Antisense compounds, compositions and methods are provided for modulating the expression of estrogen receptor alpha. The compositions comprise antisense compounds, particularly antisense oligonucleotides, targeted to nucleic acids encoding estrogen receptor alpha. Methods of using these compounds for modulation of estrogen receptor alpha expression and for treatment of diseases associated with expression of estrogen receptor alpha are provided.
ANTISENSE MODULATION OF ESTROGEN RECEPTOR ALPHA EXPRESSION

INTRODUCTION

FIELD OF THE INVENTION

[0002] The present invention provides compositions and methods for modulating the expression of estrogen receptor alpha. In particular, this invention relates to compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding estrogen receptor alpha. Such compounds have been shown to modulate the expression of estrogen receptor alpha.

BACKGROUND OF THE INVENTION

[0003] Steroid, thyroid and retinoid hormones produce a diverse array of physiologic effects through the regulation of gene expression. Upon entering the cell, these hormones bind to a unique group of intracellular nuclear receptors which have been characterized as ligand-dependent transcription factors. This complex then moves into the nucleus where the receptor and its cognate ligand interact with the transcription preinitiation complex affecting its stability and ultimately, the rate of transcription of the target genes. Members of the nuclear receptor family share several structural features including a central, highly conserved DNA-binding domain which targets the receptor to specific DNA sequences known as hormone response elements (Kliewer et al., Science, 1999, 284, 757-760).

[0004] Estrogens are steroid hormones that exert a wide range of effects throughout the body. They are required for normal female sexual maturation and promote growth and differentiation of the breast, uterus, fallopian tubes, vagina and ovaries. Male reproductive tissues such as testis and prostate are also estrogen target tissues. Furthermore, estrogens are important for bone maintenance and have a protective role in the cardiovascular system. In the brain, estrogens appear to modulate the regulation and reproduction of autonomic and reproductive neuroendocrine systems, mood and cognition (Osterlund and Hurd, Prog. Neurobiol., 2001, 64, 251-267).

[0005] Similar to the other steroid hormone receptors, the estrogen receptors consist of several structural domains that exhibit different functional features. Both the estrogen receptor alpha and estrogen receptor beta consist of five different domains, the N-terminal domain (called A/B), the DNA-binding domain (C), a short hinge region (E) and a short C-terminal domain (F) (Osterlund and Hurd, Prog. Neurobiol., 2001, 64, 251-267).

[0008] The nucleic acid sequence of estrogen receptor alpha is disclosed in U.S. Pat. No. 6,235,872 (Bredesden and Rabizadeh, 2001).

[0009] Disclosed and claimed in PCT publications WO 01/00823 and WO 01/62969 are nucleic acid molecules encoding isoforms of human estrogen receptor alpha (Gannon et al., 2001; Kalush et al., 2001). Additionally disclosed and claimed in PCT publication WO 01/08023 are nucleic acid molecules hybridizing to said nucleic acid molecules encoding estrogen receptor alpha isoforms, under stringent conditions (Gannon et al., 2001).

[0010] The involvement of estrogen receptor alpha in cell proliferation indicates that its selective inhibition may prove to be a useful target for therapeutic intervention in a variety of cancers.

[0011] Because estrogens are thought to support breast cancer, estrogen antagonists have been developed which act through the estrogen receptor. Selective estrogen receptor modulators (SERMs) are small molecules which manifest variable agonist and antagonist properties when examined in the context of estrogen-dependent responses occurring in various tissues. Examples of SERMs include raloxifene and tamoxifen (DuFer and Smith, J. Pharmacol. Exp. Ther., 2000, 295, 431-437).

[0012] Disclosed and claimed in PCT publications WO 00/74485 and WO 99/54459 are catalytic nucleic acids (known as ribozymes), capable of modulating the expression of estrogen receptor alpha (Roy et al., 2000; Thompson et al., 1999).

[0013] Double-stranded DNA fragments containing 5' upstream sequences of the human estrogen receptor alpha gene have been used to modulate the transcriptional activity of estrogen receptor alpha (Penolazzi et al., Breast Cancer Res. Treat., 1998, 49, 227-235).

[0015] Antisense oligodeoxynucleotides have also been used to decrease levels of estrogen receptor alpha in rat brain (Inamdar et al., J. Appl. Physiol., 2001, 91, 1886-1892; McCarthy et al., Endocrinology, 1993, 133, 433-439) and in a mouse colon cancer cell line (Xu and Thomas, Mol. Cell Endocrinol., 1994, 105, 197-201).

[0016] Antisense 18-mer oligonucleotides targeting positions 117 to -99, -3 to 15 (encompassing the start codon), 302 to 320, 495 to 512, 539 to 557, 1140 to 1157 and 4134 to 4151, of estrogen receptor alpha have been used to inhibit its expression in MCF-7 human breast cancer cells (Santagati et al., Mol. Endocrinol., 1997, 11, 938-949; Taylor et al., Antisense Nucleic Acid Drug Dev., 2001, 11, 219-231). In a separate investigation, also using MCF-7 breast cancer cells, a 15-mer methylphosphonate-phosphodiester antisense oligonucleotide was used to target the start codon of estrogen receptor alpha (Madden et al., Eur. J. Cancer, 2000, 36, S34-S35).

[0017] To date, investigative strategies aimed at modulating estrogen receptor alpha expression have involved the use of small molecule SERMs, ribozymes, double-stranded DNA decoys, antisense RNA transfections and antisense oligonucleotides. There remains a long felt need for additional agents capable of effectively inhibiting estrogen receptor alpha function.

[0018] Antisense technology is emerging as an effective means for reducing the expression of specific gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of expression of estrogen receptor alpha.

[0019] The present invention provides compositions and methods for modulating expression of estrogen receptor alpha, including modulation of spliced variants of estrogen receptor alpha.

SUMMARY OF THE INVENTION

[0020] The present invention is directed to compounds, particularly antisense oligonucleotides, which are targeted to a nucleic acid encoding estrogen receptor alpha, and which modulate the expression of estrogen receptor alpha. Pharmaceutical and other compositions comprising the compounds of the invention are also provided. Further provided are methods of modulating the expression of estrogen receptor alpha in cells or tissues comprising contacting said cells or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of estrogen receptor alpha by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0021] The present invention employs oligomeric compounds, particularly antisense oligonucleotides, for use in modulating the function of nucleic acid molecules encoding estrogen receptor alpha, ultimately modulating the amount of estrogen receptor alpha produced. This is accomplished by providing antisense compounds which specifically hybridize with one or more nucleic acids encoding estrogen receptor alpha. As used herein, the terms “target nucleic acid” and “nucleic acid encoding estrogen receptor alpha” encompass DNA encoding estrogen receptor alpha, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation is a function of a target nucleic acid by compounds which specifically hybridize to it is generally referred to as “antisense”. The functions of DNA to be interfered with include replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation of the expression of estrogen receptor alpha. In the context of the present invention, “modulation” means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation of gene expression and mRNA is a preferred target.

[0022] It is preferred to target specific nucleic acids for antisense. “Targeting” an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target is a nucleic acid molecule encoding estrogen receptor alpha. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, will result. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the “AUG codon,” the “start codon” or the “AUG start codon”. A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UGU or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms “translation initiation codon” and “start codon” can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or
more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, “start codon” and “translation initiation codon” refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding estrogen receptor alpha, regardless of the sequence(s) of such codons.

It is also known in the art that a translation termination codon (or “stop codon”) of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms “start codon region” and “translation initiation codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 51 or 3') from a translation initiation codon. Similarly, the terms “stop codon region” and “translation termination codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

The open reading frame (ORF) or “coding region,” which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as “introns,” which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as “exons” and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where overproduction of a particular mRNA splice product is implicated in disease. aberrant splicing due to rearrangements or deletions are also preferred targets. mRNA transcripts produced via the process of splicing of two (or more) mRNAs from different gene sources are known as “fusion transcripts. It has been also found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

It is also known in the art that alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as “variants”. More specifically, “pre-mRNA variants” are transcripts produced from the same genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and exonic regions.

Upon excision of one or more exon or intron regions or portions thereof during splicing, pre-mRNA variants produce smaller “mRNA variants”. Consequently, mRNA variants are processed pre-mRNA variants and each unique pre-mRNA variant must always produce a unique mRNA variant as a result of splicing. These mRNA variants are also known as “alternative splice variants”. If no splicing of the pre-mRNA variant occurs then the pre-mRNA variant is identical to the mRNA variant.

It is also known in the art that variants can be produced through the use of alternative signals to start or stop transcription and that pre-mRNAs and mRNAs can possess more that one start codon or stop codon. Variants that originate from a pre-mRNA or mRNA that use alternative start codons are known as “alternative start variants” of that pre-mRNA or mRNA. Those transcripts that use an alternative stop codon are known as “alternative stop variants” of that pre-mRNA or mRNA. One specific type of alternative stop variant is the “polyA variant” in which the multiple transcripts produced result from an alternative selection of one of the “polyA stop signals” by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites.

Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

In the context of this invention, “hybridization” means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. “Complementary,” as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to that position. The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, “specifically hybridizable” and “complementary” are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-
target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

[0031] Antisense and other compounds of the invention which hybridize to the target and inhibit expression of the target are identified through experimentation, and the sequences of these compounds are hereinbelow identified as preferred embodiments of the invention. The target sites to which these preferred sequences are complementary are hereinbelow referred to as “active sites” and are therefore preferred sites for targeting. Therefore another embodiment of the invention encompasses compounds which hybridize to these active sites.

[0032] Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

[0033] For use in kits and diagnostics, the antisense compounds of the present invention, either alone or in combination with other antisense compounds or therapeutics, can be used as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes expressed within cells and tissues.

[0034] Expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds which affect expression patterns.

[0036] The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.

[0037] In the context of this invention, the term “oligonucleotide” refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

[0038] While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 50 nucleobases (i.e. from about 8 to about 50 linked nucleosides). Particularly preferred antisense compounds are antisense oligonucleotides, even more preferably those comprising from about 12 to about 30 nucleobases. Antisense compounds include ribozymes, external guide sequence (EGS) oligonucleotides (oligozymes), and other short catalytic RNAs or catalytic oligonucleotides which hybridize to the target nucleic acid and modulate its expression.

[0039] As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleotides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleotides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

[0040] Specific examples of preferred antisense compounds useful in this invention include oligonucleotides
containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

[0041] Preferred modified oligonucleotide backbones include, for example, phosphorothioate, chiral phosphorothioates, phosphorodithioates, phosphorothiester, amically phosphorothioester, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphonates, phosphoramidates including 3'-amino phosphoramidate and amically phosphoromimidates, thionophosphoramidates, thionalkyl phosphonates, thionalkylphosphothioesters, selenophosphates and borano-phosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or more internucleoside linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Preferred oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage i.e. a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included.

[0042] Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,867,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,276,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,595; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050; certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

[0043] Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholinolinkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sultide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; 2-methyleneimino and methylmethylenehydradine backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N₃-O₃-S and C₃-H₂ component parts.

[0044] Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,263,504; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,096; 5,602,240; 5,610,289; 5,625,050; of which are commonly owned with this application, and each of which is herein incorporated by reference.

[0045] In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylyglycine backbone. The nucleobases are retained and are bound directly or indirectly to az nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

[0046] Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular 1-CH=NH-O-CH₂-N(CH₂-O-CH₂— [known as a methylene (methyleneimino) or MM backbone], 1-CH₂-O-N(CH₂)=CH₂—, 1-CH₂-N(CH₂) —N(CH₂)=CH₂— and 1-CH₂-O-N(CH₂)=CH₂— [wherein the native phosphodiester backbone is represented as —O—P—O—CH₂—] of the above referenced U.S. Pat. No. 5,489,677, and the amide backbone of the above referenced U.S. Pat. No. 5,602,240. Also preferred are oligonucleotides having morpholine backbone structures of the above-referenced United States Pat. No. 5,034,506.

[0047] Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; S— or N-alkyl; O—S— or N-alkenyl or N—O— alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C₃ to C₁₀ alkyl or C₃ to C₁₀ alkenyl and alkynyl. Particularly preferred are O(CH₂)₃O, O(CH₂)CH₂OCH₂, O(CH₂)₂NH₂, O(CH₂)₂CH₂, O(CH₂)₂ONH₂, and O(CH₂)₂ON[(CH₂)₃CH₂], wherein r and m are from 1 to 10. Other preferred oligonucleotides comprise one of the following at the 2' position: C₃ to C₁₀ lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkylaryl, aralkyl or O-alkylaryl or C₃ to C₁₀ alkenyl, alkynyl, alkylaryl, aralkyl or O-alkylaryl or C₃ to C₁₀ alkenyl, alkynyl, alkylaryl, aralkyl or O-alkylaryl or C₃ to C₁₀ alkenyl, alkynyl, alkylaryl, aralkyl or O-alkylaryl or C₃ to C₁₀ alkenyl, alkynyl, alkylaryl, aralkyl or O-alkylaryl. Further preferred modifications include 2'-dimethylaminoxyethoxy, i.e., a (CH₂)₃ON(CH₂)₂ group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the
art as 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-O—CH₂—O—CH₂—N(CH₃)₂, also described in examples hereinbelow.

[0048] A further preferred modification includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 3' or 4' carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. The linkage is preferably a methane (—CH₂—) group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.

[0049] Other preferred modifications include 2'-methoxy (2—O—CH₃), 2-aminoxypropoxy (2'-OCH₃CH₂CH₂NH₂), 2'-allyl (2'-CH₂—CH═CH₂) and 2'-fluoro (2'-F). The 2'-modification may be in the arabinho (up) position or ribo (down) position. A preferred 2'-arabino modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclcobutil moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,060; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, each of which is commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

[0050] Oligonucleotides may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-Me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-amino- nadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiouracil and 2-thiouracil, 5,6-diuracil and cytosine, 5-propynyl (—C≡C—CH₂) uracil and cytosine and other alkylnucleosides. Further modified nucleobases include 6-azauracil, 6-azacytosine, 6-uracil (psuedouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxy and other 8-substituted adenines and guanines, 5-halo particularly 5-bromos, 5-fluorosulfonyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2'-F-adenine, 2'-amino-adenine, 8-azaguanine and 8-azadeguanine, 7-deazaadenine and 7-deaza guanine and 3-deazaadenine and 3-deazaguanine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine (1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido [5,4-b][1,4] benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]julolid-2-one), pyridoindole cytidine (1H-pyridino [3,2-c:2,3-5]pyrrole[2,3-d]-pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyri dine and 2-pyridine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,508, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, I. J., ed. John Wiley & Sons, 1990, those disclosed by English et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278 and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxymethyl sugar modifications.

[0051] Representative United States patents that teach the preparation of various of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,508, as well as U.S. Pat. Nos. 4,985,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121; 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; and 5,681,941, each of which is commonly owned with the instant application, and each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference.

[0052] Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. The compounds of the invention can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxy groups. Conjugate groups of the invention include intercalators, reporter molecules, polymers, polyanides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugates groups include cholesterol, lipids, phospholipids, biotin, phenazine, folate, phanathanthidine, anthraquinone, acidine, fluorescein, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve oligomer uptake, enhance oligomer resistance to degradation, and/or strengthen sequence-specific hybridization with RNA. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve oligomer uptake, distribution, metabolism or excretion. Representative conjugate groups are disclosed in International Patent Application PCT/US92/01996, filed Oct. 23, 1992 the entire disclosure of which is incorporated herein by reference. Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety (Lester et al., Proc. Natl Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether,

[0053] Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Pat. Nos. 4,826,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717; 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,702,729; 4,789,737; 4,824,944; 4,835,263; 4,876,335; 4,904,582; 4,958,015; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241; 5,391,723; 5,416,203; 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.

[0054] It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. “Chimeric” antisense compounds or “chimeras,” in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

[0055] Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

[0056] The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

[0057] The antisense compounds of the invention are synthesized in vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules.

[0058] The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,359,619; 5,416,016; 5,417,978; 5,468,854; 5,469,348; 5,512,295; 5,529,526; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

[0059] The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the
disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

[0060] The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. Acidic, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published Dec. 9, 1993 or in WO 94/26764 and U.S. Pat. No. 5,770,713 to Imbach et al.

[0061] The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention, i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

[0062] Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are N,N'-dibenzyethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 1-19). The base addition salts of acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically acceptable salt of an acid form of one of the components of the composition of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are the hydrochlorides, acetates, salicylates, nitrates and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sufox or phospho acids or N-substituted sulfamic acids, for example acetic acid, propanoic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, glacial acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of cyclamates), or with other acid organic compounds, such as ascorbic acid. Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations: Carbonates or hydrogen carbonates are also possible.

[0063] For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluensulfonic acid, naphthalenesulfonilic acid, polygalacturon酸ic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.

[0064] The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of estrogen receptor alpha is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically, e.g., to prevent or delay infection, inflammation or tumor formation, for example.

[0065] The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding estrogen receptor alpha, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding estrogen receptor alpha can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of estrogen receptor alpha in a sample may also be prepared.

[0066] The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal,
epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2′-O-methoxyethyl modification are believed to be particularly useful for oral administration.

[0067] Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. Preferred topical formulations include those in which the oligonucleotides of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroylchelating agents and surfactants. Preferred lipids and liposomes include neutral (e.g. dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearoylphosphatidyl choline) negative (e.g. dimyristoylphosphtidyl glycerol DMPG) and cationic (e.g. dioleoyltrimethylammoniumpropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). Oligonucleotides of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, oligonucleotides may be complexed to lipids, in particular to cationic lipids. Preferred fatty acids and esters include but are not limited arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monolein, dilaurin, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylamine, an acylcholine, or a C10-12 alkyl ester (e.g. isoproplmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. patent application Ser. No. 09/315,298 filed on May 20, 1999 which is incorporated herein by reference in its entirety.

[0068] Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or mini-tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Preferred bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucolcholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycocolhydrofusidate. Preferred fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monolein, dilaurin, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylamine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium). Also preferred are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be delivered orally in granular form including spray dried particles, or complexed to form micro or nanoparticles. Oligonucleotide complexing agents include poly-amino acids, polylamines, polyacrylates, polyalkylacrylates, polyoxethanes, polyalkylacyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethylene glycols (PEG) and starches; polyalkylacryloacrylates; DEA-derivatized polylamines, polihulans, celluloses and starches. Particularly preferred complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polysperamines, protamine, polyvinylpyridine, polyglycylidylaminoo-methylplthylene (PDTDMA), polyaminostyrene (e.g. p-amino, poly(methylenacyrlate), poly(ethylencyanoacrylate), poly(2-butylcyanoacrylate), poly(isobutylenacyanoacrylate), poly(isohexylenacyanoacrylate), DEA-methacyrlate, DEA-hexylacrylate, DEA-crylaldehyde, DEA-alumina and DEA-dextran, polyoctylacrylate, polyethylene glycol, poly(DL-lactic acid), poly(DL-lactic-co-glycolic acid) (PLGA), alginates, and polyethylene glycol (PEG). Oral formulations for oligonucleotides and their preparation are described in detail in U.S. application Ser. No. 08/886,829 (filed Jul. 1, 1997), Ser. No. 09/108,673 (filed Jul. 1, 1997), Ser. No. 09/256,515 (filed Feb. 23, 1999), Ser. No. 09/082,624 (filed May 21, 1998) and Ser. No. 09/315,298 (filed May 20, 1999) each of which is incorporated herein by reference in its entirety.

[0069] Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

[0070] Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

[0071] The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

[0072] The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.
In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.

Emulsions

The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington’s Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Emulsions are often biphasic systems comprising of two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be either water-in-oil (w/o) or of the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (w/o/w) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily continuous provides an o/w/o emulsion.

Emulsions are characterized by little or no thermo-dynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophilic/lipophilic balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: non-ionic, anionic, cationic and amphoteric (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).

Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glycercyl tristearate.

A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carbboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.

Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives include in emulsion formulations
include methyl paraben, propyl paraben, quaternary amm
omium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.

[0082] The application of emulsion formulations via dermato logical, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of reasons of ease of formulation, efficacy from an absorption and bioavailability standpoint. (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.

[0083] In one embodiment of the present invention, the compositions of oligonucleotides and nucleic acids are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: *Controlled Release of Drugs: Polymers and Aggregate Systems*, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in *Remington's Pharmaceutical Sciences*, Mack Publishing Co., Easton, Pa., 1985, p. 271).

[0084] The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.

[0085] Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monooleate (M1310), tetraglycerol monostearate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaricale (PO500), decaglycerol monocaprate (MCA750), decaglycerol monostearate (MO750), decaglycerol sequioate (S0750), decaglycerol decaoleate (DA0750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Capso 300, Captop 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylene glycerol fatty acid esters, fatty alcohols, polyglycerolcasters, saturated polyglycerolized C8-C10 glycerides, vegetable oils and silicone oil.

[0086] Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid-based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., *Pharmaceutical Research*, 1994, 11, 1385-1390; Ritschel, *Meth. Find. Exp. Clin. Pharmacol.*, 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., *Pharmaceutical Research*, 1994, 11, 1385; Ho et al., *J. Pharm. Sci.*, 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides or oligonucleotides. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of oligonucleotides and nucleic acids within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.

[0087] Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the oligonucleotides and nucleic acids of the present invention. Penetration enhancers
used in the microemulsions of the present invention may be classified as belonging to one of five broad categories—surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.

[0088] Liposomes

[0089] There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.

[0090] Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.

[0091] In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.

[0092] Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

[0093] Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes. As the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

[0094] Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

[0095] Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis.

[0096] Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).

[0097] Liposomes which are pH-sensitive or negatively charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).

[0098] One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

[0099] Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g., as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).

[0100] Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P. Pharma. Sci., 1994, 4, 6, 466).

[0101] Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes
comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., *FEBS Letters*, 1987, 223, 42, Wu et al., *Cancer Research*, 1993, 53, 5765).

[0102] Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (*Ann. N.Y. Acad. Sci.*, 1987, 507, 64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (*Proc. Natl. Acad. Sci. U.S.A.*, 1988, 85, 6940). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1, or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-anhydromyristolethylphosphatidylcholine are disclosed in WO 97/13499 (Lin et al.).

[0103] Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (*Bull. Chem. Soc. Jpn.*, 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2Cl15G, that contains a PEG moiety. Ihlem et al. (*FEBS Lett.*, 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polylkylene glycols (e.g., PEG) are described by Sears (U.S. Pat. Nos. 4,426,330 and 4,534,899). Klibanov et al. (*FEBS Lett.*, 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (*Biochimica et Biophysica Acta*, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Pat. Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Pat. No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Pat. No. 5,225,212 (both to Martin et al.) and in WO 94/20075 (Zalipsky et al.). Liposomes comprising PEG-modified ceramide lipids are described in WO 96/10391 (Choi et al.). U.S. Pat. Nos. 5,540,935 (Miyazaki et al.) and 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.

[0104] A limited number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Pat. No. 5,264,221 to Tagawa et al. discloses enzyme-bonded liposomes and asserts that the contents of such liposomes may include an antisense RNA. U.S. Pat. No. 5,665,710 to Rahman et al. describes certain methods of encapsulating oligodeoxy-nucleotides in liposomes. WO 97/04787 to Love et al. discloses liposomes comprising antisense oligonucleotides targeted to the ras gene.

[0105] Transferrosomes are yet another type of liposome, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transferrosomes may be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transferrosomes are adaptable to the environment in which they are used, e.g. they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transferrosomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transferrosomes have been used to deliver serum albumin to the skin. The transferrosome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.

[0106] Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophilic/lipophilic balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).

[0107] If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and others such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propanoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

[0108] If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfonic acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfostrucuates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

[0109] If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is...
classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

[0110] If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamines, N-alkylbetaines and phosphatides.

[0112] Penetration Enhancers

[0113] In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.

[0114] Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, p.92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.

[0115] Surfactants: In connection with the present invention, surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of oligonucleotides through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether (Lee et al., *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, p.92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., *J. Pharm. Pharmacol.*, 1988, 40, 252.

