发明名称 从含油母质的岩层中就地回收烃的方法

摘要

本发明提供一种就地热解地下含油母质岩层中烃类的方法，包括：向至少一部分含油母质岩层供热，使至少一部分受热部分达到油母质热解温度，得到热解产物；和从地下岩层收集热解产物；其中所选地下岩层包括镜质体反射率为 0.2 到 3% 的油母质。本发明还进一步提供一种收集热解产物后将含油母质岩层与合成气生产所用流体进行反应来生产合成气的方法。
1. 一种就地热解地下含油母质岩层中烃类的方法，包括：
向至少一部分含油母质岩层供热，使至少一部分受热部分达到油母质热解温度，得到热解产物；和
从地下岩层收集热解产物；
其中所选地下岩层包括镜质体反射率为 0.2 到 3% 的油母质。
2. 按权利要求 1 的方法，其中含油母质岩层是一种含煤岩层。
3. 按权利要求 1 或 2 的方法，其中压力适合控制在 1.4-36，优选 2-20 巴绝压的范围内。
4. 在按权利要求 1 到 3 任一项的方法，其中其中热解温度范围从 270-400℃，优选从 275-375℃。
5. 按权利要求 1 到 4 任一项的方法，其中含油母质岩层被一或多个热源加热并借助一或多个生产井收集热解产物。
6. 按权利要求 5 的方法，其中每个生产井的热源数范围为从 1 到 16，优选从 8 到 16。
7. 按权利要求 1 到 6 任一项的方法，其中油母质的镜质体反射率从 0.25 到 2.0%，优选从 0.4 到 1.2%。
8. 按权利要求 1 到 7 任一项的方法，其中油母质的氢含量大于 2%（重），优选大于 3%（重）。
9. 按权利要求 1 到 8 任一项的方法，其中油母质包括从 0.5 到 2，优选从 0.7 到 1.65 的氢/碳元素比。
10. 按权利要求 1 到 9 任一项的方法，其中油母质的元素氧重量百分数小于 20%，优选小于 15%。
11. 按权利要求 1 到 10 任一项的方法，其中油母质的氧/碳元素比为 0.03 到 0.12。
12. 按权利要求 1 到 11 任一项的方法，其中收集热解产物后，将含油母质岩层与合成气生产所用流体进行反应。
从含油母质的岩层中就地回收烃的方法

本发明涉及一种由含油母质的岩层生产烃的方法。

从地下岩层得到的含烃物质常常用作能源、原料和消费品等。对可获得烃类资源枯竭的关注已导致开发更有效的开采、加工和利用可得烃类资源的方法。就地处理方法可用于从地下岩层中移出烃类物质。

油母质由已经熟化过程转变的有机物质组成。包括油母质的含烃岩层包括但不限于含煤岩层和含油页岩岩层。熟化过程可包括两个阶段：生物化学阶段和地球化学阶段。生物化学阶段一般包括有机物质通过需氧和厌氧机理的降解过程。地球化学阶段一般包括因温度变化和高压所引起的有机物转化过程。熟化过程中，随着油母质有机物的转化会产生油和气。

例如，油母质可分为四种不同类型：I 型、II 型、III 型和 IV 型。具体类型取决于油母质的前体材料。前体材料经过一段时间转变为显微组分，即在前体材料基础上衍生出的不同结构和性质的微观结构。油页岩可描述为一种 I 型或 II 型油母质且主要含来自类脂组的显微组织，类脂组是由植物，特别是富脂质和树脂的部分衍生而得的。类脂组内氢的浓度可高达 9%。此外，类脂组具有较高的 H/C 比和较低的 O/C 比。由于 I 型油母质主要是由藻类体构成，故 I 型油母质还可进一步归类为藻质体。I 型油母质是由湖泊环境所形成沉积物得到的。II 型油母质可由海洋环境沉积的有机物发展而成。
III型油母质一般包括镜质组显微组分。镜质组是由细胞壁和/或木质组织（例如植物的茎、枝、叶和根）。III型油母质可在大部分腐殖煤中存在。III型油母质可由沼泽地沉积的有机物发展而来。IV型油母质包括惰性组显微组分类。此组组织是由在早期埋葬成岩的泥煤阶段中经历氧化过程的植物如树叶、树皮和树茎所构成。化学结构类似于镜质组，但含高碳低氢。因此，被认为是惰性的。

随着油母质熟化过程的进行，油母质的组成常常会发生变化。例如按III型油母质的煤级和熟化度排列，含煤岩层的煤级阶段包括下列分级：木质、泥煤、褐煤、亚煤、高挥发性煤、中挥发性煤、低挥发性煤、半无烟煤和无烟煤。另外，随着煤级的提高，油母质呈现出芳香性增加的趋势。

已发现某些岩层所产流体的性质可通过镜质体反射率来评价。可用评价含烃物质的性能指标包括但不限于：由含烃物质所能产生的烃液体的量、所产生烃液体的API比重、由含烃物质所能产生的烃气体的量和/或由含烃物质所能产生的二氧化碳的量。

