(54) Title: IMAGING MENSURATING DEVICE FOR FITTING SPECTACLES TO A PATIENT

(54) Titre: MENSURATEUR A PRISE DE VUE POUR L’ADAPTATION DE LUNETTES A UN PATIENT

(57) Abstract

Mensurating device comprising at least one photosensitive sensor (16) providing a front view in order to take into account front-related parameters. According to the invention, the mensurating device further includes data acquisition means (16, 28, 29, 27) for taking into account at least one additional side-related parameter. Application in fitting spectacles to a patient.

(57) Abrégé

Il s'agit d'un mensurateur du genre comportant au moins un capteur photosensible (16) permettant l'exécution d'une prise de vue frontale pour la prise en compte de paramètres intervenant de face. Suivant l'invention, ce mensurateur comporte en outre des moyens d'acquisition de données (16, 28, 29, 27) permettant la prise en compte d'au moins un paramètre supplémentaire intervenant de côté. Application à l'adaptation de lunettes à un patient.
UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les États parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Autriche</td>
<td>FR</td>
<td>France</td>
<td>GB</td>
<td>Royaume-Uni</td>
<td>MR</td>
<td>Mauritanie</td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australie</td>
<td>GA</td>
<td>Ghana</td>
<td>GN</td>
<td>Guinée</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbade</td>
<td>GB</td>
<td>Royaume-Uni</td>
<td>GR</td>
<td>Grèce</td>
<td>NL</td>
<td>Pays-Bas</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
<td>GN</td>
<td>Guinée</td>
<td>HK</td>
<td>Hongrie</td>
<td>NO</td>
<td>Norvège</td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Grèce</td>
<td>HU</td>
<td>Hongrie</td>
<td>NZ</td>
<td>Nouvelle-Zélande</td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
<td>HK</td>
<td>Hongrie</td>
<td>IE</td>
<td>Irlande</td>
<td>PL</td>
<td>Pologne</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>Béénin</td>
<td>HU</td>
<td>Hongrie</td>
<td>IT</td>
<td>Italie</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brésil</td>
<td>IE</td>
<td>Irlande</td>
<td>JP</td>
<td>Japon</td>
<td>RO</td>
<td>Roumanie</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italie</td>
<td>JP</td>
<td>Japon</td>
<td>RU</td>
<td>Fédération de Russie</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>République Centrafricaine</td>
<td>JP</td>
<td>Japon</td>
<td>KP</td>
<td>République populaire démocratique de Corée</td>
<td>SD</td>
<td>Soudan</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Congo</td>
<td>KR</td>
<td>République de Corée</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SE</td>
<td>Suède</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Suisse</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SK</td>
<td>République slovaque</td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SN</td>
<td>Sénégal</td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
<td>LU</td>
<td>Luxembourg</td>
<td>MC</td>
<td>Monaco</td>
<td>SU</td>
<td>Union soviétique</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Tchécoslovaquie</td>
<td>MC</td>
<td>Monaco</td>
<td>MG</td>
<td>Madagascar</td>
<td>TD</td>
<td>Tchad</td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>République tchèque</td>
<td>MG</td>
<td>Madagascar</td>
<td>ML</td>
<td>Mali</td>
<td>TG</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Allemagne</td>
<td>ML</td>
<td>Mali</td>
<td>MN</td>
<td>Mongolie</td>
<td>UA</td>
<td>Ukraine</td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Danemark</td>
<td>MN</td>
<td>Mongolie</td>
<td>US</td>
<td>États-Unis d'Amérique</td>
<td>VN</td>
<td>Viêt Nam</td>
<td></td>
</tr>
</tbody>
</table>
"Mensurateur à prise de vue pour l'adaptation de lunettes à un patient"

La présente invention concerne d'une manière générale l'adaptation de lunettes à un patient, c'est-à-dire, plus précisément, l'adaptation, aux cercles ou entourages d'une monture de lunettes choisie par ce patient, des lentilles ophtalmiques devant équiper cette monture de lunettes pour satisfaire à sa vue.