[0116] Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoonoate (1-monooxoyleyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-mononaprate, 1-dodecylazacycloheptan-2-one, acylurinines, acylholines, Cl-12 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, p.92; Muranishi, *Critical Reviews in Therapeutic Drug Carrier Systems*, 1990, 7, 1-33; El Hariri et al., *J. Pharm. Pharmacol.*, 1992, 44, 651-654).

[0118] Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of oligonucleotides through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, *J. Chromatogr.*, 1993, 618, 315-339). Chelating agents of the invention include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanillic), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines) (Lee et al., *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, page 92; Muranishi, *Critical Reviews in Therapeutic Drug Carrier Systems*, 1990, 7, 1-33; Buur et al., *J. Control Rel.*, 1990, 14, 43-51).

[0119] Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of oligonucleotides through the alimentary mucosa (Muranishi, *Critical Reviews in Therapeutic Drug Carrier Systems*, 1990, 7, 1-33). This class of penetration enhancers include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacycloalkane derivatives (Lee et al., *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., *J. Pharm. Pharmacol.*, 1987, 39, 621-626).
Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al., U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of oligonucleotides.

Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, amines, and terpenes such as limonene and menthane.

Carriers

Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, “carrier compound” or “carrier” can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracellular reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothioate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polynonisic acid, dextran sulfate, polycylic acid or 4-actamido-4-isothiocyanato-stilbene-2,2'-disulfonic acid (Miyao et al., *Antisense Res. Dev.*, 1995, 5, 115-121; Takakura et al., *Antisense & Nucl. Acid Drug Dev.*, 1996, 6, 177-183).

Excipients

In contrast to a carrier compound, a “pharmaceutical carrier” or “excipient” is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polycrystals or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc.).

Pharmaceutically acceptable organic or inorganic excipient suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylene, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.

Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylene, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Other Components

The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.

Aqueous suspensions may contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

Certain embodiments of the invention provide pharmaceutical compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include but are not limited to daunorubicin, daunomycin, dactinomycin, doxorubicin, etoposide, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bis-chloroethylaminosporan, busulfan, mitomycin C, actinomycin D, mithramycin, prednisone, hydroxyprogestosterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylenemelamine, pentamethylenemelamine, miloxantone, amscarine, chlorambucil, methylcyclclohexylaminosporan, nitrogen mustards, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-azacytidine, hydroxyurea, deoxycoformycin, 4-hydroxyperoxycyclophosphoramide, 5-fluorouracil (5-FU), 5-fluorodeoxyuridine (5-FUddR), methotrexate (MTX), colchicine, taxol, vincristine, vinblas-
tine, etoposide (VP-16), trimetrexate, irinotecan, topotecan, gemcitabine, teniposide, cisplatin and diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed. 1987, pp. 1206-1228, Berkow et al., eds., Rahway, N.J. When used with the compounds of the invention, such chemotherapeutic agents may be used individually (e.g., 5-FU and oligonucleotide), sequentially (e.g., 5-FU and oligonucleotide for a period of time followed by MTX and oligonucleotide), or in combination with one or more other such chemotherapeutic agents (e.g., 5-FU, MTX and oligonucleotide, or 5-FU, radiotherapy and oligonucleotide). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribavirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 2499-2506 and 46-49, respectively). Other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repeated rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50, found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 ug to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 100 g per kg of body weight, once or more daily, to once every 20 years.

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

EXAMPLES

Example 1

- **0136** Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy Amides
- **0137** 2'-Deoxy and 2'-methoxy beta-cyanethyldiisopropyl phosphoramidites were purchased from commercial sources (e.g. Chemgenes, Needham MA or Glen Research, Inc. Sterling Va.). Other 2'-O-alkoxy substituted nucleoside amides are prepared as described in U.S. Pat. No. 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amides, the standard cycle for unmodified oligonucleotides was utilized, except the wait step after pulse delivery of tetrazelate and base was increased to 360 seconds.
- **0138** Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-C) nucleotides were synthesized according to published methods [Sanghvi, et. al., Nucleic Acids Research, 1993, 21, 3197-3203] using commercially available phosphoramidites (Glen Research, Sterling Va. or ChemGenes, Needham Mass.).
- **0139** 2'-Fluoro Amides
- **0140** 2'-Fluorodeoxyadenosine Amides
- **0141** 2'-flouro oligonucleotides were synthesized as described previously [Kawasaki, et. al., J. Med. Chem., 1993, 36, 831-841] and U.S. Pat. No. 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'-deoxy-2'-fluoroadenosine was synthesized utilizing commercially available 9-beta-D-arabinofuranosyl-adenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S2,2-displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9beta-D-arabinofuranosyl-adenine was selectively protected in moderate yield as the 3',5'-diterahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using standard methodology and standard methods were used to obtain the 5'-dimethoxytrityl(DMT) and 5'-DMT-3'-phosphoramidite intermediates.
- **0142** 2'-Fluorodeoxyguanosine
- **0143** The synthesis of 2'-deoxy-2'-fluorguanosine was accomplished using tetrasopropylsiloxoanilyl (TPPS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate disobutryl-arabinofuranosylguanine. Deprotection of the TPPS group was followed by protection of the hydroxyl group with THP to give disobutyryl di-THP protected arabinofuranosylguanine. Selective O-deacetylation and triflation was followed by treatment of the crude product with fluoride, then deprotection of the THP groups. Standard methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.
- **0144** 2'-Fluorouridine
- **0145** Synthesis of 2'-deoxy-2'-fluorouridine was accomplished by the modification of a literature procedure in which 2,2'-anhydro-1-beta-D-arabinofuranosyluracil was treated with 70% hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'-phosphoramidites.
- **0146** 2'-Fluorodeoxycytidine
- **0147** 2'-deoxy-2'-fluorocytidine was synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'-phosphoramidites.
2'-O-(2-Methoxyethyl) Modified Amidites

2'-O-Methoxyethyl-substituted nucleoside amidites are prepared as follows, or alternatively, as per the methods of Martin, P., *Helvetic Chemist Acta*, 1995, 78, 486-504.

2,2'-Anhydro[1-(beta-D-arabinofuranosyl)-5-methyluridine]

5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenyl-carbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 mL). The mixture was heated to reflux, with stirring, allowing the evolved carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether (2.5 L), with stirring. The product formed a gum. The ether was decanted and the residue was dissolved in a minimum amount of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hg for 24 h) to give a solid that was crushed to a light tan powder (57 g, 85% crude yield). The NMR spectrum was consistent with the structure, contaminated with phenol as its sodium salt (ca. 5%). The material was used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white solid, mp 222-2°C).

2'-O-Methoxymethyl-5-methyluridine

2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2-methoxymethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH (200 mL). The residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 g) was dissolved in CHCl₃ (600 mL) and evaporated. A silica gel column (3 kg) was packed in CHCl₃:acetone:MeOH (20:5:3) containing 0.5% Et₃N. The residue was dissolved in CHCl₃ (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product was eluted with the packing solvent to give 160 g (63%) of product. Additional material was obtained by reworking impure fractions.

2'-O-Methoxymethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxymethyl-5-methyluridine (160 g, 0.506 M) was co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the reaction stirred for an additional one hour. Methanol (170 mL) was then added to stop the reaction. HPLC showed the presence of approximately 70% product. The solvent was evaporated and triturated with CH₂CN (200 mL). The residue was dissolved in CH₂CN (1.5 L) and extracted with 2x500 mL of saturated NaHCO₃ and 2x500 mL of saturated NaCl. The organic phase was dried over Na₂SO₄, filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/hexane/acetone (5:5:1) containing 0.5% Et₃NH. The pure fractions were evaporated to give 164 g of product. Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g (57%).

3'-O-Acetyl-2'-O-methoxymethyl-5'-O-dimethoxytrityl-5-methyluridine

3'-O-Acetyl-2'-O-methoxymethyl-5'-O-dimethoxytrityl-5-methyluridine (106 g, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and stirred at room temperature for 24 hours. The reaction was monitored by TLC by first quenching the TLC sample with the addition of MeOH. Upon completion of the reaction, as judged by TLC, MeOH (50 mL) was added and the mixture evaporated at 35°C. The residue was dissolved in CHCl₃ (800 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHCl₃. The combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% product). The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/hexane (4:1). Pure product fractions were evaporated to yield 96 g (84%). An additional 1.5 g was recovered from later fractions.

3'-O-Acetyl-2'-O-methoxymethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine

A first solution was prepared by dissolving 3'-O-acetyl-2'-O-methoxymethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH₂CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH₂CN (1 L), cooled to ~50°C and stirred for 0.5 h using an overhead stirrer. POCl₃ was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The first solution was added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution was evaporated. The residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.

3'-O-Acetyl-2'-O-methoxymethyl-5'-O-dimethoxytrityl-5-methyluridine

A solution of 3'-O-acetyl-2'-O-methoxymethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₄OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₄ gas was added and the vessel heated to 100°C for 2 hours (TLC showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.
N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxymethyltrityl-5-methylcytidine

2'-O-Methoxyethyl-5'-O-dimethoxymethyltrityl-5-methylcytidine (85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) was added with stirring. After stirring for 3 hours, TLC showed the reaction to be approximately 95% complete. The solvent was evaporated and the residue azeotroped with MeOH (200 mL). The residue was dissolved in CHCl3 (700 mL) and extracted with saturated NaHCO3 (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO4 and evaporated to give a residue (96 g). The residue was chromatographed on a 1.5 kg silica gel column using EtOAc/hexane (1:1) containing 0.5% Et3NH as the eluting solvent. The pure product fractions were evaporated to give 90 g (90%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxymethyltrityl-5-methylcytidine-3'-amidite

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxymethyltrityl-5-methylcytidine (74 g, 0.10 M) was dissolved in CHCl3 (1 L) Tetrzole disopropylamine (7.1 g) and 2-cyanoethoxy-tetra-(isopropyl)phosphite (40.5 mL, 0.123 M) was added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (TLC showed the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO3 (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes were back-extracted with CH2Cl2 (300 mL), and the extracts were combined, dried over MgSO4 and concentrated. The residue obtained was chromatographed on a 1.5 kg silica gel column using EtOAc/hexane (3:1) as the eluting solvent. The pure fractions were combined to give 90.6 g (87%) of the title compound.

2'-O-(Aminoxyethyl) nucleoside amidites and 2'-O-(dimethylaminooxyethyl) Nucleoside Amidites

2'-O-(Dimethylaminooxyethyl) Nucleoside Amidites

2'-O-(Dimethylaminooxyethyl) nucleoside amidites [also known in the art as 2'-O-(dimethylaminooxyethyl) nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and guanosine nucleoside amidites are prepared similarly to the thymidine (5-methyluridine) except the exocyclic amines are protected with a benzoyl moiety in the case of adenosine and cytidine and with isobutyryl in the case of guanosine.

5'-O-Tert-Butyldiphenylsilyl-2'-O-2-anhydro-5-methyluridine

3'-O-(Hexyl-2'-O-2-anhydro-5-methyluridine (Pro. Bio. Sint., Varesco, Italy, 100.0 g, 0.416 mmol), dimethylaminopyridine (0.66 g, 0.013 eq, 0.0054 mmol) were dissolved in dry pyridine (500 mL) at ambient temperature under an argon atmosphere and with mechanical stirring. Tert-Butyldiphenylsilyl chloride (125.8 g, 119.0 mL, 1.1 eq, 0.485 mmol) was added in one portion. The reaction was stirred for 16 h at ambient temperature. TLC (RF 0.22, ethyl acetate) indicated a complete reaction. The solution was concentrated under reduced pressure to a thick oil. This was partitioned between dichloromethane (1 L) and sodium bicarbonate (2x1 L) and brine (1 L). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to a thick oil. The oil was dissolved in 1:1 mixture of ethyl acetate and ethyl ether (600 mL) and the solution was cooled to -10° C. The resulting crystalline product was collected by filtration, washed with ethyl ether (3x200 mL) and dried (40° C, 1 mm Hg, 24 h) to 149g (74.8%) of white solid. TLC and NMR were consistent with pure product.

5'-O-Tert-Butyldiphenylsilyl-2'-O-(2-hydroxy-ethyl)-5-methyluridine

5'-O-Tert-Butyldiphenylsilyl-2'-O-(2-hydroxy-ethyl)-5-methyluridine (149 g, 0.311 mol) and sodium bicarbonate (0.074 g, 0.003 eq) were added with manual stirring. The reactor was sealed and heated in an oil bath until an internal temperature of 160° C was reached and then maintained for 16 h (pressure <100 psig). The reaction vessel was cooled to ambient and opened. TLC (RF 0.67 for desired product and RF 0.82 for ara-T side product, ethyl acetate) indicated about 70% conversion to the product. In order to avoid additional side product formation, the reaction was stopped, concentrated under reduced pressure (10 to 1 mm Hg) in a warm water bath (40-100° C) with the more extreme conditions used to remove the ethylene glycol. [Alternatively, once the low boiling solvent is gone, the remaining solution can be partitioned between ethyl acetate and water. The product will be in the organic phase.] The residue was purified by column chromatography (2 kg silica gel, ethyl acetate-hexanes gradient 1:1 to 4:1). The appropriate fractions were combined, stripped and dried to produce as a white crisp foam (84g, 50%), contaminated starting material (17.4 g) and pure reusable starting material 20 g. The yield based on starting material was 58%. TLC and NMR were consistent with 99% pure product.

2'-O-[2-phthalimidoxyethyl]-5'-t-butyldiphenylsilyl-5-methyluridine

2'-O-[2-phthalimidoxyethyl]-5'-t-butyldiphenylsilyl-5-methyluridine (20g, 36.98 mmol) was mixed with triphenylphosphine (11.63g, 44.36 mmol) and N-hydroxyphthalimide (7.24g, 44.36 mmol). It was then dried over PO4 under high vacuum for two days at 40° C. The reaction mixture was mixed with argon and dry THF (369.8 mL, Aldrich, sure seal bottle) was added to get a clear solution. Diethyl-acetocarboxylate (6.98 mL, 44.36 mmol) was added drop wise to the reaction mixture. The rate of addition is maintained such that resulting deep red coloration is just discharged before adding the next drop. After the addition was complete, the reaction was stirred for 4 hrs. By that time TLC showed the completion of the reaction (ethyliclate-hexane, 60:40). The solvent was evaporated in vacuum. Residue obtained was placed on a flash column and eluted with ethyl acetate-hexane (60:40), to get 2'-O-[2-phthalimidoxyethyl]-5'-t-butyldiphenylsilyl-5-methyluridine as white foam (21.819 g, 86%).

5'-O-Tert-butyldiphenylsilyl-2'-O-[2-formamidoiminoxyethyl]-5-methyluridine

2'-O-[2-phthalimidoxyethyl]-5'-t-butyldiphenylsilyl-5-methyluridine (3.1g, 4.5 mmol) was dissolved in dry CH2Cl2 (4.5 mL) and methylhydrazine (300 mL, 4.64
mmol) was added dropwise at -100°C to 0°C. After 1 h the mixture was filtered, the filtrate was washed with ice cold CHCl₃, and the combined organic phase was washed with water, brine and dried over anhydrous Na₂SO₄. The solution was concentrated to get 2'-O-(dimethoxyethyl) thymidine, which was then dissolved in MeOH (67.5 mL). To this formaldehyde (20% aqueous solution, w/w, 1.1 eq.) was added and the resulting mixture was stirred for 1 h. Solvent was removed under vacuum; residue chromatographed to get 5'-O-tert-butyldiphenylsilyl-2'-O-[2-formamidinooxy]ethyl]-5-methyluridine as white foam (1.95 g, 78%).

[0177] 5'-O-tert-Butyldiphenylsilyl-2'-O-[N,N-dimethy laminoxyethyl]-5-methyluridine

[0178] 5'-O-tert-butyldiphenylsilyl-2'-O-[2-formamidinoxyethyl]-5-methyluridine (1.77 g, 3.12 mmol) was dissolved in a solution of 1M pyridinium p-toluenesulfonate (PPTS) in dry MeOH (30.6 mL). Sodium cyanoborohydride (0.39 g, 6.13 mmol) was added to this solution at 10°C. Under inert atmosphere. The reaction mixture was stirred for 10 minutes at 10°C. After that the reaction vessel was removed from the ice bath and stirred at room temperature for 2 h, the reaction monitored by TLC (5% MeOH in CH₂Cl₂). Aqueous NaHCO₃ solution (5%, 10 mL) was added and extracted with ethyl acetate (2x20 mL). Ethyl acetate phase was dried over anhydrous Na₂SO₄ evaporated to dryness. Residue was dissolved in a solution of 1M PPTS in MeOH (30.6 mL). Formaldehyde (20% w/w, 30 mL, 3.37 mmol) was added and the reaction mixture was stirred at room temperature for 10 minutes. Reaction mixture cooled to 10°C in an ice bath, sodium cyanoborohydride (0.39 g, 6.13 mmol) was added and reaction mixture stirred at 10°C for 10 minutes. After 10 minutes, the reaction mixture was removed from the ice bath and stirred at room temperature for 2 hrs. To the reaction mixture 5% NaHCO₃ (25 mL) solution was added and extracted with ethyl acetate (2x25 mL). Ethyl acetate layer was dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue obtained was purified by flash column chromatography and eluted with 5% MeOH in CH₂Cl₂ to get 5'-O-tert-butyldiphenylsilyl-2'-O-[N,N-dimethy laminoxyethyl]-5-methyluridine as a white foam (14.6 g, 80%).

[0179] 2'-O-(dimethy laminoxyethyl)-5-methyluridine

[0180] Triethylamine trihydrofluoride (3.91 mL, 24.0 mmol) was dissolved in dry THF and triethylamine (1.67 mL, 12 mmol, dry, kept over KOH). This mixture of triethylamine-2HF was then added to 5'-O-tert-butyldiphenylsilyl-2'-O-[N,N-dimethy laminoxyethyl]-5-methyluridine (1.40 g, 2.4 mmol) and stirred at room temperature for 24 hrs. Reaction was monitored by TLC (5% MeOH in CH₂Cl₂). Solvent was removed under vacuum and the residue placed on a flash column and eluted with 10% MeOH in CH₂Cl₂ to get 2'-O-(dimethy laminoxyethyl)-5-methyluridine (766 mg, 92.5%).

[0181] 5'-O-DMT-2'-O-(dimethy laminoxyethyl)-5-methyluridine

[0182] 2'-O-(dimethy laminoxyethyl)-5-methyluridine (750 mg, 2.17 mmol) was dried over P₂O₅ under high vacuum overnight at 40°C. It was then co-evaporated with anhydrous pyridine (20 mL). The residue was then dissolved in pyridine (11 mL) under argon atmosphere. 4-dimethylaminopyridine (26.5 mg, 2.60 mmol), 4',4'-dimethoxytrityl chloride (880 mg, 2.60 mmol) was added to the mixture and the reaction mixture was stirred at room temperature until all of the starting material disappeared. Pyridine was removed under vacuum and the residue chromatographed and eluted with 10% MeOH in CH₂Cl₂ (containing a few drops of pyridine) to get 5'-O-DMT-2'-O-(dimethy laminoxyethyl)-5-methyluridine (1.13 g, 80%).

[0183] 5'-O-DMT-2'-O-(2',N,N-dimethy laminoxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

[0184] 5'-O-DMT-2'-O-(dimethy laminoxyethyl)-5-methyluridine (1.08 g, 1.67 mmol) was co-evaporated with toluene (20 mL). To the residue N,N-diisopropylamine tetrazonide (0.29 g, 1.67 mmol) was added and dried over P₂O₅ under high vacuum overnight at 40°C. Then the reaction mixture was dissolved in anhydrous acetone/titrile (8.4 mL) and 2-cyanoethyl-NN,N¹,N¹-tetraisopropylphosphoramidite (2.12 mL, 6.08 mmol) was added. The reaction mixture was stirred at ambient temperature for 4 hrs under inert atmosphere. The progress of the reaction was monitored by TLC (hexane/ethyl acetate 1:1). The solvent was evaporated, then the residue was dissolved in ethyl acetate (70 mL) and washed with 5% aqueous NaHCO₃ (40 mL). Ethyl acetate layer was dried over anhydrous Na₂SO₄ and concentrated. Residue obtained was chromatographed (ethyl acetate as eluent) to get 5'-O-DMT-2'-O-(2',N,N-dimethy laminoxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite] as a foam (1.04 g, 74.9%).

[0185] 2'-Aminooxyethoxy) Nucleoside Amidites

[0186] 2'-Aminooxyethoxy) nucleoside amidites [also known in the art as 2'-O-(aminooxyethy l) nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and thymidine nucleoside amidites are prepared similarly.

[0187] N2-isobutyl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

[0188] The 2'-O-aminooxyethyl guanosine analog may be obtained by selective 2'-O-alkylation of dianinopurine riboside. Multigram quantities of dianinopurine riboside may be purchased from Schering AG (Berlin) to provide 2'-O-(2-ethylacetyl) dianinopurine riboside along with a minor amount of the 3'-O-isomer. 2'-O-(2-ethylacetyl) dianinopurine riboside may be resolved and converted to 2'-O-(2-ethylacetyl)guanosine by treatment with adenosine deaminase. (McCle, D. P. C., Cock, P. D., Guinocco, C. J., W0 94/02501 A1 940203.) Standard protection procedures should afford 2'-O(2-ethylacetyl)-5'-O(4,4'-dimethoxytrityl)guanosine and 2-N-isobutyl-6-O-diphenylcarbamoyl-2'-O(2-ethylacetyl)-5'-O(4,4'-dimethoxytrityl)guanosine which may be reduced to 2'-N-isobutyl-6-O-diphenylcarbamoyl-2'-O(2-hydroxyethyl)-5'-O(4,4'-dimethoxytrityl)guanosine. As before the hydroxyl group may be displaced by N-hydroxyphthalimide via a Mitsunobu reaction, and the protected nucleoside may be phosphorylated as usual to yield 2-N-isobutyl-6-O-diphenylcarbamoyl-2'-O(2-phthalimidoxyl)ethyl]-5'-O(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

[0189] 2'-dimethy laminoxyethoxy (2'-DMAEOE) Nucleoside Amidites
2'-O-[2-(N,N-dimethylaminoethoxy)ethyl]-5-methyl Uridine

20 Nov. 13, 2003

Phosphorothioates (P=S) are synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 0.2 M solution of 3H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphate linkages. The thiation step was increased to 68 sec and was followed by the capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 h), the oligonucleotides were purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution. Phosphonate oligonucleotides are prepared as described in U.S. Pat. No. 5,508,270, herein incorporated by reference.

Alkylphosphonate oligonucleotides are prepared as described in U.S. Pat. No. 4,469,863, herein incorporated by reference.

3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Pat. Nos. 5,610,289 or 5,625,050, herein incorporated by reference.

Phosphoramidite oligonucleotides are prepared as described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878, herein incorporated by reference.

Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.

3'-Deoxy-3'-amino phosphoramidite oligonucleotides are prepared as described in U.S. Pat. No. 5,476,925, herein incorporated by reference.

Phosphotriester oligonucleotides are prepared as described in U.S. Pat. No. 5,023,243, herein incorporated by reference.

Boranophosphate oligonucleotides are prepared as described in U.S. Pat. Nos. 5,130,302 and 5,177,198, both herein incorporated by reference.

Example 3

Oligonucleotide Synthesis

Methylenemethylnlin linked oligonucleosides, also identified as MMI linked oligonucleosides, methylene-dimethyl-hydrazo linked oligonucleosides, also identified as MIII linked oligonucleosides, and methylene-carbonylamino linked oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, and identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=S linkages are prepared as described in U.S. Pat. Nos. 5,378, 825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated by reference.

Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Pat. Nos. 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as described in U.S. Pat. No. 5,223,618, herein incorporated by reference.
Example 4

[0211] PNA Synthesis

Example 5

[0213] Synthesis of Chimeric Oligonucleotides

[0214] Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the “gap” segment of linked nucleosides is positioned between 5′ and 3′ “wing” segments of linked nucleo-
sides and a second “open end” type wherein the “gap” segment is located at either the 3′ or the 5′ terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as “gapmers” or gapped oligonucle-
tides. Oligonucleotides of the second type are also known in the art as “heminmers” or “wingmers”.