因此，本发明提供一种就地热解地下含油母质岩层的方法。包括：

由热源向至少一部分含油母质岩层供热，使至少一部分受热部分达到油母质热解温度，得到热解产物；

从地下岩层收集热解产物；

其中地下岩层包括镜质体反射率为0.2到3%的油母质。

“热解”通常是指在无氧存在下由于加热使化学键断裂的过程。例如热解过程可包括通过单加热即无氧化反应的方法把化合物转化成一或多种其它物质。本文所用“热解产物”一词是指含油母质岩层热解过程中产生的流体。这是一个用来分类有机源岩的标准测量方法。

镜质体反射率（Ro）是从抛光的镜质体表面所反射光的百分数。这是一种用来分类有机源岩的标准测定方法。按照标准来制备样品。将样品压成颗粒大小，然后放入封固剂中，切削表面并抛光，在显微镜下用反射光观察。测量反射率，标准指出了所要用的方法，即ASTMD2798。已发现含油母质材料镜质体反射率的提高与含烃物质的实质性重排一
致。高镜质体反射率的材料具有类似镜子的性质，其热传导率可能提高。镜质体反射率至少为 0.25%的含油母质岩层可得到很好的结果，镜质体反射率至少为 0.4%的岩层所得结果甚至更好，最优选至少为 0.5%。上限适宜为 3.0%，更优选是 2.0%，最优选是 1.2%。

根据岩层内油母质的烃含量来选择要处理的含油母质岩层较为有利。例如一种有利的要处理油母质中的烃含量大于 2%（重），优选大于 3%（重）或更优选大于 4%（重）（按干燥无灰状态测定）。此外，所选断面适宜包括其氢/碳元素比落在从 0.5 到 2，且在很多情况下是从 0.7 到 1.65 范围的油母质。

岩层内的氢可以是所产生烃流体中的中性基团。按此方式，岩层内存在的氢可通过将烃碎片转化为较短链烃流体的方法基本抑制烃碎片的反应。这些烃流体可进入气相且可由岩层产生，气相中烃流体的增加可显著减少所选岩层断面内的焦化倾向。据信若岩层中存在的氢太少，那么对所生产流体的数量和质量会有负面影响。维持氢分压是有利的，且如果天然存在的氢气太少，那么可将氢气或其他还原流体加到岩层中。

当加热一部分含烃岩层时，该部分中的氧可形成二氧化碳和其它氧化物。最好是减低二氧化碳和其它氧化物的产量。此外，由岩层所产生的二氧化碳量可随例如要处理的部分含烃岩层的氧含量而变动。因此，优先选择和处理含氧元素的百分数小于 20%、优选小于 15%且更优选小于 10%的油母质的一部分岩层。另外有些实施方案可包括选择和处理含氧/碳元素比小于 0.15 的油母质。或者，在选定要处理的一部分岩层内的至少一些含油母质材料的氧/碳元素比可以是 0.03 到 0.12。按此方式，由含烃物质就地转化过程所产生的二氧化碳和其它氧化物量就可减少。

US-A-4570715 描述了一种电加热元件。该加热元件有一个外围一层绝缘材料的导电芯，并外围一个金属套管。导电芯在高温下的电阻较低。绝缘材料的电阻、耐压强度和热导性在高温下较高。绝缘层阻止了从导电芯向金属套管的击穿。金属套管的拉伸强度和抗蠕变性在高温下较高。

燃料燃烧也用来加热岩层。在某些情况下，燃烧燃料来加热岩层的方法比用电加热岩层的方法更为经济。有几种不同类型的加热器采用燃料燃烧为热源来加热岩层。燃烧可在岩层内、井壁内和或靠近表面处进行。岩层内的燃烧可看成是燃烧层。将氧化剂泵送入岩层，氧化剂被点燃，火焰向前移动到生产井。泵送入岩层的氧化剂沿断裂线和其它高渗透性通道流过岩层，在这样的情况下，前进的火焰能均匀通过岩层。

含油母质的岩层可以是油页岩。优选含油母质岩层是一种含煤岩层。本方法可行性的一个重要参数是地下岩层的热导率。以前的文献指出某些含烃岩层如煤加热时呈现较低的热导率和热扩散系数值。例如 J.M. Singer 和 R.P. Tye 的题为“所选生煤和焦炭的热、机械和物理性能”的政府报告 No. 8364[矿物局美国国内部（1979）]中，作者报告了四种生煤的热导率和热扩散系数。该报告包括了热导率和热扩散系数的图表，表明直到 400℃该值仍较低（例如热导率约 0.2W/m·℃或更低，热扩散系数约 1.710-3m²/s）。该政府报告称“煤和焦炭是极好的热绝缘体”。在“Hanna Basin 煤的热性能和结构”（美国机械工程师学会会刊，第 106 卷 266 页，1984 年 6 月）一文中也已证实这一发现，据该文报道，直到 400℃高挥发性生煤的热导率约为 0.4-0.4W/m·K。所报道的这些含煤材料
的热导率值往往使人丧失对煤采用就地加热处理方法的信心。

