PREPARATION AND INCORPORATION OF CO-PRODUCTS INTO BEVERAGES TO ACHIEVE METABOLIC AND GUT HEALTH BENEFITS

Applicant: PepsiCo, Inc., Purchase, NY (US)

Inventors: Sundar Balasubramanian, Arlington Heights, IL (US); Nicolas Bordenave, Queniborough (GB); Laura Harkness, New Fairfield, CT (US); Bryan William Hitchcock, Mundelein, IL (US); Mong Jan Hsieh, Northbrook, IL (US); Rachel Lisa Jordan, Palatine, IL (US); Jeffrey David Mathews, Naperville, IL (US); Teodoro Rivera, Algonquin, IL (US); Caroline Saunders, Reading (GB); Jin-E Shin, Hoffman Estates, IL (US); William B. Small, II, Crystal Lake, IL (US); Alissa Wilson, Pleasantville, NY (US)

Assignee: PepsiCo, Inc., Purchase, NY (US)

Filed: Apr. 25, 2014

Related U.S. Application Data
Continuation-in-part of application No. PCT/US14/15326, filed on Feb. 7, 2014.

Provisional application No. 61/765,274, filed on Feb. 15, 2013.

Publication Classification
Int. Cl. A23I 2/02 (2006.01)
U.S. Cl. CPC .. A23I 2/02 (2013.01)
USPC .. 426/2; 426/599; 426/71

ABSTRACT
Co-products from juice extraction, in particular for use in beverage and food products to enhance the metabolic and gut health benefits, including an enhanced feeling of satiety, a reduction of postprandial glucose response, reduction of postprandial insulin response, an increased fermentability by colonic microflora, an increase short-chain fatty acid production in the colon provided to the consumer are provided. The co-product has a number average particle size of between 1 and 2000 microns, a total polyphenol content of at least 2500 parts per million, a moisture content of between 70% and 85% by weight, and a combined peel and seed content between 0.01% and 20% by weight.
FIG. 1

Effect of Orange Pomace Co-Product on NFC OJ Viscosity

- Viscosity (cP)
- Expon. (Viscosity (cP))

grams fiber per eight ounce serving

\[y = 35.322e^{0.9145x} \]

\[R^2 = 0.9825 \]
FIG. 6

Serum glucose (mmol/L)

Time point (h)

Control
Adv. OJ
Orange
FIG. 8

Gas production

- PPOJ + pomace 6/g (2.3 % DF)
- PPOJ + pomace 3.8/g (1.3 % DF)
- Whole fruit (2.4 % DF)
- Blank

Closer to a whole orange

Gas (ml)

Time (h)

0 4 8 12 16 20 24

0 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00
PREPARATION AND INCORPORATION OF CO-PRODUCTS INTO BEVERAGES TO ACHIEVE METABOLIC AND GUT HEALTH BENEFITS

[0001] This application is a continuation-in-part of PCT Application No. PCT/US14/15326 filed on Feb. 7, 2014 which designates the United States and claims priority to U.S. Provisional Patent Application No. 61/765,274 filed on Feb. 15, 2013, the disclosure of which is expressly incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The invention relates to processing and use of co-products obtained from juice extraction of fruits and vegetables. More particularly, the invention relates to the use of co-products obtained from fruit and vegetable juice extraction by-products in beverage and food products to enhance the viscosity and fermentability of the beverage to improve metabolic and gut health.

BACKGROUND OF THE INVENTION

[0003] Fruit and vegetable juices are convenient and popular beverages for consumers. A disadvantage to consuming juices is that often the juice extraction process excludes portions of the whole fruit or vegetable that would otherwise be consumed if the fruit or vegetable were to be eaten in its whole form. For example, a consumer who peels and eats an orange will consume an amount of edible material (e.g., including cellulosic material, membranes, albedo, pulp, etc.), which would not necessarily be present if the consumer instead drank juice extracted from the orange. Accordingly, many fruit and vegetable juices lack some of the nutrients contained in the totality of the edible portions of the whole fruit or vegetable. Such nutrients include for example fiber, phytoneutrients, and vitamins.

[0004] Attempts have been made to supplement fruit and vegetable juices with added nutrition, such as fiber. For example, various fiber powders obtained from edible and/or typically inedible portions of foods are commercially available; however, either such powders tend to impart an undesired flavor to the juice, or they dissolve so thoroughly a consumer has difficulty believing that the juice does in fact contain the added fiber. Efforts to incorporate large pieces of insoluble fibers into juice have generally resulted in the inclusion of undesired color, flavor, and fibrous textures to the juice. In some cases, the conversion to a powder also degrades the nutrition of such by-product due to the applied heat needed for dehydration.

[0005] Moreover, commercially available citrus fibers lack viscosity and, therefore, may not offer a physiological benefit in terms of metabolic health. Further, these commercially available citrus fibers tend to dissolve so thoroughly that the consumer questions whether the juice does indeed contain added fiber. Thus, a need exists for a product containing a higher viscosity with the subsequent enhanced metabolic health benefits.

BRIEF SUMMARY OF THE INVENTION

[0006] In one aspect, the invention relates to a beverage comprising juice and a co-product from juice extraction. The co-product comprises a number average particle size of between 0.1 and 2,000 microns, a total polyphenol content of at least 2500 parts per million, a moisture content of between 70% and 85% by weight, and a combined peel and seed content between 0.01% and 20% by weight.

[0007] In another aspect, the invention relates to a method for making a beverage by preparing a co-product by obtaining a by-product from juice extraction, removing inedible material from the co-product, reducing the particle size of the by-product by microgrinding, homogenizing, and combinations thereof, and pasteurizing the co-product, and adding the co-product to juice. The co-product comprises a number average particle size of between 0.1 and 2000 microns, a total polyphenol content of at least 2500 ppm, a moisture content of between 70% and 85% by weight, and a combined peel and seed content between 0.01% and 20% by weight.

[0008] In another aspect, the invention relates to a beverage comprising about 5% to about 90% by weight juice, added water, at least one non-nutritive sweetener, at least one flavor, and a co-product from juice extraction.

[0009] In another aspect, the invention relates to a beverage comprising water, at least one sweetener, at least one acidulant, at least one flavor, at least one colorant, and a co-product from juice extraction.

[0010] It is an advantage of the invention to provide beverages and other beverage products having desirable appearance, taste and health properties. It is a further advantage of at least certain embodiments of the invention to provide juice beverages having improved formulations, including improved nutrition and sensory characteristics. It is another advantage of the invention to provide a beverage or comestible which upon consumption provides the benefits of increased satiety and improved glucose control. It is yet a further advantage of the invention to provide a beverage containing a co-product from juice extraction that is highly fermentable by colonic microflora and has the ability to increase short chain fatty acid product in the gut. These and other advantages and features of the invention or of certain embodiments of the invention will be apparent to those skilled in the art from the following disclosure and description of exemplary embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 provides a graph of measured viscosity versus grams of fiber per eight ounce serving, for juice beverages comprising added co-product.

[0012] FIG. 2A provides a flow chart depicting a high yield process in accordance with at least one aspect of the present invention.

[0013] FIG. 2B provides a flow chart depicting a medium to low yield process in accordance with at least one aspect of the present invention.

[0014] FIG. 3 provides a graph of measured viscosity of orange pomace of the instant invention compared to commercial orange fibers.

[0015] FIG. 4 provides a graph depicting the safety ratings of individuals who consumed orange juice with orange pomace co-product compared to orange juice only, a control, and whole oranges.

[0016] FIG. 5 provides a graph depicting the AUC of VAS ratings for each product identified in FIG. 4.

[0017] FIG. 6 provides a graph depicting the amount of postprandial glucose in humans following consumption of an orange juice beverage with orange pomace co-product, compared to a control, orange juice, and a whole orange.
FIG. 7 provides graph depicting the amount of post-prandial insulin in humans following consumption of an orange juice beverage with orange pomace co-product, compared to a control, orange juice, and a whole orange.

FIG. 8 provides a graph depicting the gas production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

FIG. 9A provides a graph depicting the total short chain fatty production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

FIG. 9B provides a graph showing the acetate production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

FIG. 9C provides a graph showing the propionate production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

FIG. 9D provides a graph showing the butyrate production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

FIG. 7 provides graph depicting the amount of post-prandial insulin in humans following consumption of an orange juice beverage with orange pomace co-product, compared to a control, orange juice, and a whole orange.

FIG. 8 provides a graph depicting the gas production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

FIG. 9A provides a graph depicting the total short chain fatty production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

FIG. 9B provides a graph showing the acetate production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

FIG. 9C provides a graph showing the propionate production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

FIG. 9D provides a graph showing the butyrate production after incubation with orange juice with pomace of the instant invention compared to orange juice alone and whole orange.

DETAILED DESCRIPTION OF THE INVENTION

Juice beverages are popular with consumers for numerous reasons, such as their taste, portability, nutrition, and convenience, as compared to the amount of preparation often involved when consuming whole fruits or vegetables as well as their general perishability. As noted above, a drawback to consuming fruit and/or vegetable juices is that often the juice extraction process excludes edible portions of the fruit or vegetable that would otherwise be consumed if the fruit or vegetable were to be eaten in its whole form. It would be beneficial to process the edible portions of fruits and vegetables obtained from juice extraction to provide a useful food ingredient, or “co-product,” to enhance the nutrition and other attributes of fruit and vegetable juice. Moreover, employing such co-products minimizes waste from the juice extraction process.

According to embodiments of the present invention, nutrients from edible portions of fruits and vegetables that are typically excluded from the final juice products, are recombined with the juice products in the form of one or more co-products. In certain embodiments, the type and amount of co-product is selected to produce a final beverage comprising juice and co-product that comprises similar nutrition as the whole fruit(s) or vegetable(s) from which the juice was obtained. Further, in certain embodiments, the type and amount of co-product is selected to produce a final beverage comprising a liquid, including, without limitation, water, nectar, and co-product.

As used herein, the term “co-product” refers to edible by-products from the extraction of juice from fruit(s) and/or vegetable(s), which have been subjected to comminution and pasteurization. By “edible by-products of juice extraction” it is meant any and all portions of the fruit(s) and/or vegetable(s) that are typically eaten. The specific portions that qualify as “edible” by-products of juice extraction will vary depending on the particular fruit or vegetable; for instance, the skin is typically eaten when a pear is consumed, yet the seeds and stem are discarded. Many berries are eaten whole, including skin and seeds, whereas the skin of a banana is typically not consumed. A skilled practitioner will be familiar with the portions of specific fruits and vegetables that are considered edible. Likewise, the comminution process conditions and pasteurization conditions are selected for the particular edible by-products of juice extraction to form the co-products, depending on the individual physical and chemical characteristics of the edible by-products. The resulting processed co-product from the edible portions of fruits and vegetables obtained from juice extraction provide a useful food ingredient, which may be employed to enhance the nutrition and other attributes of fruit and vegetable juice. Advantageously, employing such co-products minimizes waste from the juice extraction process, and allows the use of inexpensive nutrient-rich edible material.

According to certain embodiments, the co-product comprises pomace, for instance citrus pomace, sometimes referred as citrus rag. As used herein, the term “pomace” refers to the by-product remaining after fruit or vegetable juice pressing processes, wine crush operations, puree and concentrate operations, canning processes, and other food manufacturing processes. Pomace may include, for example, skins, pulp, seeds, and edible parts of stems of the fruit and vegetable such as apples or carrots. In some cases the pomace can derive from or contain other parts of the fruit and vegetable such as pod, stalk, flower, root, leaves and tuber. In a juice extraction process, the pomace is typically in the form of a part of press cake. Depending on the specific fruit or vegetable, pomace may contain portions of the fruit or vegetable which are inedible. Consequently, any inedible portions are removed from the pomace before it is processed into a co-product.

In embodiments in which citrus pomace is employed as a co-product, any seeds or pieces of peel are removed prior to comminution. As used herein, “peel” of any citrus fruit refers to the flavedo, or colored outer skin of the peel. Some amount of albedo, in contrast, may be included in the co-product as it is typically considered edible.