[0215] [2′-O-Me][2′-deoxy][2′-O-Me] Chimeric Phosphorothioate Oligonucleotides

[0216] Chimeric oligonucleotides having 2′-O-alkyl phosphorothioate and 2′-deoxy phosphorothioate oligo-nucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. oligo-
nucleotides are synthesized using the automated synthesizer and 2′-deoxy-5′-dimethoxytrityl-3′-O-phosphor-amidite for the DNA portion and 5′-dimethoxytrityl-2′-O-methyl-3′-O-
phosphomamide for 51 and 3′ wings. The standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2′-O-methyl. The fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 3:1 ammonia/ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hrs at room temperature is then done to deprotect all bases and sample was again lyophilized to dryness. The pellet is resuspended in 1M TBAF in THF for 24 hrs at room temperature to deprotect the 2′ positions. The reaction is then quenched with 1M TEAA and the sample is then reduced to ½ volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[0217] [2′-O-(2-Methoxyethyl)][2′-deoxy][2′-O-
(Methoxymethyl)] Chimeric Phosphorothioate Oligonucleotides

[0218] [2′-O-(2-methoxyethyl)][2′-deoxy][2′-O-
(methoxy-ethyl)] chimeric phosphorothioate oligonucle-
teides were prepared as per the procedure above for the 2′-O-methyl chimeric oligonucleotide, with the substitution of 2′-O-(methoxymethyl) amidites for the 2′-O-methyl amid-
ites.

[0219] [2′-O-(2-Methoxyethyl)Phosphodiester][2′-
deoxy Phosphorothioate][2′-O-(2-Methoxyethyl) Phos-
phodiester] Chimeric Oligonucleotides

[0220] [2′-O-(2-methoxyethyl phosphodiester)][2′-
deoxy phosphorothioate][2′-O-(methoxymethyl) phos-
phodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2′-O-methyl chimeric oligo-
nucleotide with the substitution of 2′-O-(methoxymethyl) amidites for the 2′-O-methyl amidites, as described above, except for the use of iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfuration utilizing 3H-1,2 benzodithiole-3-one 1,1 diox-
ide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.

Example 6

[0221] Other chimeric oligonucleotides, chimeric oligo-
nucleo-sides and mixed chimeric oligonucleotides/oligo-
nucleotides are synthesized according to U.S. Pat. No. 5,623,065, herein incorporated by reference.

Example 7

[0222] Oligonucleotide Isolation

[0223] After cleavage from the controlled pore glass col-
umn (Applied Biosy stems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucle-
otide or oligonucleoside are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel ele-
trophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of phosphorothio-
ate and phosphodiester linkages obtained in synthesis were periodically checked by 31P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., *J. Biol. Chem.* 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

Example 7

[0224] Oligonucleotide Synthesis—96 Well Plate Format

[0225] Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthe-
sizer capable of assembling 96 sequences simultaneously in a standard 96 well format. Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages were generated by sulfuration utilizing 3H-1,2 benzodithiole-3-one 1,1 diox-
ide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethylidisopropyl phosphoram-
idies were purchased from commercial vendors (e.g. PE-2Applied Biosystems, Foster City, Calif., or Pharmacia, Piscataway, N.J.). Non-standard nucleosides are synthesized as per known literature or patented methods. They are then utilized as base protected beta-cyanoethylidisopropyl phosphoramidites.

[0226] Oligonucleotides were cleaved from support and deprotected with concentrated NH4OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-sus-
pended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.
Example 8

[0227] Oligonucleotide Analysis—96 Well Plate Format

[0228] The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACE™ MDO) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACE™ 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectrometry. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length.

Example 9

[0229] Cell Culture and Oligonucleotide Treatment

[0230] The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following 5 cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, Ribonuclease protection assays, or RT-PCR.

[0231] T-24 Cells:

[0232] The human transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, Va.). T-24 cells were routinely cultured in complete McCoy’s SA basal media (Invitrogen Corporation, Carlsbad, Calif.), supplemented with 10% fetal calf serum ([Invitrogen Corporation, Carlsbad, Calif.]), penicillin 100 units per ml, and streptomycin 100 micrograms per ml (Invitrogen Corporation, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

[0233] For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

[0234] A549 Cells:

[0235] The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC) (Manassas, Va.). A549 cells were routinely cultured in DMEM basal media (Invitrogen Corporation, Carlsbad, Calif.) supplemented with 10% fetal calf serum (Invitrogen Corporation, Carlsbad, Calif.), penicillin 100 units per ml, and streptomycin 100 micrograms per ml (Invitrogen Corporation, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence.

[0236] NHDF Cells:

[0237] Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville, Md.). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville, Md.) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

[0238] HEK Cells:

[0239] Human embryonic keratinocytes (HEK) were obtained from the Clonetics Corporation (Walkersville, Md.). HEKs were routinely maintained Keratinocyte Growth Medium (Clonetics Corporation, Walkersville, Md.) formulated as recommended by the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier.

[0240] MCF7:

[0241] The human breast carcinoma cell line MCF-7 was obtained from the American Type Culture Collection (Manassas, Va.). MCF-7 cells were routinely cultured in DMEM low glucose (Gibco/Life Technologies, Gaithersburg, Md.) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, Md.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

[0242] For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

[0243] Treatment with Antisense Compounds:

[0244] When cells reached 70% confluency, they were treated with oligonucleotide. For cells grown in 96-well plates, wells were washed once with 100 µL OPTI-MEM™-1 reduced-serum medium (Invitrogen Corporation, Carlsbad, Calif.) and then treated with 130 µL of OPTI-MEM™-1 containing 3.75 µg/mL LIPOFECTIN™ (Invitrogen Corporation, Carlsbad, Calif.) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium was replaced with fresh medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

[0245] The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is ISIS 13920, TCCGTCATCGTCTCT- CAGGG, SEQ ID NO: 1, a 2’-O-methoxethyl gapper (2’-O-methoxethyl gapper in bold) with a phosphorothioate backbone which is targeted to human H-ras. For mouse or rat cells the positive control oligonucleotide is ISIS 15770, ATGCATTCTGCCCCCAAAGGA, SEQ ID NO: 2, a 2’-O-methoxethyl gapper (2’-O-methoxethyl gapper in bold) with a phosphorothioate backbone which is targeted to both mouse and rat craf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-Ha-ras (for ISIS 13920) or craf (for ISIS 15770) mRNA is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell line.
If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of H-ras or c-ras mRNA is then utilized as the oligonucleotide screening concentration in subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed unsuitable for oligonucleotide transfection experiments.

Example 10

[0246] Analysis of Oligonucleotide Inhibition of Estrogen Receptor Alpha Expression

[0247] Antisense modulation of estrogen receptor alpha expression can be assayed in a variety of ways known in the art. For example, estrogen receptor alpha mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. The preferred method of RNA analysis of the present invention is the use of total cellular RNA as described in other examples herein. Methods of RNA isolation are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993.

Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE- Applied Biosystems, Foster City, Calif. and used according to manufacturer’s instructions.

[0248] Protein levels of estrogen receptor alpha can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to estrogen receptor alpha can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antiserum are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997.

Preparation of monoclonal antibodies is taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997.

[0249] Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

Example 11

[0250] Poly(A)+mRNA Isolation

[0251] Poly(A)+mRNA was isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A)+mRNA isolation are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993.

Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 60 μL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 μL of lysis was transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine Calif.). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 μL of elution buffer (5 mM Tris-HCl pH 7.6, preheated to 70°C) was added to each well, the plate was incubated on a 90°C hot plate for 5 minutes, and the eluate was then transferred to a fresh 96-well plate.

[0252] Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

Example 12

[0253] Total RNA Isolation

[0254] Total RNA was isolated using an RNEASY™ kit and buffers purchased from Qiagen Inc. (Valencia, Calif.) following the manufacturer’s recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 150 μL Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 150 μL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY™ well plate attached to a QIAVAC™ manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 1 minute. 500 μL of Buffer RW1 was added to each well of the RNEASY™ plate and incubated for 1.5 minutes and the vacuum was again applied for 1 minute. An additional 500 μL of Buffer RW1 was added to each well of the RNEASY™ plate and the vacuum was applied for 2 minutes. 1 mL of Buffer RPE was then added to each well of the RNEASY™ plate and the vacuum applied for a period of 90 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 3 minutes. The plate was then removed from the QIAVAC™ manifold and blotted dry on paper towels. The plate was then re-attached to the QIAVAC™ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 170 μL water into each well, incubating 1 minute, and then applying the vacuum for 3 minutes.

[0255] The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia Calif.). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.
Example 13

[0256] Real-Time Quantitative PCR Analysis of Estrogen Receptor Alpha mRNA Levels

[0257] Quantitation of estrogen receptor alpha mRNA levels was determined by real-time quantitative PCR using the ABI PRISM™ 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, Calif.) according to manufacturer’s instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., FAM, obtained from either Operon Technologies Inc., Alameda, Calif. or Integrated DNA Technologies Inc., Coralville, Iowa) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, Calif. or Integrated DNA Technologies Inc., Coralville, IA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISM™ 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

[0258] Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be “multiplexed” with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only ("single-plexing"), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed multiplexable. Other methods of PCR are also known in the art.

[0259] PCR reagents were obtained from Invitrogen, Carlsbad, Calif. RT-PCR reactions were carried out by adding 20 μL PCR cocktail (2.5× PCR buffer (—MgCl2), 6.6 mM MgCl2, 375 μM each of dATP, dCTP, dGTP, dTTP, 375 nM each of forward primer and reverse primer, 125 nM of probe, 4 Units RNase inhibitor, 1.25 Units PLATINUM™ Taq, 5 Units MuLV reverse transcriptase, and 2.5x ROX dye) to 96 well plates containing 50 μL total RNA solution. The RT reaction was carried out by incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the PLATINUM™ Taq, 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

[0260] Gene target quantities obtained by real time RT-PCR are normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreen™ (Molecular Probes, Inc. Eugene, Oreg.). GAPDH expression is quantified by real time RT-PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RiboGreen™ RNA quantification reagent from Molecular Probes. Methods of RNA quantification by RiboGreen™ are taught in Jones, L. J., et al, Analytical Biochemistry, 1998, 265, 368-374.

[0261] In this assay, 170 nL of RiboGreen™ working reagent (RiboGreen™ reagent diluted 1:350 in 10 mM Tris-HCl, 1 mM EDTA, pH 7.5) is pipetted into a 96-well plate containing 30 μL purified, cellular RNA. The plate is read in a CytoFluor 4000 (PE Applied Biosystems) with excitation at 480 nm and emission at 520 nm.

[0262] Probes and primers to human estrogen receptor alpha were designed to hybridize to a human estrogen receptor alpha sequence, using published sequence information (GenBank accession number NM_000125.1, incorporated herein as SEQ ID NO:3). For human estrogen receptor alpha the PCR primers were:

[0263] forward primer: GTAGAGGGCATGGTGGAGAIC(TT (SEQ ID NO: 4)

[0264] reverse primer: CAAACTCTCTCCGGCATGGATT (SEQ ID NO: 5) and the PCR probe was: FAM-TGCTGCTAGCTATCGTGTTCCG-C TAMRA (SEQ ID NO: 6) where FAM (PE-Applied Biosystems, Foster City, Calif.) is the fluorescent reporter dye and TAMRA (PE-Applied Biosystem, Foster City, Calif.) is the quencher dye. For human GAPDH the PCR primers were:

[0265] forward primer: GAAGGCTAAGGGTGGGCTG (SEQ ID NO:7)

[0266] reverse primer: GAAGATGTGATGGAATCTGTCG (SEQ ID NO:8) and the PCR probe was: JOE-CAAGCTTCCGTTCTCAGCC-C TAMRA (SEQ ID NO: 9) where JOE (PE-Applied Biosystems, Foster City, Calif.) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, Calif.) is the quencher dye.

Example 14

[0267] Northern Blot Analysis of Estrogen Receptor Alpha mRNA Levels

[0268] Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RAZO™ (TEL-TEST “B” Inc., Friendswood, Tex.). Total RNA was prepared following manufacturer’s
recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, Ohio). RNA was transferred from the gel to HYBOND™-N+nylon membranes (Amersham Pharmacia Biotech, Piscataway, N.J.) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST “B” Inc., Friendswood, Tex.). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKERTM UV Crosslinker 2400 (Stratagene, Inc., La Jolla, Calif.) and then probed using QUICKHYB™ hybridization solution (Stratagene, La Jolla, Calif.) using manufacturer’s recommendations for stringent conditions.

[0269] To detect human estrogen receptor alpha, a human estrogen receptor alpha specific probe was prepared by PCR using the forward primer GTAGAGGCTAGGTCAGAGATCTTT (SEQ ID NO: 4) and the reverse primer CAAAATCTTCTCCCTGCAAGT (SEQ ID NO: 5). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, Calif.).

[0270] Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGER™ and IMAGEQUANT™ Software V3.3 (Molecular Dynamics, Sunnyvale, Calif.). Data was normalized to GAPDH levels in untreated controls.

Example 15

[0271] Antisense Inhibition of Human Estrogen Receptor Alpha Expression by Chimeric Phosphorothiolate Oligonucleotides Having 2'-MOE Wings and a Deoxy Gap

[0272] In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human estrogen receptor alpha RNA, using published sequences (GenBank accession number NM_000125.1, representing the main mRNA of estrogen receptor alpha, incorporated herein as SEQ ID NO: 3; a concatenated sequence of exons 1A, 2, 1B, 1C, and 4-12 from GenBank accession number NT_007587.3, a segment sequence of chromosome 6; residues 491001-833000 of GenBank accession number NT_007587.3, representing a partial genomic sequence of estrogen receptor alpha, incorporated herein as SEQ ID NO: 11; GenBank accession number AF258449.1, representing the estrogen receptor alpha variant herein designated ESR-alpha-V, incorporated herein as SEQ ID NO: 12; GenBank accession number AF258451.1, representing the estrogen receptor alpha variant herein designated ESR-alpha-VI, incorporated herein as SEQ ID NO: 13; GenBank accession number AB608241.1, representing the estrogen receptor alpha variant herein designated ESR-alpha-VII, incorporated herein as SEQ ID NO: 14; GenBank accession number M69297.1, representing the estrogen receptor alpha variant herein designated ESR-alpha-IX, incorporated herein as SEQ ID NO: 15; GenBank accession number U68067.1, representing the estrogen receptor alpha variant herein designated ESR-alpha-IX, incorporated herein as SEQ ID NO: 16; GenBank accession number U68068.1, representing the estrogen receptor alpha variant herein designated ESR-alpha-IX, incorporated herein as SEQ ID NO: 17; and GenBank accession number X73087.1, representing the estrogen receptor alpha variant herein designated ESR-alpha-IX, incorporated herein as SEQ ID NO: 18). The oligonucleotides are shown in Table 1. “Target site” indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 1 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide “wings”. The wings are composed of 2'-methoxyethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5'-methylcytidines. The compounds were analyzed for their effect on human estrogen receptor alpha mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from two experiments. If present, “N.D.” indicates “no data”.

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>REGION</th>
<th>TARGET SEQ ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>% INHIB</th>
<th>SEQ ID NO</th>
</tr>
</thead>
</table>
| 192243 | Coding | 3 802 | gattgctgctgatgctg | 46 | 19
| 192244 | Coding | 3 993 | gattgctgctgatgctg | 55 | 20
| 192245 | 5'TUR | 10 9 | annaggaagcaagcttg | 34 | 21
| 192246 | 5'TUR | 10 196 | tcctgctgctgctgctg | 0 | 20
| 192247 | 5'TUR | 10 760 | tcctgctgctgctgctg | 85 | 26
| 192248 | 5'TUR | 10 818 | tcccatctgctgctgctg | 55 | 24
| 192249 | 5'TUR | 10 823 | gctgctgctgctgctgctg | 58 | 25
| 192250 | 5'TUR | 10 908 | gccctgccggctgctgctg | 56 | 26
| 192251 | 5'TUR | 10 1080 | cgccgctgctgctgctgctg | 71 | 27
| 192252 | 5'TUR | 10 1139 | cgccgctgctgctgctgctg | 75 | 28
| 192253 | 5'TUR | 10 1180 | cgccgctgctgctgctgctg | 67 | 29
| 192254 | 5'TUR | 10 1153 | cgccgctgctgctgctgctg | 57 | 30
| 192255 | 5'TUR | 10 1158 | gggctgctgctgctgctg | 78 | 31
| 192256 | Exon: | 10 1454 | tccctgctgctgctgctgctg | 49 | 32
<p>| | Junction| | | | | |</p>
<table>
<thead>
<tr>
<th>ISIS #</th>
<th>REGION</th>
<th>TARGET SEQ ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>% INHIB</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>192257</td>
<td>Exon:</td>
<td>10</td>
<td>1462</td>
<td>ttgttgccgggttagatcc</td>
<td>10</td>
<td>1482</td>
</tr>
<tr>
<td>192258</td>
<td>UTR</td>
<td>10</td>
<td>1571</td>
<td>ttgagttctctgccgcn</td>
<td>10</td>
<td>1571</td>
</tr>
<tr>
<td>192259</td>
<td>UTR</td>
<td>10</td>
<td>1576</td>
<td>cacagtggtgcacccct</td>
<td>10</td>
<td>1576</td>
</tr>
<tr>
<td>192260</td>
<td>UTR</td>
<td>10</td>
<td>1619</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1619</td>
</tr>
<tr>
<td>192263</td>
<td>UTR</td>
<td>10</td>
<td>1616</td>
<td>ggtcggactccttggtgct</td>
<td>10</td>
<td>1616</td>
</tr>
<tr>
<td>192264</td>
<td>UTR</td>
<td>10</td>
<td>1617</td>
<td>gccacccgtctgtgtggct</td>
<td>10</td>
<td>1617</td>
</tr>
<tr>
<td>192265</td>
<td>UTR</td>
<td>10</td>
<td>1618</td>
<td>ggtcggactccttggtgct</td>
<td>10</td>
<td>1618</td>
</tr>
<tr>
<td>192266</td>
<td>Coding</td>
<td>10</td>
<td>1619</td>
<td>cctcttgctgtgtggtgct</td>
<td>10</td>
<td>1619</td>
</tr>
<tr>
<td>192267</td>
<td>Coding</td>
<td>10</td>
<td>1620</td>
<td>cctcttgctgtgtggtgct</td>
<td>10</td>
<td>1620</td>
</tr>
<tr>
<td>192268</td>
<td>Coding</td>
<td>10</td>
<td>1621</td>
<td>cctcttgctgtgtggtgct</td>
<td>10</td>
<td>1621</td>
</tr>
<tr>
<td>192269</td>
<td>Coding</td>
<td>10</td>
<td>1622</td>
<td>cctcttgctgtgtggtgct</td>
<td>10</td>
<td>1622</td>
</tr>
<tr>
<td>192270</td>
<td>Coding</td>
<td>10</td>
<td>1623</td>
<td>cctcttgctgtgtggtgct</td>
<td>10</td>
<td>1623</td>
</tr>
<tr>
<td>192271</td>
<td>UTR</td>
<td>10</td>
<td>1624</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1624</td>
</tr>
<tr>
<td>192272</td>
<td>UTR</td>
<td>10</td>
<td>1625</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1625</td>
</tr>
<tr>
<td>192273</td>
<td>UTR</td>
<td>10</td>
<td>1626</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1626</td>
</tr>
<tr>
<td>192274</td>
<td>UTR</td>
<td>10</td>
<td>1627</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1627</td>
</tr>
<tr>
<td>192275</td>
<td>UTR</td>
<td>10</td>
<td>1628</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1628</td>
</tr>
<tr>
<td>192276</td>
<td>UTR</td>
<td>10</td>
<td>1629</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1629</td>
</tr>
<tr>
<td>192277</td>
<td>UTR</td>
<td>10</td>
<td>1630</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1630</td>
</tr>
<tr>
<td>192278</td>
<td>UTR</td>
<td>10</td>
<td>1631</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1631</td>
</tr>
<tr>
<td>192279</td>
<td>UTR</td>
<td>10</td>
<td>1632</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1632</td>
</tr>
<tr>
<td>192280</td>
<td>UTR</td>
<td>10</td>
<td>1633</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1633</td>
</tr>
<tr>
<td>192281</td>
<td>Exon:</td>
<td>10</td>
<td>1634</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1634</td>
</tr>
<tr>
<td>192282</td>
<td>UTR</td>
<td>10</td>
<td>1635</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1635</td>
</tr>
<tr>
<td>192283</td>
<td>UTR</td>
<td>10</td>
<td>1636</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1636</td>
</tr>
<tr>
<td>192284</td>
<td>UTR</td>
<td>10</td>
<td>1637</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1637</td>
</tr>
<tr>
<td>192285</td>
<td>UTR</td>
<td>10</td>
<td>1638</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1638</td>
</tr>
<tr>
<td>192286</td>
<td>Exon:</td>
<td>10</td>
<td>1639</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1639</td>
</tr>
<tr>
<td>192287</td>
<td>Exon:</td>
<td>10</td>
<td>1640</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1640</td>
</tr>
<tr>
<td>192288</td>
<td>Exon:</td>
<td>10</td>
<td>1641</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1641</td>
</tr>
<tr>
<td>192289</td>
<td>UTR</td>
<td>10</td>
<td>1642</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1642</td>
</tr>
<tr>
<td>192290</td>
<td>UTR</td>
<td>10</td>
<td>1643</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1643</td>
</tr>
<tr>
<td>192291</td>
<td>UTR</td>
<td>10</td>
<td>1644</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1644</td>
</tr>
<tr>
<td>192292</td>
<td>UTR</td>
<td>10</td>
<td>1645</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1645</td>
</tr>
<tr>
<td>192293</td>
<td>UTR</td>
<td>10</td>
<td>1646</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1646</td>
</tr>
<tr>
<td>192294</td>
<td>UTR</td>
<td>10</td>
<td>1647</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1647</td>
</tr>
<tr>
<td>192295</td>
<td>UTR</td>
<td>10</td>
<td>1648</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1648</td>
</tr>
<tr>
<td>192296</td>
<td>UTR</td>
<td>10</td>
<td>1649</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1649</td>
</tr>
<tr>
<td>192297</td>
<td>UTR</td>
<td>10</td>
<td>1650</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1650</td>
</tr>
<tr>
<td>192298</td>
<td>Exon:</td>
<td>10</td>
<td>1651</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1651</td>
</tr>
<tr>
<td>192299</td>
<td>UTR</td>
<td>10</td>
<td>1652</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1652</td>
</tr>
<tr>
<td>192300</td>
<td>UTR</td>
<td>10</td>
<td>1653</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1653</td>
</tr>
<tr>
<td>192301</td>
<td>UTR</td>
<td>10</td>
<td>1654</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1654</td>
</tr>
<tr>
<td>192302</td>
<td>UTR</td>
<td>10</td>
<td>1655</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1655</td>
</tr>
<tr>
<td>192303</td>
<td>UTR</td>
<td>10</td>
<td>1656</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1656</td>
</tr>
<tr>
<td>192304</td>
<td>UTR</td>
<td>10</td>
<td>1657</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1657</td>
</tr>
<tr>
<td>192305</td>
<td>UTR</td>
<td>10</td>
<td>1658</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1658</td>
</tr>
<tr>
<td>192306</td>
<td>Exon:</td>
<td>10</td>
<td>1659</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1659</td>
</tr>
<tr>
<td>192307</td>
<td>UTR</td>
<td>10</td>
<td>1660</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1660</td>
</tr>
<tr>
<td>192308</td>
<td>UTR</td>
<td>10</td>
<td>1661</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1661</td>
</tr>
<tr>
<td>192309</td>
<td>UTR</td>
<td>10</td>
<td>1662</td>
<td>cagcttggtgcacccct</td>
<td>10</td>
<td>1662</td>
</tr>
</tbody>
</table>

Inhibition of human estrogen receptor alpha mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap.
Table 1-continued

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>REGION</th>
<th>TARGET SEQ ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>% INHIB</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>192310</td>
<td>Exon: Exon Junction</td>
<td>16</td>
<td>181</td>
<td>cgccgccacttacttgctg</td>
<td>20</td>
<td>84</td>
</tr>
<tr>
<td>192311</td>
<td>Exon: Exon Junction</td>
<td>17</td>
<td>75</td>
<td>ttttcttttgagagaag</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>192312</td>
<td>Exon: Exon Junction</td>
<td>17</td>
<td>206</td>
<td>cgccgccacttacttgctgg</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td>192313</td>
<td>Exon: Exon Junction</td>
<td>18</td>
<td>105</td>
<td>cccaagccacccctac</td>
<td>0</td>
<td>87</td>
</tr>
<tr>
<td>192314</td>
<td>Exon: Exon Junction</td>
<td>18</td>
<td>244</td>
<td>cccggtctctgtcaagag</td>
<td>59</td>
<td>88</td>
</tr>
<tr>
<td>192315</td>
<td>Exon 1A</td>
<td>11</td>
<td>1391</td>
<td>agctacacttgagagagag</td>
<td>12</td>
<td>89</td>
</tr>
<tr>
<td>192316</td>
<td>Intron 1A</td>
<td>11</td>
<td>12000</td>
<td>aagggcgggtacagtct</td>
<td>34</td>
<td>90</td>
</tr>
<tr>
<td>192317</td>
<td>Exon 1C</td>
<td>11</td>
<td>119091</td>
<td>cggggtacgtgagtgctc</td>
<td>44</td>
<td>91</td>
</tr>
<tr>
<td>192318</td>
<td>Intron</td>
<td>11</td>
<td>151119</td>
<td>cccctatctccatcact</td>
<td>13</td>
<td>92</td>
</tr>
<tr>
<td>192319</td>
<td>Exon: Intron Junction</td>
<td>11</td>
<td>299238</td>
<td>gcatcttacttcgctcagag</td>
<td>22</td>
<td>93</td>
</tr>
<tr>
<td>192320</td>
<td>Intron 1D</td>
<td>11</td>
<td>34858</td>
<td>taccctacacgatttgc</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>192321</td>
<td>Intron 10</td>
<td>11</td>
<td>34800</td>
<td>ctcatatcatcattggt</td>
<td>52</td>
<td>95</td>
</tr>
<tr>
<td>192322</td>
<td>Intron: Exon Junction</td>
<td>11</td>
<td>386175</td>
<td>ecatgctgctgagttgtgg</td>
<td>13</td>
<td>96</td>
</tr>
</tbody>
</table>

[0273] As shown in Table 1, SEQ ID NOs 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 56, 60, 74, 77, 88, 91 and 95 demonstrated at least 40% inhibition of human estrogen receptor alpha expression in this assay and are therefore preferred. The target sites to which these preferred sequences are complementary are herein referred to as “active sites” and are therefore preferred sites for targeting by compounds of the present invention.