Elle vise plus particulièrement le cas où, pour cette adaptation, il est mis en oeuvre un appareil, appelé ici par simple commodité mensurateur, assurant une prise de vue de la partie utile au moins du visage du patient porteur à l'essai de la monture de lunettes à équiper.

C'est le cas, notamment, dans le brevet français No 1 315 937, ainsi que dans les certificats d'addition rattachés à celui-ci, et c'est le cas, également, dans le brevet français qui, déposé sous le No 87 13368, a été publié sous le No 2 620 927.

Dans le brevet français No 1 315 937, l'appareil de prise de vue est un appareil photographique.

Dans le brevet français No 87 13368, il s'agit, en variante, d'un appareil vidéoscopique.

Chacun de ces appareils de prise de vue constitue un capteur photosensible, à émulsion dans un premier cas, et à éléments à transfert de charges dans le second.

Tant dans le brevet français No 1 315 937 que dans le brevet français No 87 13368, il n'est mis en œuvre qu'un seul capteur photosensible, et la prise de vue assurée par celui-ci est exclusivement une prise de vue frontale.

Cette prise de vue frontale permet de prendre en compte les paramètres intervenant de face dans l'adaptation à faire.

S'agissant, en pratique, de déterminer la position du centre optique des lentilles ophtalmiques, c'est-à-dire des pupilles du patient pour une vision à l'infini de celui-ci, vis-à-vis de la position des centres géométriques des cercles ou entourages de la monture de lunettes, les paramètres ainsi
pris en compte de face sont, d'une part, l'écart pupillaire du patient, ou ce demi-écart, et, d'autre part, la hauteur de montage, c'est-à-dire la distance, mesurée en fond de drageoir, séparant du bord inférieur, ou supérieur, des cercles ou entourages de la monture de lunettes les pupilles du patient.

Mais, ce faisant, deux paramètres intervenant de côté dans l'adaptation à faire sont systématiquement négligés.

Il s'agit tout d'abord de la distance, communément dite distance verre-œil, séparant, en première approximation, du plan moyen des cercles ou entourages de la monture de lunettes à équiper les pupilles du patient.

Il résulte inévitablement de cette distance verre-œil une erreur de parallaxe dans l'estimation de l'écart pupillaire du patient.

L'autre paramètre intervenant également de côté est l'angle, communément appelé angle "pantoscopique", que fait avec la verticale le plan moyen des cercles ou entourages de la monture de lunettes.

Suivant les réalisations, cet angle pantoscopique est usuellement compris entre 6 et 15°.

Dans certains cas, il lui est systématiquement attribué une valeur moyenne déterminée, de l'ordre par exemple de 12°.

C'est le cas par exemple dans le brevet français qui, déposé sous le No 80 01428, a été publié sous le No 2 474 177.

Dans ce brevet français, il est mis en oeuvre, latéralement, des repères fixes dont l'image est à superposer à vue avec celle de la trace du plan moyen des cercles ou entourages de la monture de lunettes à équiper.

Cette disposition ne permet en définitive qu'une approximation dans la prise en compte de l'angle pantoscopique.

La présente invention a d'une manière générale pour objet une disposition permettant d'éviter les divers inconvénients succinctement exposés ci-dessus.

De manière plus précise, elle a pour objet un mensurateur à prise de vue pour l'adaptation de lunettes à un patient, du genre comportant au moins un capteur photosensible pour l'exécution d'une prise de vue frontale permettant la
prise en compte d'au moins un paramètre intervenant de face dans l'adaptation à faire, ce mensurateur étant d'une manière générale caractérisé en ce qu'il comporte en outre des moyens d'acquisition de données permettant la prise en compte d'au moins un paramètre supplémentaire intervenant de côté dans cette adaptation.