By-products from paste and puree processes such as tomato skins and seeds from tomato ketchup and paste processing are also included in the pomace even though they are not the by-products from juice extracts. Fruit skins from canny processes are also edible by-products. Hereafter, pomace includes all by-products from fruit and vegetable juice, paste, puree and canning processes.

Side-stream ingredients, for instance pomace, generally contain high total dietary fiber content (e.g., 50 or more percent by weight), low amounts of sugars (e.g., typically less than 5% but more commonly less than 2% by weight in wet pomace), and varying amounts of essential vitamins, minerals and phytomolecules (depending on types of fruit/vegetable and process applied). For example, cranberry pomace remains after the squeezing of juice for cranberry type cocktails and juices and concentrates. These cranberry pomace materials have been found to contain 70% to 75% fiber with an insoluble to soluble fiber ratio of 9 or 10 to 1 (wet basis), less than 5%-10% protein, and less that 5% sugars and starches. Typically, by-products are removed from the juicing process due to challenges with texture and flavor when creating a juice beverage. Likewise, whole fruits and vegetables also contain fiber and nutrient content much higher than the extracted juice products and thus are much healthier.

Pomace has been used for fertilizer and substrates for microorganism growth, for example, and dried pomace has had limited use in food products such as soups and snacks, and also has been used in the dietary supplement industry.
However, pomace is generally not used in food products due to its gritty texture, sedimentation, fibrous nature, high insoluble fiber content, intense flavor and lack of starch and protein. Thus pomace is generally considered a waste by-product in the fruit and vegetable industry.

[0032] As noted above, various commercially available fiber powders, typically sourced from grains, seeds or root components, are used as food and beverage additives; however, such powders tend to suffer from at least one drawback. In particular, when the fiber powder is tasteless and does not change the appearance or mouthfeel (e.g., texture, thickness, body, etc.) of the juice, a consumer may not understand or believe that the juice does in fact contain added fiber. On the other hand, certain fiber powders tend to exhibit an undesired flavor and/or gummy texture, to the juice due to the processing of the fiber source, which negatively affects the organoleptic properties of the final juice beverage. Incorporating large pieces of insoluble fibers into juice has generally resulted in the inclusion of undesired flavor, color, and fibrous textures to the juice, as discussed above with respect to pomace.

[0033] Surprisingly, it has been discovered that processing edible by-products of juice extraction to form co-products, provides a source of nutrients to be added to liquids to simultaneously enhance the nutritional and sensory attributes of the final beverage product. The processing importance includes removing inedible by-products of juice extraction, followed by comminution and pasteurization. For example, citrus pomace juice extraction by-products typically contain seeds and often pieces of peel, which are not considered edible. The processing of juice extraction by-products thus results in a co-product containing a maximum amount of the seeds and peel prior to comminution, such as no more than 10% by weight of seeds, or no more than 5% by weight of seeds, or no more than 2% by weight of seeds, and no more than 5% by weight of peel, or no more than 1% by weight of peel. When the co-products are obtained from citrus pomace, the maximum amount of combined peel and seeds is 20%, or the combined peel and seeds makes up between about 0.01% and about 20% by weight of the total co-products, or between about 0.01% and about 10% by weight of the total co-products, or between about 0.01% and about 5% by weight of the total co-products, or between about 0.01% and about 2% by weight of the total co-products.

[0034] According to certain embodiments, the processing of juice extraction by-products of a fruit or vegetable comprises removing the inedible portions such that the co-products obtained from the remaining juice extraction by-products comprise no more than 20% by weight inedible material, or the inedible material makes up between about 0.01% and about 20% by weight of the total co-products, or between about 0.01% and about 10% by weight of the total co-products, or between about 0.01% and about 5% by weight of the total co-products, or between about 0.01% and about 2% by weight of the total co-products.

[0035] According to certain embodiments, the juice extraction by-products of a fruit or vegetable comprise peel and/or seeds that are considered edible. In such embodiments, the processing of juice extraction by-products of a fruit or vegetable comprises removing the inedible portions such that the co-products obtained from the remaining juice extraction by-products comprise no more than 80% by weight combined peel and seeds, or the combined peel and seeds makes up between about 0.01% and about 80% by weight of the total co-products, or between about 0.01% and about 60% by weight of the total co-products, or between about 0.01% and about 40% by weight of the total co-products, or between about 0.01% and about 20% by weight of the total co-products, or between about 0.01% and about 10% by weight of the total co-products, or between about 0.01% and about 5% by weight of the total co-products, or between about 0.01% and about 2% by weight of the total co-products.

[0036] The removal of material from by-products of juice extraction concomitantly decreases the nutritional value of the final co-products, because many of these materials contain significant amounts of fiber, phytonutrients, and vitamins. Moreover, separating inedible material from edible material in juice extraction by-products is not necessarily a simple task. Current known mechanical methods for deseeding citrus pomace, for instance, usually have a very low yield of about 30-40% of the total edible material recovered due to entanglement of seeds and fibrous material resulting in much of the edible material being difficult to separate and thus discarded with the seeds. Such methods comprise employing standard juice processing finisher screens, screw finishers, and paddle finishers. Extractors are utilized to remove the peel in fruit processing. Other inedible materials may be separated by taking advantage of differences in density, such as by employing washing and gravity methods known to the skilled practitioner.

[0037] FIGS. 2A and 2B depict generally how the unit operations may flow in accordance with certain embodiments described herein. FIG. 2A depicts a high yield process wherein the incoming fruit is subjected to extraction, deseeding, and pasteurization. FIG. 2B depicts a medium to low yield process wherein the incoming fruit is subjected to extraction, finishing, and then deseeding.

[0038] Beverages and beverage products according to the present invention comprise at least a liquid component and a co-product component. The liquid component typically comprises water or any liquid that may be obtained from a particular fruit or vegetable. The liquid may be, for example and without limitation, water, carbonated water, a juice, a serum, a juice concentrate, a clarified juice, a single strength juice, a nectar from concentrate juice, a fruit or vegetable water, a puree, a nectar and combinations thereof. In certain embodiments, the liquid does not exhibit a significant flavor. In alternate embodiments, the liquid provides the identifiable flavor of the juice beverage. In certain embodiments, the liquid provides one or a plurality of identifiable flavors in the juice beverage.

[0039] As used herein, the term “identifiable” with respect to one or more fruits and/or vegetables is defined as the taste, or the scent, or the feel, or the appearance, or combinations thereof, of the juice beverage being determined to be recognizable as at least one fruit and/or vegetable by a trained sensory panel. Sensory panels are well known to those of skill in the art, and comprise testers trained to evaluate the organoleptic attributes of comestibles. Typically, sensory panelists have been screened for their taste acuity and extensively trained in the use of standardized vocabulary to describe the appearance, aroma, flavor, mouthfeel and aftertaste of a wide variety of products, as well as scaling techniques to quantify the attributes. The numerical data generated by the sensory panel testers are then analyzed for their statistical significance.

[0040] Co-products obtained from fruits and vegetables advantageously provide macro nutrition, micro nutrition, or combinations thereof, to compositions according to embodi-
ments of the invention. As used herein, the term "macro nutrition" refers to components that provide nutrients in a relatively large amount, for example and without limitation, fiber, protein, carbohydrates, fat, and combinations thereof. As used herein, the term "micro nutrition" refers to components that provide nutrition in relatively small amounts, for example and without limitation, vitamins, electrolytes, minerals, trace minerals, phytoneutrients such as flavonoids, limonoids, carotenoids, and combinations thereof. For example and without limitation, the solids may provide fiber, vitamins such as vitamin C and vitamin A, flavonoids, carotenoids such as lycopene, and combinations thereof. Phytonutrients are also referred to as phytochemicals, and the terms are used interchangeably herein. Accordingly, the macro nutrition, the micro nutrition, or both, of a composition in embodiments of the invention may be manipulated by selecting co-products derived from a specific fruit, vegetable, or combinations thereof, and incorporating the co-products into the composition in a predetermined quantity. For instance, when it is desired to provide a composition comprising fiber and flavonoids, citrus co-products may be included in the composition. When a particular level of fiber is desired for a composition, the amount of co-product added may be selected to provide that quantity of fiber, depending on the fiber content of the type of co-product being added.

[0041] According to at least certain embodiments a beverage is provided comprising juice and a co-product from juice extraction, wherein the co-product comprises a number average particle size of between 0.1 and 2000 microns, a total polyphenol content of at least 2500 parts per million, a moisture content of between 70% and 85% by weight, and a maximum seed content of 5% by weight. In an aspect, the juice comprises orange juice and the co-product comprises citrus pomace co-product. The beverage optionally contains only ingredients that are obtained from fruits or vegetables, and thus may be labeled as "100% fruit," or "100% vegetable," or "100% juice," "100% fruit puree," or "100% fruit or vegetable fiber" depending on the local laws and regulations. For instance, in an embodiment, the beverage consists essentially of not concentrate orange juice, citrus pomace co-product, and at least one added flavor.

[0042] In an embodiment the beverage comprises at least 2.5 grams of dietary fiber per 8 ounce serving, which is equal to a "good source of fiber" as defined by the United States Food and Drug Administration ("FDA") (see the Code of Federal Regulations Title 21). Similarly, in an embodiment the beverage comprises at least 5 grams of fiber per 8 ounce serving, which is equal to an "excellent source of fiber" as defined by the FDA. For example, the co-product optionally comprises between about 5% and about 15% by weight total fiber. In certain embodiments, the fiber of the co-product comprises both insoluble fiber and soluble fiber, wherein the fiber comprises a ratio of soluble fiber to insoluble fiber of about 1.2. Other amounts of total fiber and ratios of soluble to insoluble fiber are also suitable.

[0043] The particle size of the co-product is achieved by comminution of the juice extraction by-product. In certain embodiments, the co-product comprises a number average particle size of between 0.1 micron and 2000 microns, or between 1 micron and 2000 microns, or between 1 micron and 700 microns, or between 1 micron and 500 microns, or between 1 micron and 250 microns, or between 1 micron and 125 microns, or between 38 and 125 microns, or between 25 microns and 250 microns. [0044] When the co-product is obtained from orange juice extraction by-products, the co-product comprises one or more orange cultivars, for example and without limitation, Hamlin orange pomace co-product, Valencia orange pomace co-product, Pera orange pomace co-product, Navel orange pomace co-products, Parson Brown orange pomace co-product, Cara orange pomace co-product, Pineapple orange pomace co-product or combinations of any of them. As discussed above, an advantage of at least certain aspects of the co-product provided herein is the addition of nutrients to beverage products. In embodiments where the co-product comprises orange pomace co-product, the co-product provides phytonutrients comprising one or more polyphenols and limonoids, for example and without limitation hesperidin, limonin, narirutin, nobiletin, didymin, sinensetin, tangeretin, nomilin, and combinations of any of them. When the co-product comprises orange pomace co-product, the co-product optionally comprises at least 20 milligrams (mg) of vitamin C per 100 grams of co-product, such as at least 30 mg vitamin C per 100 g of co-product, or at least 40 mg vitamin C per 100 g of co-product, or at least 50 mg vitamin C per 100 g of co-product. Moreover, when the co-product comprises orange pomace co-product, approximately 10 percent by weight of "wet basis", or "as is" co-product—as opposed to dehydrated powder—a beverage comprising co-product would need to be orange pomace co-product to make a beverage that is a "good source of fiber." Likewise, approximately 20 percent by weight of a beverage comprising co-product would need to be orange pomace co-product to make a beverage that is an "excellent source of fiber."

[0045] As discussed above, certain commercially available fiber additives dissolve or disperse into beverages without substantially affecting the viscosity of the final beverage product. In contrast, embodiments of the present invention comprise a beverage including a liquid and co-product, wherein the beverage comprises a (Newtonian) viscosity between about 1 centipoises and about 100,000 centipoises (cP), or between about 80 cP and about 6000 cP, or between about 90 cP and about 5000 cP, or between about 100 cP and about 4000 cP, or between about 120 cP and about 3500 cP, or between about 300 cP and about 3600 cP, or between about 500 cP and about 2000 cP, or between about 700 cP and about 1750 cP. The viscosity may be measured using the ASTM WK31279 test method, for example, and employing a Brookfield rotary viscometer at a temperature of 25 degrees Celsius.

