time, the *weight* of that intersecting point is determined by the positional deviation of that point from both the expected vehicle position and the expected object position. The intersecting point with the highest weight is used to determine the collision confidence value, which directly affects the system's strategy for responding to the potential collision. Modifying autonomous braking actions based on a determined collision confidence value enables minimization of intrusion on driver control of the vehicle.

[0026] The controller 18 executes an algorithm based on the predictive models of the vehicle path 40 and the object path 42. The algorithm implements the following loop: predict all potential collisions; for each detected collision, determine a confidence that the collision will occur (calculate a corresponding collision confidence value); determine which detected collision will require intervention first (the *most relevant* collision); and calculate the optimal braking response for the most relevant collision, given the collision weight and time at which it will occur.

[0027] Referring to Figure 3, with continued reference to Figure 2, graph 50 relates vehicle velocity 52 and time 54 to illustrate vehicle deceleration 62. A collision confidence value is used to directly determine a maximum deceleration value for a maneuver. A lower bound for vehicle deceleration occurs at a high collision confidence value as is shown at 56. The lower bound of vehicle deceleration 56 is

gradual over a longer time period. An upper bound for vehicle deceleration occurs at a low collision confidence value as is shown at 60. This type of deceleration is implemented when there is a low probability of collision and therefore the system waits longer to implement a braking maneuver with the expectation that no collision is likely to occur. If the low probability occurrence does occur and a collision condition becomes more probable, a higher braking force will be required resulting in a larger deceleration over a smaller time period.

[0028] The upper and lower bounds of deceleration 56, 60 are utilized to define a desired deceleration velocity profile that that in turn determines the braking force to provide the desired deceleration velocity profile indicated at 58. Compensation for the position and confidence level of a collision enables early braking at reduced deceleration rates over a longer time and distance to prevent a collision with a high probability while accepting the slight probability that a more aggressive braking force and vehicle deceleration to stop the vehicle may be required if a determined low probability of collision becomes more probable at a future time. The system anticipates that a steeper more aggressive deceleration may be required for an initial low probability chance of collision that is reflected in the collision confidence value.

[0029] Referring to Figure 4, graph 64 illustrates velocity profiles based on a determined collision confidence value. If the system 12, 14 detects that a collision with an obstacle seems likely one avoidance action may be to use the automatic braking system 12 to apply the brakes 20 to prevent the collision.

[0030] Using a numerical value for collision confidence based on the determined weight, the system 12 determines the desired peak deceleration for the braking maneuver. For detected collisions with a low confidence value such as is shown by line 68, the system 12 waits longer to intervene. If the confidence value

later changes from low to high, the system 12 is configured to respond with whatever higher braking deceleration is necessary to avoid the collision. However, as is reflected by the collision confidence value, the probability of a collision is low and therefore preventive action will most likely not be required. This strategy also ensures additional time is available for driver reaction.

[0031] However, detected collisions with a high confidence value such as that illustrated by line 66 are acted on earlier to lower the maximum deceleration the driver would be subjected to, minimizing intrusion and increasing safety. By braking early, discomfort from sudden intense braking can be minimized. Since intervention may not be necessary in all scenarios, the peak braking deceleration is a function of collision confidence.

[0032] Referring to Figure 5, with continued reference to Figure 4, vehicle acceleration is schematically shown over a braking maneuver in view of the collision confidence weights. Braking rates are determined based on a collision confidence to minimize intrusion to the driver across a diverse set of braking maneuvers. A high confidence value or weight triggers the system 12 to actuate the brakes earlier and at a lesser force to provide a more gradual deceleration as is shown at 72. Lower confidence levels may not ever result in the requirement that the system intervene to stop the vehicle. Because the probability is low that a collision is possible, the system waits longer resulting in a required braking force and therefore deceleration that is larger as is shown at 74.

[0033] As the collision confidence number changes, due to e.g. vehicle movement, object movement as the car is moving, the desired braking deceleration maneuver and rate may also be changed. The controller 18 continually generates updated predictive models based on movement of the object 34 and the vehicle 10 to

enable recalculation of the confidence number over the course of the braking maneuver.