Suivant une première forme de mise en oeuvre possible, ces moyens d'acquisition de données comportent, soit un capteur photosensible assurant la prise de vue frontale et un miroir qui, interposés sur le faisceau de visée de ce capteur photosensible est monté pivotant entre deux positions, à savoir une position escamotée, pour laquelle il n'interfère pas sensiblement avec ce faisceau de visée, et une position déployée, pour laquelle il capte au contraire une voie optique dérivée venant latéralement du paramètre recherché, soit au moins un capteur photosensible intervenant spécifiquement de côté.

Le paramètre recherché peut dans ce cas être indifféremment l'angle pantoscopique et/ou la distance verre-oeil.

Préférentiellement, cependant, il s'agit systématiquement de l'angle pantoscopique, ce paramètre étant en pratique le plus déterminant dans la précision de la mesure de la hauteur de montage recherchée.

Suivant une deuxième forme de mise en oeuvre possible, les moyens d'acquisition de données prévus suivant l'invention comportent, outre un repère fixe dont l'image est à superposer à vue avec celle de la trace du plan moyen des cercles ou entourages de la monture de lunettes à équiper, un repère mobile, qui est monté pivotant sous le contrôle d'un moyen de commande, et dont l'image est à superposer avec celle des branches de cette monture de lunettes.

Dans ce cas, il est systématiquement tenu compte de la valeur exacte de l'angle pantoscopique.

Corollairement, des dispositions sont préférentiellement prises pour minimiser de manière satisfaisante l'erreur de parallaxe.
Par exemple, il peut être prévu, à cet effet, en parallèle, deux capteurs photosensibles pour la prise de vue frontale, ce qui conduit de surcroît à des avantages supplémentaires.

Quoi qu'il en soit, le mensurateur suivant l'invention permet avantageusement dans tous les cas une plus exacte prise en compte de l'un au moins des paramètres à prendre en considération de côté dans l'adaptation à faire.

Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple, en référence aux dessins schématiques annexés sur lesquels :

- la figure 1 est une vue en perspective d'un mensurateur suivant l'invention ;
- la figure 2 en est une vue en plan-coupe, suivant la flèche II de la figure 1 ;
- la figure 3 est, suivant la flèche III de la figure 2, une vue en élévation de côté du patient porteur de la monture de lunettes à équiper ;
- les figures 4, 5, 6 sont des vues en plan-coupe qui, analogues à celle de la figure 2, se rapportent chacune respectivement à diverses variantes de réalisation ;
- la figure 7 est une vue en perspective qui, reprenant pour partie celle de la figure 1, se rapporte à une autre variante de réalisation.

Tel qu'ilustré sur ces figures, il s'agit, globalement, d'assurer l'adaptation, à un patient dont seuls les yeux ont été schématisés sur ces figures, d'une quelconque monture de lunettes dûment choisie par ce patient.

Plus précisément, il s'agit de déterminer la position, vis-à-vis du centre géométrique, ou centre "boxing", des cercles ou entourages de la monture de lunettes, de la pupille des yeux du patient.

De manière connue en soi, le mensurateur mis en oeuvre à cet effet comporte, dans un caisson, au moins un capteur photosensible propre à l'exécution d'une prise de
vue frontale du patient porteur de la monture de lunettes 11 à équiper.

Par exemple, et de manière connue en soi, le caisson 15, qui est équipé de poignées 17 pour en faciliter la manipulation, est monté pivotant autour d'un axe horizontal sur un support qui, lui-même monté orientable autour d'un axe vertical, est porté par un bras permettant de le déplacer dans les trois directions.

Les dispositions correspondantes, qui ne sont pas représentées sur les figures, sont bien connues par elle-mêmes, et, ne relevant pas de la présente invention, elles ne seront pas décrites plus en détail ici.

De manière également connue en soi, pour matérialiser la position des yeux 10 du patient, il est procédé par reflet cornéen.

