发明名称

黄颡鱼食用鱼配合饲料及其制备方法

摘要

本发明提供一种黄颡鱼食用鱼配合饲料及其制备方法，该配合饲料按重量百分比包括下列组分：黄颡鱼粉 20%～45%，肉骨粉 4%～10%，鱼粉 15%～25%，玉米 4%～10%，豆粕 10%～25%，菜籽粕 4%～10%，鱼油 1%～4%，玉米蛋白粉 10%～25%，多维 1.0%，多维 1.0%，免疫增强剂 0.1%，保肝剂 0.2%，胆碱 0.2%～0.4%，磷酸氢钙 1%～2%。所述配合饲料具有高品质粉碎粒度、混合均匀度、饲料成形性和耐水性等特点，用它喂养的黄颡鱼食用鱼体色接近自然体色，它可提高黄颡鱼的抗病毒能力，缩短养殖周期，降低养殖成本，减少病害和水体污染，具有显著的经济效益和环境效益。
1. 一种黄颡鱼食用鱼配合饲料，按重量百分比包括下列组分：鱼粉 20% ～ 45%，肉骨粉 4% ～ 10%，面粉 15% ～ 25%，玉米 4% ～ 10%，豆粕 10% ～ 25%，菜籽粕 4% ～ 10%，鱼油 1% ～ 4%，玉米蛋白粉 10% ～ 25%，多维 1.0%，多矿 1.0%，免疫增强剂 0.1%，保肝剂 0.2%，胆碱 0.2% ～ 0.4%，磷酸二氢钙 1% ～ 2%。

2. 根据权利要求 1 所述的黄颡鱼食用鱼配合饲料，其特征在于，所述饲料的各组分的重量百分比为：鱼粉 25%，肉骨粉 4%，面粉 15%，玉米 8%，豆粕 20%，菜籽粕 7%，鱼油 2%，玉米蛋白粉 15%，多维 1.0%，多矿 1.0%，免疫增强剂 0.1%，保肝剂 0.2%，胆碱 0.2%，磷酸二氢钙 1.5%。

3. 根据权利要求 1 所述的黄颡鱼食用鱼配合饲料，其特征在于，所述的免疫增强剂中含β－葡萄糖；所述 β－葡萄糖在免疫增强剂中的含量为 25%。

4. 根据权利要求 1 所述的黄颡鱼食用鱼配合饲料，其特征在于，所述配合饲料料径为 7.5mm ～ 10.0mm。

5. 一种制备黄颡鱼食用鱼配合饲料的工艺方法，步骤如下：
 (1) 投料、粉碎，进行一次混合；
 (2) 除铁、粉碎，进行二次混合；
 (3) 调制、膨化制粒；
 (4) 烘干、油脂喷涂，冷却后制得黄颡鱼食用鱼配合饲料；
 (5) 再经过烘干、油脂喷涂，冷却后制得黄颡鱼食用鱼配合饲料。

6. 根据权利要求 5 所述的工艺方法，其特征在于，所述的二次混合过程中添加油脂。

7. 根据权利要求 5 所述的工艺方法，其特征在于，所述的调制过程中添加水蒸气。
黄颡鱼食用鱼配合饲料及其制备方法

技术领域
[0001] 本发明涉及一种黄颡鱼食用鱼配合饲料及其制备方法。

背景技术
[0002] 黄颡鱼学名P. ebtobagrus fulvidraco (Richardson)，俗名黄腊丁、黄芽头等，在我国除西部高原外全国各地均有分布。黄颡鱼体格黄色，大多具不规则的褐色斑纹，各鳍灰黑带黄色，肉质细嫩，其肌肉营养丰富，无肌间刺，肉味鲜美，可食比例高，是一种典型的广食性鱼类，营养价值极高。长期以来，黄颡鱼因个体小，被人们多作为小型野杂鱼类处理。随着人们生活水平的提高，对水产品的消费迅速向“质量主导型”转变，从而对黄颡鱼营养价值等多方面的经济价值进行了重新认识，于是从过去的几毛钱“扒堆”甩卖到现在每公斤30元左右的热销产品，不仅国内市场需求扩大，而且已出口韩、日等国。但由于黄颡鱼在天然水域中繁殖率较低，生长速度缓慢，靠天然水域中捕捞的野生黄颡鱼已经无法满足市场的需求，因此各地将黄颡鱼作为一种经济鱼类进行人工养殖。目前在广东省、浙江省等地区黄颡鱼人工养殖已具有一定的规模，但黄颡鱼人工养殖仍存在一些技术问题，养殖技术尚未成熟。现在使用市场上的鱼饲料喂养黄颡鱼，鱼体成活率、增重率偏低，且容易造成黄颡鱼体色变浅（变白），而黄颡鱼在自然水体中，由于摄食了大量富含类胡萝卜素的藻类和浮游生物，体色较鲜艳，正常情况下体侧有黑斑，其余部分为黄色。黄颡鱼体色变化的因素除水域环境条件、疾病等因素影响外，最重要的是饲料物质对其体色产生了重大的影响，黄颡鱼体色变浅严重影响了黄颡鱼作为水产品的质量。因此，黄颡鱼饲料的开发，特别是黄颡鱼食用鱼饲料的研发是黄颡鱼养殖业发展的需要。