[0034] Referring to Figure 6, with continued reference to Figures 1 and 2, the automatic braking system 12 may be used to brake the vehicle 10 when using the reverse collision avoidance system 14. The reverse collision avoidance system 14 includes a camera 30 mounted to provide a view of a rear driving direction for the vehicle 10. The camera 30 may be a monocular camera, binocular camera, or another type of sensing device capable of providing a view of the rear travelling path of the vehicle 10. The camera 30 may be mounted in any location that provides a view of the rear driving path of the vehicle 10. The controller 18 may be connected to the camera 30 to analyze the image/data and identify objects 34 within the image that may be obstacles for the vehicle 10. In addition to the camera 30 the collision avoidance system 14 may use other systems and sensors to assist in identifying objects 34. Such systems and sensors may include, but are not limited to: proximity sensors 36, LIDAR, RADAR, ultrasound, GPS 38, radio sensors, etc.

[0035] As soon as the vehicle 10 is started and shifted into reverse, the backup collision avoidance system 14 is started. A warning is provided to a driver when an obstacle is detected and at least one vehicle collision avoidance action is also provided when the probability that the object is determined to be an obstacle exceeds a predetermined threshold.

[0036] The example controller 18 includes instructions for detecting an object 34 proximate to the vehicle 10 with at least one of the sensors 36, camera 30 and GPS system 38. The controller 18 further includes instructions for determining a collision confidence number based upon the probability of collision with the object that is generated based on the predictive models. The controller 18 further includes

instructions for determining a desired braking force for a braking maneuver such that the braking force is inversely proportional to the determined collision confidence number.

[0037] In operation, the backup collision avoidance system 14 detects the vehicle motion including velocity, path and steering angle as indicated at 78. The detected parameters are utilized by the controller 18 to generate a predictive model of the vehicle path at a future time and over a defined distance as is indicated at 80. At the same time, the cameras 30, sensors 36 and other detection systems are utilized to detect objects proximate the vehicle 10 as indicated at 82. The objects identified proximate the vehicle are classified as indicated at 84. Classification can include identifying if the object is fixed or moving and if moving at what speed and direction. The information obtained regarding the proximate objects is utilized to generate a predictive model of possible locations of a moving object at some future time as is indicated at 86. The predictive model can account for movement in view of the type of object, such as whether the object is a pedestrian or a person riding a bike. Movement of the pedestrian may also be predicted based on other identifying characteristics, such as whether the pedestrian is an adult or child.

[0038] Once the predictive models are generated, they are utilized by the controller 18 to determine a collision confidence number for a specific time as indicated at 88. The collision confidence number in this example is a weight value that provides an indication as to the likelihood of a collision between the vehicle and a detected object based on the predictive models.

[0039] If the reverse collision avoidance system 14 detects that a collision with an obstacle seems likely one avoidance action may be to instruct the automatic braking system 12 to apply the brakes 20 as is indicated at 92, to prevent the collision.

The braking rate is determined based upon a rate that is inversely proportional to collision confidence as indicated at 90. The controller 18 continually updates the predictive models and thereby updates the collision confidence number as is indicated by return arrow 94. As the collision confidence number changes, due to e.g. vehicle movement, object movement as the car is moving, the desired braking rate may also be changed.

[0040] The controller 18 for the reverse collision avoidance system 14 determines the collision confidence number, while a separate controller for the automatic braking system 12 may determine the desired braking rate. Alternatively, the same controller 18 may perform both or either function.

[0041] Accordingly, the example backup collision avoidance system 14 utilizes predictive models of both the vehicle path 40 and a detected object path 42 to determine a collision confidence value or weight that is utilized to determine when and how a braking maneuver is performed.

[0042] While the best modes for carrying out the invention have been described in detail the true scope of the disclosure should not be so limited, since those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.