已发现所用煤的热导率要高于含煤材料热导率的报道值。产生差异的原因据信至少部分可以解释为假定所报道的值并未将当地煤的局限性考虑在内。

煤通常被采集用来发电厂的燃料。用做燃料来发电的大部分煤被采出。但大量含煤岩层不适合经济开采。例如，从深度倾向煤层、薄煤层和/或深煤层中采煤就可能不太经济可行。

要进行就地热处理的含油母质岩层或其部分的宽度例如可为至少 0.5m，或至少 1.5m，或至少 2.4m，甚或至少 3.0m。所述宽度可达 100 米，或达 1000 米，甚或达 2000 米或更宽。要进行就地热处理的含油母质岩层或其部分的层厚例如可为至少 1m，更一般为从 4 到 100m 范围，更典型为从 6 到 60m。含油母质岩层的上覆岩层厚度例如可为至少 10m，更典型是从 20 到 800 米或 1000 米范围或是更厚。

薄煤层可以包括层厚小于 10m 的煤层。深煤层可以包括位于或延伸至地表水平面下深度大于 760m 的煤层。煤燃烧发电的能量转化效率比燃料如天然气要低。还有煤燃烧发电通常会产生大量二氧化碳、硫的氧化物和氮氧化物及颗粒物，释放到大气中。

热源可用来加热地下岩层。适合适合一或多个井身将热源应用于岩层。适合井身生产井收集热解产物。热源数量可以变动。最好每个生产井用一个以上的热源。每个生产井所用热源数量最好在从 1 到 16 个范围。例如，在一个实施方案中，含烃材料就地转化过程包括将至少一部分含烃岩层置于岩层内的一批热源加热。在某些实施方案中，按与生产井基本等距放置一批热源。可采用一定图案 (如三角形排布)。

热源之间的间隔一般在从 5m 到 20m，优选从 8m 到 15m 范围。优选热源以基本等距的三角形放置，因为与其他形状例如六角形相比，它能对岩层的最冷点提供更加均匀的加热。此外，三角形能比其他形状例如六角形提供更快的加热速率，以达到预定的温度。另外，含烃材料就地转化过程包括将至少一部分岩层用基本平行含烃岩层边线放置的热源加热。在一个实施方案中，不论热源的排列方式和间距如何，置于岩层内
的热源与生产井比例大于8。

某些实施方案还包括使热从一或多个热源传递到所选受热部分的断面。在一个实施方案中，所选断面位于一或多个热源之间。例如就地转化过程还包括使热从一或多个热源传递到所选岩层的断面，以便来自一或多个热源的热量能将所选断面内的至少一些含烃材料热解。按此方式，就地转化过程包括将至少一部分含油母质的岩层加热到岩层内含烃材料的热解温度以上。热解温度适合包括至少250℃，优选270℃的温度。最好该温度至少是305℃，可基本通过热传导使热从一或多个热源传递到所选断面。热解温度的范围可高达900℃，但优选不超过400℃。在另一个实施方案中，可加热该部分，使所选断面的平均温度小于375℃，在从270℃到375℃下进行热解反应。

可选择热源间距来增加所选断面的面积。按此方式，选择热源间距来增加热源的效率，从而提高所选含烃材料就地转化方法的经济效益能力。

可按从0.1℃/天到50℃/天范围的加热速率来加热一部分含油母质的岩层。适宜按从0.1℃/天到10℃/天范围的加热速率来加热所选部分的含油母质岩层。例如，以约0.1℃/天到10℃/天范围内的加热速率，可从岩层中产出大部分烃类。尤其是在热解温度范围内，加热速率要低。因此，在整个热解温度范围内，最好是按从0.1℃/天到1℃/天，特别是小于0.7℃/天的加热速率来加热含油母质岩层。热解温度范围适合包括上述温度范围，即从270℃到400℃。热解温度以下，加热速率的影响不大，可上至50℃/天，优选从3℃到10℃/天。例如，在热解温度范围所需全部时间的50%以上，更优选该温度范围所需全部时间的75%以上，或更优选该温度范围所需全部时间的90%以上的时间内以该速率加热含烃岩层的受热部分。

加热含油母质岩层的速率可能会影响从含烃岩层生产的热解产品的数量和质量。例如，在进行热解分析法的情况下，以高加热速率进行加热可以产生出更大量和合烃的流体。但是，此方法的产品质量明显低于采用低于约10℃/天加热速率加热时得到的产品。以低于约10℃/天的升温速加热可使热解反应能在减少焦碳和焦油产量的热解温
度范围内进行。此外，升温速率小于 3℃/天则可通过进一步减少含烃岩层内的焦油产量而进一步提高所生产流体的质量。

按本发明方法的就地热解过程可包括在生产井处监测升温速率。但是，一部分含油母质岩层内的温度可在一部分含油母质岩层的不同位置处测定。例如处理一部分含烃岩层的方法包括监测一部分两个相邻热源中点处的温度。温度监测可在整个处理期间进行。按此方式，也可监测升温速率。升温速率可影响由岩层所生产的热解产物的组成。同样，可对升温速率进行监测，改变和/或控制，例如用来改变由岩层所生产的热解产物的组成。该部分的温度例如可通过一个位于岩层内的测试井来监测。例如监测井放置在第一和第二热源之间的岩层内。某些系统和方法包括将来自第一和/或第二热源的热量控制到以低于每天所选量的速率来提高测试井处所监测的温度。另外或是换一种方式，在生产井处监测该部分的温度。照此方式，按本发明的就地处理过程包括将来自第一和/或第二热源的热量控制到以低于每天所选量的速率来提高生产井处所监测的温度。