Example 16

[0274] Western Blot Analysis of Estrogen Receptor Alpha Protein Levels

[0275] Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to estrogen receptor alpha is used, with a radiolabeled or fluorescently labeled secondary antibody directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGER™ (Molecular Dynamics, Sunnyvale Calif.).

Example 17

[0276] Targeting of Individual Oligonucleotides to Specific Variants of Estrogen Receptor Alpha

[0277] It is advantageous to selectively inhibit the expression of one or more variants of estrogen receptor alpha. Consequently, in one embodiment of the present invention are oligonucleotides that selectively target, hybridize to, and specifically inhibit one or more, but fewer than all of the variants of estrogen receptor alpha. A summary of the target sites of the variants is shown in Table 2 and includes Genbank accession number NM_000215.1, representing estrogen receptor alpha main mRNA (ESR-alpha), incorporated herein as SEQ ID NO: 3; Genbank accession number AF258449.1, representing ESR-alpha-V, incorporated herein as SEQ ID NO: 12; Genbank accession number AF258451.1, representing ESR-alpha-VI, incorporated herein as SEQ ID NO: 13; Genbank accession number AI630824.1, representing ESR-alpha-VIII, incorporated herein as SEQ ID NO: 14; Genbank accession number M69297.1, representing ESR-alpha-IX, incorporated herein as SEQ ID NO: 15; Genbank accession number U68067.1, representing ESR-alpha-IV, incorporated herein as SEQ ID NO: 16; Genbank accession number U68067.1, representing ESR-alpha-III, incorporated herein as SEQ ID NO: 17; Genbank accession number X73067.1, representing ESR-alpha-II, incorporated herein as SEQ ID NO: 18; Genbank accession number S80316.1, representing the estrogen
TABLE 2

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>Oligo Seq</th>
<th>Target Site</th>
<th>Variant</th>
<th>Oligo Seq</th>
<th>Target Site</th>
<th>Variant</th>
<th>Variant Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>192275</td>
<td>19</td>
<td>1222</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192276</td>
<td>50</td>
<td>1297</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192277</td>
<td>50</td>
<td>367</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192277</td>
<td>51</td>
<td>1302</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192277</td>
<td>51</td>
<td>372</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192278</td>
<td>52</td>
<td>1307</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192278</td>
<td>52</td>
<td>1377</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192279</td>
<td>53</td>
<td>372</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192280</td>
<td>53</td>
<td>1407</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192280</td>
<td>54</td>
<td>477</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192281</td>
<td>56</td>
<td>1474</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192282</td>
<td>56</td>
<td>333</td>
<td>ESR-alpha/ II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192282</td>
<td>56</td>
<td>442</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192282</td>
<td>56</td>
<td>544</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192283</td>
<td>57</td>
<td>1519</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192283</td>
<td>57</td>
<td>378</td>
<td>ESR-alpha/ II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192283</td>
<td>57</td>
<td>348</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192283</td>
<td>57</td>
<td>487</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192283</td>
<td>57</td>
<td>589</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192284</td>
<td>58</td>
<td>1567</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192284</td>
<td>58</td>
<td>226</td>
<td>ESR-alpha/ II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192284</td>
<td>58</td>
<td>396</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192284</td>
<td>58</td>
<td>535</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192284</td>
<td>58</td>
<td>637</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192285</td>
<td>59</td>
<td>1572</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192285</td>
<td>59</td>
<td>231</td>
<td>ESR-alpha/ II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192285</td>
<td>59</td>
<td>401</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192285</td>
<td>59</td>
<td>540</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192285</td>
<td>59</td>
<td>642</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192286</td>
<td>60</td>
<td>1577</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192286</td>
<td>60</td>
<td>486</td>
<td>ESR-alpha/ II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192286</td>
<td>60</td>
<td>406</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192286</td>
<td>60</td>
<td>545</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192286</td>
<td>60</td>
<td>647</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192287</td>
<td>61</td>
<td>1609</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192287</td>
<td>61</td>
<td>896</td>
<td>ESR-alpha/ V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192287</td>
<td>61</td>
<td>658</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192287</td>
<td>61</td>
<td>780</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192288</td>
<td>62</td>
<td>1717</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192288</td>
<td>62</td>
<td>923</td>
<td>ESR-alpha/ V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192288</td>
<td>62</td>
<td>685</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192288</td>
<td>62</td>
<td>787</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192289</td>
<td>63</td>
<td>1722</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192289</td>
<td>63</td>
<td>928</td>
<td>ESR-alpha/ V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192289</td>
<td>63</td>
<td>690</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192289</td>
<td>63</td>
<td>792</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192290</td>
<td>64</td>
<td>1757</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192290</td>
<td>64</td>
<td>963</td>
<td>ESR-alpha/ V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192290</td>
<td>64</td>
<td>725</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192290</td>
<td>64</td>
<td>827</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192291</td>
<td>65</td>
<td>1762</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192291</td>
<td>65</td>
<td>968</td>
<td>ESR-alpha/ V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192291</td>
<td>65</td>
<td>730</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192291</td>
<td>65</td>
<td>832</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192292</td>
<td>66</td>
<td>1783</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192292</td>
<td>66</td>
<td>989</td>
<td>ESR-alpha/ V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192292</td>
<td>66</td>
<td>751</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192292</td>
<td>66</td>
<td>853</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192293</td>
<td>67</td>
<td>1792</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192293</td>
<td>67</td>
<td>998</td>
<td>ESR-alpha/ V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192293</td>
<td>67</td>
<td>760</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192293</td>
<td>67</td>
<td>862</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192294</td>
<td>68</td>
<td>1797</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192294</td>
<td>68</td>
<td>1003</td>
<td>ESR-alpha/ V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192294</td>
<td>68</td>
<td>765</td>
<td>ESR-alpha/ VI</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192294</td>
<td>68</td>
<td>867</td>
<td>ESR-alpha/ FASN</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192295</td>
<td>69</td>
<td>1802</td>
<td>ESR-alpha</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192295</td>
<td>69</td>
<td>1008</td>
<td>ESR-alpha/ V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-continued

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>TARGET</th>
<th>VARIANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>192295</td>
<td>69 730</td>
<td>ESR-alpha-VI 13</td>
</tr>
<tr>
<td>192295</td>
<td>69 872</td>
<td>ESR-alpha/FASN 98</td>
</tr>
<tr>
<td>192296</td>
<td>70 1807</td>
<td>ESR-alpha 3</td>
</tr>
<tr>
<td>192296</td>
<td>70 1013</td>
<td>ESR-alpha-V 12</td>
</tr>
<tr>
<td>192296</td>
<td>70 775</td>
<td>ESR-alpha-VI 13</td>
</tr>
<tr>
<td>192296</td>
<td>70 877</td>
<td>ESR-alpha/FASN 98</td>
</tr>
<tr>
<td>192297</td>
<td>71 1012</td>
<td>ESR-alpha 3</td>
</tr>
<tr>
<td>192297</td>
<td>71 1018</td>
<td>ESR-alpha-V 12</td>
</tr>
<tr>
<td>192297</td>
<td>71 780</td>
<td>ESR-alpha-VI 13</td>
</tr>
<tr>
<td>192297</td>
<td>71 882</td>
<td>ESR-alpha/FASN 98</td>
</tr>
<tr>
<td>192298</td>
<td>72 1904</td>
<td>ESR-alpha 3</td>
</tr>
<tr>
<td>192298</td>
<td>72 1110</td>
<td>ESR-alpha-V 12</td>
</tr>
<tr>
<td>192298</td>
<td>72 872</td>
<td>ESR-alpha-VI 13</td>
</tr>
<tr>
<td>192298</td>
<td>72 112</td>
<td>ESR-alpha-VII 97</td>
</tr>
<tr>
<td>192298</td>
<td>72 974</td>
<td>ESR-alpha/FASN 98</td>
</tr>
<tr>
<td>192300</td>
<td>74 2665</td>
<td>ESR-alpha 3</td>
</tr>
<tr>
<td>192302</td>
<td>76 4026</td>
<td>ESR-alpha 3</td>
</tr>
</tbody>
</table>

TABLE 2-continued

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>TARGET</th>
<th>VARIANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>192303</td>
<td>77 5203</td>
<td>ESR-alpha 3</td>
</tr>
<tr>
<td>192304</td>
<td>78 6425</td>
<td>ESR-alpha 3</td>
</tr>
<tr>
<td>192305</td>
<td>79 873</td>
<td>ESR-alpha-IX 15</td>
</tr>
<tr>
<td>192306</td>
<td>80 950</td>
<td>ESR-alpha-VIII 14</td>
</tr>
<tr>
<td>192307</td>
<td>81 412</td>
<td>ESR-alpha-VI 13</td>
</tr>
<tr>
<td>192308</td>
<td>82 674</td>
<td>ESR-alpha-V 12</td>
</tr>
<tr>
<td>192309</td>
<td>83 791</td>
<td>ESR-alpha-V 12</td>
</tr>
<tr>
<td>192310</td>
<td>84 381</td>
<td>ESR-alpha-IV 16</td>
</tr>
<tr>
<td>192311</td>
<td>85 75</td>
<td>ESR-alpha-III 17</td>
</tr>
<tr>
<td>192312</td>
<td>86 206</td>
<td>ESR-alpha-III 17</td>
</tr>
<tr>
<td>192313</td>
<td>87 105</td>
<td>ESR-alpha-III 18</td>
</tr>
<tr>
<td>192314</td>
<td>88 1585</td>
<td>ESR-alpha 3</td>
</tr>
<tr>
<td>192314</td>
<td>88 244</td>
<td>ESR-alpha-II 18</td>
</tr>
<tr>
<td>192314</td>
<td>88 553</td>
<td>ESR-alpha-VI 13</td>
</tr>
<tr>
<td>192314</td>
<td>88 655</td>
<td>ESR-alpha/FASN 98</td>
</tr>
</tbody>
</table>

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOs: 98

<210> SEQ ID NO 1
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 1

tgoctcatcttgctcctcaggg

<210> SEQ ID NO 2
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 2

atgcattctggcccaagga

<210> SEQ ID NO 3
<211> LENGTH: 6450
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
gagtttgtgcc tgtgagttgtg ttaaagccaa ttcgagggca aggagcagct ccctgcgccgt

cctcagcac cttttgaatt catttgaact cggagacacc gtcacctaaag ttgagggcct

ggagacgccg gacgctgcggg gaggcggttcg tctgggaggc gtcacttggt gcgtcggtga

gcggagttca cggagcagcgc gctgccgagg gcagggcgcc gcggcagagct cgagtctcgg

cggggacag gcgtgcgctcg ccttaaactc gcggcgtgtct ctttttcccg gttgcgcggcc

gyttttcctag cctcttcgctc tgcgggggaca cctgtgcgac cctcgcgcgc gccagggacc

atg acc stg acc ctc cac acc aac gag moc tct gag gcc cta ctc cat
Met Thr Met Thr Leu His Thr Lys Ala Ser Gly Met Ala Leu Leu His

1 5 10 15

cag atc cca ggg aac gag ctc gag ccc ctc aag ctt cag ctc aag
Gln Ile Gin Gly Asn Glu Leu Pro Leu Asn Arg Pro Gin Leu Lys

20 25 30

atc ccc ctc gag cgg ccc ctc ggc gag gtt tac ctc gac ggc aag
Ile Pro Leu Arg Pro Leu Gly Glu Val Tyr Leu Asp Ser Ser Lys

35 40 45

ccg gcc tgt tac aac tac ccc gac ggc gcc tac gag ttc aac gcc
Pro Ala Val Tyr Pro Glu Gly Glu Val Tyr Leu Asp Ser Ser Lys

50 55 60

ccg gcc gcc gcc aac ggg cag gtt cgc gcc tgc ggt cag acc gcc ctc ccc tac
Pro Ala Ala Ala Asp Ala Asn Glu Val Tyr Glu Thr Gly Leu Pro Tyr

65 70 75 80

ccg gcc gcc gcc aac ggg cag gtt cgc gcc tgc ggt cag acc gcc ctc ccc tac
Pro Ala Ala Ala Asp Ala Asn Glu Val Tyr Glu Thr Gly Leu Pro Tyr

85 90 95

ttc ccc cca ttc aac aac ggg cag gtt ctc ccc ccc gcc cag cag tgt
Phe Pro Pro Leu Asn Ser Val Ser Pro Ser Leu Met Leu Leu His

100 105 110

cog cog cog cag ctc cag cct ttc ctc cag ccc cag gcc cag cag gtt
Pro Pro Pro Gin Leu Ser Pro Pro Leu Gin Pro His Gin Gin Val

115 120 125

ccg tac tac ctc gac aag cag ccc aac gcc tac aag gtt cgc gac gcc
Pro Tyr Tyr Leu Asp Asn Ala Pro Ser Tyr Thr Val Arg Gly Ala

130 135 140

gcc cog cog gaa ttc tac aag cca aat tca gat aat cga cgg cag gtt
Gly Pro Pro Ala Phe Tyr Arg Pro Asn Ser Ala Arg Arg Gly Gin

145 150 155 160

ggc aag gaa aag tgt gcc aat ccc aat gcg aag gat tgt gtt atg
Gly Arg Gly Arg Leu Ala Ser Thr Asp Asp Lys Gly Ser Met Ala Met

165 170 175

gaa tgt gcc aag gag act cgc tac tgt gcc tgtgcc aat gac tat gtt
Glu Ser Ala Lys Glu Thr Arg Tyr Cys Ala Val Cys Asn Asp Tyr Ala

180 185 190

tca ggc tac cat tat gaa gtg tgt cgc ggc tgt ggc cag gcc ttc
Ser Gly His Tyr Gly Val Thr Ser Cys Glu Gly Gly Cys Lys Ala Phe

195 200 205

tcc aag aag aat att cca gga cat aac gag cac atg tgt cca gcc acc
Phe Leu Arg Ser Ile Gin His Asn Arg Tyr Met Cys Pro Ala Thr

210 215 220

aac cag tgc acc att gat aca aac aac agg aag aag cgc cag gcc tgt
Asn Gin Cys Thr Ile Asp Lys Asn Arg Arg Lys Ser Cys Gin Ala Cys

225 230 235
cgg ctc cgc aag tgc tac gaa gtg gga att aga aag ggt ggg sta cga
 Arg Leu Arg Lys Cys Tyr Val Gly Met Met Lys Gly Gly Ile Arg
 245 250 255
 aag gac cga gga ggg gga aga atg tgg aag cac aag cag cag gaa gat
 Lys Asp Arg Arg Gly Arg Gly Met Leu Lys His Arg Gin Gin Arg Asp
 260 265 270
 gat ggg gag ggc aag gtt gaa gta ggg ctt gct gat gga gac aga gct
 Asp Gly Glu Glu Arg Gly Arg Glu Val Gly Ser Ala Gly Asp Met Arg Ala
 275 280 285
 ggc aca ctt tgg cca aag cgc ctc atg aca aas cgc tct aag aag aac
 Ala Asn Leu Trp Ser Pro Pro Leu Met Ile Lys Arg Ser Lys Aam
 290 295 300
 aag ctc ggc tgc ttc ctc cag gcc gag atg gtc aat ggc tgg tgg
 Ser Leu Ala Ala Ser Leu Thr Ala Asp Gin Met Val Ser Ala Leu Leu
 305 310 315 320
 gat gtt gag ccc aca tct tat ttc gac tat gat ctc acc aag ccc
 Asp Ala Glu Pro Pro Ile Leu Ser Tyr Glu Asp Asp Thr Arg Pro
 325 330 335
 ttc aat gaa gtt tgg atg atg gcc tta tct acc aac ctc gca gac aag
 Phe Ser Glu Ala Ser Met Gly Leu Leu Thr Asn Leu Ala Aas Arg
 340 345 350
 gag ctc gtt caa atc aac tgg ggg aag agg gga cgg ctc cgg aag gtt
 Glu Leu Val His Met Ile Ala Thr Ala Gly Val Gly Gly Val
 355 360 365
 gat tgg acc ctc cat gat cgg ctc cac ctt cta gaa gta tgg gcc tgg ctc
 Asp Leu Thr Leu His Asp Gin Val His Leu Leu Cys Ala Trp Leu
 370 375 380
 gag atc ctc atg att gat ctc gtt ggg gca tct atg gag caa cgg tgg
 Glu Leu Met Ile Gly Leu Val Trp Arg Ser Met Glu His Pro Val
 385 390 395 400
 aag ctc cgg tgg ctc aac tgg ctc tgg cag acc aag cag gga aac
 Lys Leu Leu Phe Ala Pro Leu Leu Leu Asp Arg Aam Gin Gly Lys
 405 410 415
 tgt gaa gga ggg aag atg gta ggg cag aca tgg ctc gct gat gaa cta
 Cys Val Glu Gly Met Val Glu Ile Phe Asp Met Leu Leu Ala Thr Ser
 420 425 430
 tac cgg ttc cgc atg atg aat ctc cag gga gaa gga gtt ttt ggg tgc ctc
 Ser Arg Phe Met Arg Met Aan Leu Aan Gin Gly Phe Val Cys Leu
 435 440 445
 aag ctc cgg cag gaa ctg gaa tac aca ttg ctc ctc aag gcc tgg
 Lys Ser Ile Leu Leu Aan Ser Gly Val Tyr Thr Phe Leu Ser Ser
 450 455 460
 gaa ctc cag cgg cag cgg gag aag gac gaa gac cag cat aac cga gtc cgg
 Thr Leu Lys Ser Leu Glu Gly Lys Asp His Ile His Arg Val Leu Asp
 465 470 475 480
 aag atc aca gac act tgg atc aac ctc cag ctc cag gcc aag gaa gca cgg ctc
 Lys Ile Thr Asp Thr Leu Ile His Leu Met Ala Lys Ala Gly Thr
 485 490 495
 ctc cag cag cag cgg cgg cag ctc ctc ctc aat ctc aat ctc ctc ctc ctc
 Leu Gin Gin Gin Gin Arg Leu Ala Glu Leu Leu Ile Leu Ser
 500 505 510
 cac atc aag cac atg aat aac aaa ggc atg gag cat ctc tac aag atg
 His Ile Arg His Met Ser Aan Leu Gly Met Glu His Leu Tyr Ser Met
 515 520 525
 aag tgg aag aac tgg gtt ccc ctc tat gac ctg ctc ctg gac atg ctg
 Lys Cys Aan Val Val Pro Leu Tyr Asp Leu Leu Glu Met Leu
530 535 540
qac goc cac cgc cta cat gac gcc ccc acc agc gct gga ggg gca tcc tgt
Amp Ala His Arg Leu His Ala Pro Thr Ser Arg Gly Gly Ala Ser Val
545 550 555 560
qag gqg agc gac cca aag cac tgg gcc act ggc tct act tca toq
Glu Glu Thr Asp Gin Ser His Leu Ala Thr Ser Thr Ser Ser
565 570 575
cat tcc tgg cca aag tat tac acc ggq gqg gca gqg qgt ttc cc
His Ser Leu Gin Tyr Tyr Ile Thr Gly Glu Ala Gly Phe Pro
580 585 590
qGC aca tgc tga gac,ctgct cgtc,ccacat gttctgata atccctgct
Ara Ala Thr Val
595