[0046] Co-product processed in accordance with aspects of the instant invention, when combined with a juice, resulted in a product that has increased viscosity compared to commercially available citrus fibers As shown in FIG. 3, when orange pomace co-product ("pomace regular") was added to orange juice, the viscosity of the resulting beverage was substantially higher than the viscosities of the beverages containing the commercial fibers. All of the fiber samples identified in FIG. 3 were dissolved in NFC orange juice at the same ratios of fiber to juice to arrive at an overall fiber content of 0.98% dietary fiber or 2.12% dietary fiber. The samples were tested using a rotary viscometer at 25° C. For approximately 2 minutes.

[0047] In certain embodiments, particularly embodiments comprising a large amount of co-product, the beverage will be most accurately described as a non-Newtonian Power Law Fluid, comprising a flow consistency index (K) range of between 1 cP and 100,00 cP (i.e., between 0.001 and 100 Pascal seconds) and a flow behavior index (n) range of
between 0.10 to 0.80. Non-Newtonian Power Law fluids (i.e., the Ostwald-de Waele relationship) can be described mathematically by the following equation: \(\tau = K(\gamma)^n \), where \(\tau \)-shear stress; \(K \)-consistency; \(\gamma \)-shear rate (in seconds^-1); and \(n \)-power law exponent.

[0048] Similarly, in certain embodiments, particularly embodiments comprising a large amount of co-product, the beverage will be most accurately described as a non-Newtonian Herschel-Bulkley Fluid, comprising a yield stress \(\tau_y \), of between 1 and 1000 Pascals, a flow consistency index \(K \) range of between 1 cp and 100,000 cp (i.e., between 0.001 and 100 Pascal seconds) and a flow behavior index \(n \) range of between 0.10 to 0.80. Herschel-Bulkley fluids can be described mathematically by the following equation: \(\tau = \tau_y + K(\gamma^n) \), where \(\tau \)-shear stress; \(\tau_y \)-yield stress; \(K \)-consistency; \(\gamma \)-shear rate; and \(n \)-power law exponent.

[0049] In certain embodiments, methods are provided for making a co-product comprising a co-product. The methods include preparing a co-product comprising obtaining a by-product from juice extraction, removing inedible material from the by-product, reducing the particle size of the by-product by microgrinding, homogenizing, or combinations thereof, and pasteurizing the co-product. The co-product is added to juice, where the co-product comprises a number average particle size of between 0.1 and 2000 microns, a total polyphenol content of at least 2500 parts per million, a moisture content of between 70% and 85% by weight, and a maximum seed content of 5% by weight. The removal of inedible material from the by-product of juice extraction optionally comprises removal of seeds, peel, stems, and combinations thereof. For instance, seeds are mechanically removed from the by-product.

[0050] In an aspect, the juice of the method is orange juice and the co-product is citrus pomace co-product. Optionally, the juice comprises 100% juice, and contains only ingredients obtained from fruits, vegetables, and combinations thereof.

[0051] According to an embodiment, a “nectar” beverage is provided comprising about 5% to about 90% by weight juice (such as about 30% to about 70% by weight juice), added water, at least one non-nutritive sweetener, at least one flavor, and a co-product from juice extraction, wherein the co-product comprises a number average particle size of between 0.1 and 2000 microns, a total polyphenol content of at least 2500 parts per million, a moisture content of between 70% and 85% by weight, and a maximum seed content of 5% by weight. The beverage comprises a brix of between about 5 brix and about 9 brix. As used herein, the term “nectar” refers to a beverage comprising juice and added water, which has a lower brix than the brix of the juice included in the beverage. The percent by weight juice is as calculated on a single strength juice basis. Optionally, the juice comprises from concentrate juice added in an amount to provide between 5% and 90% by weight single strength juice. The standard of identity brix values of specific juices are established by the FDA.

[0052] In certain embodiments, the nectar beverage product comprises juice (e.g., citrus juice, orange juice, etc.) in an amount from about 5% to about 90% by weight of the beverage product, such as about 10% to about 75% by weight, or about 15% to about 50% by weight, or about 20% to about 60% by weight, 40-80% water or about 20% to about 40% by weight, or about 20% to about 30% by weight.

[0053] In certain embodiments, water is added to the nectar beverage at a level of from about 0% to about 90% by weight of the beverage product, e.g., about 15% to about 80% by weight, about 40% to about 80% by weight, or about 40% to about 60% by weight.

[0054] In certain embodiments, the nectar beverage comprises between about 2% and about 30% by weight co-product, or between about 5% and about 25% by weight co-product, or between about 5% and about 20% by weight co-product, or between about 7% and about 20% by weight co-product, or between about 5% and about 15% by weight co-product, or between about 10% and about 20% by weight co-product.

[0055] In an aspect of the nectar beverage, the co-product comprises citrus pomace co-product. In such aspects, the juice optionally comprises orange juice. The nectar beverage may comprise at least 2.5 grams of fiber per 8 ounce serving, or at least 5 grams of fiber per 8 ounce serving. In prior known nectar beverages, homogenized pulp has been employed for taste and mouthfeel purposes; however, co-products of the present invention may be used to replace some or all of such homogenized pulp. An advantage to incorporating co-product instead of homogenized pulp is that the juice extraction by-products are less expensive than fruit pulp. Moreover, the addition of pulp to liquids does not have a significant effect on the fiber content of the juice.

[0056] In certain embodiments, nectar beverages comprise a viscosity between about 1 cp and about 100,000 cp, or between about 10 cp and about 1500 cp, or between about 10 cp and about 1000 cp, or between about 10 cp and about 500 cp, or between about 20 cp and about 750 cp, or between about 30 cp and about 500 cp, or between about 50 cp and about 300 cp, or between about 75 cp and about 200 cp. The viscosity may be measured using the ASTM WK31279 test method, for example, and employing a Brookfield rotary viscometer at a temperature of 25 degrees Celsius.

[0057] According to an embodiment, a “juice drink” beverage is provided comprising water, between 0% and 30% by weight juice (such as about 5% to about 30% by weight juice), at least one sweetener, at least one acidulant, at least one flavor, and a co-product from juice extraction, wherein the co-product comprises a number average particle size of between 0.1 and 2000 microns, a total polyphenol content of at least 2500 parts per million, a moisture content of between 70% and 85% by weight, and a maximum seed content of 5% by weight. As used herein, the term “juice drink” refers to a drink containing co-product, which provides at least a trace amount of juice. Optionally, the juice drink beverage further comprises juice added in an amount to provide between 2% and 30% by weight single strength juice. Typically, if the juice drink contains less than about 5% juice but comprises at least one fruit flavor, at least one vegetable flavor, or combinations thereof, it will meet the general classification of a juice beverage. The standard of identity brix values of specific juices are established by the FDA. The co-product optionally comprises a citrus pomace co-product, such as orange pomace co-product.

[0058] In certain embodiments, the juice drink product comprises juice (e.g., citrus juice, orange juice, etc.) in an amount from about 2% to about 30% by weight of the beverage product, such as about 5% to about 30% by weight, or about 2% to about 20% by weight, or about 2% to about 15% by weight, or about 2% to about 10% by weight.

[0059] In certain embodiments, water is added to the juice drink at a level of from about 0% to about 90% by weight of
the beverage product, e.g., about 25% to about 90% by weight, about 40% to about 90% by weight, or about 65% to about 95% by weight.

[0060] In certain embodiments, the juice drink comprises between about 2% and about 30% by weight co-product, or between about 5% and about 25% by weight co-product, or between about 5% and about 20% by weight co-product, or between about 7% and about 20% by weight co-product, or between about 5% and about 15% by weight co-product, or between about 10% and about 20% by weight co-product.

[0061] In embodiments, the amounts of juice and co-product in the juice drink are inversely proportional. That is, the more co-product that is included in the juice drink, the less juice is included in the juice drink. Likewise, the less co-product that is included in the juice drink, the more juice is included in the juice drink. An advantage to incorporating greater amounts of co-product and less juice is that the juice extraction by-products from which the co-product is obtained are less expensive than most juices. In an aspect, the juice drink comprises at least 2.5 grams of fiber per 8 ounce serving, such as at least 5 grams of fiber per 8 ounce serving.

[0062] In certain embodiments, juice drinks comprise a viscosity between about 1 cP and about 100,000 cP, or between about 10 cP and about 100 cP, or between about 10 cP and about 90 cP, or between about 10 cP and about 80 cP, or between about 10 cP and about 70 cP, or between about 10 cP and about 60 cP, or between about 10 cP and about 50 cP, or between about 15 cP and about 90 cP, or between about 20 cP and about 90 cP. The viscosity may be measured using the ASTM WK31279 test method, for example, and employing a Brookfield rotary viscometer at a temperature of 25 degrees Celsius.

[0063] The fruits and vegetables from which the juice is obtained and from which the juice extraction by-products are obtained, may be independently selected from any suitable fruit or vegetable such as, but not limited to, carrot, cranberry, orange, blueberry, tomato, apple, lemons, limes, grapes, strawberries, grapefruits, tangerine, mandarin orange, tangelo, pomelo, celery, beet, lettuce, spinach, cabbage, artichoke, broccoli, brussels sprouts, cauliflower, watercress, peas, beans, lentils, asparagus, onions, leeks, kohlrabi, radish, turnip, rutabaga, rhubarb, carrot, cucumber, zucchini, eggplant, pineapple, peach, banana, pear, guava, apricot, watermelon, Saskatoon berry, blueberry, plains berry, prairie berry, mulberry, elderberry, Barbados cherry (acerola cherry), choke cherry, date, coconut, olive, raspberry, strawberry, huckleberry, loganberry, currant, dewberry, boysenberry, kiwi, cherry, blackberry, quince, buckthorn, passion fruit, rowan, gooseberry, pomegranate, persimmon, mango, papaya, lychee, plum, prune, fig, or any combination thereof.

[0064] As discussed above, natural by-products from the extraction of juices from fruits and/or vegetables contain natural nutrients (such as vitamin A, vitamin C, vitamin E, phytonutrients such as polyphenols, and antioxidants), flavors, colors of the original fruits and vegetables, and large amounts of natural (e.g., un-processed) fibers. Most juice extraction by-product contains over 50% by weight (on a dry basis) of dietary fiber, mostly insoluble fiber. The use of pomace in food products will fortify fiber and naturally existing nutrients such as vitamins and phytochemicals. Moreover, juice extraction by-products are generally low cost ingredients because they are under-utilized and considered a waste from juice industry.

[0065] Co-products according to embodiments of the invention may be obtained from any juice extraction process method that produces side-stream ingredients. For example, by-products such as pomace may be obtained from the press cake after a juice extraction process; however, such by-products generally have a wide range of particle and fiber sizes with a significant amount being large particles. For example, particle or fiber sizes of juice extraction by-products may range from 100 microns to 5 centimeters depending upon the particular type of extracted fruit or vegetable. By-products containing larger particles and fiber, and/or a wide distribution of particle or fiber sizes do not have a smooth texture. Therefore, mixing such juice extraction by-products into beverage formulations provides a tough, sandy, and gritty texture, as well as a non-homogeneous dispersion in liquid-based products. For ease of discussion, the term “particle size” refers to both particle size and fiber size.

[0066] As used herein, the term “pomace” may also include the “goo” or the retentate formed from a filtration step of an extraction process, e.g., when clarifying a juice. This filtration retentate may be obtained as a by-product, for example, from any suitable fruit or vegetable juice such as carrot or cranberry juices. This retentate or goo may be added to pomace obtained from the press cake, for example, and is hereinafter is collectively referred to as pomace. Pomace (including filtration retentate) “as is” provides fiber, color, nutrients, mouthfeel, flavor.