所选含油母质岩层受热部分断面内的压力随例如深度、热源间距离、含烃岩层内含烃物质的丰富程度和/或生产井间的距离而变动。

现已发现，在含油母质岩层中维持高压能进一步改善热解产物的产品质量。

可在热解过程及由岩层生产热解产物的过程中控制压力。尽管压力可以是大气压，但压力选择采用至少 1.4 巴 (0.14MPa)，优选采用 1.5 巴 (0.15MPa)，更典型是至少 1.6 巴，特别是至少 1.8 巴。特别是当热解温度至少为 300℃时，适合采用至少 1.6 巴的压力。压力的上限可由上覆岩层的结构和重量来确定。在实际条件下，压力通常小于 70 巴，更常常小于 60 巴或甚至小于 50 巴。压力最好控制在从 2 到 18 巴或 20 巴范围内，或者是控制在从 20 到 36 巴范围内。

在含煤岩层中，压力适合控制在 1.4 巴 (绝对)到 36 巴 (0.14-3.6MPa) 范围内。优选压力至少 1.5 巴 (0.15MPa)。例如，本方法可包括控制岩层受热部分的多数所选断面内的压力。热解过程中所控制的压力优选在 2
巴（0.2 MPa，绝对）以上。就地转化含油母质岩层的方法优选包括升高并维持岩层中的压力在20巴（2 MPa，绝对）范围内。可在生产井或热源处控制岩层中的压力。可在几个不同位置测定岩层内的压力，包括但不限于井口处和井身的不同深度处。在某些实施项目中，在生产井处测量压力。在另一实施项目中可在加热井处测量压力。另外，可采用与上述温度测量所用测试井类似的测试井。

可配置阀门来维持、改变和/或控制含烃岩层受热部分内压力。例如，置于含烃岩层内的热源可连接到一个阀。使阀门配置成能通过热源从岩层中释放出流体。另外，可将压力阀与生产井连接，置于含烃岩层内。在某些实施项目中，收集经阀门释放的流体并输送到地表单元，用于进一步加工和/或处理。

热解产物包括分子氢。已意外发现，控制形成条件来控制所生产流体内氢气压力能改善所生产流体的效率。因此，最好将形成条件控制为热解产物中的氢气分压大于约0.5巴（0.5 MPa，绝对），是在生产井处测量的压力。

可将一种还原剂提供给至少一部分岩层，加热期间提供给一部分岩层的还原剂可提高所选热解产物的产量。还原剂可包括但不限于分子氢。据信含油母质岩层的热解反应可得到烃碎片。这些烃碎片可彼此反应或与岩层中存在的其它化合物反应。这些烃碎片的反应可提高烯烃和芳烃化合物的产量。提供给岩层的还原剂可与这些烃片反应形成所选产物和/或抑制非选产物如烯烃和芳烃的产量。热解反应中会产生分子氢。也可能加氢，通过热碳与水蒸气的反应可产生这样的氢。通过将注入的烃流体裂化也可产生分子氢。也可由第一部分含烃岩层所生产的至少一部分热解产物给第二部分含烃岩层提供还原剂，例如将第一部分岩层所产生分子氢提供给第二部分岩层。

在另一个实施项目中，受热部分岩层内的压力足以提高岩层内热解产物的气相输送。气相输送的提高部分是由于一部分含烃岩层内产生的氢所致。据信所产生的组分可包括双键和/或自由基。热解产物中的H₂可将所产热解产物中的双键还原，因而降低了所产热解产物聚合的倾向。此
外，氢也可中和所产热解产物中的自由基。因此，据信氢基本能阻止所产热解产物彼此间的反应或与岩层内其它化合物的反应。按此方式，较短链流体可进入油相并从岩层中产出。

增加气相热解产物的量能大大降低所选岩层断面内焦化的倾向。气相输出也提高烃回收效率。焦化反应可在液相发生。由于许多所生成的组分转化为短链烃，进入了气相，降低了所选断面内的焦化倾向。由于焦化还可能降低岩层的渗透率，因此增加气相热解流体的量还能提高岩层的渗透性。

由于从岩层中产出热解产物，则至少一部分岩层的质量将减少。至少一部分岩层的渗透率和/或孔隙率将增加。此外，加热时移出的水也可使至少一部分岩层的渗透率和/或孔隙率增加。

在某些实施方案中，至少一部分含油岩质岩层的渗透率将增加到0.01或0.1，甚或1达西以上。在某些实施方案中，至少一部分含油岩质岩层的渗透率将获得基本均匀的增加。至少一部分含油岩质岩层的孔隙率也可基本均匀地增加。