Il est prévu à cet effet, deux lampes 18, qui, par deux voies optiques V1, comportant, par exemple, et tel que schématisé, une lentille de focalisation 19, un miroir 20 qui leur est commun, et un miroir 21 qui leur est spécifique, dirigent vers les yeux 10 un faisceau lumineux dont le faisceau de retour V2 est reçu par le capteur photosensible 16.

Ce capteur photosensible 16 permet ainsi de prendre en compte deux paramètres intervenant de face dans l'adaptation à faire, à savoir, d'une part, l'écart pupillaire E du patient, ou ce demi-écart pupillaire, et, d'autre part, la hauteur de montage H, c'est-à-dire la distance séparant des yeux 10 du patient le bord inférieur, ou supérieur, des cercles ou entourages 12 de la monture de lunettes 11 à équiper.

Cette hauteur de montage H devant être mesurée en fond de drageoir, il est en pratique systématiquement apporté une correction donnée au relevé effectué sur le contour interne du bord pris en compte.

Mais, dans l'adaptation à faire, d'autres paramètres interviennent de côté.

Ainsi que l'illustre la figure 3, il s'agit, d'une part, de la distance verre-œil D, c'est-à-dire, en première approximation, de la distance entre le plan moyen P des cercles
ou entourages 12 et les yeux 10 pour la vision à l'infini du patient, cette distance verre-oeil D étant cependant plus exactement, et le calcul permet d'en tenir compte, la distance entre le plan principal image de la lentille ophtalmique et le plan tangent à la surface externe de la cornée perpendiculaire à l'axe de visée, et, d'autre part, de l'angle pantoscopique A de la monture de lunettes 11, c'est-à-dire de l'angle que fait par rapport à la verticale le plan moyen P de ces cercles ou entourages 12.

Ainsi que l'illustre la figure 2, il résulte de la distance verre-oeil D que lorsque, comme en l'espèce, un seul capteur photosensible 16 est mis en oeuvre, il intervient une erreur de parallaxe p non négligeable dans l'implantation ultérieure de lentilles ophtalmiques dans les cercles ou entourages 12 de la monture de lunettes 11, l'écart pupillaire E étant apprécié en retrait par rapport à ces derniers.

De manière connue en soi, le mensurateur 14 suivant l'invention comporte corollairement, dans la forme de mise en oeuvre illustrée sur les figures 1 et 2, des moyens de positionnement propres à permettre de prendre approximativement en compte l'angle pantoscopique A.

Ces moyens de positionnement comportent deux boîtes latérales 22, qui sont portées chacune respectivement par des bras 24 solides du caisson 15, et entre lesquelles le patient doit engager la tête.

Sur leur paroi latérale, ces boîtes latérales 22 comportent chacune un repère fixe 25 qui fait un angle donné par rapport au capteur photosensible 16.

Par exemple, et tel que schématisé, ce repère fixe 25 est formé par une simple fente affectant la paroi latérale concernée d'une telle boîte latérale 22.

Par un miroir 26 interne aux boîtes latérales 22, figure 2, le praticien, disposé à l'arrière du caisson 15, reçoit l'image du repère fixe 25.

Il doit superposer celle-ci avec celle de la trace du plan moyen P des cercles ou entourages 12 de la monture de lunettes 11 qu'il reçoit par réflexion sur une lame semi-
transparente 27 fermant à l'avant chacune des boîtes latérales 22.

Les dispositions correspondantes ne relevant pas non plus de la présente invention, elles ne seront pas décrites plus en détail ici.

Suivant l'invention, le mensurateur 14 comporte en outre des moyens d'acquisition de données permettant la prise en compte d'au moins un paramètre supplémentaire intervenant de côté dans l'adaptation à faire.

Il s'agit de l'angle pantoscopique A et/ou de la distance verre-œil D.