CLAIMS

What is claimed is:

1. A method of controlling deceleration of a vehicle comprising:
 - detecting and monitoring an object proximate to a vehicle with at least one sensor;
 - monitoring motion of the vehicle;
 - calculating continuously a collision confidence value indicative of a probability of a collision between the vehicle and the object with a controller located within the vehicle; and
 - determining a velocity profile of the vehicle that avoids a collision between the vehicle and the object with the controller based on the collision confidence value.
2. The method as recited in claim 1, wherein the velocity profile is determined based on a current collision confidence value such that as the collision confidence value increases indicating a greater probability of a collision, the velocity profile is determined to define a deceleration maneuver of the vehicle that begins at a distance further away from the object as compared to a velocity profile determined on a current collision confidence value indicating a lesser probability of collision.
3. The method as recited in claim 2, wherein the velocity profile defines the deceleration maneuver over the distance between the vehicle and a determined collision location such that an associated braking maneuver provides a lowest vehicle deceleration over the distance that brings the vehicle to a stop prior to the collision location.

4. The method as recited in claim 2, including applying the vehicle brakes with the automatic braking system includes sending instructions to an electronic brake system to apply the vehicle brakes.

5. The method as recited in claim 1, analyzing data from the sensors with a controller to determine characteristics of the detected object and if the object is an obstacle for the vehicle to avoid.

6. The method as recited in claim 1, including generating a predictive model of motion of the object that includes a range of possible locations of the object at a future time with associated values of probability based on current position and motion of the object .

7. The method as recited in claim 6, including generating a predictive model of the vehicle to determine vehicle trajectory by monitoring vehicle signals indicative of motion of the vehicle, wherein the predictive model of the vehicle determines a range of possible paths of the vehicle with associated values of probability and relates the predictive model of the vehicle to the predictive model of motion of the object to determine the probability of collision between the vehicle and the object.

8. The method as recited in claim 2, further comprising:
recalculating the collision confidence value during the deceleration maneuver as the probability of collision with the object changes;
determining a new desired velocity profile based on the recalculated collision confidence value; and

applying vehicle brakes according to the new velocity profile.

9. The method as recited in claim 2, including applying a braking force sooner, at a lower deceleration value, and over a longer time interval as the collision confidence value increases based on a predefined set of braking curves selected based on the collision confidence value and applying a braking force later, at a higher deceleration value, and over a smaller time interval as the collision confidence value decreases based on a predefined set of braking curves selected based on the collision confidence value.

10. An automatic braking system for a vehicle comprising:
an electronic brake system capable of applying wheel brakes to decelerate the vehicle; and
a controller disposed within the vehicle generating instructions for:
monitoring vehicle motion;
detecting an object proximate to the vehicle with at least one sensor of a reverse collision avoidance system;
calculating a collision confidence value indicative of a probability of a collision between the vehicle and the object; and
determining a desired velocity profile of the vehicle that avoids a collision between the vehicle and the object with the controller based on the calculated collision confidence value.

11. The automatic braking system for a vehicle as recited in claim 10, wherein the controller includes instructions for determining the velocity profile such that deceleration of the vehicle is inversely proportional to the collision confidence value.

12. The automatic braking system as recited in claim 10, wherein the controller further includes instructions for applying a braking force sooner, at a lower deceleration value, over a longer time interval as the collision confidence value increases according to a predefined set of velocity profiles selected based on the collision confidence value.

13. The automatic braking system as recited in claim 10, wherein the controller further includes instructions for applying a braking force later, at a higher deceleration value, over a smaller time interval as the collision confidence value decreases according to a predefined set of velocity profiles selected based on the collision confidence value and the controller further includes instructions for applying vehicle brakes over the course of the deceleration maneuver according to the desired velocity profile determined by the controller.

14. The automatic braking system as recited in claim 10, wherein the controller includes instructions for generating a predictive model of the object that includes a range of possible locations of the object at a future time based on a current position and motion of the object and generating a predictive model of the vehicle that includes a range of possible paths for the vehicle and relating the predictive model of the vehicle to the predictive model of the object to determine the probability of collision between the vehicle and the object.