---continued---

catttcacc tcattatcga ccacttttgc caaatctcgt ctctgtcat aacctccgga
2240
tgcctcaca acaaatggtc ttctagatga gttgccactc atctgcttgc tcaattttca
2308
tgggcaatc tcgttcttgc ttggtggac gaccaaaag gcttcaagcg taaatctttt
2368
taacgctct cttttcccct tgcattgtta ctgaagcgtg gatctcctgc agctctcctc
2428
tagctaacc acgtactaggg tttggggtca gtaaacttc gcctatttg ctaaattttg
2488
agacccacgc cttggagtga cacactttgcct cctgatcag cataattttttta atctggttta
2548
gatgaagc caagagaaag ttttaagttg gcctttttag tcgatgaact gcggagaact
2608
ougcaaggt ttatattgac ccccctcttgc aatctgctgc ctaactacgt tttatgtgaa
2668
tgcctcaca tcatttgcac ttctgctcact tgcctgatgg gcccttcacc
2728
ttcccctat acgtgattc aagcctcaac ggggccacac aaggaagca gcctccctag tgggcaaga
2788
catttttac cttgatcaac tgcagatccg caatgtcctg cttctggttca tcctgggcttcttta
2848
ctagtccttg gccttcactt gccacttttg gcctttttta gcctttttta ctggtttag
2908
cggcataag cctgcttttg gcttgtcttg cttggttccag gcctttttta
2968
agacccacgc cattcagga ccatgtcctg cattcagga gcctttttgc atctggttta
3028
tgggctttt ctggggctgt gcctgtcttt tggggttttt gcctttttca gccttttttt
3088
tgcggtgtg caatgtgcag gcctgtgatt gcctgtgatt gccctggctg
3148
attagaagct gcctggcttt ggcctgtgct gccttttttg gccttttttt gccttttttt
3208
aacagaggg aagtaggctg aagcctgtcg gcctgactc gccttttttt gccttttttt
3268
ggcttgccct ccctgtgatct gccttttttt gccttttttt gccttttttt gccttttttt
3328
tgggagccgc tggagctgtgc tcgagctgtgc cctgttctgc aagctgtcctg gccttttttt
3388
gtggagccgc tcgtgtagct gccttttttt gccttttttt gccttttttt gccttttttt
3448
tgctgctttt gccttttttt gccttttttt gccttttttt gccttttttt gccttttttt
3508
gcctagatgc gccttttttt gccttttttt gccttttttt gccttttttt gccttttttt
3568
gaacccacgc cttccctctt gccttttttt gccttttttt gccttttttt gccttttttt
3628
tccttttttt gccttttttt gccttttttt gccttttttt gccttttttt gccttttttt
3688
ggcttgccct ccctgtgatct gccttttttt gccttttttt gccttttttt gccttttttt
3748
aacagaggg aagtaggctg aagcctgtcg gcctgactc gccttttttt gccttttttt
3808
tgctgctttt gccttttttt gccttttttt gccttttttt gccttttttt gccttttttt
3868
gcctagatgc gccttttttt gccttttttt gccttttttt gccttttttt gccttttttt
3928
ggacctgagca ctctgggagg caaaaaaaa aaaaaagttt ttatatgtgca cttttacttt 3988

ggacaaatgg tttgtttgtg tttgtttgtg atggttaagat ttatatatttttt tttgtttgtg 4048

ttttttaaagg tttgtgtttaa gaaacccct attataattaa atttatatttttt 4108

attgtgatctattttgcttttttccac attatttatgtggctggtt
-continued

cagtgtagag ctcttgtttt atgggaagag gttcnaagtgc caaattgtgcttgatt 6168
astatgtcct ttggtgtagt ccatctatta ctgggtgacac tcgccttttgtg tgaagctttag 6228
catttttaacctggaaac ctgggacttcttgaaacctggaatgacgtgggg 6388
atgtgtgagc acctgaaac gatgactttctaccttttgc acctacatgta tggacattaaa 6448
cat 6450

<210> SEQ ID NO 4
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 4
gtagagggca tggtagagat ctt 23

<210> SEQ ID NO 5
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 5
caaactcctctcctgcagacatt 22

<210> SEQ ID NO 6
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Probe

<400> SEQUENCE: 6
tgctgctac ctatatctcgg ttccg 25

<210> SEQ ID NO 7
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 7
gaagtgtaga gtagagatc 19

<210> SEQ ID NO 8
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<400> SEQUENCE: 8
gagatgtgtg atgggattttc 20

<210> SEQ ID NO 9
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
caagcttcccc gttcttcagcc

<210> SEQ ID NO 10
<211> LENGTH: 8566
<212> Type: DNA
<213> Organism: Homo sapiens
<215> FEATURES:
<222> LOCATION: (1)...(2302)
<220> FEATURE:
<211> NAME/KEY: exon/exon junction
<222> LOCATION: (1491)...(1492)
<223> OTHER INFORMATION: exon 4/exon 5
<215> FEATURES:
<222> LOCATION: (2302)...(2305)
<220> FEATURE:
<211> NAME/KEY: start codon
<222> LOCATION: (2302)...(2305)
<220> FEATURE:
<222> LOCATION: (2735)...(8566)
<220> FEATURE:
<222> LOCATION: (3569)...(3570)
<220> FEATURE:
<222> LOCATION: (89814)...(90495)
<223> OTHER INFORMATION: exon 8/exon 9
<215> FEATURES:
<222> LOCATION: (3708)...(3709)
<223> OTHER INFORMATION: exon 9/exon 10
<220> FEATURE:
<222> LOCATION: (3842)...(3843)
<223> OTHER INFORMATION: exon 10/exon 11
<215> FEATURES:
<222> LOCATION: (4026)...(4027)
<223> OTHER INFORMATION: exon 11/exon 12
<400> SEQUENCE: 10

aacagctcgg aaggtcgcct gctccctttct cggccctatt ctagacata agaagacagt
ttcgatcgg tctgcattcct tccgaagaag aagaaactag gaggagattaa gcacaaagtt
cttcgacact cttccgggtt ccgggtccct gctattggca aatcagcct aagagccattc
tgtatggatt cccgtcaactt ccttcccaga tctctgagaa cccgagtata cctggactgct
tggcaacgg gacattag aagcagcgg ccctgtgactg ctctctggcc
tggactggg acacactag ctctactcag cagcagcc acctgaagag ccctgc gttgggac
tgtatatg gacatggcct cccgagattg ctttaactgc gggccg gacagcctg cattttgcc
tggccgcc gcttttcgcc cagagcacg ccctgctgtg cctttcctc ctttttccag
cagagcagt cccgactggt tcttcgcccc gttggtctgtt cctgttcttct ggttttgcctg
gggttttaag cccgtttccct gtcgctgcgt tggccggtgc acacccagg aaccccgagc
tttggccgctg gcattgacgt cgtcagattg gcatttgta gtttcgggtt gcagactgc
ctggagacctc gacgcagcag cccgagccg cagagcctg cctcagctg cttcagcctg
gccgctgt ggtgctgtgc tggagatgac gtcgctgtgc tggagatgac gtttctgtag
ggcgctgtg gcgtcccgct aggcccgctgg ggggctgtg ggtcagctgg
ctgcggtgct gccggcggct gcgtcagctg tggagatgac gtttctgtag
ggcgctgtg gcgtcccgct aggcccgctgg ggggctgtg ggtcagctgg
ggcgctgtg gcgtcccgct aggcccgctgg ggggctgtg ggtcagctgg
ggcgctgtg gcgtcccgct aggcccgctgg ggggctgtg ggtcagctgg
-continued

ggcaagaggt gaatggaagtt ctgctggaga catgagagct gcaacccttt ggcacagccc

3360
gcacagctc aacgacota cgaagaagcg cctggtcttg tcctgtgaag cgcacagct

3420
gtcagagggc tgttagtgcg ctgaccccac cacactctac tgcgatagt atgcacacag

3480
acctcaagct gacatggcgc gtatgctgtt actggccacag cttgacagaca gggagtgctgg

3540
toacgtaga aactgggaga agaggtgctcg ctctgtgggt atgcacccct atgcacaggt

3600
conccctgct aacgagcatg ggtcagagat ctcgtgacct cgtccttgct ggcacagct

3660
ggcaacacac gggaagctac tgttgtgcgc tatacttgct cggcagcagga aacagggas

3720
agtgtgtagc ggcacagcag ctacgctcga catcagctcg gcacacagct ctggtcccg

3780
cagtgtagc ctgctggcag aggtagttgct tgtgctcaaa tacattctaa tgtctaatc

3840
tggagttcg acacatctct caagacccat gaaagcttcag gaaagcagcag ccacatcaca

3900
cgagcgct cagacagcag cagctccatt gttcacctgt attgcacagag cagccctgac

3960
cotgctgcac gcacagcag ccacagcata gcttcctgct ctgctctccg gttggtcctt

4020
cacagctac caagcctgcgt aagcgtgatg cagcagacag tcacctgcag tgggtgcttt

4080
ctcctgctgt ctgctgctcg tcgtctgacg cccacgctga cacgcgcagc ctacgctgcg

4140
aggggctcct ctgagctgagga cggacacacag ccacggtgcc cagcagcctg gtcacagct

4200
gcagcagcag cccacgctga cacgcgcagc ctacgctgcg

4260
gcgaggggc cttggatttt gccctgggct gcgtctggct cagcagcctg gtcacagct

4320
caccccaag ccaacaagcg gcgtctggct cagcagcctg gtcacagct

4380
ttcctgtagc agcgcactgg catttgcttg ctcgagccag tttggtcttt

4440
tgtgtggggt gcaacgcaag gccatcctga ctcacagccc tacagcctg ctttccttccc

4500
tgtgtgtgat gcaatgatggt agagttctcg tagctctga cctagctcg cctacgctgcg

4560
gtgggggtgt ctggtctgagc gtcatcaaca gtcctgctga gggagcagac cttggagaggt

4620
agacacacgt cttgctgata gcaactccct tattaatttta aaggtctact cttccagccc

4680
atattacag gcctcattttg gttggtcttt ggcacagcta ggtccatcaatt ggtcctccatg

4740
ccaccccct gccctgtctg ctttttaga ggtgctgtcg cttccagccc

4800
ccaccccct gccctgtctg ctttttaga ggtgctgtcg cttccagccc

4860
gggcagcaca gggagacctg ctcccctgt cggcagcctg attttaaaa cttccagccc

4920
agttctcgat gcgtctgaga ctcgctctcg gcctggctcg tctggtttttg ctctgtagctc

4980
ttctgcacag ctcgctctcg gcctggctcg tctggtttttg ctctgtagctc

5040
gggttaggttt cctcctcttt tgttggcttg ctctgtagctc

5100
gaacctcgag tcgtctgagac ctgcctctgt ggcacagcag gcgtctgact tgttggcttg

5160
cgggttaggttt cctcctcttt tgttggcttg ctctgtagctc

5220
aatgttagt gcaatgatggt agagttctcg tagctctga cctagctcg cctacgctgcg

5280
ggacactact tgtctgagct tgtctgagct aaggggagct aaggggagct aaggggagct

5340
aacactcag actagtctgct ccagcgcagc ctggtctgagc gggagcttg cgcacagccc

5400
agctctgtag ctcctcctgt gcacagcagc gcgtctgact tgtcctcttt cttggtcttt

5460
tgctgttagc gccttcctgt gcacagcagc gcgtctgact tgtcctcttt cttggtcttt

5520
cacagctcag gccttcctgt gcacagcagc gcgtctgact tgtcctcttt cttggtcttt

5580
aggtgggga cgttggcgtc caactctcag gtgtacttg gctgtgctca agttactgtg 5640
coccttgtg ttagagata atccaaacac agcctttggt tgggaaga aaactctcact 5700
cottcctcgc gaggccccgtt cccactctcc tccttcctt ccctcctcgc tatttcatctt 5760
tctcttacag taagctgtgaa aaactactac ctacttcctc ctacttcctcc ctacttcact 5920
ggctcctgtg tctctagcaac aatctcgggt tatactcttt tttttaactctctact caa 5980
tgatggtct cggccatacct ttatttcttgc ttaatacaac ccacggtgctt ggttgcact 5940
gtgaatacct gcctgcagtt gctgcagtt cggctgcagtt gctgcagtt cggctgcagtt 6000
agtgtgaga atttgatgtt cgcctgcagtt gcctgcagtt gcctgcagtt gcctgcagtt 6060
ggaggccaa aaaaaa aagttttatat ttctcctctc ctctcctctc ctctcctctc 6120
atcctctgta aggttaactcg taagctcaac attttttttg tgggaaga tcctgcagtt 6180
cctactgggt ttaactctctctacaactata attttttttt attttttttt attttttttt atttttttt 6240
gctctcgttc cagcactagc aagttgagtt attttttttt aagtttttttt ttctgcagtt 6300
acactgctca ccaactctcag aacttactctct attttttttatttttttttttttttttttttttttttttttttattt
ctggacgcaaa tgacttttg gcctcaatct ccactcttcc actagtcgta attatgtcct 7920
gttcccaact gcgttccttc tcacattgaa ttaaagttgt gcctctttttta tagcatcattt 7960
aatcgttcttt tcaagtaata ggttcgcttag ttctactttcttca actatcttttt 8040
gagtctacag aaaaatatttc atttttttttttttt ttagccctcaaa cttgtctggg acaacactaaa 8120
taggctaatg ctcgctctct ccaaccctct cgtcagtgtg tgggtttagga gttgyggacc 8160
cctcaacaaa cttatgtgcc catgagcagc gctcgtagag ccagacaccc cacacaccctt cccgcttc 8220
agagagctcgc tcggctttag agaatgtgat taataagttg catttagcggattctgtcct 8280
tocacagct gtnasacact gcttttggtgc acactacatc tttcactgagt agagctcttg 8340
tctagagttgg aasagctccaa atgcacaaat ccgctcttagg gatataatag actcctttgc 8400
gcgcacaaact attaagtgtg gtagcctggc tttgctttttg ttaataagac 8460
aactcttgaa accctttttg cacttggaa aagacatcag cggagagctgc gaccaactgt 8520
aacacacttt ctcaccactgt ttaggttcac aataagagat taact 8566

<210> SEQ ID NO 11
<211> LENGTH: 392000
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: 137740
<223> OTHER INFORMATION: unknown
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: 137742
<223> OTHER INFORMATION: unknown
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: (138122)...(138221)
<223> OTHER INFORMATION: n = A, T, C or G
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: 145507
<223> OTHER INFORMATION: unknown
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: 151967
<223> OTHER INFORMATION: unknown
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: (1542066)...(1542066)
<223> OTHER INFORMATION: n = A, T, C or G
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: 154217
<223> OTHER INFORMATION: unknown
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: (164037)...(164136)
<223> OTHER INFORMATION: n = A, T, C or G
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: (174657)...(174756)
<223> OTHER INFORMATION: n = A, T, C or G
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: (186224)...(186323)
<223> OTHER INFORMATION: n = A, T, C or G
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: (195242)...(195341)
<223> OTHER INFORMATION: n = A, T, C or G
<220> FEATURE:
<221> NAME/KEY: unsure
catctggttt tgaatggtggt atatacatatat ttaatatttg agaataaaca ggaagacacag 2460
gtgaatgatt tgaatgtgaat ttctgaanac tctagaanac ttaattttga tgtaagatt 2520
tgagacagt gagaattgcga gggctcaactt gcattacacat aattactttaa ttatttttttc 2580
aagccaatatttttttttaa tatcttcgtatt atctgggtggt gttgttgtttttga 2640
aatgactgca gataaatggttt tagcaaggttt atataaatct ctgataatgct agatatacaaa 2700
ggaataaataat ccgagagaa aagttaagcag attgtgagaa aagccaaatat 2760
tttctcttaacc atataaagcag aacttatttac gataaattgaa aatattttgg aatattttggag 2820
atcagttgct acaatctatt ctctttattttttttcctttgtctacg 2880
aatgactgca gataaatggttt tagcaaggttt atataaatct ctgataatgct agatatacaaa 2940
ggataaatgct gattgtagaag cacaataacacattcttacag ctcctttaata 3000
cotocaaccgtctgtgtaatctctctacgtcctatacacttcttgcatttcgtagcagctgacacta 3060
ggctgtcctttctgctgccag ctgctgttgactctttagttaaa atttcatctctctctttcttct 3120
agctgtctt attattcttttattatttttattattttttttttattt
-continued