将含烃岩层加热到热解温度范围的步骤可能发生在含烃岩层内已产生较大渗透性之前。初始时缺乏渗透性可能会阻止从热解段产生的流体在岩层内传输。按此方式，随着热量开始从热源传递到含油岩质岩层，靠近热源的含油岩质岩层内的流体压力可能会升高。这种流体压力的升高例如是由岩层内至少一些含烃物质热解时产生流体而造成的。可通过这样一个热源来对升高的压力进行释放、监测、改变和/或控制。例如，热源可包括一个上述实施方案中的阀。可配置这样一个阀来控制流体进出热源的流速。此外，源源可包括一个开孔构造，可由此释放压力。

或者，虽然岩层中还没有流向生产井的通道或任何其他降压手段，因烃流体或由岩层中产生的其他流体的膨胀所产生的压力会升高。此外，流体的温度可能会升高到岩石静压，以致含烃岩层内可从热源到生产井间形成裂缝。当流体的压力等于或超过岩石静压时，可能形成断裂现象。例如，可从热源到生产井间形成裂缝。由于通过生产井进行热解产物的生产，那么受热部分内所产生的裂缝使压力下降。为在受热部分内
维持一个选定的压力，可在生产井处维持一个背压。

含烃岩层内的流体压力可根据诸如含烃物质的热膨胀、产生的热解流体和由岩层所产生流体的采出量等情况而发生变动。例如，随着岩层内产生流体，孔内流体压力可能会提高。将所产生的流体由岩层移出可以降低岩层内的流体压力。

按本发明的方法能对烯烃的生产进行改变和/或控制。例如，本方法可包括以一定的加热速率加热该部分来生产其中烯烃含量小于热解产物可冷凝组分约 10%（重）的热解产物。烯烃产量的减少能大大降低这类烯烃覆盖管表面的倾向，从而减小了通过该管生产烃类的相关困难。烯烃产量的减少往往还能抑制热解过程中烃类的聚合反应，从而提高所生产流体的质量（例如通过降低碳数分布、提高 API 重度等手段）。

但在某些实施方案中，可以一定的加热速率加热该部分来选择性提高烃流体中可冷凝组分的烯烃含量。例如，可将烯烃从该可冷凝组分中分出并用来生产另外产品。

在某些实施方案中，一部分岩层进行热解之后，可由残留在岩层内的含烃物质生产合成气。该部分的热解过程可在整个部分中产生较高的基本均匀的渗透性。这种较高的基本均匀的渗透性能在合成气中不产出大量烃流体的情况下产生合成气。该部分还具有大的表面积和/或大的表面积/体积比。产生合成气的过程中大表面积能使合成气产出反应基本上处在平衡条件下。与未经这样处理的含烃岩层中产生的合成气相比，较高的基本均匀的渗透性可使合成气回收率较高。

可在从岩层生产热解产物过程之前或之后从岩层中生产合成气。合成气，尽管通常定义为氢和一氧化碳的混合物，还可包括另外的组分，例如水、二氧化碳、甲烷和其它气体。合成气产生过程可在烃流体产量下降到不经济的水平之前和/或之后进行。按此方式，供给热解反应的热量也可用来生产合成气。例如，若热解后一部分岩层处于 270 到 375℃的温度，那么通常只需要较少的外加热量就可将该部分加热到足以支持合成气生产的温度。

在一些实施方案中，至少一些含烃物质的热解过程能将可利用的初
始碳的20%转化。合成气生产过程将至少另外10%且一般达另外70%的可利用初始碳转化。按此方式，从含烃岩层就地生产合成气的方法可使该部分中更多数量的可利用初始碳转化。

可在宽的温度范围内生产合成气，例如是400到1200℃之间，更典型是600到1000℃之间的温度。在较低的合成气生产温度下，往往生产和高H₂/C₀比的合成气。较高的岩层温度可生产H₂/C₀比接近1的合成气，且料流主要为（在某些情况下基本上只）H₂和CO₂。在约700℃的岩层温度下，所述岩层可生产H₂/C₀比为2的合成气。一般来说，可生产H₂/C₀摩尔比从1:4至8:1范围，更典型是从1:2至4:1范围，特别是从1:1至2.5:1范围的合成气。某些实施方案可包括将第一合成气与第二合成气混合来生产所期望组成的合成气的步骤。第一和第二合成气可由岩层的不同部分生产。

合成气生产过程所用热源可包括本文所举实施方包括述及的任何一种热源。或者，加热步骤可包括由岩层中的多个井身内流动的传热流体（例如水蒸汽或燃烧器的燃烧产物）所传递的热量。

可将生产合成气所用流体（例如液体水、水蒸汽、二氧化碳、空气、氧、烃类及其混合物）提供给岩层。例如，生产合成气所用流体混合物可包含水蒸汽和氧气。在一个实施方案中，生产合成气所用流体可包括热解岩层内一或多个其它部分中的至少一些含烃物质所生成的含水流体。提供生产合成气所用流体的步骤或者可包含将岩层的地下水位升高，使水能流入岩层的步骤。生产合成气所用流体也可通过至少一个注入井来提供。生产合成气所用流体通常将与岩层中的碳反应形成H₂、水、CO₂和/或CO。一部分二氧化碳可与岩层中的碳反应生成一氧化碳。可将烃类例如乙烷加入生产合成气所用流体中。当将烃类引入岩层时，它们可裂化生成氢气和/或甲烷。所生成的合成气中存在甲烷可提高所生产合成气的热值。