Dans la forme de réalisation illustrée sur les figures 1 et 2, les moyens d'acquisition de données prévus suivant l'invention comportent le capteur photosensible 16 lui-même et un miroir 28 qui, interposé sur le faisceau de visée de ce capteur photosensible 16, au-dessus et à l'écart du miroir 20, est monté pivotant entre deux positions, à savoir une position escamotée, représentée en trait continu sur la figure 2, pour laquelle il n'interfère pas sensiblement avec ce faisceau de visée, et une position déployée, schématisée en traits interrompus sur la figure 2, pour laquelle il capte au contraire une voie optique dérivée V3 venant latéralement du paramètre recherché.

Cette voie optique dérivée V3 comporte, figure 2, outre un miroir de renvoi 29 disposé latéralement, sensiblement à niveau avec le miroir 28, du côté d'une des boîtes latérales 22, la lame semi-transparente 27, formant miroir, de cette boîte latérale 22.

Ainsi qu'il est aisé de le comprendre, la prise de vue effectuée suivant cette voie optique dérivée V3 permet de prendre en compte aussi bien la distance verre-œil D, ce qui permet de pallier les conséquences de la parallaxe p, que l'angle pantoscopique A.

Le capteur photosensible 16 est par exemple un appareil vidéoscopique, c'est-à-dire un appareil électronique apte à assurer en quelque sorte l"'auscultation" visuelle d'un objet.
Il s'agit donc, par exemple, d'un capteur de type CCD comportant des éléments photosensibles à transfert de charges.
Préférantiellement, il s'agit d'un capteur matriciel, mais il pourrait tout aussi bien s'agir d'un capteur linéaire à balayage horizontal ou vertical.
Quoi qu'il en soit, il lui est associé des moyens de traitement qui, pour l'exploitation des signaux qu'il fournit, pilotent en conséquence un organe de sortie, tel que console de visualisation ou imprimante par exemple.

Les dispositions correspondantes étant bien connues par elles-mêmes, et ne relevant pas de la présente invention, elles ne seront pas décrites ici.

En variant, le capteur photosensible 16 peut être un appareil photographique, et, préférentiellement, un appareil photographique à prise de vue instantanée.

Dans les variantes de réalisation représentées sur les figures 4 et 5, les moyens d'acquisition de données prévus suivant l'invention comportent au moins un capteur photosensible 30 intervenant spécifiquement de côté.

Par exemple, figure 4, ce capteur photosensible 30 s'étend transversalement par rapport à celui, 16, assurant une prise de vue frontale.

En pratique, dans la forme de réalisation représentée, le capteur photosensible 30 est disposé au voisinage des boîtes latérales 22, au-delà de l'une de celles-ci par rapport à l'espace d'engagement qu'elles délimitent entre elles.
Sa visée se fait à la faveur d'une voie optique V4 comportant successivement un trou 31 prévu à cet effet dans la paroi latérale de cette boîte latérale 22, le miroir 26 de celle-ci, qui est alors formé d'une lame semi-transparente, et la lame semi-transparente 27 associée.

En pratique, la surface sensible de ce capteur photosensible 30, non visible sur les figures, est perpendiculaire à celle, également non visible sur les figures, du capteur photosensible 16.

Dans la variante de réalisation représentée sur la figure 5, le capteur photosensible 30 s'étend parallèlement à
celui 16 assurant une prise de vue frontale, et il lui est associé une voie optique V5 lui donnant latéralement accès au paramètre recherché.

Outre les éléments de la voie optique V4 précédente, cette voie optique V5 comporte un miroir de renvoi 32.

En pratique, la surface sensible du capteur photosensible 30, non visible sur les figures, est alors parallèle à celle, également non visible sur les figures, du capteur photosensible 16.

Tant dans le cas de la figure 4 que dans celui de la figure 5, le capteur photosensible 30 intervenant de côté est par exemple du même type que le capteur photosensible 16 assurant une prise de vue frontale.

En prenant en compte la distance verre-œil D à l'aide d'un tel capteur photosensible 30 intervenant de côté, l'invention permet avantageusement de corriger la parallaxe même lorsque, comme en l'espèce, un seul capteur photosensible 16 intervient de face.