发明内容
[0003] 本发明的目的是提供一种黄颡鱼食用鱼配合饲料及其制备方法。该配合饲料具有高品质的粉碎粒度、混合均匀度、饲料成形性和耐水性等特点，能够提高饲料的吸收利用率，它适用于饲养体重为50克以上的黄颡鱼，能够满足体重50克以上黄颡鱼食用鱼的营养需要，它富含色素沉淀的添加剂，使养殖的黄颡鱼体色接近天然的效果，并提高鱼类的抗病毒能力，促进鱼体快速、健康成长，大大缩短养殖周期，显著减少使用甚至不使用鲜活饲料，降低养殖成本，减少病源和水体污染，而且制备方法科学合理，具有显著的经济效益和环境效益。
[0004] 本发明黄颡鱼食用鱼配合饲料，按重量百分比包括下列组分：鱼粉20%～45%，肉骨粉4%～10%，面粉15%～25%，玉米4%～10%，豆粕10%～25%，菜籽粕4%～10%，鱼油1%～4%，玉米蛋白粉10%～25%，多维1.0%，多矿1.0%，免疫增强剂0.1%，保肝剂0.2%，胆碱0.2%～0.4%，磷酸二氢钙1%～2%。
[0005] 一种制备黄颡鱼食用鱼配合饲料的工艺方法，步骤如下：
1. 混合料，粉碎，进行一次混合；
2. 除铁、粉碎，进行二次混合；
（3）调制、膨化制粒；
（4）烘干、油脂喷涂，冷却后制得黄颡鱼食用鱼配合饲料；
（5）再经过烘干、油脂喷涂，冷却后制得黄颡鱼食用鱼配合饲料。

0006 本发明显著优点是：
本发明是根据黄颡鱼食用鱼营养需求及生理生化特点，选用优质原料，优化饲料配方结构，添加高效绿色免疫促长添加剂开发出的黄颡鱼食用鱼配合饲料，使用这种配合饲料能够降低养殖成本，减少病害发生和水体污染。

0007 本发明根据黄颡鱼体色调节机理，选用玉米及玉米蛋白粉等有利于色素沉淀的添加物作为原料，使养殖的黄颡鱼体色接近天然的效果。

0008 本发明合理搭配各原料组分，添加高效绿色免疫促长添加剂，改进工艺，减少制备过程中高温对饲料营养成分造成的破坏，保证了饲料在水中的稳定性，同时增加了饲料中的能量水平，使制备出的饲料具有高蛋白的粉碎粒度、混合均匀度、饲料成形性和耐水性等特点，提高了饲料的吸收利用率，能够满足黄颡鱼食用鱼的营养需要，提高鱼类的抗病能力，促进鱼体快速、健康生长，大大缩短养殖周期，显著减少使用甚至不使用鲜活饲料，降低养殖成本，减少病源和水体污染，而且制备方法科学合理，具有显著的经济效益和环境效益。

附图说明
0009 图1是本发明的工艺流程图；
图2是本发明的生产线工艺流程图。

0010 其中：空压机1，储气罐2，干燥机3，离心机4，脉冲除尘器5，投料栏栅6，投料斗7，提升机8、初清篮9，水箱10，待混合仓11，浆叶混合机12，自动闸门13，螺旋输送机14，螺旋混合机15，待粉碎仓16，脉冲除尘器17，关风机18，立式超微粉碎机19，垂直微粉碎机20，分级机21，脉冲除尘器22，圆筒振动筛23，待混合仓24，刮板输送机25，配料称26，缓冲仓27，待制粒仓28，调质器29，膨化机30，剥壳龙31，烘干箱32，分级筛33，待喷涂层34，油脂喷涂机35，冷却器36，成品仓37，包装仓38，打包称39，缝包机40，蒸汽供应系统41，电控系统42。

具体实施方式
0011 下面给出本发明的实施例及制备流程。

0012 本发明黄颡鱼食用鱼配合饲料，按重量百分比包括下列组分：鱼粉20%～45%，肉骨粉4%～10%，面粉15%～25%，玉米4%～10%，豆粕10%～25%，菜籽粕4%～10%，鱼油1%～4%，玉米蛋白粉10%～25%，多维1.0%，多矿1.0%，免疫增强剂0.1%，保肝剂0.2%，胆碱0.2%～0.4%，磷酸二氢钙1%～2%。所述的免疫增强剂中含有β-葡聚糖，所述β-葡聚糖在免疫增强剂中的含量为25%，所述配合饲料料径为7.5mm～10.0mm。