[0067] It was discovered that juice extraction by-products may be treated to reduce the particle (including fiber) size resulting in improved texture and dispersion capability of the resulting co-product in a product. Confinement of juice extraction by-products releases components such as flavors, colors, and soluble carbohydrates, and the texture of the particles feels smoother than prior to comminution.

[0068] Any suitable form of juice extraction by-products, such as wet by-products or frozen by-products, may be used to obtain the desired co-product. Wet or frozen juice extraction by-products do not require rehydration, and wet by-products may be taken directly as the press cake or other form from the juice extraction processes. The moisture content of the by-products depends on the fruit or vegetable as they may vary on moisture content. Comminution, or size reduction, may occur through any suitable mechanical or chemical process such as micro-grinding, cutting, shredding, slicing, grinding, shearing, extruding, homogenizing, pulverizing, comminuting, or subjecting to ultrasonic frequency. In one aspect, the size reduction is achieved by micro-grinding.

[0069] Micro-grinding processes are typically used for purifying portions of fruits and vegetables such as fruits and vegetables wherein the skin, seeds, etc. are removed. This process comprises feeding, grinding, and mesh-screening or filtering processes in a unit operation. Therefore, the outcome has more controlled and homogeneous size distribution than random grinding without mesh-screening process. The micro-grinding process provides a product which is very suitable for addition to food products, and in particular beverage products to provide high nutritional value. For further size reduction, the micro-ground product is, optionally, passed through pressurized homogenizers such as dairy or dipping sauce homogenizers as known by the skilled practitioner. Using microgrinders at different blade (coarse, medium, fine and superfine) and blade tip speed (between 15-60 Hz) for configurations fruit and vegetable products at different mouthfeel textures ranging in particle sizes between 0.1 to 2000 microns could be produced. The products produced by micro-grinders could be made homogenous through the use of
homogenizers operating between 1200 to 2500 psi pressures to form a smooth consistency product.

[0070] Ideally, the average particle sizes of the juice extraction by-products are reduced to between 1 micron and 2000 microns to provide a micro-ground product with a smooth texture and dispersibility, such as below 250 microns, while below 125 micron is recommended for the smoothest sensory result. In some examples, the particle size may be reduced to below 75 micron or below 58 micron. The range of 38 micron to 125 micron particularly improves both dispersion and mouthfeel characteristics in beverages.

[0071] The micro-grinding and homogenization processing conditions of juice extraction by-product may be described using mass flow rates. According to embodiments of the invention, each of the micro-grinding and the optional homogenization processes are performed at a mass flow rate of between about 2 and about 200 gallons per minute, such as between about 2 and 100 gallons per minute, or between about 100 and about 200 gallons per minute, or between about 50 and 150 gallons per minute, to obtain co-product having the desired average particle sizes. Mass flow rates are generally between 2 and 10 gallons per minute or 2 and 20 gallons per minute or between 2 and 35 gallons per minute. The pasteurizers in Bradenton have a mass flow rate of about 33 gallons per minute.

[0072] The mechanical grinding method appears to allow detection, by AOAC method, of fiber typically undetectable due to being entrapped in larger particles. Following micro-grinding and optional homogenization, the process for making the co-product comprises pasteurization. Pasteurization may also be performed on the co-product at a mass flow rate of between about 2 and about 200 gallons per minute. Pasteurization of the co-product provides microbial stability and allows the co-product to be employed in beverage and food products having an extended shelf life. Depending on the specific pasteurization conditions, at least some naturally occurring enzymes in the co-product will be deactivated during pasteurization. Highly heat-resistant enzymes, such as leptomycin D-ring lactone hydrolase, for example, are less likely to become deactivated during pasteurization processes.

[0073] In another aspect of the invention, juice extraction by-products are prepared for freeze-shearing by adding water to the by-products. The amount of water depends on the type of fruit or vegetable from with the by-products were obtained. For example, cranberry pomace requires a 20:1 water: pomace ratio whereas blueberry pomace requires a 10:1 water to pomace ratio. The amount of water necessary to prepare the by-products for freeze shearing is easily determined by following the process outlined below in the examples. Essentially, sufficient water is added to form and maintain a vortex in a Vitamix or other suitable blender for about 5 minutes. When frozen, such hydrated by-products provide an ideal substrate for freeze shearing.

[0074] The mixture is then frozen at 0 to -20° C., for example -9° C., until suitably frozen, typically 12-20 hours. The frozen puree is then subjected to at least one cycle of shearing such as with the Pacojet shearing process. The result is a smooth frozen puree which, when eaten, exhibits little or no grittiness experienced with the untreated puree/shurry. Upon thawing at room temperature, a smooth, thick puree with the consistency of dairy pudding can be obtained. The continuous hydration and shear of the pomace increases viscosity and film forming ability. The unexpected result indicates shear and hydration can be used to slightly modify fruit or vegetable fiber to create a useful food ingredient.

[0075] The pH of the co-product will range from about 2.0 to about 14.0, such as from about 2.0 to about 10.0, or from about 2.0 to about 8.0, or from about 2.0 to about 6.0, or from about 2.0 to about 4.0.

[0076] The co-product may be used as main ingredients of fruit and vegetable beverage or food products or may be included in various beverage or food products to provide enhanced nutrition and other characteristics, such as color, flavor, and mouthfeel. Suitable food products include, but are not limited to beverages, soups, spreads, puddings, smoothies, snack foods, yogurts, and cereals.

[0077] The co-product may be used as a substitute for a combination of fruit juice or juice concentrate with a thickener (gum) because it can provide both fruit benefits and viscosity. The co-product may be added to various types of beverages such as fruit and or vegetable juices, fruit smoothies, fruit beverages and fruit cocktails. This will enhance natural fiber and phytochemical contents and increase viscosity, smoothness and mouthfeel.

[0078] As shown in the following Table 1, various pomace ingredients (without treatment) are generally higher molecular weight and less soluble and dispersible than FIBERSOL-2 a modified corn starch by ADM or other common sources of fiber. However, treating pomace as described herein for juice extraction by-products to reduce the particle size provides pomace having increased solubility and greater nutritional value.

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical Composition</th>
<th>Soluble to Insoluble</th>
<th>Total Fiber (dry basis)</th>
<th>Other nutrients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibenol</td>
<td>Resistant Maltodextrin alpha and beta glucoside linkage</td>
<td>Soluble</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Inulin</td>
<td>beta-(2-1) fructofuranosy-fructose link</td>
<td>Soluble</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Pectin from</td>
<td>alpha-(1-4) linked D-galacturonic acid</td>
<td>Soluble</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Citrus</td>
<td>beta-Glucose D-glucose linked by beta glucosid bonds</td>
<td>Short; soluble Long: insoluble</td>
<td>75.1% (cat)</td>
<td></td>
</tr>
<tr>
<td>Cranberry Pomace</td>
<td>Mainly beta-(1-4) glucoside</td>
<td>1:10</td>
<td>72.4%</td>
<td>Proanthocyanins</td>
</tr>
<tr>
<td>Cranberry Pomace</td>
<td>Mainly beta-(1-4) glucoside</td>
<td>1:5</td>
<td>43%</td>
<td>Anthocyanins</td>
</tr>
<tr>
<td>Geo Pomace</td>
<td>alpha-(1-4) galacturonic acid</td>
<td>1:1</td>
<td>52.8%</td>
<td>Carotenoids</td>
</tr>
<tr>
<td>Orange Pomace</td>
<td>alpha-(1-4) galacturonic acid, beta-(1-4) glucoside</td>
<td>1:2</td>
<td>54%</td>
<td>Carotenoids, saponins, limonin</td>
</tr>
</tbody>
</table>

[0079] Dietary fiber comprises the remnants of edible plants cells, polysaccharides, lignin, and associate substances (carbohydrates) resistant to (hydrolysis) digestion by alimentary enzymes of humans.

[0080] AOAC fiber analysis is used to detect the amount of fiber in a food ingredient. This is important so that the amount of dietary fiber may be accurately reported in an ingredient/ nutritional content disclosure. In another aspect of the invention, the pomace is pre-heated to inactivate natural enzymes present in the fruits or vegetables ingredients present in the pomace. The pomace is pre-heated at a temperature of at least about 70°C, to about 100°C. The pre-heating occurs prior to AOAC fiber analysis to maximize the fiber detection and
stabilize the pomace slurry. The heating may be done prior to particle size reduction, afterwards, both, or neither.

Juice beverages containing 100% juice are popular with consumers for numerous reasons, such as their nutritional profile and lack of added water. These juice beverages must meet particular standard of identity criteria. The US Food and Drug Administration sets a standard for food labeling, including juice labeling. 21 CFR Section 101.30 states that beverages containing "100 percent juice and non-juice ingredients that do not result in a diminution of the juice soluble solids or, in the case of expressed juice, in a change in the volume, when the 100 percent juice declaration appears on a panel of the label that does not also bear the ingredient statement, must be accompanied by the phrase "with added _______"" the blank filled in with a term such as "ingredient (s)," "preservative," or "sweetener," as appropriate (e.g., "100% juice with added sweetener"), except that when the presence of the non-juice ingredient(s) is declared as part of the statement of identity of the product, this phrase need not accompany the 100 percent juice declaration." Consequently, since solids derived from a fruit or a vegetable are ingredients included within the standard of identity of the juice, fruit, or vegetable, the juice beverages of certain embodiments of the invention may be labeled as "100 percent juice." When some of the solids are not typically found in juice, the juice beverages of certain embodiments of the invention may be labeled as "100 percent fruit." or "100 percent vegetable," according to local laws and regulations.

According to certain embodiments, the type and amount of co-product is selected to be added to a juice to provide a finished beverage product that comprises an amount of nutrients which is similar to the amount of nutrients provided by the same fruit or vegetable when consumed whole. For instance, a whole peeled orange usually contains about 3 grams of fiber, whereas an eight ounce glass of not-from-concentrate orange juice usually contains less than 1 gram of fiber. Thus, according to an embodiment of the invention, a juice beverage is prepared comprising not-from-concentrate orange juice to which sufficient co-product (obtained from orange juice extraction by-products) is added to provide a final beverage containing at least 3 grams of fiber.

An advantage of beverage products according to embodiments of the invention is that the products comprise the same or very close to the same level of nutrients as found in a whole fruit and/or vegetable, or even higher levels in the case of phytoneutrients found in the whole fruit and/or vegetable but are less perishable due to the pasteurization process; in some cases weeks or months of shelf life as opposed to days for some fresh fruit or vegetables, and are convenient to consume without any further preparation required, e.g., peeling, cutting, cooking, etc.

Not-from-concentrate (NFC) juices tend to be popular with consumers for numerous reasons, such as their fresh taste and nutritional profile. These NFC juices also must meet particular standard of identity criteria. Among these criteria are brix minimums and brix-to-acid ratio minimums. For example, the US Food and Drug Administration sets a standard for juices such as orange juice. In this regard 21 CFR Section 146.140, incorporated by reference hereininto, states that finished pasteurized orange juice is to contain not less than 10.5 percent by weight of orange juice soluble solids, exclusive of the solids of any added sweetening ingredients. This FDA regulation further states that the ratio of brix to grams of citric acid per 100 ml of juice is not less than a 1 to 1 ratio. The juice industry recognizes these criteria for pasteurized orange juice or single strength orange juice as applying to NFC orange juice. It will be understood that these standard of identity criteria are used herein with respect to NFC orange juice or pasteurized single strength orange juice. This same concept of standard of identity criteria applies as well to other pasteurized single strength juices. In certain embodiments, the juice beverages according to the current invention optionally meet the criteria of NFC juice.

In certain embodiments, a juice beverage is provided that comprises liquid derived from one or more fruits and/or vegetables and solids derived from one or more fruits and/or vegetables distinct from the source of the liquid. Juice derived from fruits and vegetables advantageously provide macro nutrition, micro nutrition, or combinations thereof, to compositions according to embodiments of the invention. The co-products provide fiber to the juice beverage, which can result in a greater feeling of satiety following consumption of the beverage, as compared to a typical juice beverage, and can better mimic the total nutritional benefit of eating whole fruit vs. juice.