atacaaaaaga ccttgagatac tctctccccac tctggccccca taacataatgt caacagaggt g 4740
ctaataaata caaataataag agccacataag gtggggtggc atcattctttt ggccagagct g 4800
ttttataagc ttaataagtt gtagttgtaa acgacaaacca ggtggttaac aagtttagta g 4860
tttctggtg acaatgctag aatcacaggt ttcgaacaaag ttagaacttat gccacattat g 4920
accacgcttc aaaaagacgt gacctaggaac ttgaagatata ttaaacattaa ttccaaagct t 4980
catcgttta gccattactt gacacagttat taacccatatt aagtttgtat caatgtagatt g 5040
tttggtcctgg gaaacagagtg taacacactt gttgtagagcg gataaagct taacccctct t 5100
cctggcttc acaacacttt cttgaacatg gcataaacta atcggcggtc acagaaagttt t 5160
tggggggtt acaacacgatt aatataaata aagacagttag aagttttcctc ctaaccaattc t 5220
acttttataa aagacagatt gtggcgggga ttgggtggttc acgctatataa tccacgacact t 5280
ntgggggct ggtggggtgt gataacacggt ggtaaagcttg tcggtagcgc ctggggaata g 5340
acggtgaaac cgccttcocaa taanataataa aacnattaccc aaggtgtttgc gccatgagct t 5400
gtaacctcg ctaacagggta ggtggtgact ggaacagttgc ggtagggggtc gcagtcgtg g 5460
ttgagtagag gcagagttgt gcatttgccac tccaaocctgg gaaacagactg aataattggat g 5520
taacaaaaa aacaaaaaaa aacaaaaagt tagttatatgc caacaataaa atattaatttt c 5580
agttcctagt aaaaatccttc caattaagtaa atgaggttct aacggttagt agtcatatga g 5640
gatagatgc agggcagaggt tgggttatgc cttacaaaaa caaanagttgc gagacgagttgt g 5700
aggtgttggt gtgggtggttc gcgttcccag ccaagttgaa aagctgggat gggaggtccag t 5760
cagcagagtgc gatgggtggt tgggaggtggt gttgtaacct tcttctctcg ggacccctcc c 5820
agtttggtgc gatagttgtct gatttctttt gtcagcaacca gtagctaggg gctcccttag g 5880
cctttctgt gttaaaaaca tcagatcccc tgttgatggt aatacttggaat cttttgttttc t 5940
ttcacaacag acttaaataaa cttctacttg agttagcctgc ctaatgtaaacc tcgggacaa c 6000
tcctaacatc ttgggttttc cctcaataaga atcgatataaa cttggccagt cttcaagttc t 6060
tcttcttcttgctgttcag cagacacacac ggacaaacca cagaggagca cacacaggggc t 6120
cacnagctg cacagctgtc gagctaggtg tgggtgattg gtcaggtggg ttcgtcagtt c 6180
ctgggataa agggatgcgg caactggtccttt tcggatctt tttcccacac ttgtctcttg t 6240
ttaanatgac cagacgctgca gctctcataa aacatatctc ttocctagat gttcagacag t 6300
gaacccatac agctcttttt gcacagagct gatcgctat atgtagaactt ttctttcttct t 6360
tgctggcttc acaaggtggaa tcattggaat attctcctttt ggaacgttcc taacgaccat c 6420
agacactaacac acaagaaaaatgtctgcgctc taacagaaataa attttggttt ttgacatatta a 6480
ataattttt atacaagaccta atacaagttgc aagatattttc tgggtttaacc cattgaaaga t 6540
aaggtgtaa taanagatata tcgggtcaca atagaacttat cgttttttag tttctttcct t 6600
taaaactatg tgcacaataa agacacaatatttttttt ttaattataa catttttta g 6660
attctcattttagaattc atataattttaa atatatttttc aataatttataa atatatttttta t 6720
cgagctgtga tcagtttttc tgaaggataa tttagagattt fagttactttt agaatcataa t 6780
atagcataag ttaaatattt ttataatttt acatattatg ttaaataatt ttaaaaattaa t 6840
tgtagaatatt gaagagctggtt ctgggtttggt ttttatagttt tcgggctcagagcgtagctttt t 6900
cocagctaga taatagatgc ctcaggggctg ggcagggggt ctcaggtact ttacccatt t 6960
attnnaga cgtcagccac gctaatcaag tggcgccagg agtttgagac cagcctggycc
7020
aacataagc antgctactt ctactaanaaa tacaanaaat tagocgggaca tgytgytgyca
7080
tgcgcttcat accgctactc tgccagggctg aggccaaggag tcgcctggtaa cttgaggcgc
7140
gggcgccac gcggcctagg ataaaacaaac ttgcccctaat cttgcgggac atagagagac
7200
tccatctccaa ataataaatc aaataaataa aataataaat aataataaat aataataaat
7260
agctcctggy gcgcttatag ggggcgttgc agtggcttcct cgggtgtgctt ggggasgiggc
7320
tcggctacac ctgcgttgcgg ccgcatatac tagcggtgaga tggcgctggc ctacgctcct
7380
gactctcag ctcctctcat caggtggtat cctcctgca tacaataatac tattggaattc
7440
ttcgagcag gaaacacacat actgtgcgttt actgaaacaa gaaactgatc aaactcctg
7500
cagagctgag cgtcctgagg ctcgctgaca ccgggctgagg cactctctag aacaagctcc
7560
agagaaagct attctccggt tgtcctgcagga tggtttggga tagtctttgg tagaaagcagga
7620
cctttgacca tcacccatca ggcaggtgaa cttttccattc ggaanaacac agguaagagga
7680
gtttcgataat gaaagctcagc ggggctggcg tttgggaaa caactgctct gacaacacac
7740
tagtttaggaa aagtgtcaag ctggtgtagg agataattaat gaaagtgggaa gtcagatgtc
7800
cattagcag ggtggtaacct tatctttcag gccataaaga tgggtggtgt gcagtttagga
7860
gaaataacca ctttacaact ctttataatgt cttgggggtg agttttccccag ctaagacggc
7920
gcttcaaca ctgcctgtgatt agggactagt gcaagctgacc attttatcaa
7980
atcttttaccc atctttttgcc tcaactcag atctttctag tgggtgaga tttttaccc
8040
agaattagc tgtgcagaga aatgtgaccc aagacaaaca gtaggagctgt gcaccctcctc
8100
gtgcgctgtg ccagctccac ggctgcctcc ttcgctggaa aactgctgacc caacccacc
8160
cacccagcc gcaccctcata caacttacat aatgagaact aatgctgata
8220
attttgat gcacatgtgac ttataagctg taaacgtct ttcgctgggt aatttttttaca
8280
gttaaccttt cttttctgca ccaagcatag atggaggaata aataacgcatt attctggtga
8340
gattgagtcc gagacacctcc gaaaattttta tatttattaa atgtctcttt tttgtgtgygt
8400
aatgtaatag tttttttattt tcaccaactc attcccctata aaaaatgttag ggtcctctgg
8460
gctaggggy aagttgtggtc cccgtctacc gtagtttttt aatgtctttt agtgttggcc
8520	tttagcaca cttttctgga ataggtgcttta aaggtgtggcct tggcgtgctgt tcaacccytgt
8580
atctccgacac tttgggggagc tggagcgaac agatccacct cggctgagga ttcagaacca
8640
gctctgccac cagctggccac cccctcccttt actaaanaa aaaaattaga cccgctgtggc
8700
agcagtgcct tgtcctggca gctactgagg aggctgggag aagaactgcy cttgaaccgg
8760
gaggtggagc ttgctgagcc caaatattgtt accctgctac tccctgcctgg gcggagcaac
8820
attatacgt gtttggtctac aactgtaactcat ccccactttt gggggcgaag cgggggggag
8880
ttcgcctttt tcacctgtttt gggcagactt ctggcgaacc gggaacaccc cattacattata
8940
aanaattcag aataagccag gggtggctgg ctcgccacct tattttttg cattatcgcag
9000
gcggagcctt gaggagcttc taacccaagcc aacggggcct ccagctgggag cagcctttcc
g9660
ccoactccca tcctctttaaat cggggccca aagctgtggcct tttttttctttttttt aaaaaaaa
9120
aagattctcc aagatcatgg ccgatcctaa acaaaaaacc ccggggact ttcgcttggcg
9180
aaaanagagc agacatactt tccgtgctat gatttaggat tttgctgggg aaggaaanact
9240
-continued
gtagctctc ctgaagtggc ttaaatgct ttacaggta tggaaatgga aagctaaatt 9300
catgatttt gtagtcaggg gaaagggac ggctgctt ttgatttt tcctttttct 9360
ttttctttaa ggagggasata aagctgtgag caaactttaaaaagaaac gaaaggtct 9420
actggggyata ggtctgggag gaaanagggc caacccatct aaataattc accatattta 9480
cactatacct ccaatgatga tgcataactc tgtgagaagt tcctgtgtgg aatctgctgg 9540
gtttggaatt tcgaagcagc agatccagag agacgtggac agataaatct toaacggaat 9600
gaaaaatttgctctgcttt ttacggctct ttcctgtagc gtaaatctaat cttcacaact 9660
cagcctata gcccttctcc atgctttttgc tampaagggaa gactctcaag aaaatagtttt 9720
cagctgagc gaaanagggc gaagggaaaa ggtctgcag tctacaagc gactcttgct 9780
atagctggct aataagtgaat gtagztaaaac ccaacttgaactccagt catttacatc 9840
tttggtctc gcagccctct cccaacatct cttctgtagc atttcgttct gagcttatta 9900
acactctct ctgcaagtggc aataagaagt aatttgggtg tcaactttct ctgctgtgta 9960
gaacggcagc tattggctgc tggaggaaaa gattggact gctactatgaagagaggtttt 10020
ggattatttg aagactttaac ttttgtgatg ggattcagat aacaactcact taotctggat 10080
acactcaacct ttttttggat ctaaaagattggtgac actaatattgt gtttattccc 10140
atctcctct cttggtctaa atattattgc aattattatat caaactaaa ttcctgaggg 10200
agatgatttt cttctgataaaaa gagaaaaag cacttcaag aataacgatag 10260
caagggacag ctcttgccct cttgagcttt atagagctta gattag gcagagaaaatac 10320
acccctcataa atatatgaa gacacttaacc aaatttttcactzctagc aagctcaggt 10380
aatgagcttg cttactaatga accaanactg aactacatcatt cggagtttct 10440
attctgctct cttctcaagtct ctgctagcag tatttttttgg gatagttata 10500
taactgaac actgattttgc aagactataa ggaanagctg gggcttttctt ctactaatcc 10560
cttctagctc agctgatggc gcagagaaag cacatggattc tttcggcaatt acatgcaattg 10620
gagctggagac ggcaaccatgg cagatctat ataccoaagc agatccagctg gggagaaat 10680
ctgtgagtgg aagatattgat gggggggaggt tgaagttggag tcaagccttg tagctgtcct 10740
cagcctaat tacaagtata cagactctct aaaactttcc tgggtgtattc tagagccagta 10800
ctgctagcc aagatagaaaa gggagagaaaa gttttttttttt aattttggtg tcaattttggt 10860
caamattttca tcaaatctct gttttataaat cttgactgtg tcaactcagaa ccttaattttg 10920
gatgtttttc ccttttttttt gattagaag cattagtggg ggtgagttgg gcagagagaacc 10980
ggcaccagc gggaaatgaa gtttattttttt aattttttgc tcaatttttag gattttttttttt 11040
ccttttttttt cctcactattt gattttttttt gttttttttttttt ctaattttttttt cagagagtttt 11100
aacctttttta tttttctctg gggcaatcctt ttcctttttct cttatattttt gagaatgagtc 11160
aatgggataac aagaatctg ctttgggtag tgggttgcctttttttcctgctcctttttg 11220
aatcattcag acctgagcgag agtgattttgt tttttttttcctttgatgctt gaaacataaac 11280
aatcactact cttgagagca tgtttttccact ctaattttttt aagccattagc cttctggcct 11340
ctgataaact tgtttgatgc caaagctgaa tctgagacgct ttcttaaatgctgtagaa 11400
tttcttttttttttttttttttctgaggg gaaaaaatgg ctaattttggcctgctgtaga 11460
ttgtgatatggc gaaanagggc anaacatcct actactattt ctgagatgga aaaaagagctt 11520
-continued

```
taagatctca acaagtgtttt ttggcccaact ctatcatgtc tcgacacttt aagctgta 11580
tcaacactt taaaaaaac caaaaaaac cccaggcttt tttcnaacng cttaggtga 11640
tgccccacag taaaaagtgg cccacagggag tatttctaaa gcacccacag gggtgatatt 11700
gaaataactt aagaataaaa ttcagagaaa tttaacctgt attaaanaat taaaagccgtt 11760
gttttataag cattagggga aagctgctttc aagttgcaatt cgtcgaatct tcacatgcto 11820
tgtcgcgtga cttgtttttttt aacacggtaa caaagctgta aatccgctgg taanaactcta 11880
cotatcaacgc ccacagaggg tttgatcttg ctgatcgcna tygtatagta gtaactgytg 11940
gcggggagt tttttttttttt taaatttcta tggcaaatgt gatctataga atgttagctc 12000
atcgtgaat ctaacacttt gaggagctga ggtaggggag tccacgaggg ctaagagttg 12060
gagccacgcc cagccacact ggtgaanacc actotactta aanaagataa anatagctg 12120
ggggggtgg tgtgtggcgcct tgtagttccc agctacttgag gaggctgtagg cagagaanacc 12180
gttgaanacc ggaggggtga ggtgtcagtg gcggagaccc gcccagtgtagcc acctcccacctc 12240
ggggtggcag acgcacactta cattcctaaaa aaaaaaaaaa aaaaaaaaaa aagggaccagaaa 12300
aatgaaagtc atccaggggg acctaggggt tggtagggat tatggcctggt gtygtaaagt 12360
aagaataact gccacagagag tcaatggttca atcgtttaag ccaatctctgc atttgtaaaa 12420
taagttaac aaaaagtttgc atctgaacag gtaacocca aattgtatctc atcagtgcct 12480
tgtagtaatg agactacttt tctttttaacct caggtactttt ccttaattag ggagacctaca 12540
cotggtttat ttgaagatgt ctgtgagatu cccacacact ttcttttctct tctctgtatn 12600
aaaacaaaa gaggagagaa aacttaggag ggaagaciac gagatctgtt ttacatctctc 12660
cggggacgct gcaccaaaaa tccactcaggaa gatagttaa ggttttaaatc ttcctttaca 12720
tgaaaattga accataacttg aggattattg gaacatacta gttcctcttt ttctttctct 12780
gactcggcc gtagaaaggg aagatcctat tgtggtagaa gttggagaa cagtttttctc 12840
atcctttatt tccattacoa agygttctgt gtacgagggct tagctatcaoa ctcactactt 12900
gagggagtct atacaggtgtgtctctggatt gaaatntagg atacaatctg tcgaacacc 12960
csattttaa aaaaotccca atgtaatctgtgg tgygtggagtt tcctttgctca agatacgag 13020
agtttacca acttatattc atctacccata gccacactta aaggtggaana aacacgcttt 13080
cttccttctt attgaagaga ttcttttctct ttctttcctttt aagagttttca cattagctct 13140
acgcaacacg aactattttc gatttagnat tcaacacotc cttctctocct tgcagagtgtg 13200
atgtctgcata tagacaaaaa aactgtggatg tgcattttctt tacactcact aataagggaana 13260
atcctcccaga atataactct taccatacactg cgcacacttaa taaaataga gcaactagctc 13320
taacctctta actattaca aaaaaactttc catattaatt atatttacaca aacacgcgtag 13380
gaggttcctac aagttttactc acaaaactgt ctaggtgttc ttcgggtccaa caataatatt 13440
cattatattt tattaaaaaa taacttactgt actgtcaagtg cctatttcta 13500
ttcctcaat aacaaactttt aacaaactctc ttcacacagtc tgcctttagt 13560
aaagtggaaaagtctggtcagtcgctgtgcct gtagcgctga atctctcactgc 13620
atttggcata ccaagtagtcat caaagactttt atatgagatt atagacccac cttgattttg 13680
aatcactatc tagctcttaa aatggctaaa aacacagagaa gctgtctgcttt taaaactaat 13740
aacacgctca aatgctgctg gaggggtgtg ggtgttggag ccagttcgtgctg tgcacactag 13800```
cttgagatgc cagtggacga acacgtgacct cactaaacac cagactgpgpa asatattcct 13860
agctgtgtaaa ttttctcaatt gtagaactgg ccttctttggt gaggattttt acgaaaattt 13920
ktegctggc accctcttacct ctactgctatt agatgtaaag agtttctggc aacgaaattt 13980
cttactgaacc tcccaaaaa atttaaagtc gctccccctct ccggagttgctt ctaacgtgct 14040
cacacacacc cagcagactg tcagcgccag ctcttggacgc tgcagctgcc aagtgaacc 14100
ccagacgctt gtctcccagct gcagctgtga ctcagcgtgat tttaagagc acccggcccg 14160
tgaaactcct ccagcgttgg aaattttacac agtttctagtt ctattacatt ttctcaggtat 14220
tggagccgcg atgtgtaaag atctctctct tacatt ttctcaggtat 14280
taggcttctt atatctctctt gtagaactgg gcttctctctt gatagttttt acgaaaattt 14340
ttgtctctctt cttttggctc cagcagactg taagtcagta gggggaaaaa agatatttaa 14400
atagacaccg gtctcctgcct ttctcttgagcg tacagcaagc aaaaaagacc gtcgcaagtc 14460
tcgagccgagc cagcagactg ctatttaaatc ctttttggtct ctttttggtct 14520
tacagtcctt ccctctctctt ctatctctctt cttctctctt cttctctctt 14580
aaaactctgct ccctctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 14640
aaaaactctgct ccctctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 14700
tttggtctc cctctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 14760
gacacacacc ggcagctttc cttctctctt ccctctctctt ccctctctctt ccctctctctt 14820
tctgagtcac cctctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 14880
tgtgtagacg ggcagctttc cttctctctt ccctctctctt ccctctctctt ccctctctctt 14940
acaacacacc ggcagctttc cttctctctt ccctctctctt ccctctctctt ccctctctctt 15000
tttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15060
gacacacacc ggcagctttc cttctctctt ccctctctctt ccctctctctt ccctctctctt 15120
ggtgtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15180
tttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15240
tttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15300
tttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15360
tttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15420
tttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15480
tttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15540
ntttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15600
ntttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15660
ntttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15720
ntttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15780
ntttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15840
ntttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15900
ntttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 15960
ntttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 16020
ntttggtcttc cttctctctt ccctctctctt ccctctctctt ccctctctctt ccctctctctt 16080
catggccatg tgggtggtt ctcaaatgga ttgatatgct ctataacagt ctataaatta 16140
tttgggggt tctataaacat atataacat aagtsaggg aagtgtaggg aagtsagggg 16200
gagaatgac tcaagtgtac aaggttgtcg agagagaag aatgaccaaa aatgaccaaa 16260
atccacacat atataccacat aatatacata atatgttgcc tatccacacat 16320
tgataaagct tcaaaaattgt tcttccactt ttatattgag aacaaattact tctttctttg 16380
attttctt tatcaagtcac tctttctttg ttttattttc cagttttggc tttttattttg 16440
tgacgtttaa atgttacaaac gtaaagtttaa accacttaa aactttccttg tatgytttat 16500
tgaaattctct gctattttac cagttttgca ggaagaggg aagtttttttat taatttatca 16560
ttgtgggtct gttgctgaag gtttctttatct ttagtttagt actaattgag actacctgta 16620
aataagttag cttgacattgt caattaatttc caaattttgaaa atgtggtgtat gtaatagtt 16680
gagttactct cgttttttcat gttcattact caatgtggta caataactag ctaaatag 16740
gttccgattatt ttctttccca gttcattact caatgtggta ctaaatag ctaaatag 16800
agttactct cgttttttcat gttcattact caatgtggta ctaaatag ctaaatag 16860
cogatagcgg ctaaatgctct gatattggtt cctattttctt cttacttaaat cttctattctt 16920
catactgtcc tgggtgttgt cttacttaaat cttctattctt cttacttaaat cttctattctt 16980
taatttttgta ctttattattg ctttattattg ctttattattg ctttattattg ctttattattg 17040
gtcacccact ggccacccct tttttttttttt cttcttttttttt cttcttttttttt cttcttttttttt 17100
ggcttggtta agttatcttt ttctattattg ctttattattg ctttattattg ctttattattg 17160
gaaagttagtt ctaaatagttt cttcttttttttt cttcttttttttt cttcttttttttt cttcttttttttt 17220
ggcttggtta ctaaatagttt cttcttttttttt cttcttttttttt cttcttttttttt cttcttttttttt 17280
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 17340
taatttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 17400
acacacaccc ctttattattg ctttattattg ctttattattg ctttattattg ctttattattg 17460
acacacaccc ctttattattg ctttattattg ctttattattg ctttattattg ctttattattg 17520
atacttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 17580
acacacaccc ctttattattg ctttattattg ctttattattg ctttattattg ctttattattg 17640
atggaagttt ttcttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 17700
tcggttagtt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 17760
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 17820
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 17880
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 17940
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 18000
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 18060
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 18120
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 18180
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 18240
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 18300
atttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 18360
-continued

catttattt cottaagagt attacaaa aagtgyaata gaagtcgaag ggcaaaagtt 18420
cattcatag ttagtagcag atatatattt tttaatcttc tttaaaaca 18490
tgatgtgatt gtgaagtgcct ttccttaaaa ttccaggaaa aatttttttt taatttcatc 18540
tagacaaat caaatggtagc taattgctggag taagcttctgtag tgcgalgcata 18600
tctttattt atataaatata ggttaatctcc actaatgtag aagatagacct tttaaatccttt 18660
acattttttcc ttgcttagat gcagcagcaaa ttcttatttt tggcagagctt 18720
cattctttttttttcttttttttt tcctttcttt gctttctgct accttacceg aagaaaccaac 18780
aaataacagtt tagtgaattt tccattcctt ttkcttcagt ctcaccacac caaattattta 18840
cacagctct gatgctttctgc gcgaagcgcag cttcttttatttaaataaatgt cggattagtt 18900
ataccataaa atataatgtgttt tgcattacatt ctcgatctttt ggtttttgctt accagaaata 18960
tgcttaaag attagcttaga atctttagag ttcacacatct tctttcagtt aagtagctg 19020
agatataaatt tttataactc tattaacagta atcttttttt tagttagttttt cttctgtgaa 19080
cagttttttc ttaacataaaaa agtcgtggcga tcctataaatatttgattttag 19140
taattttgagttttattgttt tagtgaattt ccctttttatc aagatgtgg ggtagaattagtt 19200
tagtagatttt tattagtttttt tctcatttt tttttaaaaa tattatagc 19260
acacatcgc cgacatgcttg tcagttggag ctcacatccttt ctcactctcgg cctctatttt 19320
cgtctttatt ttagcttttagt ctacataagtt ttcacacactt tttttcctcctttctct 19380
tgtctctatt gcacacatatg ttcacacatcct tttctctcttgtag gatttttta 19440
ttgtagctact ccacagcttt actttgaccc tttttcttcct 19500
tattataaaatt tggtaagact tctgtgtataa atagatctttt ttcgagatactt 19560
tgtgattttttt attagcttaga atatgataaa tttgcagata cctataacaa 19620
tagcataacat ttagactattt attcatacatttt ttttgagtt 19680
ttaacatcttttagtt agagattctttttt ctcacacatccttt ctcacacacag 19740
agatattataa attatgttaga ttactacctact tcccacacatgta ctcacacatcctttctc 19800
tacttttttagt ttagctttagtttt ctcacacaca ctcacacatcctttctcctttctcct 19860
ttaccaaccc ttgtagacatccttcccc cccccttccc ctcacacacatcctttctcctcctcctcctccttca 19920
ttagaatgac accttttttaggt actttcatvtaat tttttgtatttttttcttcttttcttttttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
tccacacttc tatatttattc aatatttatt taaattttat tattatat attatatata 20700
attatatata caattttatt catttttat aaaaattttt ggttc gccttcgct 20760
cactttctt ctttataag acaagttgtt taacacacat atgttaattc atcttttttct 20820
catataata aataataatt gcatctactt aagtttttt tttctctctattt cocaatccat 20880
attatatgt tgcgctgcct gagaattgtt gtctgttatt taataggctt atagcttctt 20940
atctcttttg ggcacccatc ctcctacttct tataaatggt ttttatttttt ataggattc 21000
attatatattttttg ctcctacttattttctag aagaaagata cgtagtattc 21060
atatttaaaa tactgctttc aatttgagttt ctcctacttct aataagttgc atytatattc 21120
aataaatatat aaaaattatt tatctactact cctacacta aataaatatt atctactacttct 21180
aacaactcttag ctcctacttct ttagtttaag acaatggattt gotoaattattttg 21240
faaatttaatttttg ctcctacttct aataaatattttc attaatcattctt ctaatatcattttt 21300
gtataatgag aataatattttgt ttttttactatt attatatatttct gcctataattttttg 21360
cagatttttatggctatttt ggtgtgatatg cactattt catcattttattttttctg 21420
taattattataa gctattttactg cactattttctt cactatttttctt cactattttttattttt 21480
attcttttattcag ctttatttttt cactattttttctt cactatttttttctt cactattttttttattttt 21540
attttttatttttt attttttattttttttt attttttattttttttttattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
agaatcttaag tctctttgta ggtctcttaa aactgtcttt atcaatctgg gtgctgctgt 25260
attgggtcga tattatatta ggaatcttag ctctcttctgt tcgaattgta cttttacaat 25320
tagtaactgc cccttcttgg tttttttgat ctttgggttt ttaaagtctg tgtttatcaga 25380
gacttagact gcacacccctt ttcttttttt gtcttcatt tggcttytaa atctttgcggc 25440
atctctttat tttgagcota tggttacott ttcctgtgat atgggtcctcc tgaatcaagc 25500
aconcoaatt gcctgtgaact ttcctctcgt ttcgagatct gcggctttta actggyggcct 25560
ttaactctgt tacatttaaa aatattatttt ttagttgtga aatggtctct gtaaattatg 25620
tgtcagcttg ttaattttgg gattagttga tgcagtttct cggaggtttg atggctttta 25680
caatgagcta gtgggggtca ggggggggaa cggacgttac aatccctcaat ttctgttccc 25740	tttacggacc ttcggtgaag cggccagctg cttgagaaaa tcctcagcaag tttcgtctgc 25800
tgtaaagatt cttatctcttc ttacaattat gaaggcttgat tggcaggttg atgaaaattc 25860
aggttaaaaatatcttc taagatgtcc ggaattgagc cccccctcttc ttcctcgggt 25920
cacggttctg gcggaggggt ccaagcttctg tctgagggcg tctctttttt ggtgtaacag 25980
aacctttcct ctgggcgcac cttacacttt ttcctttctc tcaacgctgg gaagatctga 26040