产生合成气的反应一般为吸热反应。在一个实施方案中，在生产合成气所用流体中加入一种氧化剂，氧化剂包括但不限于空气、富氧的空气、氧气、过氧化氢、其他氧化性流体或它们的组合形式。氧化剂可与
岩层中的碳反应来放热性产生热量。氧化剂与岩层中的碳反应能生成 CO₂和/或 CO。引入氧化剂与岩层中的碳反应能达到经济地将岩层温度升高到足以由岩层中的碳生产大量 H₂和 CO。

按本文进一步的描述，合成气生产过程可通过间歇工艺或连续工艺进行。合成气可由包括一或多个热源的一或多个生产并产出。这些热源可按能促进生产具有理想组成的合成气的方式操作。

某些实施方案可包括监控所生产的合成气组成，并监控加热状况和/或监控合成气生产所用流体的输入量，来维持所生产合成气的组成在理想范围内。例如，所生产的一个理想组成合成气的氢/一氧化碳比为约 2: 1。

某些实施方案可包括将第一合成气与第二合成气混合来生产所期望组成的合成气的步骤。第一和第二合成气可由岩层的不同部分生产。

本文所述合成气可转化为更重质可冷凝烃类。例如，可与费托烃类合成过程配套将合成气转化成支化或直链烃类，特别是链烷烃类。由费托合成法生产的烷烃可用于生产其他产品，例如柴油、喷气燃料和石脑油产品。所生产的合成气也可用于催化甲烷化过程来生产甲烷。或者，合成气可用来生产甲醇、汽油和柴油，氯和中间馏分油。所生产的合成气亦可作为燃烧燃料用于加热岩层。所生产合成气中的氢可用于油品改质。

合成气也可用于其他一些用途。合成气可作为燃料燃烧。合成气也可用来合成许多无机和/或有机化合物如烃类和氨。合成气可通过减小合成气在气轮机中的压力或利用合成气的温度来制造水蒸汽（然后推动气轮机）的方法来发电。也可将合成气用于诸如熔融碳酸盐燃料电池、固体氧化物燃料电池或其他类型的燃料电池的产能单元。

在一个实施方案中，将已被热解过程和/或合成气生产过程处理的一部分岩层进行冷却，或是冷却成岩层内一个冷的废弃部分。例如，经受热的部分岩层可通过将热量传递给相邻的岩层部分而冷却。传热可自然地发生，也可通过送入传热流体，使它通过受热部分流入岩层较冷的部分来强制完成。或者，将水送入岩层的第一部分使第一部分冷却。送
入第一部分的水以水蒸汽形式从岩层中移出。将移出的水蒸汽注入热的岩层层部分用来生产合成气。

对本领域技术人员来说，根据下面详细描述的优选实施方案的好处并参考其中的附图，可很容易看出本发明的进一步优异之处：

图 1 示出就地试验场地试验系统的横断面视图；
图 2 例示说明实验场地试验系统中热源、生产井和温度观测井的位置；
图 3 例示说明所生产的液态烃累积体积随时间关系（m³/天）的函数图；和
图 4 例示说明在同一就地试验中所生产的气体累积体积（标准立方英尺）随时间关系（天）的函数图。

实施例 1

进行一系列实验来确定镜质体反射率对从这类含油母质岩层中所生产流体性质的影响。系列实验包括费歇分析试验和生油岩评价热解试验。在几个煤方（cubes of coals）上进行系列实验来确定每种煤的源岩性质和评估每种煤的潜在油气产量。

生油岩评价热解试验是为评估预期源岩的生产总量和热熟化度所开发的一种石油勘探工具。在氮气氛下将研磨样品热解，先将样品加热并在 300℃温度下保持 5 分钟，释放出轻烃。将样品以 25℃/分钟的速率进一步加热到最终温度 600℃，进一步产生烃类。通过热导检测方法来测量所生成的任何 CO₂。结果以油的百分数（以干燥无灰态样品为基础计算）列出。

在实验室中处理多种不同煤级的煤样模拟就地转化过程。不同煤样被较快地加热到 250℃，随后以约 2℃/天的速率加热到 600℃且压力（P）如表 1 所示。将产物冷却，并收集油状的冷凝相。
表 I