0013 实施例1

在池塘中进行投喂黄颡鱼试验，黄颡鱼平均规格为56.7克/尾，池塘面积为1亩，放养密度4000尾/亩，历时103天，投喂配合饲料各组分的重量百分比为：鱼粉45%，肉骨粉4%，面粉15%，玉米5%，豆粕10%，菜籽粕5%，鱼油2%，玉米蛋白粉10%，多维1.0%，多矿1.0%，免
疫增强剂 0.1%，保肝剂 0.2%，胆碱 0.2%，磷酸二氢钙 1.5%。

[0014] 实施例 2

在池塘中进行投喂黄颡鱼试验，黄颡鱼平均规格为 65.3 克/尾，池塘面积为 1 亩，放养密度 4000 尾/亩，历时 103 天，投喂配合饲料各组分的重量百分比为：鱼粉 35%，肉骨粉 4%，面粉 15%，玉米 8%，豆粕 15%，菜籽粕 7%，鱼油 2%，玉米蛋白粉 10%，多维 1.0%，多矿 1.0%，免疫增强剂 0.1%，保肝剂 0.2%，胆碱 0.2%，磷酸二氢钙 1.5%。

[0015] 实施例 3

在池塘中进行投喂黄颡鱼试验，黄颡鱼平均规格为 69.9 克/尾，池塘面积为 1 亩，放养密度 4000 尾/亩，历时 106 天，投喂配合饲料各组分的重量百分比为：鱼粉 25%，肉骨粉 4%，面粉 15%，玉米 8%，豆粕 20%，菜籽粕 7%，鱼油 2%，玉米蛋白粉 15%，多维 1.0%，多矿 1.0%，免疫增强剂 0.1%，保肝剂 0.2%，胆碱 0.2%，磷酸二氢钙 1.5%。

[0016] 实施例功效如下：

实施例 1

黄颡鱼增重率、饲料系数和成活率分别为 136%、1.37 和 98.9%，试验黄颡鱼体色正常，使用该配合饲料比普通鱼饲料喂养黄颡鱼食用鱼具有良好体增重率高，饲料用量少，鱼体成活率高，且黄颡鱼体色接近天然的效果。

[0017] 实施例 2

黄颡鱼增重率、饲料系数和成活率分别为 168%、1.39 和 96.3%，试验黄颡鱼体色正常，使用该配合饲料比普通鱼饲料喂养黄颡鱼食用鱼具有良好体增重率高，饲料用量少，鱼体成活率高，且黄颡鱼体色接近天然的效果。

[0018] 实施例 3

黄颡鱼增重率、饲料系数和成活率分别为 149.9%、1.45 和 97.5%，试验黄颡鱼体色正常，使用该配合饲料比普通鱼饲料喂养黄颡鱼食用鱼具有良好体增重率高，饲料用量少，鱼体成活率高，且黄颡鱼体色接近天然的效果。

[0019] 参照图 1，本发明在饲料加工中采取了“粉碎—配料—粉碎”组合工艺，先投料，对投入原料粗粉碎后进行一次混合，以减少不同原料的粒度差异，保证配粒料混合的均匀度；对一次混合料除铁，再进行第二次粉碎，生产细粉料，保证粉碎细度，达到水产饲料制粒工艺的要求；对细粉料进行二次混合，在二次混合过程中添加油脂，再采用蒸煮膨化制粒工艺，对二次混合料进行调制，调制过程中加入水蒸气，调制时间为 3 分钟，比常用的调制时间 (2 分钟) 延长了 1 分钟，提高了混合料的熟化度；混合料在膨化主机螺杆套筒中的温度设为 110℃ ~ 120℃，比常用的设置温度 (125℃ ~ 130℃) 降低了；混合料在挤出模孔时体积胀大，实现膨化；再经过烘干、油脂喷涂，冷却后包装，完成整个工艺生产。这种工艺上的改进可以减少高温对饲料营养成分的破坏，并保证了饲料在水中的稳定性，同时增加了饲料中的能量水平。

[0020] 参照图 2，制备配合饲料的生产线工艺流程：饲料配制依次经过干燥机干燥、脉冲除尘器除尘、投料筛筛过筛后进入投料斗中，然后通过提升机进入初清筛过筛，再经过永磁筒、卧式桨叶混合机进入待粉碎仓，待粉碎仓中的物料再经过喂料器进入膨化主机处理，处理后的物料依次经过旋风分离器、脉冲除尘器，分级筛、缓冲仓后，经电子配料称后进入缓冲仓，缓冲仓的物料经过螺旋输送机后进入待包装仓，待包装仓的物料经过打包称、缝包机
成品。所述生产线由中控系统控制，所述干燥机上还连接有储气罐，储气罐上设置有空压机；所述脉冲除尘器上设置有离心风机。
图 1