It is also an advantage of certain aspects of the invention to provide an economical juice beverage comprising a combination of an inexpensive liquid as the bulk of the juice beverage with a co-product to provide nutrition and sensory attributes.

In certain embodiments, the juice beverage is a low carbohydrate or low sugar beverage, comprising a brix of between about 3 degrees and about 16 degrees. As used herein, the term "brix" refers to the percent of sucrose by weight, in grams per 100 milliliters of liquid. In other embodiments, the juice beverage comprises a brix of between about 4 degrees and about 12 degrees, or between about 5 degrees and about 9 degrees, or between about 6 degrees and about 8 degrees. In certain aspects of the invention, the juice beverage provides less than 100 calories per 8 ounce serving. In an embodiment of the invention, the juice beverage provides less than 80 calories per 8 ounce serving, or less than 70 calories per 8 ounce serving, or less than 60 calories per 8 ounce serving, or less than 50 calories per 8 ounce serving.

Liquids derived from one or more fruits, one or more vegetables, and combinations thereof, are a basic ingredient in the juice beverages disclosed herein, typically being the vehicle or primary liquid portion in which the remaining ingredients are dissolved, emulsified, suspended or dispersed. Liquids suitable for use in at least certain exemplary embodiments of the beverage products disclosed herein include, e.g., fruit, vegetable and berry juices. Liquids can be employed in the present invention in the form of a single-strength juice, NFC juice, 100% pure juice, juice concentrate, serum, clarified juice, fruit or vegetable water, clarified serum, or other suitable forms. The term "clarified" as used herein refers to a liquid that has had the solid matter removed using filtration or centrifugation. Typically, the filtration comprises removing solid matter as small as 0.1 microns in diameter. The term "serum" as used herein refers to the thin, clear portion of the fluid of plants, such as fruits or vegetables. The term "water" as used herein refers to the clear liquid extracted from fruits or vegetables. The term "juice" as used herein includes single-strength fruit (including berry) or vegetable juice, as well as concentrates, milks, and other forms. Multiple liquids derived from different fruits and/or vegetables can be combined to generate a juice beverage having the desired nutrients.
In alternative embodiments, juice beverages may be prepared that are not 100% juice. For example, juice beverages may comprise from concentrate (FC) juice, which is juice that has been previously concentrated to remove water, and then diluted to provide at least a minimum specified Brix, depending on the type of juice. Orange juice, for instance, must have a minimum Brix level of 11.8, while grapefruit juice must have a minimum Brix level of 10.0. Further embodiments include juice beverages comprising reduced calorie, light, or low-calorie juice. Such beverages typically comprise juice, added water, and often other added ingredients to provide a desired taste, such as non-nutritive sweeteners.

Suitable finishes are available from Brown International Corporation (Winter Haven, Fla.) or JBT Corporation (Chicago, Ill.). Finishes are also employed for separating seeds from the juice extraction by-products. The finisher screen is optionally modified such that instead of comprising typical circular openings, the finisher screen instead comprises slot openings oriented in the machine direction. Slots ranging from 1 to 5 inches in length in the machine direction and 1/8 to 3/4 inch in the cross-machine direction may be used. Such slot configurations have been unexpectedly discovered to allow improved yield of separation of seeds, as well as peel pieces, from the remainder of juice extraction by-products and also to minimize damage to the seeds during the removal process. Deseeding in this manner has improved yields from 25-40% to 70-95% recovery of deseeded pomace. Importantly, any damage to seeds can result in releasing undesired compounds, from the seeds, such as bitter tasting compounds. The use of a finisher screen comprising slot openings oriented in the machine direction allows achievement of co-products obtained from citrus juice extraction by-products having a combined peel and seed amount between 0.01% and 2.0% by weight, or between 0.01% and 1.0% by weight.

It should be understood that juice beverages and other juice beverage products in accordance with this disclosure may have any of numerous different specific formulations or constitutions. In general, an NFC and/or 100% fruit or vegetable beverage in accordance with this disclosure typically consists essentially of only fruit or vegetable liquid and co-product obtained from fruit or vegetable juice extract by-products. The formulation of a beverage product in accordance with this disclosure can vary to a certain extent, depending upon such factors as the product’s intended market segment, its desired nutritional characteristics, flavor profile and the like.

For example, it will generally be an option to add further ingredients to the formulation of a particular beverage embodiment, including any of the beverage formulations described below in particular if the juice beverage is not required to meet a specific standard of identity. Additional (i.e., more and/or other) sweeteners may be added, flavorings, inclusions (e.g., fruit or vegetable pieces, fiber, oat flour or nuts), electrolytes, vitamins, proteins, stabilizers, phynutrients, functional ingredients, tastants, masking agents and the like, flavor enhancers, and/or carbonation typically can be added to any such formulations to vary the taste, mouthfeel, nutritional characteristics, etc.

In embodiments for which the juice beverage is not 100% juice or is from concentrate, water may instead be the vehicle or primary liquid portion in which the remaining ingredients are included. Purified water can be used in the manufacture of certain embodiments of the beverages disclosed here, and water of a standard beverage quality can be employed in order not to adversely affect beverage taste, odor, or appearance. The water typically will be clear, colorless, free from objectionable minerals, tastes and odors, free from organic matter, low in alkalinity and of acceptable microbiological quality based on industry and government standards applicable at the time of producing the beverage. In certain embodiments, water is present at a level of from about 1% to about 99.9% by weight of the beverage. In at least certain exemplary embodiments the water used in beverages and concentrates disclosed here is “treated water,” which refers to water that has been treated to reduce the total dissolved solids of the water prior to optional supplementation, e.g., with calcium as disclosed in U.S. Pat. No. 7,052,725. Methods of producing treated water are known to those of ordinary skill in the art and include deionization, distillation, filtration and reverse osmosis (“r-o”), among others. The terms “treated water,” “purified water,” “deionized water,” “distilled water,” and “r-o water” are understood to be generally synonymous in this discussion, referring to water from which substantially all mineral content has been removed, typically containing no more than about 500 ppm total dissolved solids, e.g., 250 ppm total dissolved solids. The water is optionally carbonated water; the use of carbon dioxide is discussed further below.

Acid used in beverages disclosed here can serve any one of several functions, including, for example, providing antioxidant activity, lending tartness to the taste of the beverage, enhancing palatability, increasing thirst quenching effect, modifying sweetness and acting as a mild preservative by providing microbiological stability. Ascorbic acid, commonly referred to as “vitamin C”, is often employed as an acidulant in beverages to also provide a vitamin to the consumer. Any suitable edible acid may be used, for example citric acid, malic acid, tartaric acid, phosphoric acid, ascorbic acid, lactic acid, formic acid, fumaric acid, gluconic acid, succinic acid and/or adipic acid.

The acid can be used in solid or solution form, and in an amount sufficient to provide the desired pH of the beverage. Typically, for example, the one or more acids of the acidulant are used in amount, collectively, of from about 0.01% to about 1.0% by weight of the beverage, e.g., from about 0.05% to about 0.5% by weight of the beverage, such as 0.1% to 0.25% by weight of the beverage, depending upon the acidulant used, desired pH, other ingredients used, etc. The amount of acid in the gel beverage concentrate may range from about 1.0% to about 2.5%, between about 1.5% and about 2.0%, or about 1.8% by weight of the gel beverage concentrate. In certain embodiments of the invention, all of the acid included in a beverage composition may be provided by citric acid.

The pH of at least certain exemplary embodiments of the beverages disclosed here can be a value within the range of 2.5 to 4.0. The acid in certain exemplary embodiments can enhance beverage flavor. Too much acid can impair the beverage flavor and result in sourness or other off-taste, while too little acid can make the beverage taste flat and reduce microbiological safety of the product. It will be within the ability of those skilled in the art, given the benefit of this disclosure, to select a suitable acid or combination of acids and the amounts of such acids for the acidulant component of any particular embodiment of the beverage products disclosed here.
Sweeteners suitable for use in various embodiments of the beverages disclosed here include nutritive and non-nutritive, natural and artificial or synthetic sweeteners. In at least certain exemplary embodiments of the beverages disclosed here, the sweetener component can include nutritive, natural crystalline or liquid sweeteners such as sucrose, liquid sucrose, fructose, liquid fructose, glucose, liquid glucose, glucose-fructose syrup from natural sources such as apple, chicory, honey, etc., e.g., high fructose corn syrup, invert sugar, maple syrup, maple sugar, honey, brown sugar molasses, e.g., cane molasses, such as first molasses, second molasses, blackstrap molasses, and sugar beet molasses, sorghum syrup, Lo Han Guo juice concentrate and/or others. Typically, such sweeteners are present in a gel beverage concentrate in an amount of from about 0.5% to about 35% by weight, such as from about 15 to about 25% by weight. Further, such sweeteners are present in an amount of from about 0.1% to about 20% by weight of a finished beverage, such as from about 6% to about 16% by weight, depending upon the desired level of sweetness for the beverage. To achieve desired beverage uniformity, texture and taste, in certain exemplary embodiments of the natural beverage products disclosed here, standardized liquid sugars as are commonly employed in the beverage industry can be used. Typically such standardized sweeteners are free of traces of nonsugar solids which could adversely affect the flavor, color or consistency of the beverage.

Suitable non-nutritive sweeteners and combinations of sweeteners are selected for the desired nutritional characteristics, taste profile for the beverage, mouthfeel and other organoleptic factors. Non-nutritive sweeteners suitable for at least certain exemplary embodiments include, but are not limited to, for example, peptide based sweeteners, e.g., aspartame, neotame, and alitame, and non-peptide based sweeteners, for example, sodium saccharin, calcium saccharin, acesulfame potassium, sodium cyclamate, calcium cyclamate, neohesperidin dihydrochalcone, and sucralose. In certain embodiments the sweetener comprises acesulfame potassium. Other non-nutritive sweeteners suitable for at least certain exemplary embodiments include, for example, Stevia rebaudiana extracts, rebaudioside A, rebaudioside D, sorbitol, mannitol, xylitol, glycyrrhizin, D-tagatose, erythritol, meso-erythritol, maltitol, lactose, fructose, fructo-oligosaccharides, Lo Han Guo powder, xyllose, arabinose, isomalt, lactitol, maltitol, trehalose, and ribose, and protein sweeteners such as thiamin, monellin, brazzein, L-alanine and glycine, related compounds, and mixtures of any of them. Lo Han Guo, Stevia rebaudiana extracts, rebaudioside A, and monatin and related compounds are natural non-nutritive potent sweeteners.

Non-nutritive, high potency sweeteners typically are employed at a level of milligrams per fluid ounce of beverage, according to their sweetening power, any applicable regulatory provisions of the country where the beverage is to be marketed, the desired level of sweetness of the beverage, etc. It will be within the ability of those skilled in the art, given the benefit of this disclosure, to select suitable additional or alternative sweeteners for use in various embodiments of the beverage products disclosed here.

Preservatives may be used in certain embodiments of the beverages disclosed here. That is, certain exemplary embodiments contain an optional dissolved preservative system. Solutions with a pH below 4.6 and especially those below 3 typically are “microstable,” i.e., they resist growth of microorganisms, and so are suitable for longer term storage prior to consumption without the need for further preservatives. However, an additional preservative system can be used if desired. Furthermore, embodiments of juice beverages having low acidity generally comprise a preservative system. If a preservative system is used, it can be added to the beverage product at any suitable time during production, e.g., in some cases prior to the addition of the sweetener. As used here, the terms “preservation system” or “preservatives” include all suitable preservatives approved for use in food and beverage compositions, including, without limitation, such known chemical preservatives as benzoic acid, benzoates, e.g., sodium, calcium, and potassium benzoate, sorbates, e.g., sodium, calcium, and potassium sorbate, citrates, e.g., sodium citrate and potassium citrate, polyphosphates, e.g., sodium hexametaphosphate (SHMP), lauryl arginate ester, cinamic acid, e.g., sodium and potassium cinamates, polylysine, and antimicrobial essential oils, dimethyl dicarbonate, and mixtures thereof, and antioxidants such as ascorbic acid, EDTA, BHA, BHT, TBHQ, EMIQ, dehydroyeacetic acid, ethoxyquin, heptylparaben, and combinations thereof.