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR</td>
<td>0.29</td>
<td>0.4</td>
<td>0.44</td>
<td>0.51</td>
<td>0.59</td>
<td>0.75</td>
<td>1.28</td>
<td>3.1</td>
<td>5.7</td>
</tr>
<tr>
<td>P, MPa</td>
<td>0.45</td>
<td>0.1</td>
<td>0.45</td>
<td>0.1</td>
<td>0.1</td>
<td>0.45</td>
<td>0.45</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FA</td>
<td>6.14</td>
<td>14.54</td>
<td>12.27</td>
<td>16.95</td>
<td>18.25</td>
<td>26.87</td>
<td>11.84</td>
<td>0.43</td>
<td>0.33</td>
</tr>
<tr>
<td>RE</td>
<td>2.50</td>
<td>5.99</td>
<td>5.00</td>
<td>6.67</td>
<td>9.28</td>
<td>10.53</td>
<td>4.79</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ICP</td>
<td>2.42</td>
<td>9.58</td>
<td>9.02</td>
<td>10.89</td>
<td>15.26</td>
<td>23.14</td>
<td>9.09</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P/A</td>
<td>0.14</td>
<td>0.30</td>
<td>0.34</td>
<td>0.45</td>
<td>0.56</td>
<td>0.84</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C/A</td>
<td>0.14</td>
<td>0.45</td>
<td>0.23</td>
<td>0.21</td>
<td>0.22</td>
<td>0.59</td>
<td>0.63</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AP, °</td>
<td>23</td>
<td>28</td>
<td>30</td>
<td>34</td>
<td>34</td>
<td>36</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

VR 是镜质体反射率，%。
FA 是费歇分析试验结果，以干燥无灰计算的油收率，用加仑/吨 (4.210^-3 L/Kg) 表示；
RE 是生油岩评价热解试验，以干燥无灰样品计算的油%(重)；
ICP 是在模拟就地转化过程的实验室试验中所得到油收率，以干燥无灰计算，用加仑/吨表示；
P/A 是油中链烷烃与芳烃之比；
C/A 是油中环烷烃与芳烃之比；和
API 是 API 比重，以°表示。
结果清楚地表明，镜质体反射率对油收率和所生产烃的性质有影响。较好的范围似乎是从 0.4-1.2%，最佳结果似乎是镜质体反射率为 0.7-0.9%附近。

实施例 2

将镜质体反射率为 0.71%的 Fruitland 高挥发性 B 含沥青煤方以 2°C/天的速率加热。表 II 表示出通过以 2°C/天的速率加热到 450°C 时此煤方所生成产物的产率。另外，表 II 还表示出通过两块不同产地的相似类型煤的流化床气化法所生成产物的产率分数。两块不同煤包括犹他州高挥发性含沥青煤和伊利诺斯州 No. 6 高挥发性含沥青煤。流化床气化法的收率
数据是由 Jacobs、Jones 和 Eddinger 得到的，发表于《化学工业与工程，过程设计和进展》第 10 卷 4 期（1971）558-562 页的“COED 法煤衍生油的氢化过程”一文中。产率分数的定义是：石脑油（初沸点到 166°C），喷气燃料（166°C 到 249°C），柴油（249°C 到 370°C）和塔底（沸点大于 370°C）。

表 II

<table>
<thead>
<tr>
<th></th>
<th>煤粉</th>
<th>流化床气化法-犹他州</th>
<th>流化床气化法-伊利诺斯州</th>
</tr>
</thead>
<tbody>
<tr>
<td>焦炭</td>
<td>74.7</td>
<td>56.7</td>
<td>57.1</td>
</tr>
<tr>
<td>CO₂</td>
<td>2.6</td>
<td>4.6</td>
<td>2.5</td>
</tr>
<tr>
<td>气</td>
<td>9.7</td>
<td>10.5</td>
<td>10.7</td>
</tr>
<tr>
<td>水</td>
<td>6.8</td>
<td>4.6</td>
<td>6.1</td>
</tr>
<tr>
<td>石脑油</td>
<td>1.6</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>喷气燃料</td>
<td>2.0</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>柴油</td>
<td>2.2</td>
<td>6.2</td>
<td>5.0</td>
</tr>
<tr>
<td>塔底</td>
<td>0.4</td>
<td>16.4</td>
<td>15.0</td>
</tr>
</tbody>
</table>

表 I 所示流化床法的产率分数是象征性表示可由包括快速加热和以一定升温速率进行热解的过程得到的产率分数。快加热速率可包括大于约 20°C/天。进行热解的升温后的温度可为 450°C。与此相对照，由加热煤粉所得到的产率分数是象征性表示可由包括慢加热和较低温热解的过程所得到的产率分数。由煤粉所生产的全部油的 API 比重约 37 °。与此相对照，由流化床气化法-犹他州煤所生产的全部油的 API 比重约约-3.5 °。由流化床气化法-伊利诺斯州煤所生产的全部油的 API 比重约约-13.1 °。按此方式，缓慢加热煤粉能生产更好的产品，其 API 比重高于由快速加热煤粉所生产的产品。

在一个罐内用自己的煤重复实验，当温度达到约 390°C 时，可凝烃的生产基本完成。从 270°C 开始有甲烷产出。270 到 400°C 之间产出可凝烃、甲烷和氢气。温度高于 400°C 时，连续产出甲烷和氢气。高于约 450°C 后甲烷浓度下降。
实施例 3