Dans la variante de réalisation représentée sur la figure 6, le mensurateur 14 suivant l'invention comporte, cependant, en parallèle, pour la prise de vue frontale, deux capteurs photosensibles 16, à raison d'un par cercle ou entourage 12 de la monture de lunettes 11 concernée.

L'erreur de parallaxe est ainsi grandement minimisée.

De ce fait, la distance verre-œil D est sensiblement sans incidence.

Corollairement, les effets d'éventuelles erreurs de positionnement du mensurateur 14 par rapport au patient se trouvent minimisés, et, eu égard à la duplication des éléments sensibles, la résolution finale est avantageusement pratiquement doublée.

Seule est encore nécessaire la prise en compte de l'angle pantoscopique A.

Cette prise en compte peut se faire comme précédemment.

Mais, en variante, et tel que représenté à la figure 7, les moyens d'acquisition de données prévus à cet effet suivant l'invention peuvent par exemple comporter, sur l'une
des boîtes latérales 22, outre le repère fixe 25, un repère mobile 34, qui est monté pivotant sous le contrôle d'un moyen de commande, et dont l'image est à superposer avec celle des branches 35 de la monture de lunettes 11.

Par exemple, le repère mobile 34 est porté par un secteur 36, qui, disposé à l'intérieur de la boîte latérale 22 concernée, s'étend au droit d'un évidement 37 de celle-ci laissant visible le repère mobile 34.

L'angle au centre de ce secteur 36 est fait suffisant pour que l'évidement 37 soit en permanence occulté.

Conjointement les moyens de commande associés au repère mobile 34 sont par exemple constitués par un moteur 38 qui, par une transmission 39, commande en rotation le secteur 36, et dont le pilotage est asservi à un organe de commande 40 à la disposition de l'usager.

Par exemple, cet organe de commande 40 est une molette portée par l'une des poignées 17.

Préférentiellement, le moteur 38 est codé.

Il est ainsi possible de connaître l'angle de rotation appliqué au secteur 36 portant le repère mobile 34 pour aligner ce repère mobile 34 avec les branches 35 de la monture de lunettes 11 lorsque le repère fixe 25 est aligné avec le plan moyen P de ses cercles ou entourages 12, et, partant, de connaître, par complément, l'angle pantoscopique A.

Bien entendu la présente invention ne se limite pas aux formes de réalisation décrites et représentées, mais englobe toute variante d'exécution et/ou de combinaison de leurs divers éléments.
REVENDICATIONS

1. Mensurateur à prise de vue pour l'adaptation de lunettes à un patient, du genre comportant au moins un capteur photosensible (16) pour l'exécution d'une prise de vue frontale permettant la prise en compte d'au moins un paramètre intervenant de face dans l'adaptation à faire, caractérisé en ce qu'il comporte en outre des moyens d'acquisition de données permettant la prise en compte d'au moins un paramètre supplémentaire intervenant de côté dans cette adaptation.

2. Mensurateur suivant la revendication 1, caractérisé en ce que lesdits moyens d'acquisition de données comportent le capteur photosensible (16) lui-même et un miroir (28) qui, interposé sur le faisceau de visée de ce capteur photosensible (16), est monté pivotant entre deux positions, à savoir une position escamotée, pour laquelle il n'interfère pas sensiblement avec ce faisceau de visée, et une position déployée, pour laquelle il capte au contraire vers une voie optique dérivée (V3) venant latéralement du paramètre recherché.

3. Mensurateur suivant la revendication 1, caractérisé en ce que lesdits moyens d'acquisition de données comportent au moins un capteur photosensible (30) intervenant spécifiquement de côté.

4. Mensurateur suivant la revendication 3, caractérisé en ce que le capteur photosensible (30) intervenant de côté s'étend transversalement par rapport à celui (16) assurant une prise de vue frontale.

5. Mensurateur suivant la revendication 4, caractérisé en ce que la surface sensible du capteur photosensible (30) intervenant de côté est perpendiculaire à celle du capteur photosensible (16) assurant une prise de vue frontale.