aatgtagtgt gctggggggc ctctctccga gatccgttatt tggctggtct cttgtatcttc 26100
tgaattggaa tctttgggggt tctttggagt tgctgggagtt tcctctggtat aatatactga 26160
aagaggttgt gccatggttt ctctcttttttt tctcagcttt cagctactac atcaaatataa 26220
gggtggtct tttccacataa tccctaattt ctggagggct tggctcttcc cttcctaatcc 26280	ttttcttc atacggtctc tcatgacctt ttaaccagttg atcctacact ctctgtatcttc 26340	ttttttcct ctgaggtgcc cagctacttg ttaaccggtttg gtaacatctta 26400
gccacccct ttaaaccatttt ccagctttttt ctcatgcttg aatgtttgga atgtgttatt 26460
gctgtctcct cctgaaccct gcgggtattt tctgcttgcct taacactggtt attgtgttta 26520	tctccatctt cttcagccgtt gcggattttt ctcaccaatt ccaacactga 26580
caanaccttttct ccccaacactgag ccttccccgt cggagtttata ttctctctcttc 26640
gagaaggttt gtttttgggt tttgagagtt ctggcttttct gcacgcttttttt cttatctattc 26700
ttgaggatt atacaacctct ctgtttggatt tggggtttgc ttttggctgt 26760
gggtcttttt ttttctggtata tccctttggt tttgagagtt cttctctttcc 26802
agtgaagctcc cttgtctgca gttcgtctgg aggigtgtagcg ggtttctcacta ccaacacggt 26860
ttttggtggt atggaggggt ccaacacgcct aagattgtgtg cttgtttcct cttctctctgc 26920
ctttccccca gcggggaccc cagccagatgc cagccagagc ttccttgtat gaggtgtgtgt 27000
tccacacccctt tctctggctgc agggaggttg gacacggcttg acacacacac 27060
gagaagagtc gttgctttcag caggtctcctaatgtgttg cggagaaacct ttttcctcctttct 27120
cacgccagc cggcagttgc gtttataaat cgtgaaggttt ggctctctcag cgggctttc 27180
cccggtgggtct cttggtccagc cagcttttttt ccctctggtatt gtttcactgctgc 27240
tggttttttt ttgagggatgc cttcccagct cagcttaactagc gagcaagatgc agtctggtttc 27300
cagctcctg tggctgggct tggcaggttg acctgttgag atctcctgtg 27360	taaccagtag ccaggaactc gcaattacact gcaagatgtag cccctccccct 27420
aconcgtcg ccagtcattaag gcaggttcatg cgaggtgctgt cttgcagccaca atgttttcag 27480
ctcatgttct ctaaagcttg ggcgtttgtg gggtggtgat ccaccgagct agaaccattg 27500
ctcctggct ttagcccccct tttctgggga gtgattgtt cttctctctg gcagttcag 27600
gagccactag ggatgaaat acacaacoct ctagagctag ttagtgctc gaacctaatg 27660
gctccagatt tttctgtaa accccagggc ccctgagacc aggcaccacca cacgggtctc 27720
tgtctctgg ccacagggact ctcctggtct ttaggttcaaa aacaccatgg ggaagaagta 27780
gtaactgtgcc aaggtgctgac ctttccttag gcaccagcag cctgagccct cctctggctc 27840
gggagggag tttccttgact ctttggtgat ccacagttgac cgacgctgcc accctgttct 27900
ggtccaccact cttsgttggtg acctcacgtc ctaacagctc ccaacctagtg gagctgggtga 27960
cctcagtttg ccacagcagaa aacacatgtg ttcctctctg gcctctgtgcacctctg 28020
cctggagtct tgtatctctg ccctctggcgc ctttctgttg gtttttcaccc ttcctgtttc 28080
catatatttt tgtgttcacct cttctgagcc tttactaaaaa aacgatgata ccacatagac 28140
gcataactaa ctggctattt ggtgataata aacctactag taggctcttna tctatggcaca 28200
gctctcgtgg tagttcttctt cactaatgag ttcctttcctt gcgctttcctt tctttatttttc 28260
gtattcgtg tgtgtgactt ctttaatttct tctttctgtt gttttctttcttacctttc 28320
ttagctaca aaccttggcg gaaagacta aacgtggtgaa gggaaaattg tctttacccca 28380
ttaattgtcg cttcgagggcttg aggtttttctg atgtatgattg cttttctctct 28440
ctatatattt ccacatgtgt cttcttactt caggtatatg tttatatataa atataatatttt 28500
gaatatatag tttattatag ttggttattg ttgtaattg atttatataa atttaagattt 28560
ggatagacca atataatgttg cttgaaatag cattatacaca agagtttttag atggaaattc 28620
atacataatt tataatgttg acatatccact taattttcttc ggcggcnaggg tggctgatatg 28680
tgctggaggt gtctggcttg ggtgtaggag ctagttctttac taaacacttca tccacttcct 28740
tcactattttt agacattctc accacccaag cttctgtgag actaatagata cttctgtgaga 28800
tagatagactga tagtcttttg aacatttttg ccaacaggtg ataaccatttt cttctcttgaa 28860
aatattgtcag atcttatctt ttataattat aacgcttgaa atataanatgta ataataaaata 28920
tctttgtgg tagggactata cacaagattat accctttttcct ctgtgatatt cttgtgatgaa 28980
agttctctg aaagagaccc tacatctcctag agtttttctt cttctctctg gcataagttg 29040
aaacagttgc acataattat fccaactgact aactttatctg ctttttaattatg ctttcagccaa 29100
gccacagag ctaggtatct ctctctatc aacagctttt ggagggatttta taaaataagt 29160
aattttttttt ggtctttgtg gggcttctaac tttttatctta aatacctgcac tggcttttttt 29220
cctcttctct ccattttact aataccagt atagttggaa aatacatcacta ggcaccggag 29280
aaaaaagaat cccactctgct cttgcaactg ggtgctgtaa aaggtgtagt gcgtttttttt 29340
aactctactg gagcattgaa atagggtagt gcggcgcgc acatcccttt gtttttggta 29400
ccattggt gtttctggata aatactgtgc ttttataggg ctttttatgt acttttattttt 29460
taggttagtct tctctcttgg gccaggtgga gggagaggtga cttctgatct gttctagagttc 29520
ggttgtagg cctctctctct gtttttttcct gttttttttt ggtgctgttat tgtgctttttc 29580
aaccttctct tttctctttct taaacactgaa cctcctctct ttctcttctag tttgcttttct 29640
ctttttctct ccctttatct tccttactac aatacctctag gcctctttg gaaagactttt 29700
aagagaaga gccacccata ctggctgatt ccctctttct cttttctcttt ctttcgctctg 29760
atcaggctct gcotccatct gogatctgga tacatcocoa ttatatagct ccaatcacc cccaaatagtt gacotctaac atgactgga tacaatccaa tittatagoat coattcaacc 29820
aacaacactag acactaacacta ttcggattgttc tacaatcctgt ggttagagtt tttaactcctgy 29940
tggctcagga ttcatcctcct tgcggcggg cggccagagc ataccataa aatcacta 30000
gttcagagct tcaaaaggttg ttaaatgcct caagaaagac caaagctgca gcaaggtacag 30060
gcagattgcc tgggtcggttt ttcggagaaa gtcagagagc aagacactac taaacacctc 30120
tgtagaaccgc tgaacccgca ctagagagct agagagagct gacaacagcc catcactcgg 30180
aaggtattc caggtcgagc aagtaggccc cttactaggt tgggacaggg ggttcagttac 30240
gactgagtt gacactgca gaattcgagtt cccctagttct ccgctagccc gaccaagggg gaagaagatag 30300
agctagcagggg aggctagtgac tctggtgtag ggtgggactag aaggggtaa 30360
tgctttggtg aataagttact gaaactttttg taccagttgt tcctttcaacta tctctactct 30420
tcatttcctgt gtaaaactct aatggtggagc caggttcata cgcgtttgctc cctcttattc 30480
attgcaagaa cttctgcttta gcattttttttt cccctctttttt tcccccctag cagggagaga 30540
gttgaaggg agcgcgagaa aatttagaag tggctttccct tacactagctc tagctgagac 30600
tgagagagct ctcagcttag aactgagatct ttatgtctat tccctttctttt tgggtgaggg 30660
gtcagagact tctgactagct gatactgctg tgggacaggg tgcctgcggg gttgcgtaggt 30720
gactagactgt gacgagctgc gggacagtga aagctctaaa cttgactaagt gcgttagtttataa 30780
agaagagggc gagagtgagct gatctggttt gcccattctgc gctcctgctttt 30840
tgctagcagct aagttcagca ggtggatagc tgaactgctg cttctttcta ttctttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
gtcagaatcc agggctcctt g gagagatta g ggttcttacc g tctttacat gtttctt cctttccttt ccttttcttt gggtggtgga 32100
tgatctcac ccaccagct gacccagtta gctggctcg gctggctcg gacccagct gctggctcg gggctccttt ccttttcttt gggtggtgga 32160
tttcttcctt aattctttaa tatttaat ggtctttaa ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 32220
aatagctgct aattcctttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 32280
tttttttttt 32340
gagagaata aattttaatt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 32400
agggctcctt ggttctt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt 32460
tocacatc ccttttcttt 32520
atggtctt ccttttcttt 32580
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 32640
agggctcctt ggttctt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt 32700
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 32760
ccttttcttt 32820
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 32880
agggctcctt ggttctt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt ccttttcttt 32940
cttttcttt ccttttcttt 33000
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33060
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33120
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33380
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33440
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33500
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33560
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33620
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33680
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33740
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33800
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33860
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 33920
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 34000
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 34080
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 34140
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 34200
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 34260
tttttttttt tttttttttt ggtctttaa tatttaat ggtctttaa tatttaat ggtctttaa ggtctttaa ggtctttaa tatttaat ggtctttaa 34320
ttggtcgggac tccagttgcc cacacctgta atccccagcac tttggagggc cggatggtgtc 34380
ggtctcggct agtctacagg ttcgacgaca gtcggcgcac tccaggtgana ccctgtctct 34440
actaagctgt ccaaaaatgc cggggttggt ggacagcttc gcttattcgt 
tgaggctcgc 34500
ggggtgtcgg ctctagggcco ctgggaagtc aggttgctct ttgcgcgcag 34560
catccccacct tcctccagcc ttgggtgacag acgaagacct caatcttgga aaacaacaac 34620
caaanacagc agtctctggta ccccctctaa 
tatataacat gtaataaaata tactaaagaagtt 34670
ataaaagct gaaagaagcc tagttacagc cagttcggat aggacactaa agcaaaagtt 34740
agtataaacg 
taatctctaca aggttaggag ttcactccagag cccttctctg ggaaccacccg 34800
ccttcggggag cagggctacgt 
agccagtctgc ccctctctac 
acggtgagcctgc 34860
acacagcactacctg cgcgacagt 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 34920
tgagttcctgc ccaccccat ccaccttcaag gttctcttct tttctcact 34980
acctcaacgc 
ctgctgagcag ggggtaactg ctctccgtga aaacagacga tgaatgtcag 35040
gctctctagct aatagttcgg cccctcccctt ccacctctct gcagagagtc 35100
tccactacac 
ccagacagac gcaccagtgg tgtgctgtga ggaactacatt aagctccaca 35160
agaaccacac tcaagaaagct 
acattcaggtgctgagttcctgc ccaccccat ccaccttcaag gttctcttct tttctcact 35220
tacactacac 
caatctctata gtaatgtcag cgggtgacagt cagacaacgg tagcatctttct 35280
caactacacgc 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35340
acacagcactacctg cgcgacagt 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35400
agcggtcgcg 
tgacttcggc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35460
agcagactgt ctcagtgcgtt cctattttca agtagttcctgc ccaccccat ccaccttcaag gttctcttct tttctcact 35520
ctgtttttgc ctggttgcag 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35580
taggtcactg cgttgggttc 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35640
tcctactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35700
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35760
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35820
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35880
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 35940
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36000
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36060
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36120
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36180
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36240
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36300
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36360
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36420
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36480
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36540
tcntactacct 
ctctctcagc 
actggtagcctt aaaggtgcttctt ctcacctctctt cacagcctgac 36600
attattaaga ttataattact gtagaaasatt gtatttgtaaat ctaaggccaa agagaatggacc
36660
ttaaaacttgag tgttaccgaga agaaactata aanaaygtag ctggytggag atgagttggat
36720
tggggcgattt aanaagaaac aggagccaaa atanagattg ggaanaaacg agggggttt
36780
gatttgatca gggacgagga atcaattgtta tgggygaggg atacccacac taanaaacctc
36840
tgtaaccattg agggtggttg aggttgtgaaga agccgaaacc aaccttgcttc catttagggc
36900
gagaatatt taacaactta tgaactggat atatooctocct aataatatta taaagttata
36960
acattttttc attttttata gttttttttag tttttttgct gcagaaactgg caaatcttcc
37020
gttacatttac ttactaatga tttgaaatct ttatattatt attaagattt tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
coagtctcc ctottatgtg gcaggggaco ttagctctga gtatccttct ctataaagga 38940
ggtatgtctt ctt attaccc ataatatgggt ccagttccttg gacatattt 39000
gtctagctcc ttctccggcg tgtgtagtg ccattaaaggg taatattcttt 39060
gttatattg gcgaagccgt ccacatccgt gctctctctt atttatcatt 39120
cattttctaa tgttactcag aagtttttctt ctaaagagag aacatctgatg 39180
tgtaattgt gttgtggtta tcaaaacatt ctaggtatttt ttagaatctttt 39240
tgttatctgg ccgctacctc ccttccttctt ccaagttctt ctagatttgta 39300
cattttctaa tacccagctc tttaattttt atatatatttt ttagaatcattt 39360
aacacatgct caaatgactct ctcctttggtt atctgtcctt accaatcatt 39420
gactgcgcgc tttcctctctt tctcccctttt cacacattcc acacctgcattt 39480
agtctattg ggtgactcctt ccatccgctc ccctcgtttt cctctttccatctctt 39540
gaccaagtcc tttccctctc tttctcttcc cttcccttctt ttcaaaagag 39600
aacacatgct caaatgactct ctcctttggtt atctgtcctt accaatcattt 39660
agtctattg ggtgactcctt ccatccgctc ccctcgtttt cctctttccatctctt 39720
caactgcgacc cccactcttt ccacacatc cctgtctctt cttttggtt cctttggtt 39780
ggtatgtctt ctt cctctctctt ctaaaacatt ctaggtatttt ttagaatctttt 39840
gtattttctg gcgaagccgt ccacatccgt gctctctctt atttatcattt 39900
aacccatgct ccctctctctt ctcctttggtt atctctttatttt ttggtatcattt 39960
gaggtaattgc gggcactcctt ctgctccctt ctgctccctt ccctctctctt 40020
tttgcacagt ctggactcctt gcacccctttt gggcactcctt ctgctccctt 40080
ctgtattttg ctgacttctttttt cctcctctctt cctctctctctt ttaggtctttttt 40140
catttttttt ctaaaacattt ctgatcattttttt cctcctctctttt ttaggtctttttt 40200
tgaggtaattgc gggcactcctt ctgctccctt ctgctccctt ccctctctctt 40260
aacccatgct ccctctctctt ctcctttggtt atctctttatttt ttggtatcattt 40320
ctggtctggtt ctgctccctt ctgctccctt ccctctctctt ttaggtctttttt 40380
ttgaactcttt ctggtctggtt ctgctccctt ctgctccctt ccctctctctt 40440
ttgaactcttt ctggtctggtt ctgctccctt ctgctccctt ccctctctctt 40500
aacccatgct ccctctctctt ctcctttggtt atctctttatttt ttggtatcattt 40560
acactctgaattttttttt cctcctctctttt ttaggtctttttt ttaggtctttttt 40620
ctggtctggtt ctgctccctt ctgctccctt ccctctctctt ttaggtctttttt 40680
atagatctttt cctcctctctttt ttaggtctttttt ttaggtctttttt ttaggtctttttt 40740
cattttttttt ctaaaacattt ctgatcattttttt ttaggtctttttt ttaggtctttttt 40800
tttgcacagt ctggactcctt gcacccctttt gggcactcctt ctgctccctt 40860
ctggtctggtt ctgctccctt ctgctccctt ccctctctctt ttaggtctttttt 40920
gggcactcctt ctggtctggtt ctgctccctt ctgctccctt ccctctctctt 40980
gggcactcctt ctggtctggtt ctgctccctt ctgctccctt ccctctctctt 41040
ctggtctggtt ctgctccctt ctggtctggtt ctgctccctt ctgctccctt 41100
ctggtctggtt ctgctccctt ctggtctggtt ctgctccctt ctgctccctt 41160
-continued

cogaagtctct ctcgtcctca tgtgctctct gttcttcaga gggttttggg ttccaggttt 41220
tccaggttct gctgtgctca tggccacaaac ctagcctcacc tccctccattc cagtttcctc 41200
tctgccctt tttgagcatt tttttttttt tgggttcatt cttggccatt gttctcaaa 41340
ttcttaacc ataatatagtcc cttctccacac ttatcctgtt ccatttttggc ttggtctctg 41400
tosaagagaga tgagagagaga gcaaacatct ttctgcactg ctctgcacact actaggacact 41460
agactgcggt gcctttccgtg gctcactgaag cttaagacag ccctgacagc 41520
attcttatctc gttcttccttg gtgaagacat ccatcaatct ctctcctttta gtttgagac 41580
cacttttgcg tgaattttttt tattgcaatc tattaatag atataattttt ctctttcattag 41640
cogaagtcgt gttgagagagaa ctttggacata cttaaactcct cttaaaacaaac catctttgcttg 41700
cotcttttggag aagcgacgct gttgacactgt gttagggagt taacacacttt ctttttgtgcc 41760
tgttttaacat gctgtctgcgg tttactgatta gctagataaa ctgggtttggc ggtcagagcg 41820
agtgccgcat gcctgatactgcc agctccccgg ggtggagaga tgtgggtgttt gttcagagcg 41880
agggccagtt ccagagccttc tttccacatat aagcaacccc cccggtgccct ccataacagaa 41940
aaatattgctg gggggtggtgg cggagcggtt taggtcgcctc tagtcccacag tgcctggtaaa ggtagggagag 42000
gatcagctc ctcgacgccc aggctcgaga tgtctggacc tcgtacgtgg gcactgtcaca 42060
cogaactagg tcgaacagcatg agacttctcct ttcnaagaaaa aaaccacgagc aagagggg 42120
gcaatattc ttttgcggag gttctttttt cttcatgttg cttgagccgg cctctggagcc 42180
tggccacactg gcaacagcagca gctgtctgtgc ctcgattgcgc gcagcctaaag 42240
tgtcaacagag aagcgtgctc cattgtgtgc gcgtttcgcg gcttcagacat 42300
cacaacacag cccctttgata aacccacactg aagctggattag ctaacacagt 42360
cttcggagcgc tgtgactacc atcgatgagga actgtcattct ttttattcttt tgtccagagaa 42420
ataacagctg tgaactattct cttccacagc agttcagcgg tcacaggtttt ctatnactcct 42480
tttatatctt cttcctctac aagggagacag ctaaattgtgt tcaattctact cttccatttt 42540
tggccagatg aagctgtgatt ttaacctaca tttgtcattt gtagatgagc acaagattctc 42600
tgctagctgt gtttttttctct cttactgagc aagaattgtct gcgctattgc 42660
atattgggct acctggtgag gcagagccgc cagcaaatcc aggctcgagaa tggccagcag 42720
tgagaaaag gcgctagctgt gctgtttggcc acctggcagc tcagactac ccctgttact 42780
gcctgctct acctcgcgga atctttttctt catttctgtgg agatattnaaa tngaaagcag 42840
ctttctcctt cttgttacag aaaaaatttttt ttagatttct aacagagggc ctaccttcat 42900
icottcctg gacagatttc ttattcttcct catatattgc cccatcactgc tgcgtgctct 42960
agtttctgag gtacctgctct acaagcgctt atcctttgcacct ttttatattattt 43020
atatatttc gacacctaca agcaagcagt aacctgtgct cctcattagc atgtgcaccc 43080
ctttttactc aacatcaggt attcagaggt gctacttctc ctgccattct 43140
gagctagctag acgctggctt tttgctatttc aacccacacat ataatcctgac acacaaactaa 43200
ttgctgacac acaagagga tttttttttt gtagcttttc atgtttttttt gttttgatgt 43260
gttttttttt ttggttgggtt gttttttttt aagagtgttt tttttttttt 43320
atagtttag aagtttggtatt tagtttggttttt gcctttttctt gtttttttt 43380
agctttttttttt gcatgtgcac ctcctaccct ctcgatataa aagctttttttt 43440
-continued
ggtgtcaga gaggctataa ggagatatat gggcagggag ttttttacca gcgctcagat 43500
cctatcgtgc gactgtaaa tacgttaccc atgccaccgt gaggtgtaga caaacttgagc 43560
tatgaataat gggagagagt gctgctctttt ggacaggaag agaagctagaa gttttgtacc 43620
ttgtgagatct acactctgcac gctgcaagcc ccaggggctgc tgcaccataa cctgtgctcc 43690
cactctctct ctgatttctt ctaaccacgc tcacctcttttg ttctctctgt ttctctttaco 43740
tgaagctctc anactatgga cctgtaaaaa gcagctagaa cgaacacaga ctaacatttat 43800
ttaggaaca ttattattag attgtgctct ttttaaaga atttaaacc ctattgcttct 43860
ttaaccttttg caatactgcga gtgaacacgg tgaattcctt aacccatttt tacaagttgag 43920
gaaacgtgct cactgtgggg gtaaatgcct tgaatgggac caaaccacgtc gctgtgagoc 43980
tagttattgg acccagacctg ttaaaactccaa ggagccaggt tttggtgcoc cactacttata 44040
gcgaacccca acccaactata atatacaaca gcocactaac atagtgaatct taacctgtgt 44100
cagtcccaat cccctgtggtt atgtgtgat gagaggaata agcactctccc 44160
aagctcggcc gcaacacatta gcaatgctcgcct tataactctac atccgagttct cccgtctcttc 44220	tcaccttct tcctcctcct ctactatcct ctaacataaa ggaaanatgg tgggtaaggo 44280
aocctcaca taaaaatag ttaaaatcctt caaaccacctt agaanaatatg tggtaagcc 44340
agttatagt gaaaaacgccc ttgcatatag gaaggggtaa atggggtatt gggccocctgg 44400
catttggt ccgactctcc tctccctacaac cactactata catatgctta attaagaaa 44460
aaouaaca ocattgagaga aaaaaaacag atggagaata tttggtgocc ccocagatta 44520
gatattttttt ttcctttcttt gtagactcct aaggggcccc gatctgctggt ggtgtgtctc 44580
cggagggcc ggtcagcctg gtcaccccttt acttctggag agtcagatgc aacctctggo 44640
cocctcccgct agtccctaat cttacacactct tattctcttt ttcaacctgtt gttcagaca 44700	tatcctctgc gpataattag ggctcctcctt cttactggaan atcttgaggg agtctcctca 44760
attcccaact ggtctgtaagc cttcctagtc agatattttttt gctgctgctaa cctgcctgct 44820
ccacoacgc gaaagggtag ttaattattg ccagattggtt gtaagggtcct 44880
gggtgattttt aaagatgctt ttaaatgagg aatattttoc cttggtttttt 44940	tgatgttct acgctggccat gcocagacgc tggctgcctt tgaanatgg agaaggggtga 45000
taagattaac gcagagcagc ccacacaagct gcaccatcagct taacccttcct 45060	ttagggaagc ccctagatgtt aagggttat ttctcggctgt ttttttttga 45120
gcctgtaacc ctaagctggtc cttgctgctgt gtcgctcaaat aaaaatattgt 45180	tctatgtcct ccatccctcc gacactagcc tcгаагагgct cccactcgcc cttgctgacc 45240
cocactctct ctgcctctggc agagggagtc acacccctggc tcgacaggcc 45300
aggggtcttt cttgcaattt gttgccattt gctgctcctt gttcagaggg gcagctaaaco 45360
ntttttttttt ttatcattag gcagacgttc tttctgcaac caaggtgtaga gttgcttggt 45420
gcgatcagac ccctcctgctt cttgctgctt gttgctgctt gttgctgcct 45480
tocogagatct cgtgcagatgg ctgactgcac ctgctggacgc gaaactatatta tttatattta 45540
tagcggtgaggttctcgtgt tgggctgagg ccgctgttga acctcgtgac ccagagatct 45600
ttgctgctgc cttgctgctttt cgtgctgctttt gcagagctcc ccagctcagcc 45660
aactctaaanan acattgtgaaa ctgaactgaag ggtcgtagctct taatgagaca 45720
ttgactctag ttagggatttt gtaagttttag ggctgttttt tctgcttttt
ggatttttt ttagggtttt gttgcgttttt cttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt...
ttctttaagc ttagttctta gatacagctg ctggagcag ggagtgccat atttgaaagc 48060
ttttatcca tttgtcatg tgcgcagctg aactctctct atggtagaaga tttttctct 48120
cactgcaac aagttttcttat ttttttctgt atctcttggct tttttctctttct 48180
atctctctct tttttgtctaac acacaccaag aacacgttc aactatttttttttctac 48240
tctgacctgg caaaaagttg cacaattaca acacattcaac tctttttttctgtctttttc 49300
gtgcttcag atgacaaaac caacaaagct aacgttgctg aacaaagcct 48360
actgcttcag cagactacca tctgtaaccc ttcagggag cgaagcacat ttaaaaatcc 48420
tgactgacgc ttctaggatt aattactgag atatacagca aagggattact aacacccac 48480
acoacacatg aacactcata tctctttgct tttgtctctttc ttttcttctct 49540
aactttgaat tacacttatata ttaataacaa atataagatat tattatatttttttctgct 49600
ctactactgca ttttactgac atacactagct aacaaacttt cactcttatat 49660
agcttttctg accttttatttt ttacaagctgct cgcgtgagag ctaccccttttttg 49720
ttgtgaaact ttttctttttt cactttcttc tctttttttct tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
-continued

ataacattt tcgaagtctt ggtgttaaoc aacocoaagtt attatatattt cactaatgc 50340
tttcttctga ctgtaaatag ccacgaacagg gtatgtcgag ataatccocccg ascccttcttg 50400
atcccaatttc caaatatttt gctgcocaga gatcgaaggct aattttttttt tttcaattgg 50460