Preservatives can be used in amounts not exceeding mandated maximum levels under applicable laws and regulations. The level of preservative used typically is adjusted according to the planned final product pH, as well as an evaluation of the microbiological spoilage potential of the particular beverage formulation. The maximum level employed typically is about 0.05% by weight of the beverage. It will be within the ability of those skilled in the art, given the benefit of this disclosure, to select a suitable preservative or combination of preservatives for beverages according to this disclosure. In certain embodiments of the invention, sorbic acid or its salts (sorbates) may be employed as preservatives in the beverage products, such as in an amount of less than 0.1% by weight of a gel beverage concentrate.

Other methods of beverage preservation suitable for at least certain exemplary embodiments of the beverage products disclosed here, such as ready-to-drink beverages, include, e.g., aseptic packaging and/or heat treatment or thermal processing steps, such as hot filling and tunnel pasteurization. Such steps can be used to reduce yeast, mold, and microbial growth in the beverage products. For example, U.S. Pat. No. 4,830,862 to Braun et al. discloses the use of pasteurization in the production of fruit juice beverages as well as the use of suitable preservatives in carbonated beverages. U.S. Pat. No. 4,925,686 to Kastin discloses a heat-pasteurized freezeable fruit juice composition which contains sodium benzoate and potassium sorbate. In general, heat treatment includes hot fill methods typically using high temperatures for a short time, e.g., about 190°F for 10 seconds, tunnel pasteurization methods typically using lower temperatures for a longer time, e.g., about 160°F for 15-20 minutes, and retort methods typically using, e.g., about 250°F for 3-5 minutes at elevated pressure, i.e., at pressure above 1 atmosphere.

The beverage products disclosed here optionally contain a flavoring composition, for example, natural and synthetic fruit flavors, botanical flavors, other flavors, and mixtures thereof. As used here, the term “fruit flavor” refers generally to those flavors derived from the edible reproductive part of a seed plant. Included are both those wherein a sweet pulp is associated with the seed, e.g., banana, tomato, cranberry and the like, and those having a small, fleshy berry. The term berry also is used here to include aggregate fruits,
i.e., not “true” berries, but that are commonly accepted as a berry. Also included within the term “fruit flavor” are synthetically prepared flavors made to simulate fruit flavors derived from natural sources. Examples of suitable fruit or berry sources include whole berries or portions thereof, berry juice, berry juice concentrates, berry purees and blends thereof, dried berry powders, dried berry juice powders, and the like.

Exemplary fruit flavors include the citrus flavors, e.g., orange, lemon, lime and grapefruit, and such flavors as apple, pomegranate, grape, cherry, and pineapple flavors and the like, and mixtures thereof. In certain exemplary embodiments the beverage concentrates and beverages comprise a fruit flavor component, e.g., a juice concentrate or juice. As used here, the term “botanical flavor” refers to flavors derived from parts of a plant other than the fruit. As such, botanical flavors can include those flavors derived from essential oils and extracts of nuts, bark, roots and leaves. Also included within the term “botanical flavor” are synthetically prepared flavors made to simulate botanical flavors derived from natural sources. Examples of such flavors include cola flavors, tea flavors, and the like, and mixtures thereof. The flavor component can further comprise a blend of the above-mentioned flavors. The particular amount of the flavor component useful for imparting flavor characteristics to the beverages of the present invention will depend upon the flavor(s) selected, the flavor impression desired, and the form of the flavor component. Those skilled in the art, given the benefit of this disclosure, will be readily able to determine the amount of any particular flavor component(s) used to achieve the desired flavor impression.

Other flavorings suitable for use in at least certain exemplary embodiments of the beverage products disclosed here include, e.g., spice flavorings, such as mint, cassia, clove, cinnamon, pepper, ginger, vanilla spice flavorings, cardamom, coriander, root beer, sassafras, ginseng, and others. Numerous additional and alternative flavorings suitable for use in at least certain exemplary embodiments will be apparent to those skilled in the art given the benefit of this disclosure. Flavorings can be in the form of an extract, oleoresin, juice concentrate, bottler’s base, or other forms known in the art. In at least certain exemplary embodiments, such spice or other flavors complement that of a juice or juice combination.

The one or more flavorings can be used in the form of an emulsion. A flavoring emulsion can be prepared by mixing some or all of the flavorings together, optionally together with other ingredients of the beverage, and an emulsifying agent. The emulsifying agent may be added with or after the flavorings mixed together. In certain exemplary embodiments the emulsifying agent is water-soluble. Exemplary suitable emulsifying agents include gum acacia, modified starch, carboxymethylcellulose, gum tragacanth, gum ghatti and other suitable gums. Additional suitable emulsifying agents will be apparent to those skilled in the art of beverage formulations, given the benefit of this disclosure. The emulsifier in exemplary embodiments comprises greater than about 30% of the mixture of flavorings and emulsifier. In certain exemplary embodiments the emulsifier is from about 5% to about 30% of the mixture.

Carbon dioxide can be used to provide effervescence to certain exemplary embodiments of the beverages disclosed here, such as nectar beverages, juice drinks, and frozen slush beverages, for instance. Any of the techniques and carbonating equipment known in the art for carbonating beverages can be employed. Carbon dioxide can enhance the beverage taste and appearance and can aid in safeguarding the beverage purity by inhibiting and destroying objectionable bacteria. In certain embodiments, for example, the beverage has a CO₂ level up to about 7.0 volumes carbon dioxide. Typical embodiments may have, for example, from about 0.5 to 5.0 volumes of carbon dioxide. As used here and independent claims, one volume of carbon dioxide is defined as the amount of carbon dioxide absorbed by any given quantity of water at 60° F. (16° C.) temperature and atmospheric pressure. A volume of gas occupies the same space as does the water by which it is absorbed. The carbon dioxide content can be selected by those skilled in the art based on the desired level of effervescence and the impact of the carbon dioxide on the taste or mouthfeel of the beverage. The carbonation can be natural or synthetic.

The juice beverages disclosed here may contain additional ingredients, including, generally, any of those typically found in beverage formulations. Examples of such additional ingredients include, but are not limited to, salt, caffeine, caramel and other coloring agents or dyes, anti-foaming agents, gums, emulsifiers, tea solids, cloud components, and mineral and non-mineral nutritional supplements. Examples of non-mineral nutritional supplement ingredients are known to those of ordinary skill in the art and include, for example, antioxidants and vitamins, including Vitamins A, D, E (tocopherol), C (ascorbic acid), B₁ (thiamine), B₂ (riboflavin), B₃ (nicotinamide), B₄ (adenine), B₅ (pantothenic acid, calcium), B₆ (pyridoxine HCl), B₁₂ (cyanocobalamin), and K₁ (phyllquinone), niacin, folic acid, biotin, and combinations thereof. The optional non-mineral nutritional supplements are typically present in amounts generally accepted under good manufacturing practices. Exemplary amounts are between about 1% and about 100% RDV, where such RDV are established. In certain exemplary embodiments the non-mineral nutritional supplement ingredient(s) are present in an amount of from about 5% to about 20% RDV, where established.

In further aspects, it was found that consumption of orange pomace in not from concentrate orange juice beverages resulted in unexpected metabolic and gut health benefits including reduced postprandial glucose and insulin responses in human. Further in vitro experiments found that not-from-concentrate orange juice containing orange pomace co-product made in accordance with the methods disclosed here resulted in increased gas production and short-chain fatty acid production when compared to a non-from-concentrate juice that does not include the co-product and compared to a whole orange.

Further, it was found that beverages containing liquids including water, and not-from-concentrate juice, containing the orange pomace co-product made in accordance with this disclosure improve an individual’s subjective rating of hunger and fullness. Moreover, beverages made with the co-product described herein may enhance cognitive function and
improve vascular function in consumers who ingest the beverage.

Example 1

[0111] Typical amounts of nutrients provided by orange pomace co-products for both Hamlin oranges and Valencia orange were experimentally determined over the course of one orange growing season. The orange pomace co-products were prepared by removing inedible material from the orange pomace, micro-grinding the pomace until a number average particle size of less than about 250 microns was achieved, homogenizing the pomace, and pasteurizing the pomace. The pomace pre-blend was micronized using various blade configurations and blade tip speeds (ranging from 15 to 60 Hz). This micronized/microground pomace pre-blend was next homogenized at pressures between 1200 to 2500 psi to form a homogenous smooth product of uniform consistency. The results of each of the early, prime and late season for Hamlin oranges and Valencia oranges are provided in Table 2 below.

| Table 2: Texture, Shear Rate, pH, Brix, Titratable Acid, Hesperidin Content of Orange Pomace Co-Products for Early Prime Late Season for Hamlin and Valencia Oranges |
Varietal	Hamlin	Valencia				
Season	Early	Prime	Late	Early	Prime	Late
Moisture (%)	79.3	82.0	78.6	78.6	72.4	76.5
Insoluble fiber (%)	5.5	4.2	6.1	6.3	8.5	6.9
Soluble fiber (%)	4.4	2.8	3.4	5.1	5.8	4.8
Total Fiber (%)	9.9	6.9	9.4	11.3	14.2	11.7
Total Limonin (ppm)	87.30	40.93	60.81	65.98	53.73	48.43
Total Sugars (%)	7.41	7.17	7.43	5.29	6.98	6.98
PMF (ppm)	6.51	2.60	12.71	8.37	6.02	11.26
Vitamin C (mg/100 g)	43.0	43.0	45.0	24.0	20.0	25.0
Hesperidin (ppm)	3727.0	2562.0	3539.0	3607.0	4380.0	4065.0

*Note that juice source can also be From Concentrate.

Example 2

[0112] Three 100% fruit products were prepared comprising not-from-concentrate orange juice (NFC OJ) with 10 weight percent, 15 weight percent, or 20 weight percent, of the juice replaced with wet basis orange pomace co-product (prepared according to the process of Example 3). The finished juice products were analyzed for brix, pH, titratable acid, viscosity, and shear rate. The formulations and measured characteristics are shown below in Table 3.

Example 3

[0114] Nectar juice beverage products were prepared comprising not-from-concentrate orange juice (NFC OJ), water, sweetener, acidulant, vitamins, and flavor, containing 0, 5, 7.5, 10, and 15 weight percent, of orange pomace co-product. The orange pomace co-product was prepared according to the process of Example 3. The finished juice products were analyzed for brix, pH, titratable acid, viscosity, and shear rate. The formulations and measured characteristics are shown below in Table 4.

[0115] It can be seen from the results that the addition of greater amounts of orange pomace co-product provides to the nectar juice products increases the measured viscosity of the nectar juice product. As the pomace is added, the appearance of the nectar beverages becomes more turbid or hazy as the pomace brings significant "cloud". The consistency also increase as pomace level is increased e.g. looks more viscous and thicker texture, has more viscous mouthfeel similar to 100% juices and the nutritional content of the nectar also increases.
Example 4

Six juice drink beverages were prepared comprising water, sweetener, acidulant, flavor, color, from concentrate orange juice (FC OJ) and/or orange pomace co-product. The orange pomace co-product was prepared according to the process of Example 3. In particular, enough FC OJ was included to provide 20 percent by weight single strength orange juice for the control juice drink beverage, and three juice drink beverages were made in which 5 weight percent, 10 weight percent, or 15 weight percent, of the juice was replaced with orange pomace co-product. Additionally, one beverage was prepared in which all 20 weight percent of the juice was replaced with orange pomace co-product and one beverage was prepared in with 0% juice and 5 weight percent orange pomace co-product. The finished juice drink beverages were analyzed for brix, pH, titratable acid, viscosity, and shear rate. The complete formulations and measured characteristics are shown below in Table 5.