15. The automatic braking system as recited in claim 14, wherein the controller includes further instructions for:

recalculating the collision confidence value over the course of the vehicle deceleration as the probability of collision with the object changes;

determining a new desired velocity profile based on the recalculated collision confidence number; and

applying vehicle brakes according to the new desired velocity profile.

ABSTRACT OF THE DISCLOSURE

An automatic braking system for a vehicle includes an electronic brake system capable of applying wheel brakes to decelerate the vehicle and a controller. The controller includes instructions for detecting an object proximate to a vehicle with at least one sensor for a reverse collision avoidance system and determining a collision confidence value based upon the probability of collision with the object. The controller further includes instructions for determining a desired velocity profile of the vehicle that provides for deceleration of the vehicle.

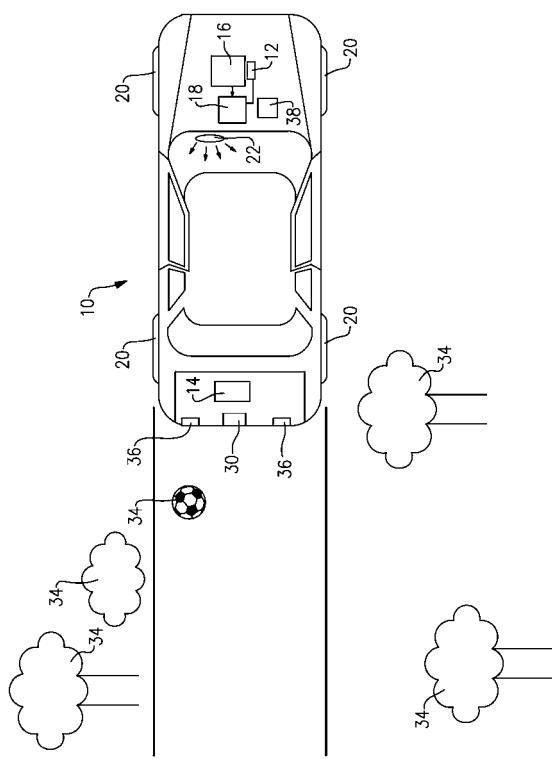


FIG.1

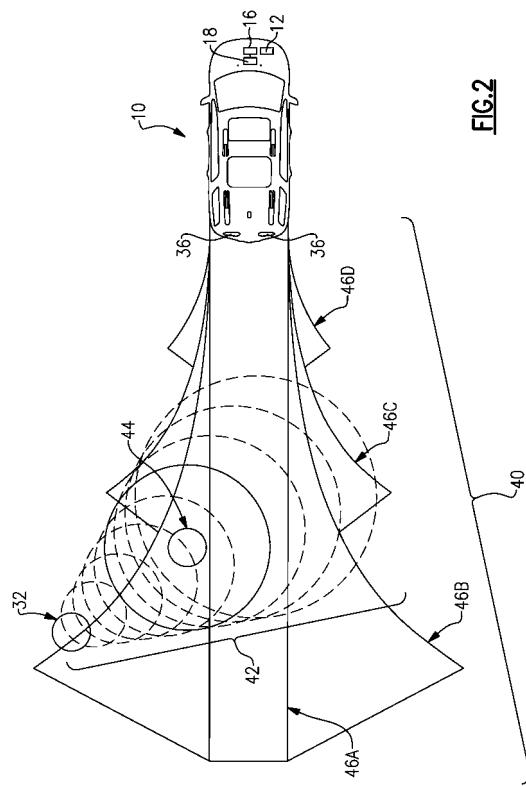


FIG.2

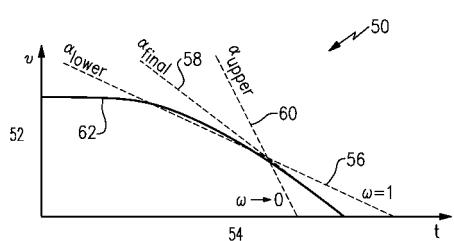


FIG.3

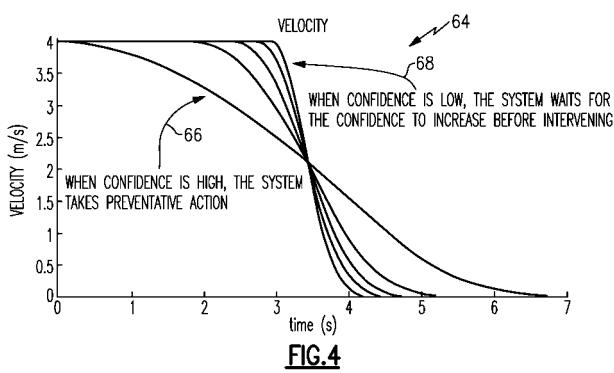


FIG.4

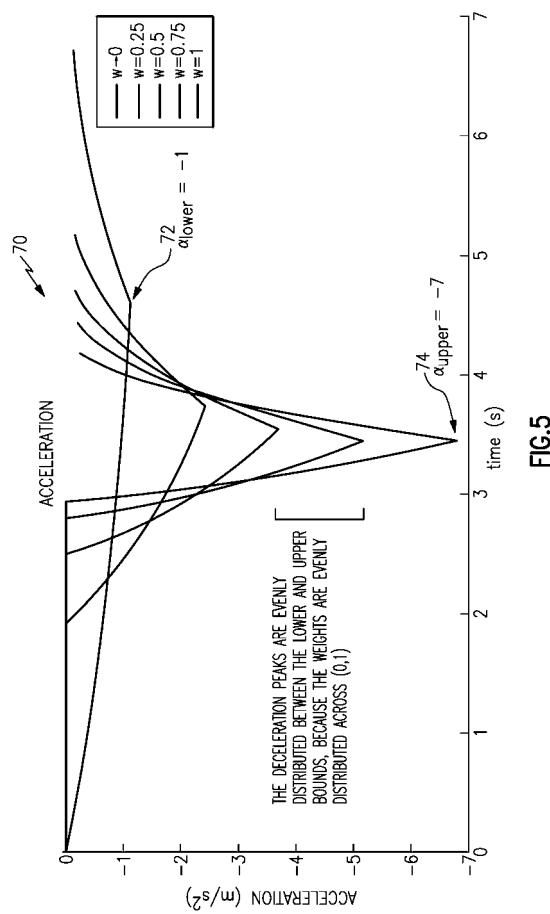


FIG.5

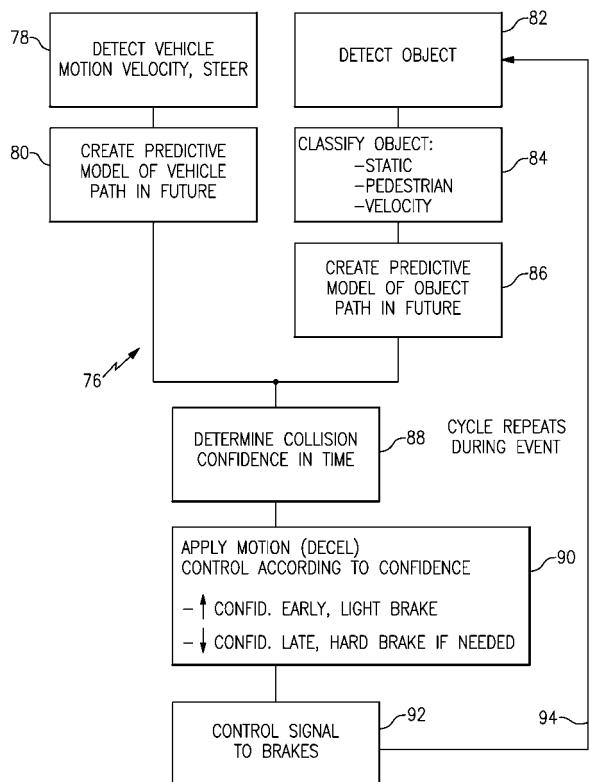


FIG.6