6. Mensurateur suivant la revendication 3, caractérisé en ce que le capteur photosensible (30) intervenant de côté s'étend parallèlement par rapport à celui (16) assurant une prise de vue frontale, et il lui est associé une voie optique (V5) lui donnant latéralement accès au paramètre recherché.
7. Mensurateur suivant la revendication 6, caractérisé en ce que la surface sensible du capteur photosensible (30) intervenant de côté est parallèle à celle du capteur photosensible (16) assurant une prise de vue frontale.

8. Mensurateur suivant la revendication 1, caractérisé en ce que lesdits moyens d'acquisition de données comportent, outre un repère fixe (25) dont l'image est à superposer à vue avec celle de la trace du plan moyen (P) des cercles ou entourages (12) de la monture de lunettes (11) concernée, un repère mobile (34), qui est monté pivotant sous le contrôle d'un moyen de commande (38), et dont l'image est à superposer avec celle des branches (35) de cette monture de lunettes (11).

9. Mensurateur suivant l'une quelconque des revendications 1 à 8, caractérisé en ce que, pour la prise de vue frontale, il comporte en parallèle deux capteurs photosensibles (16), à raison d'un par cercle ou entourage (12) de la monture de lunettes (11) concernée.

10. Mensurateur suivant l'une quelconque des revendications 1 à 9, caractérisé en ce que le ou les capteurs photosensibles (16, 30) qu'il comporte sont des appareils vidéoscopiques, tels que des capteurs de type CCD comportant des éléments photosensibles à transfert de charges par exemple, et il leur est associé des moyens de traitement qui, pour l'exploitation des signaux qu'ils fournissent, pilotent en conséquence un organe de sortie, tel que console de visualisation ou imprimante par exemple.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl.\(^5\) A61B3/11; G02C13/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl.\(^5\) A61B; G02C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | EP,A,0 115 723 (ESSILOR INTERNATIONAL)
15 August 1984
see page 8, line 8 - page 9, line 22 | 1,8,9 |
| Y | EP,A,0 395 478 (ESSILOR INTERNATIONAL)
31 October 1990
see column 8, line 1 - line 57
see column 11, line 31 - column 12, line 32; figures 3-6 | 1 |
| Y | DE,U,8 812 065 (OPT. WERKE G. RODENSTOCK)
24 November 1988
see page 10, line 1 - page 13, line 2 | 3,4,6,8 |
| A | FR,A,2 437 819 (ESSILOR INTERNATIONAL)
30 April 1980
see page 1, line 1 - line 27; figures | 1,2 |

Further documents are listed in the continuation of Box C. See patent family annex.

- Special categories of cited documents:
 - **"A"** document defining the general state of the art which is not considered to be of particular relevance
 - **"E"** earlier document but published on or after the international filing date
 - **"L"** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - **"O"** document referring to an oral disclosure, use, exhibition or other means
 - **"P"** document published prior to the international filing date but later than the priority date claimed
 - **"T"** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - **"X"** document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - **"Y"** document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - **"&"** document member of the same patent family

Date of the actual completion of the international search
09 July 1993 (09.07.93)

Date of mailing of the international search report
22 July 1993 (22.07.93)

Name and mailing address of the ISA/ European Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR,A,2 474 177 (ESSILOR INTERNATIONAL) 24 July 1981 cited in the application see page 3, line 8 – page 4, line 25</td>
<td>1,6</td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2 558 714 (ESSILOR INTERNATIONAL) 2 August 1985 see page 4, line 33 – page 5, line 32</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 1992)
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. FR 9300438
SA 73782