通过在部分含煤岩层中进行就地实验的方法从含煤岩层生产烃流体。所得的煤为镜质体反射率为 0.54%的高挥发性含沥青“C”煤。用电加热器加热。图 1 示出就地实验场地试验系统的横断面视图。如图 1 所示，场地试验系统包括至少一部分在场地和水泥浆壁（3800）内的含煤岩层 3802。含煤岩层 3802 以约 36° 的角度倾斜截取厚度约 4.9 米。图 2 例示说明实验场地试验系统中所用热源（3804a、3804b、3804c）、生产井（3806a、3806b）和温度观测井（3803a、3803b、3803c、3803d）的位置。以三角形的结构放置三个热源。生产井 3806a 近似位于三角形热源的中心并与每一热源等距离。第二生产井 3806b 位于热源三角形外表面并与最接近的两个热源等距离。在三角形热源和生产井周围砌一圈水泥浆壁 3800。水泥浆壁包括一些柱子 1-24。水泥浆壁 3800 用以阻止水回流到进行就地实验的部分。此外，水泥浆壁 3800 还用来基本阻止所产出烃流体流失到未加热部分岩层内。

测量实验期间不同时间时四个温度观测井 3808a、3808b、3808c、位于热源三角形外的 3808d（如图 2 所示）每一个井处的温度。温度观测井 3808a、3808b 和 3808c 处的温度彼此较近。温度观测井 3808d 处的温度明显较冷。该温度观测井位于加热井三角形外（如图 2 所示）。该数据表明在只有很少热叠加的区域内温度明显要低。热源处的温度分布较均匀。

图 3 例示说明 3840 所生产的液态烃累积体积随时间关系（m³/天）的函数图。图 4 例示说明在同一就地试验中 3910 所生产的气体体积随时间关系（天）的函数图。图 3 和图 4 仅示出就地试验热分解阶段的结果。处理过程中产出高质量的产品。

对来自场地实验现场的煤方进行两个实验室实验。一个实验在 1 巴绝压（0.1MPa）下进行，第二个压力为 8 巴绝压（0.8MPa），实验室碳数分布近似于在 1 巴绝压下进行场地实验所得得到的分布。随压力升高，烃流体的碳数范围减小。当在 8 巴绝压下操作时可观察到碳数小于 20 的产物增加。压力从 1 巴绝压升高到 8 巴绝压也使可凝烃流体的 API 比重增加。所产可凝烃流体的 API 比重分别为约 23.1° 和约 31.1°。该 API 比
重的增加表示更高值产品的产量提高。

实施例 4

表 III 例示说明通过费歇分析试验所产生的沸点切割油的分数和由上述煤方试验所产生的沸点切割油的分数。场地实验是一种就地转化方法(ICP)，是以很慢的速率加热到低于费歇试验的最终温度。表 III 示出从 Fruitland 高挥发性含沥青 "B" 煤 (镜质体反射率为 0.71%) 所生产的不同沸点切割油的重量分数。不同沸点切割油代表不同烃流体组成。所例示的沸点切割油包括石脑油石脑油 (初沸点到 166℃)，喷气燃料 (166℃到 249℃)，柴油 (249℃到 370℃) 和塔底 (沸点大于 370℃)。ICP 液体是有更大价值的产品。ICP 液体的比重显著大于费歇法液体的 API 比重。ICP 液体还包括远低于费歇法液体的塔底

<table>
<thead>
<tr>
<th></th>
<th>ICP</th>
<th>费歇法</th>
</tr>
</thead>
<tbody>
<tr>
<td>石脑油</td>
<td>25.7</td>
<td>8.4</td>
</tr>
<tr>
<td>喷气燃料</td>
<td>32.5</td>
<td>17.2</td>
</tr>
<tr>
<td>柴油</td>
<td>34.9</td>
<td>35.4</td>
</tr>
<tr>
<td>塔底</td>
<td>6.8</td>
<td>39.0</td>
</tr>
<tr>
<td>API 重</td>
<td>37</td>
<td>17</td>
</tr>
</tbody>
</table>

进一步发现，该部分加热速率的降低使烯烃产量下降。

实施例 5

对按就地转化法处理的岩层进行实验，来测量热解后岩层的均匀渗透性。将一部分含煤岩层加热后，向第一生产井 3806a 处的岩层注入 10 秒脉冲的 CO₂并在井 3804a 处产出，如图 2 所示。从生产井 3806a 到井 3804b 和从生产井 3806a 到井 3804c 重复进行 CO₂示踪试验。如上所述，三个不同热源各自与该热源等距放置。以 4.08m³/小时的速率注入 CO₂。CO₂以近似相同的时间到达三个不同热源的每一个。从这三个不同井单位时间各自得到的 CO₂量也基本相等。这种示踪脉冲 CO₂近似等速通过岩层传输和从岩层得到近似相等 CO₂收率的情况表明岩层是基本均匀渗透的。
在加热井三角形内的不同井间进行稳态气体渗透率测量试验。处理后的渗透率范围从 4.5 达西到 39 达西，平均值约 20 达西。初始渗透率范围在约 50 毫达西。开始脉冲注入 CO₂ 后约 18 分钟仅有第一 CO₂ 到达的情况表明井 3806a 与 3804a、3804b 和 3804c 之间还未生成渗透通道。
图1