It can be seen from the results that the addition of orange pomace co-product provides an increase in each of measured viscosity, shear rate, acidity, brix, and ph. Increasing amount of the co-product added to the juice drink beverage from 10% to 15% by weight resulted in an increase in measured viscosity of 2 times, from 16.1 centipoises to 32.2 centipoises. Similarly, increasing the amount of the co-product added from 10% to 20% by weight resulted in an increase in measured viscosity of 5.37 times, from 16.1 centipoises to 86.4 centipoises. The influence on measured viscosity by the addition of orange pomace co-product to a juice drink beverage that contained about 72 percent by weight water was significantly less than the influence on measured viscosity by the addition of orange pomace co-product to NFC OJ. As the pomace is added, the appearance of the juice drink beverages become more turbid or hazy as the pomace brings significant “cloud”. The beverages also become more orange in color. The beverages appearance also increases in the level of “particulates” or fine pomace/pulp as the pomace material is added. The consistency also increase as pomace level is increased e.g. looks more viscous and thicker texture. The mouthfeel of the juice drink containing the pomace material also increase to be more viscous, the overall nutrition of the finished juice drink also increases.

TABLE 4

<table>
<thead>
<tr>
<th>Examples</th>
<th>Nectar + 0% Pomace Co-Product</th>
<th>Nectar + 5% Pomace Co-Product</th>
<th>Nectar + 5.7% Pomace Co-Product</th>
<th>Nectar + 10% Pomace Co-Product</th>
<th>Nectar + 15% Pomace Co-Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients</td>
<td>% wt</td>
<td>grams</td>
<td>% wt</td>
<td>grams</td>
<td>% wt</td>
</tr>
<tr>
<td>NFC Orange Juice*</td>
<td>42.0545%</td>
<td>168.22</td>
<td>37.0514%</td>
<td>148.22</td>
<td>34.5545%</td>
</tr>
<tr>
<td>Orange Pomace</td>
<td>0.0000%</td>
<td>0.00</td>
<td>5.0000%</td>
<td>20.00</td>
<td>7.5000%</td>
</tr>
<tr>
<td>Rebabudioside A</td>
<td>0.0125%</td>
<td>0.05</td>
<td>0.0125%</td>
<td>0.05</td>
<td>0.0125%</td>
</tr>
<tr>
<td>Flavors</td>
<td>0.0346%</td>
<td>0.14</td>
<td>0.0346%</td>
<td>0.14</td>
<td>0.0346%</td>
</tr>
<tr>
<td>Filtered Water</td>
<td>57.1447%</td>
<td>228.58</td>
<td>57.1447%</td>
<td>228.58</td>
<td>57.1447%</td>
</tr>
<tr>
<td>Vitamin Premix</td>
<td>0.0827%</td>
<td>0.33</td>
<td>0.0827%</td>
<td>0.33</td>
<td>0.0827%</td>
</tr>
<tr>
<td>Beta caroteine 1%</td>
<td>0.0226%</td>
<td>0.09</td>
<td>0.0226%</td>
<td>0.09</td>
<td>0.0226%</td>
</tr>
<tr>
<td>Potassium Citrate</td>
<td>0.3585%</td>
<td>1.23</td>
<td>0.3585%</td>
<td>1.23</td>
<td>0.3585%</td>
</tr>
<tr>
<td>Orange Oil + Tocopherol</td>
<td>0.0328%</td>
<td>0.13</td>
<td>0.0328%</td>
<td>0.13</td>
<td>0.0328%</td>
</tr>
<tr>
<td>Malic Acid</td>
<td>0.1831%</td>
<td>0.73</td>
<td>0.1831%</td>
<td>0.73</td>
<td>0.1831%</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>0.1246%</td>
<td>0.50</td>
<td>0.1246%</td>
<td>0.50</td>
<td>0.1246%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0000%</td>
<td>100.0000%</td>
<td>100.0000%</td>
<td>100.0000%</td>
<td>100.0000%</td>
</tr>
<tr>
<td>Brix</td>
<td>6.03</td>
<td>2.41</td>
<td>6.19</td>
<td>2.56</td>
<td>6.18</td>
</tr>
<tr>
<td>pH</td>
<td>3.91</td>
<td>3.96</td>
<td>3.98</td>
<td>3.96</td>
<td>3.96</td>
</tr>
<tr>
<td>Titratable Acidity</td>
<td>0.60</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.58</td>
</tr>
<tr>
<td>Viscosity (cP)</td>
<td>9.00</td>
<td>3.80</td>
<td>3.80</td>
<td>3.80</td>
<td>3.80</td>
</tr>
<tr>
<td>Shear Rate (1/sec)</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
</tbody>
</table>

*Note that juice source can also be From Concentrate.

TABLE 5

<table>
<thead>
<tr>
<th>Description</th>
<th>Juice Drink with 20% Orange Juice (Control)</th>
<th>Juice Drink with 15% Orange Juice & 5% Pomace Co-Product</th>
<th>Juice Drink with 10% Orange Juice & 10% Pomace Co-Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients</td>
<td>% wt, Grams</td>
<td>% wt, Grams</td>
<td>% wt, Grams</td>
</tr>
<tr>
<td>Orange Juice (FC) to Single Strength</td>
<td>20.0000</td>
<td>100.00</td>
<td>15.0000</td>
</tr>
<tr>
<td>Orange Pomace</td>
<td>0.0000</td>
<td>0.00</td>
<td>5.0000</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>0.2000</td>
<td>1.00</td>
<td>0.2000</td>
</tr>
<tr>
<td>Ascorbic Acid</td>
<td>0.0500</td>
<td>0.25</td>
<td>0.0500</td>
</tr>
<tr>
<td>Sucrose</td>
<td>7.8000</td>
<td>39.00</td>
<td>7.8000</td>
</tr>
</tbody>
</table>
TABLE 5-continued

| Juice Drink Products Containing FC Orange Juice and Orange Pomace Co-Product |
|---------------------------------|-------------------|-------------------|-------------------|-------------------|
| Orange flavors | 0.0450 | 0.23 | 0.0450 | 0.23 |
| Beta Carotene | 0.0030 | 0.02 | 0.0030 | 0.02 |
| 10% Filtered water | 71,902.0 | 359.51 | 71,902.0 | 359.51 |
| Total | 100,000.0 | 500,000.0 | 100,000.0 | 500,000.0 |
| pH | 3.15 | 3.43 | 3.15 | 3.43 |
| Titratable | 0.35 | 0.36 | 0.35 | 0.36 |
| Acidity | 10.10 | 10.50 | 10.10 | 10.50 |
| Viscosity (cP) | 0.06 | 0.06 | 0.06 | 0.06 |
| Shear Rate (1/sec) | | | | |

Example 5

[0118] The effect on various characteristics of NFC OJ by the addition of different amounts of orange pomace co-product was measured. A sufficient amount of orange pomace co-product was added to samples of NFC OJ to provide each of 0, 1, 2, 3, 4, 5, 6, and 7 grams of fiber per eight ounce serving of the final juice. The effects on brix, pH, acid, measured viscosity, shear rate, and amount of sinking pulp were measured and are shown below in Table 6.

[0119] It can be seen from Table 6 that the addition of orange pomace co-product increases brix, sinking pulp, shear rate, and viscosity, while the pH either does not change or increases very slightly and the amount of acid either does not change or decreases slightly. Similar to Example 4 above, the effect of added orange pomace co-product on measured viscosity is not linear, but rather approximately exponential, as shown in the graph of FIG. 1.

Example 6

<table>
<thead>
<tr>
<th>Juice Drink with 5% Orange Juice & 15% Orange Pomace Co-Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juice Drink with 0% Orange Juice & 20% Orange Pomace Co-Product</td>
</tr>
<tr>
<td>Juice Drink with 0% Orange Juice & 5% Orange Pomace Co-Product</td>
</tr>
</tbody>
</table>

TABLE 6

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Juice Drink with 5% Orange Juice & 15% Orange Pomace Co-Product</th>
<th>Juice Drink with 0% Orange Juice & 20% Orange Pomace Co-Product</th>
<th>Juice Drink with 0% Orange Juice & 5% Orange Pomace Co-Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>% wt.</td>
<td>Grams</td>
<td>% wt.</td>
<td>Grams</td>
</tr>
<tr>
<td>Orange Juice (FC) to Single Strength</td>
<td>5.0000</td>
<td>25.00</td>
<td>0.0000</td>
</tr>
<tr>
<td>Orange Pomace</td>
<td>15.0000</td>
<td>75.00</td>
<td>20.0000</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>0.2000</td>
<td>1.00</td>
<td>0.2000</td>
</tr>
<tr>
<td>Ascorbic Acid</td>
<td>0.0500</td>
<td>0.25</td>
<td>0.0500</td>
</tr>
<tr>
<td>Sucrose</td>
<td>7.8000</td>
<td>39.00</td>
<td>7.8000</td>
</tr>
<tr>
<td>Orange flavors</td>
<td>0.0450</td>
<td>0.23</td>
<td>0.0450</td>
</tr>
<tr>
<td>Beta Carotene</td>
<td>0.0030</td>
<td>0.02</td>
<td>0.0030</td>
</tr>
<tr>
<td>10% Filtered water</td>
<td>71,902.0</td>
<td>359.51</td>
<td>71,902.0</td>
</tr>
<tr>
<td>Total</td>
<td>100,000.0</td>
<td>500,000.0</td>
<td>100,000.0</td>
</tr>
<tr>
<td>Brix</td>
<td>3.51</td>
<td>3.55</td>
<td>2.83</td>
</tr>
<tr>
<td>pH</td>
<td>0.39</td>
<td>0.40</td>
<td>0.31</td>
</tr>
<tr>
<td>Titratable</td>
<td>32.20</td>
<td>86.40</td>
<td>12.00</td>
</tr>
<tr>
<td>Acidity</td>
<td>0.19</td>
<td>0.40</td>
<td>0.28</td>
</tr>
<tr>
<td>Viscosity (cP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear Rate (1/sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100% Fruit Products Containing Not-From-Concentrate Orange Juice and Orange Pomace Co-Product

<table>
<thead>
<tr>
<th>Fiber (g/serv)</th>
<th>Brix</th>
<th>pH</th>
<th>Acid</th>
<th>Viscosity (cP)</th>
<th>Shear Rate (1/sec)</th>
<th>Sinking Pulp</th>
<th>DV %**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>12.04</td>
<td>3.999</td>
<td>0.68</td>
<td>25</td>
<td>0.14</td>
<td>11% to 14%</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>12.16</td>
<td>3.883</td>
<td>0.67</td>
<td>90</td>
<td>0.50</td>
<td>20%</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12.27</td>
<td>4.039</td>
<td>0.66</td>
<td>260</td>
<td>1.45</td>
<td>n/a</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>12.41</td>
<td>4.101</td>
<td>0.64</td>
<td>718</td>
<td>4.00</td>
<td>20%</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12.64</td>
<td>4.068</td>
<td>0.61</td>
<td>1725</td>
<td>9.63</td>
<td>20%</td>
</tr>
</tbody>
</table>
The satiety effects of NFC orange juice including orange pomace co-product was tested. In particular, a study was conducted in accordance with good clinical practice and ethical principles according to the ICH and Declaration of Helsinki using 25 subjects. The products tested in accordance with the study included: product A, a not-from-concentrate orange juice with orange pomace co-product delivering 5.5 g of fiber (totaling approximately 255 g); product B, a whole orange (weighing approximately 255 g) delivering 6.4 g of fiber; product C, a not-from-concentrate orange juice (approximately 255 g); and, product D (control), a bottled still mineral water (approximately 255 g). The subjects received either product A, B, C or D in a randomized order and visual analog scale (VAS) measurement were taken at baseline and regular intervals following consumption. The person of ordinary skill in the art would recognize that VAS measurements are commonly used as a simple means of self-reporting feelings of hunger and fullness in studies analyzing eating behavior.

The hunger-related questions asked to the participants included:
1) How hungry are you right now?
2) How strong is your desire to eat right now?
3) How much could you eat right now?
4) How full are you right now?