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 09/07/93.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA-A- 1218842</td>
<td>10-03-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1733541</td>
<td>17-02-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 2001214</td>
<td>05-01-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 4012967</td>
<td>06-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1617068</td>
<td>12-09-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 2037168</td>
<td>22-08-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 59120128</td>
<td>11-07-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 2295535</td>
<td>06-12-90</td>
</tr>
<tr>
<td>DE-U-8812065</td>
<td>24-11-88</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>FR-A-2437819</td>
<td>30-04-80</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>FR-A-2474177</td>
<td>24-07-81</td>
<td>DE-A, C 3101200</td>
<td>18-02-82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1461894</td>
<td>14-10-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 56128917</td>
<td>08-10-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 63009203</td>
<td>26-02-88</td>
</tr>
<tr>
<td>FR-A-2558714</td>
<td>02-08-85</td>
<td>DE-A- 3503271</td>
<td>10-10-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A, B 2153550</td>
<td>21-08-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4653881</td>
<td>31-03-87</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
I. CLASSEMENT DE L’INVENTION

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB:

| CIB 5 | A61B ; | G02C |

II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTÉ

Documentation minimale consultée

<table>
<thead>
<tr>
<th>Système de classification</th>
<th>Symboles de classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIB 5</td>
<td>A61B ; G02C</td>
</tr>
</tbody>
</table>

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté.

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP,A,0 115 723 (ESSILOR INTERNATIONAL) 15 Août 1984 voir page 8, ligne 8 - page 9, ligne 22</td>
<td>1,8,9</td>
</tr>
<tr>
<td>Y</td>
<td>EP,A,0 395 478 (ESSILOR INTERNATIONAL) 31 Octobre 1990 voir colonne 8, ligne 1 - ligne 57</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>voir colonne 8, ligne 1 - ligne 57 voir colonne 11, ligne 31 - colonne 12, ligne 32; figures 3-6</td>
<td>9,10</td>
</tr>
<tr>
<td>Y</td>
<td>DE,U,8 812 065 (OPT. WERKE G. RODENSTOCK) 24 Novembre 1988 voir page 10, ligne 1 - page 13, ligne 2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2 437 819 (ESSILOR INTERNATIONAL) 30 Avril 1980 voir page 1, ligne 1 - ligne 27; figures</td>
<td>3,4,6,8</td>
</tr>
</tbody>
</table>

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée: 09 JUILLET 1993

Date d’expédition du présent rapport de recherche internationale: 22 07 93

Administration chargée de la recherche internationale: OFFICE EUROPEEN DES BREVETS

Signature du fonctionnaire autorisé: RIEB K.D.
III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

(SUITE DES RENSEIGNEMENTS INDIQUES SUR LA DEUXIÈME FEUILLE)

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
</table>
| A | FR,A,2 474 177 (ESSILOR INTERNATIONAL)
24 Juillet 1981
cité dans la demande
voir page 3, ligne 8 - page 4, ligne 25 | 1,6 |
| A | FR,A,2 558 714 (ESSILOR INTERNATIONAL)
2 Août 1985
voir page 4, ligne 33 - page 5, ligne 32 | 1,6 |
ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE
RELATIF A LA DEMANDE INTERNATIONALE NO. FR 9300438
SA 73782

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.
Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets. 09/07/93

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA-A- 1218842</td>
<td>10-03-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1733541</td>
<td>17-02-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 2001214</td>
<td>05-01-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 4012967</td>
<td>06-03-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1617068</td>
<td>12-09-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 2037168</td>
<td>22-08-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 59120128</td>
<td>11-07-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 2295535</td>
<td>06-12-90</td>
</tr>
<tr>
<td>DE-U-8812065</td>
<td>24-11-88</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>FR-A-2437819</td>
<td>30-04-80</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>FR-A-2474177</td>
<td>24-07-81</td>
<td>DE-A, C 3101200</td>
<td>18-02-82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1461894</td>
<td>14-10-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 56128917</td>
<td>08-10-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 63009203</td>
<td>26-02-88</td>
</tr>
<tr>
<td>FR-A-2558714</td>
<td>02-08-85</td>
<td>DE-A- 3503271</td>
<td>10-10-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A, B 2153550</td>
<td>21-08-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4653881</td>
<td>31-03-87</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82