FIG. 4 illustrates the VAS scores recorded from the subjects’ answers. Overall, the NFC juice with the orange pomace co-product demonstrated improved self-reported ratings of hunger and fullness. The AUC (“area under the curve”) of the VAS ratings are shown in FIG. 5. A summary of these results is shown in Table 7 below.
TABLE 8

<table>
<thead>
<tr>
<th></th>
<th>iCmax (mmol/L)</th>
<th>Tmax (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.4 ± 0.2</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>NFC orange juice</td>
<td>2.3 ± 0.2</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>NFC orange juice + orange pomace</td>
<td>1.9 ± 0.2</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td>Whole orange</td>
<td>2.4 ± 0.2</td>
<td>1.1 ± 0.2</td>
</tr>
</tbody>
</table>

*Significantly different to control, NFC orange juice, whole orange

As shown in FIG. 7, consumption of the NFC orange juice containing orange pomace co-product was also found to reduce a rise in postprandial serum insulin in subjects when compared to the control, NFC orange juice and whole orange. Table 9 below shows these significant differences of the insulin readings in the subjects over time among the products tested.

TABLE 9

<table>
<thead>
<tr>
<th></th>
<th>iCmax (mmol/L)</th>
<th>Tmax (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>387 ± 30</td>
<td>0.8 ± 0.0</td>
</tr>
<tr>
<td>NFC orange juice</td>
<td>418 ± 39</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>NFC orange juice + orange pomace</td>
<td>313 ± 24*</td>
<td>1.2 ± 0.1*</td>
</tr>
<tr>
<td>Whole orange</td>
<td>370 ± 20</td>
<td>0.9 ± 0.1</td>
</tr>
</tbody>
</table>

*Significantly different to control, NFC orange juice, whole orange

These findings are significant, as serum glucose and insulin levels are directly linked to type II diabetes. In particular, large, rapid increases in blood glucose levels are signals to the beta-cells of the pancreas to increase insulin secretion. Over time, recurrent elevations in blood glucose and excessive insulin secretion are thought to increase the risk of developing type II diabetes as well as cardiovascular disease. Thus, a reduction in postprandial glucose and insulin response when compared to a control, whole oranges and not from concentrate orange juice alone may be beneficial to the consumer’s health.

Without being bound by theory, the inventors believe that because the processing methods described herein result in the fiber of the co-product being more effectively soluble and thus potentially more viscous and bioaccessible, that other liquids including without limitation, water, carbonated water, a juice, a serum, a juice concentrate, a clarified juice, a single strength juice, a not from concentrate juice, a fruit or vegetable water, a puree, a nectar and combinations thereof included with co-products of other fruits and vegetables processed in accordance with the instant disclosure would perform similarly to the products tested above.

Further in vitro testing demonstrated potential additional health benefits of NFC orange juice containing the orange pomace co-product also including increased gas production in the colon when compared to a NFC juice that does not include the by-product or a whole orange. These results are shown in FIG. 8. The gas production is likely due to the increased fermentability of the fibers by gut microbiota. Further, FIGS. 9A-9D also show that the increased fermentability of the fibers also resulted in increased production of short-chain fatty acids (SCFAs), including propionate, acetate, and butyrate. Without being bound by theory, it is believed that these SCFAs play a pivotal role in conferring health benefits to an individual such as protecting against colonic disorders and inhibiting the growth of pathogenic organisms.

Example 9

Juices, nectars, and juice drinks, in which the base liquid is a juice from concentrate or not from concentrate orange juice, are prepared and tasted. Similar to Examples above, the addition of co-product to other juices provides a perceptible visible effect and enhanced mouthfeel to the finished beverage.

Example 10

Four gallons of cranberry fine pomace were mixed with cranberry juice. One part of this material was mixed with four parts concentrated juice and water (16 gallons). The resulting slurry was subjected to three steps of reduction. Step one used the 212084-1 microcut head for 125 micron product which step produced about 4" of "foam" on top of the cranberry liquid. The result indicated a good reduction of fine cranberry pulp with cranberry "skins".

Step two further processed the step one product into a 216084-1 microcut head for 75 micron product. Not much foam was produced in step two. The result indicated a good further reduction of cranberry pulp was accomplished in this step.

Step three further processed the step two product through a 216084 microcut head for 35 micron product. Almost no foam was produced in the last step. The result indicated a good final reduction of cranberry pulp in cranberry juice/water.

Example 11

900 pounds of oranges were extracted using a Brown Extractor. The trough juice was collected and sent to a paddle finisher outfitted with a 3/8" paddle pitch and screens with slotted holes punched of a size 2" in the machine direction and 5/8" in the cross-machine direction with 1/2" centers. The trough juice was pumped to the paddle finisher at a rate of 23.4 gallons per minute. The paddle was set to a rotational speed of 650 RPMs. The juice was finished in the paddle, collected, and then sent to a standard screw finisher. The standard screw finisher was set to a speed of 1200 RPMs and outfitted with a 0.020" screen. Juice and pomace from this run condition were found to have limonin levels at or below those from a standard screw-finished only process. The deseeded pomace yield was found to be 74%.

Given the benefit of the above disclosure and description of exemplary embodiments, it will be apparent to those skilled in the art that numerous alternate and different embodiments are possible in keeping with the general principles of the invention disclosed here. Those skilled in this art will recognize that all such various modifications and alternative embodiments are within the true scope and spirit of the invention. The appended claims are intended to cover all such modifications and alternative embodiments. It should be understood that the use of a singular indefinite or definite article (e.g., “a,” “an,” “the,” etc.) in this disclosure and in the following claims follows the traditional approach in patents of meaning “at least one” unless in a particular instance it is clear from context that the term is intended in that particular instance to mean specifically one and only one. Likewise, the
term “comprising” is open ended, not excluding additional items, features, components, etc.

We claim:

1. A beverage comprising:
 a liquid; and
 a co-product from juice extraction, wherein the co-product comprises a number average particle size of between 0.1 and 2000 microns, a total polyphenol content of at least 2500 parts per million, a moisture content of between 70% and 85% by weight, and a combined peel and seed content between 0.01% and 20% by weight;
 wherein upon consumption by an individual confers a metabolic health benefit to the individual relative to a beverage composition not including the co-product.

2. The beverage of claim 1 wherein the metabolic and gut health benefit is selected from the group consisting of:
 a strong satiating effect on appetite, reduction of postprandial glucose response, reduction of postprandial insulin response, increased fermentability by colonic microflora, increased short-chain fatty acid production, and combinations thereof.

3. The beverage of claim 1, wherein the liquid comprises a liquid selected from the group consisting of water, carbonated water, a juice, a serum, a clarified juice, a single strength juice, a not from concentrate juice, a fruit or vegetable water, a puree, a nectar and combinations thereof.

4. The beverage of claim 1, wherein the co-product comprises citrus pomace co-product.

5. The beverage of claim 1, wherein the beverage comprises at least 2.5 grams of fiber per 8 ounce serving.

6. The beverage of claim 5 wherein the beverage comprises at least 5.5 grams per 8 ounce serving.

7. The beverage of claim 2 wherein the gut health benefit is increased short-chain fatty acid production and wherein the short-chain fatty acids are selected from the group consisting of acetate, propionate, butyrate and combinations thereof.

8. The beverage of claim 1, wherein the co-product comprises between about 6% and about 20% by weight fiber, wherein the fiber of the co-product comprises both insoluble fiber and soluble fiber.

9. The beverage of claim 1, wherein the co-product comprises a number average particle size of between 1 and 250 microns.

10. The beverage of claim 4, wherein the co-product comprises Hamlin orange pomace co-product, Valencia orange pomace co-product, Peru orange pomace co-product, Navel orange pomace co-products, Parson Brown orange pomace co-product, Cara orange pomace co-product, Pineapple orange pomace co-product, or combinations thereof.

11. The beverage of claim 1, wherein the polyphenols comprise hesperidin, limonin, narirutin, nobiletin, didymin, sinensetin, tangeretin, nomilin, or combinations of any of them.

12. The beverage of claim 1, wherein the beverage comprises a viscosity between about 300 and about 3000 centipoises as measured using a Brookfield viscometer at 20 degrees Celsius.

13. The beverage of claim 1, wherein the co-product comprises a juice extraction by-product of a fruit or vegetable selected from the group consisting of orange, apple, grapefruit, lemon, lime, grapes, cranberry, blueberry, peach, pear, pineapple, tomato, strawberry, tangerine, mandarin orange, tangelo pomelo, celery, beet, lettuce, spinach, cabbage, artichoke, broccoli, brussels sprouts, cauliflower, watercress, peas, beans, lentils, asparagus, onions, leeks, kohlrabi, radish, turnip, rutabaga, rhubarb, carrot, cucumber, zucchini, eggplant, banana, guava, apricot, watermelon, Saskatoon berry, plums, prairie berry, mulberry, elderberry, Barbados cherry (acerola cherry), choke cherry, date, coconut, olive, raspberry, strawberry, huckleberry, loganberry, currant, dewberry, boysenberry, kiwi, cherry, blackberry, quince, buckthorn, passion fruit, rowan, gooseberry, pomegranate, persimmon, mango, papaya, lychee, plum, prune, fig, and any combination thereof.

14. A method for enhancing the metabolic and gut health of an individual comprising administering a beverage composition comprising a liquid and a co-product from juice extraction to the individual, wherein the co-product comprises a number average particle size of between 0.1 and 2000 microns, a total polyphenol content of at least 2500 parts per million, a moisture content of between 70% and 85% by weight, and a combined peel and seed content between 0.01% and 20% by weight,
 wherein the beverage has a viscosity between about 300 and about 3000 centipoises as measured using a Brookfield viscometer at 20 degrees Celsius.

15. The method of claim 14, wherein the metabolic and gut health is enhanced in a manner selected from the group consisting of an enhanced feeling of satiety, a reduction of postprandial glucose response, reduction of postprandial insulin response, an increased fermentability by colonic microflora, an increase short-chain fatty acid production in the colon, and combinations thereof.

16. The method of claim 15 wherein the short-chain fatty acids are selected from the group consisting of acetate, propionate, butyrate, and combinations thereof.

17. The method of claim 14 wherein the liquid comprises a liquid selected from the group consisting of water, carbonated water, a juice, a serum, a clarified juice, a single strength juice, a not from concentrate juice, a fruit or vegetable water, a puree, a nectar and combinations thereof.

18. The method of claim 14, wherein the co-product comprises citrus pomace co-product.

19. The method of claim 14, wherein the co-product comprises between about 6% and about 20% by weight fiber, wherein the fiber of the co-product comprises both insoluble fiber and soluble fiber.

20. The method of claim 14, wherein the co-product comprises a number average particle size of between 1 and 250 microns.

21. The method of claim 18, wherein the co-product comprises Hamlin orange pomace co-product, Valencia orange pomace co-product, Peru orange pomace co-product, Navel orange pomace co-products, Parson Brown orange pomace co-product, Cara orange pomace co-product, Pineapple orange pomace co-product, or combinations thereof.

22. The beverage of claim 14, wherein the polyphenols comprise hesperidin, limonin, narirutin, nobiletin, didymin, sinensetin, tangeretin, nomilin, or combinations of any of them.

23. The method of claim 14, wherein the co-product comprises a juice extraction by-product of a fruit or vegetable selected from the group consisting of orange, apple, grapefruit, lemon, lime, grapes, cranberry, blueberry, peach, pear, pineapple, tomato, strawberry, tangerine, mandarin orange, tangelo pomelo, celery, beet, lettuce, spinach, cabbage, artichoke, broccoli, brussels sprouts, cauliflower, watercress, peas, beans, lentils, asparagus, onions, leeks, kohlrabi, radish, turnip, rutabaga, rhubarb, carrot, cucumber, zucchini, egg-
plant, banana, guava, apricot, watermelon, Saskatoon berry, plains berry, prairie berry, mulberry, elderberry, Barbados cherry (acerola cherry), choke cherry, date, coconut, olive, raspberry, strawberry, huckleberry, loganberry, currant, dewberry, boysenberry, kiwi, cherry, blackberry, quince, buckthorn, passion fruit, rowan, gooseberry, pomegranate, persimmon, mango, papaya, lychee, plum, prune, fig, and any combination thereof.

* * * * *