tgacacgct tctgtgaatct ctcaacgagt tttgcacttc tgggtttactt gatacgaatt 50520
ttttttttt tcacagacaga gcoccttcttt tcataccccct tagttgcatt tttagacatt 50580
tctgcgcag tcctctctatt catggccatg ctttccctttt cttttctcctcctctctct 50640
ccaatctccttt ttcacatatt ccatcaagcc ataatattg agaaacaccac accgagggg 50700
cagcataagcx gcattctgct tgcttccttc tgcatactgca gatctactaaag atoacattag 50760
attatgct ctattttcttg cccggttccc ccatctatgt tgaacacasat agtctccggg 50820
gttcttcgct cttttctgca ctttttttt cttttttttc tttttttttt ttagагагтог 50880
ttcatgttgac atccagctttc cctgcactgc aagttctgga ggtggtctttt gtgacacaca 50940
tgctctcgtg ctttataacgc ctcgtcctcc gcgctagctg gtttacacgc ctgcctactt 51000
gacacacac agtcggtcgc aatccgctt ctttttttttt tttttttttt ttagatata 51060
cagccttct ttcgctggtgc ccagctgtctg ctacactactc gactcgaagt gatctaacgo 51120
tctgcgcct ccaacgtgct gcggacttag gcgtgagca ccaacacagtt ccaactttctg 51180
tcttcttcga ctggcttgctg tcatacaggt gctctctcggc ccactctggc atcctctacgo 51240
tggtaacagt ccaacgatct ccatctttcttc ctctctctatt gttgtatcag 51300
gttttttttt tgtcttttgg cgaatggctt cttttttttt ctttttctgg ctgtgttttt 51360
ttttttttt ttttttttta cagcgtttttg taacgagaga aatccgcttt ttagctgtct 51420
tgctctcgtg cttcctgcc cccggtttgc cctgtctgta cttttttttt ttagatat 51480
ttgcctcttt ataatattt catggctttg tggctttgaa aatctttttt tagctgtttg 51540
tttagcaatt tcatccccctt tctttttaaaoc cttttttttt cttttttttt ttagatata 51600
gagcttcgtt tctcctgcag gcagcagagtg gtcaagaagct catactctgt taaagcgag 51660
ccacgttctt attatatctct tctgtctggtgcc attctctcctg toocaccttg gcgctactacga 51720
gccagagtgt gcgtctctgtg tctgtcctct gcgcacgacc cttctctttat 51780
aggagagtt gcgcggccag ttgcttctgg cgggtggcagg cgycgcggct gcgctactacgt 51840
gtctctctgt aactactag aagccactttt ttcctctctgtgcctctgact gataacttct 51900
tctgctatct aactctcttctc tctctctctct ccgctggcct ctttctctctt 51960
tctcctctt ctcgctatcag cccggtttgc cctgtctgta cttttttttt ttagatata 52020
gcgcctatc tttttttttt tttttttttt ctttttttttt ctttttttttt ttagatata 52080
tgtgttgatt gtttttttttt ttttttttttt ttttttttttt ttttttttttt ttagatata 52140
ggcaaatggta gatcttttttt ttgagccaaa aaaaataagtt ctttttttttt ggtatcttg 52200
caagcataatct tcattctcat gcattctttt tttggaatttt tcaagcttctc aaaaatttgcag 52260
ccgagaatgg tgaatgttctg tcggaatact cttcgcggcc attttttttttt ttagatata 52320
gttctttcgttt ataatatttt ttttttttttt ttttttttttt ttttttttttt ttagatata 52380
atatttttattt attttattc attttattt attttattt attttattt attttattt 52440
atcactatg gatgatctttt agaatattt attattttt atttattttttt attttttttttt ttagatata 52500
atcactatc tcaactttttttt ctttttttttt ttttttttttt ttttttttttt ttagatata 52560
CTGATTTG

GGAGGGCGG

TATTTTTT
-continued

caggacacc gatgagaggg ttcaggtgatt gtcttaaatg agagtacatt aattttgtgt 57180

tttatacccc acccctagcc ctggacacca aaacccaaac attccttttaa actccggtgt 57240

attttacacc aatataacaag gaaagaagcc caataaagc tgcttaaacg ctgatactat 57300

agtgcagata tgctgtgtgac tggattcggtc tgtatgtgcta tttgttatgcc aaggtttttc 57360

taaatgtgct cttcatttgag gtgaataaaag gtataatatt cggagtcacat cttcatttga 57420

tttacaacct aagatattag aagagaaaaa ttagtatggcn actctttttt atataacgaa 57480

cggatctctt gatgagaggt ggtgacatct tgggcaagcc gacaggcttc tgtagacaag 57540

tgtatgtggac caatcttggc cttcaggtcc ggctacaacc gctggtgctgc gatgttcgct 57600

tocacccag ccagagttttt actacttttaa atctctttaa taactcttttg ggtggcacc 57660

acagtttctt atataatcctt tagcaccacag tatcagatcct tattttggct tttttttttc 57720

agatttttcata tccccctcctt gccccgcatg cccggtgagca gggactatata 57780

gttgtctctcc acatcatctt attgcttccc gccaaaatcat cccacagttt 57840

tctactgtctt caaagtttgaca actactcactt cgcctttttt cttttttcct 57900

ttagttcttc taataatgga agtgtgtgga ttagaatctt ccgagctcag aagttcttag 57960

attttgact ctggagcagc actgggagat tctcgagagtg gacagacaat acaaatctag 58020

tgaacttagaat atttcttacta gaataactcag cttgactaggg gtaagagcag 58080

acactgga aacccttttt tcttactcag aatatatttt gactgactata tccaggctt 58140

tatgcagata gccttttttt cccactgcag attttttttt tcttggtttt gttgtcagaca 58200

caatctttggag aaccctttcc tctctcatttg aggatgctgaa caggtgctca 58260

cattttttac actaagtttt taacttttttt caatttttttt gtttcttctt 58320

tgccttaaaa tttactttcc acccctttttt ccagcagagc ccgctggtttt ctcagcactt 58380

cacaggttgttg cggaggtttc gcacatggctt atccctttttt gctcagatggt actctttttt 58440

tggacacacc ttagaaacct atataactag tatggtgtct cttggtcctg gttctttcttc 58500

tagatgtgacttgttct tttttttttt gctcagatgt gctactttctt tttttttttt 58560

atccgcaaca attttttttt taactgtggga tatgtactac attttttttt cttttctctg 58620

agttttaggta cattggtgcttt tccttttttt gctttctacc taatattttcct tttttttttt 58680

tggtggtgac ttttttttgg gcacaccacat tttttttttc tggatgata gttcataag 58740

gaaatttcttg actagataggca taaccttcttt ttctacgcctt ccaaggaactt cgctttgct 58800

gtaagctttt accaatccag cagcatctttt ggaggctctcc attttctcactt cattgtctag 58860

tacatccgtc taattctgttt tgtctcatat gggtatgagg tgtaaaact actgaaaaaa 58920

gttgacatt cattggtgtaa aagttttatt gacacccgg gaaagtatttt tcagcagcct 58980

gacagcctcc cagactaata gttttttttttt tagctttctt gaaagttctt tagatctata 59040

tgaacctact tctatattgc atttgcaaga aaccatcttag gatgtactata ttcttctatca 59100

tctctctcata atctacattc aactttctttc aagaaagaaat cctgacacta 59160

atctttttttt tctttacagc atttttttttt tctgagtgatt accttggcttc gttttacag 59220

ttttttctaa gaaaggtcgt tttgttgtct tttcttcatat aagttttggc atgcctccat 59280

acagcctctaa ctttacatctt cttggtactg tggtagata tcaagagctta aaaaacttcttt 59340

atctggcatt atacactccact ccagcgagg agcagagttc cttagcactata ctttctctc 59400
agcttaacagctgtggttactcagctttccacacttcggccaatgttcttgtgtagtaaataaaata
59460
gtctcgttaaaatgtttatggacctataaggggcaccataaacgtatctgttaaatagcatgtgagtcagtaaagaagtatttaacactatattcacattgctttttatccatattctgtaagcttttgcgaagtggattactgcttattgctcatcggttgatagttctttatatctcggagctttgttt tgtcattattatcattagatatattacataggaggtttgattagtaaccgtcattcgcacacagctattttatatattggtgaattattgctttacctgagaaacacgtaatattgagatattgcaggtatgatctctcgtagggaaagagttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
atggtctta tgtcacaagt gcacaagagca gacagccttg gagaactcga gctaataata 61740
cgtaagagtc tgagtaacttg tcctcagata ctcaaaccag cattttgatg acagatgtag 61900
tatctacga aaccataatc cagcttggca tcagcattag tggcttcatg ttttgtgctg 61860
gcccctcct gccatactgt ctctgacaaat ccttcacaa gaggtgagata tcacatcttt 61920
tagggaaggg ctctgtaactg gagaattctt gctacactag atattaggg gcagaacata 61980
aacacagagg anacacagcg tacatggtca aatatttacact tatatttggt cttaatgttg 62040
acagctaggg aacctcttta tcctcgggtt gagaatctaa gttggatgt atttatagtt 62100
tctactcttg ttttttttcct cctccctttgc tcccgctgac tccctcttca taacccacctc 62160	
tatcacata gacagccttg aagctgctag aataagcacca gggcttgcga aatagataga 62220
cagcaagtgt gctccgctag ggtagtggtc agacatctgga ttagttttag cagtaataagtt 62280
gataaagagtc anacacagcg acctgagggga aacgtaatgg ggtgaaaantcccaaatag 62340
aggagtattc atcacaactg ggcaggctac ccggttaagtt tcataaactg agtaaatagtt 62400
gacacatatt anacacagcg aatatttacact tatatttggt cttaatgttg 62460
aaatagttat gacacagctga tataacttgg tctccaatatt ttctcaacaa tatattgtaac 62520
cacagccttg cgtacagcaca cccagagaga agatactatt tatattttgtc atagcagctat 62580	
tttatatagga anacacagctg gcaatggtagg acggcctcna acacactatatt ctacacagga 62640
gataaatattc gcaaatctttgc tataagatgc agcagctattgagccagcttctgcaatttt 62700
cggcgagaa ccctctgatag aagttctttctt gcttctgatt taaaagctgagcgag 62760
agttcttgg tattattttac tggcacaatt tgcagacatag tagtttttg atttgagggag 62820	
tattctactg atgctcctgag tcgctcctag gcacccacac gacacagcttg cttgtaagca 62880
gctacagctg ttcgaaagaa cagcagctcg cattacagac taaaagctgac gcacacagca 62940
tctccagagac tcctcatgctct ttttggggact aacccattag ctcctcatttta aaaaatagca 63000
aaaaacctta ctctatcattg gagaataaa agaaataata goaatgaggga aatggagccca 63060
cctcgaagtt aattccttata ctaagatag aagtgggct aatagtaagac gccaaaccac 63120
atctcaatct aatacttttt aataactgtt ttaactccag atccacttaaaggctaaaaa 63180
atcttttaca ctatctactga aagcttttttc tttttttttta taagaatcc ctatatagc 63240
tgcagcctcg ctatctactga ttctcataat ttcctcgaaggttcttttaaagagaaataaa 63300
aaaaatccag ttcnaaattgc caaacatgta gaanaaatat gctctttgca ttccttttota 63360
tgtgctcatt tcacacagact gaaagacact aacactataga attaaacactt tattttttaaa 63420
agattctcat ttatatttca ctaagatgag aaaaattata atattatattc ttttttaaana 63480
starsagcta tcacagcataa tttttaatttattgagggag ctccacacacct ttctttttcttgcc 63540
atattctgt tttttttttttagagagata tgtgaagagaa aacaattg tgtttcaattttg 63600
cagacactac agatcttttca taagacacta acaattagagtc tgcacaaactgtggtgag 63660
ttctctagatct ttcctacttc atctcttttta aagaaaccacg acaaacactg aatacaaatctg 63720
atcataaatc atgtgcaacc tctagatctattatcaca tgttttttattagctcaactgctgatcaacoctc 63780
cataacagtta anacacagctaa ttaaaattt tagttttttt aaccaacatacaactcactgct 63840
agcgcttgaaca cacoactccc ccctcccttc cccgtgggc aataagctgctg 63900
agattctcat ttatatttca ctaagacctaa aacaatgta gaaanatatc ctttttttota 63960
cagocatgca gaagtagaca atttcttat acacaaacca gttggaanaa tttatcgaaa 64020
taggaagtta ttcctaanat ggttatttgg atttcatttt tttttttttt ttattgaca 64080
agcttgact cttggctccag cttggctgca gttggtgtat cttttctctac tggaaactcc 64140
aocctgcttg ttcacaaagct tttctctcct cattctcttg agtattcggtt gatacaggtg 64200
cagccataca cttgctgctta atttttctat ttattagaca ggaaagtattt caagcgtggt 64260
actaggggta ttcacaaagct cttggtctaa tggaaactcc gaattctggg toccttaaag 64320
cctgggttac agccataaag ctagttgccc aagctgatgt ttttattattat ctttctgctc 64380
cagccataca ctagttgccc aagctgatgt ttttattattat ctttctgctc 64440
aaacattttga gttatttagct gttctctctctg ctacattctgcat ctgtgaagctcg 64500
tttctgtgctt aacgtgatttt tggaaactcc aatgctgcat tttctctctctg ctacattctgcat 64560
tcagctttgc ctctctctgcat ctgtgaagctcg ttctctctctg ctacattctgcat 64620
tgtctctctgca actacattttact tttctctctctg ctacattctgcat ctgtgaagctcg 64680
gaaatattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ctatagagg gttggggtgtg tgaactcgag aagaagagta gtttttccaga aaaaactgaaga 68580
gccgagaatg actitcatcca tttcc totaa ... gcctaaatct atcctacaga ttagtctatg 70740
catggtttagt aaaaactagag ggtgactgcgtt ggcagatacaagcagagtaag 7100

agggatcacc ttatcatgga aaatctaggg aaggttgacct caatcttccaa ttttctcaaga
70860
catcatcacc tgggttcctgct ctattagcag gcctgtgcggt ctccaggtgc
70920
tttggttcct ttcagcttact ttcttcgatt gttagtgcct tctttccacttca
70980
cactgtgcct gccactgtgcct cttgggttgaag cttcttctatctgct
71040
accaagac aacaagctgcc catcattttt cattttctaccacttcatctgc
71100
tatggttattg ttcgttgggct ctacacttctc catctctcctcatttctccaga
71160
atggttattgc gccgattgga gggcttgctg gtttcttccag gggatcttctc
71220
agtcttcatc tatttaca gatttacttgt gtcttgtctctggtgttttca
71280
tttttgcttcc ttttcttactct tgtcttttcttgttctctggtgttttca
71340
ttttcttactct tgtcttttcttgttctctggtgttttca
71400
gatgctggtt gccgtggcttc tttggttttctgcag tttgtgtctggtgttttca
71460
cacttctttc cggctggtt gccgtggcttc tttggttttctgcag tttgtgtctggtgttttca
71520
gtggttcgag ctttcccctg tgggttttctgcag tttgtgtctggtgttttca
71580
tacatgccttg ggaactgtcc tttggttttctgcag tttgtgtctggtgttttca
71640
ttttgcttcc ttttcttactct tgtcttttcttgttctctggtgttttca
71700
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
71760
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
71820
aacaggttac gaaactgtcc ttttactttt tttggttttctgcag tttgtgtctggtgttttca
71880
acacacttgg cggctggtt gccgtggcttc tttggttttctgcag tttgtgtctggtgttttca
71940
ttggttcgcc tgggttttctgcag tttggttttctgcag tttgtgtctggtgttttca
72000
ttttactttt ttttactttt tttggttttctgcag tttgtgtctggtgttttca
72060
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72120
atgtggtct ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72180
ataatgtgct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72240
atgctgtgct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72300
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72360
atgctgtgct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72420
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72480
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72540
tataaggtct ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72600
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72660
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72720
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72780
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72840
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72900
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
72960
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
73020
ctatgtgcct ctttactttt tttggttttctgcag tttgtgtctggtgttttca
73080
atgctgaac tacattcagc ttcgcaagt aatattata aatagtattt gctgggattg 73140
tggattata tcggagaggg gcgtgaaacat gttttatagc atccccagggg gttgggacta 73200
cotcttagg gctcttcttt aatcagcagc tttactaat acattctagct cagctggagt 73260
agttcttctt ctctttcagc cccagacagc tcgatcaaat gcggatattc atgcatcttt 73320
cctccataag ctctggagat caatacagga aagttatattt aggtaattca gacccaaag 73380
tgcgatttact ttcattcaag ttttataatt tattatagg cccatgtgtag ctcttcaactc 73440
cctgaatttc agaatcttctc gaggctgaag tggggtcata attggagctc aggggtctaa 73500
agcgacgcag gccacatcag cgaactctcc tcctctctaa acctgtaana attaggctggg 73560
ctagcttggc tgcgattctg gcgacagcatt ttcggagggc tggggagagg agaacatggc 73620
gagcgcaag cacggcaagc caattcagcc tggggagacq aqgqggacag cctcttaca 73680
acacacacac aacacacacac tataaagtta atatatatta atatatatac atatatata 73740
atgctatatt tatttaaat attatataat atgaagttttt aataaacata aagaaaattat 73800
atatatatta atatataata aatattataa aatattataa aatattataa 73860
gaanataat gcctattagt tttgtaata tctataaaaac caacactattt aacctttcata 73920
tattatcagc ctttgcctct ggacaagttg gagctggtgt gatattttttt tttggagctc 73980
tcgcacagc agacagactt tttctttttc atatatatac atctctattg 74040
acaccccttc cattattttc agctccctctc tcctcttttgct tttgcattctt 74100
tttctccac ccgggaaata aatgtgacat tttcgagatt caaccccccac acggccaaa 74160
ttcttacagg ctttgtaaaa tggaggaagq gataatttttt tgtataggtg ctttaaattt 74220
tqgacttgct cacataattgg ctctttttttttt ccctcccttaag ggggyggagty gggtyggtt 74280
agcgactacg tcgggagctc gcggcgtgc gcagcttttgc tggagaacctt aagctgggga 74340
agattttcct aaccgaggatcg acttctgggc tgggagacta aagctgggga 74400
cggttctaca gggagggagag ttaatccagtt aacagggccc aaacatatata caacagcc 74460
agttcttctt attcaaggag tcaaacagct caaggggtct caacagctttt tgggatctgg 74520
tacactaatg aacctagactc tggactttaag tttcatacgct cagggaaacct tgggatctgg 74580
acagaaactt aaaaacacac gtggtagatg cgaacacacag tgggaggttg ggggtggggt 74640
agggcttttg ccgagggggt agggcagct gttggtggag catggagggc gagggtagag tggggctttgt 74700
gggaaggagga aggagggcgg cttggyggata gggagagagc ttaatttctg aqgqggacac 74760
ggcgatcttc tctgtgtgtg gacagagcac catctctcagc gcgggtggtgct 74820
tctctcatag acgagcttag tgcggagggc acacccaggcct cctggctgctt cggaggggctt 74880
gttttctctg aatgggggct ctttactcga aaatcggggc atgcctgggac aacaatattc 74940
gtcgctttgg cgcctacttc ttgggtggtc catagtctga ctgacctcatg ggcgcctgtg 75000
gtttattttatt tctggtgag caggctagc aagttgttta atagtttagt 75060
tagtagagag aagggagag cagctagatc tttttagtta tagattggna gagaacactc 75120
ttgggagaga aagctagatt ctttcatagc tttcgagagc tggggagatg aggcctgggct 75180
gttggccac ccgggagagq ctgctagcttc cttggagggc atggacggag aacccagaag 75240
agcgcgagga tcggatacgg gcaatagaga taatgctttgc ggggagatag ggtggaatc 75300
gatggaagga tcggagagag cccccatattt aagttgagttt ttctactact gttgtg ttgctt 75360
-continued

gtcaacctg cgttattacat gataaaaacg gttacctgtg tccatattctc aagatcctaa 75420
tttttaccc tttttgatgt ttctcagt atcatgagt attgagtaa acaagtcctg 75490
toactcactc taaataaat attgattcatt tctactcgct gctctgttcg tctctctcag 75540
tctctttcctt ttttgttact tttttttgctt tttcttctctc gttccactaat 75600
aacatcctaa cagttacta caattccacttttactttgcttt acaataactg acatgctgt 75660
acatctactg anatagacag tcctgttctta tccgaaatcacttaggttctt 75720
cagcttgcag tgacactttt aactctcttactc tattacacta aaactgaacta aagaagacac 75780
ataaaaaatat atatgttctg tgggttataa acaatccgaatt tctatcct 75840
caggcttacctatat aatttgtattg tatttcatatc ctatctttag 75900
acattagcta gttgtagcag tttttttctt tattacagcct cgtttcctgg 75960
tttttttagatt ttttttttct tattagactactta atcctactat tttttaaattttttgctttttttcatt 76020
ttagatctgca cagcttatgagata ccacactacat ttttttttttctttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
tacaatacct gtcatctcgt aaatgacaga tatagttgag caaatctac ctgaatgttt 77700
agtttttat ctttccacag aaacgatagtt gaattattt catagatagc atctgagaa 77760
tgaaatagt gttcaggttt catagacac ttttccacag gtttactcgg tatccctctc 77820
tatatgaca tctattttctt atctgtttct tgtttctct ttttccacaa gtagcctgt 77880
cocacatc acgctggttc tctctttta tataaccaat acaccaacct ccacacatgc ggcagcoacc 77940
atctatct cgcataataa tccataacat cctcttctctc ctgtaagctct ctgctagataa 78000
gattaatttg gacacataaa cacacatatg ctcgacaaac gagaacattg gtatttttttt 78060
cctctcatgac acctctattc cacatgaact cccatccttcccctt gtcagttttctct caatc 78120
goatgacgcc aacagatcct cctctttgtc ttaaacaatt ttagatgtaa gaccccttgg 78180
gacgtctgttat acagcctcata acacccatct accagagctt totaatgttg ataaacagga 78240
aaaaagatag atcgtagcata ccttaataa aatataaag ctattacata totagttttat 78300
ggaaataata gcttcacaga ttctcactata cagagctgtg ataagcataa tatattgtat 78360
atctattg gcaagcagcc ctgatgctta acacttattat acgctgacgt ctgattaccaca 78420
aagggagata ctaaatttac gtttaaagaa agattttcct atccgacactt ccatggcaat 78480
ctgtgataat acagatactg atcattcgac gtcgacaaac acataacac ccattaattct 78540
tcctcactgtt atatatattc ccaatttgc cgtacaacag aagacactgc aaaaattag 78600
agcagctgat tggctgggcg caggacacct cgaagggcgcc tacataacct ccaatattag 78660
cctatagac cgataatatttg tataatttgc cctctgattata gacagcagca 78720
cctctgcgt ggtgtcagaa aaaggaacag gttcgggaat tgggtgacga taattttg 78780
aagccagat ccaagcttgga ttgtaatttt gctgagggag acagacacca gcaacagcag 78840
atatttttgaag ctctacagtt ctctcaacct ggtcacttttat attcatggaa 78900
taacttttaca ggttacagag acctgacag acatcaacat tccagagtga ctaaaagtgaa 78960
catcaacctgag ggccaccacct acacatcctgt ggctgtacag tgataacaag aagagacaa 79020
acacccattg tgtggtctgc ctgctccaaaat ccataacact gacagagacac 79080
cocacattac ccacattgcgt ggttagaacct tttcaacaatt ctttagcata 79140
tgaacgctc ccgcgcaaccac ggcgtctaaat gacgccggt gctcaatgcg acgttataac 79200
cgctggccttctctgctgca gaaatggggc atactgaaga cattctggca atttatttga 79260
aggtttatat atagttgaa aaataactgtctact gttgctcttg ggtacaaaac 79320
agtgcggctg agttgaggtaa tattaagtttgggtttcagctatgc tatagtcacc 79380	tctctccac gactcaagaa aaaaaaaaata gataggtta aatagctgata aagagagcga 79440
taataaacag agttgataga caatgctgaa ctttgggatattttagcgtt ggaagccaaa 79500
atatattgtgataactttttttttaaaccatctttttttaaattactggtaa aamggsgataa 79560
ataaacctttac cttttatttaa actaatggaa atagttgatct cttctctgtttt ctctttcttgat 79620
tctctcagttcataaaactggttaaatgtcatc tctatcgtgtaa 79680
ataataaatgactaagttcgtgataag gaaataagatg gctctcatgaa 79740	ttccccctgctggttctttaa tgggtgagtc cgtcagctt atgctgcaacac 79800
catgctgagc gacacagttt ccattttatat cttactagat gacagctgaa 79860
totgataacagagctgctgac gctgctctttccactc cgcacatctg cggagacaccagaagctcttg 79920
agctacctct gccagggcat ccctccacgc tggcctcttg gccacaggaag aaaaatctaa 79980
atcatactcta tttttataaa aaggtcgtata atattgata gccgcttccca gcgaatctaag 80040
aaaaagttc tcttcttttc tgaactagga ggaactactta tagtattttt atacaaggtta 80100
gaaagtgtac ctctgctttat actatttttc aattttcaact gcgcttgcgtat ctcgacactga 80160
cocacggcgc gccacccctc ccctccacgt tgaagttgta cttatgccga gggagagaggta 80220
aagttggagt aagttgagt ctgccagatc cagagagcat ttagcatttt ttattgaaggaa 80280
agtgtggctac tcagcagtaat cacattcaat aagatattg aatgtggact 80340
gctgtagctcg atctggacaa ctgcacgagaa gatggatccg kotacgcaagg gcgttagatca 80400
tgcagctgcg aagctggtatat cttgggtaa ggtttctgta aasatatcat gcggagatgt 80460
cgaattggga tgcagattct tattttgttt tctcttcca tagattgata agtttcaagag 80520
gaaatagag cttcaggtttt gccgaacaa ctgaggaaag gattttactt aagatattga 80580
ggctataagcg tgaattgaag aggtttaataa aagtttggaa cagctcagggt gcggagctgg 80640
tgcagctgcg gctacgagc aacatggaag caggggttct gcgaatcctgc gcgaatcggag 80700
gtctgagcttc gcaagagcctg ccagcaagcctgc ttcagccttg gggccacagtg ggtcaggtatc 80760
totcanaaana anaanaaanaa ggatgagagg ggttaggagg aacattaaagtt ataaagaccc 80820
gataagatan gatggagttgg gagagtgggga tgaagttgga gtatgaagag aatattttttg 80880
cgctgcagaa cgaatcagac gctgccccaa tcctaaaatttt ctgcagacat ctgagctagc 80940
cagtcagcc cgcaatcagc ctgacatgca aagcagtttaa tattttccatt tataaaacta 81000
aasatttct gcaacttttc ccataagttt tcaatgtgctg agtttataag gttaattttaaa 81060
tttaattcct gccagggcat ccctccacgc tggcctcttg gccacaggaag aaaaatctaa 81120
gaggttagac aagattttaaaa tttttagacata gcaacttcgat ataaggcag 81180
gcaatccc aacgctttcact ctacacacata gttttattaa ctagtatattat tataaaacta 81240
aotataagct aactttattat aacattttaa caagttgtaa ccacctttgag cttgttaaaac 81300
taataggaag aacattttaa ccctttagct gcttggaaaaa 81360
tttgcctcata atatatagc aagagagatt aagccagatt ttagattttt aagccaaagag 81420
tgcttagctgc tctattatgt gttcataatt gccttatata acagactagt 81480
caattttttt ttcaagattttt ttgctccaaact gggagagccaa aaggggttaa acagatggaag 81540
actctttaca gaaatctaac taatttaca gatattagct gcgtgataaa aagggttcca 81600
ttctcaagttt ctctccacgtt gccaaaaa aacataaagc attcctcgat gccgacaaaaa 81660
aattcattgc cggagagaat ggaagaaacag aaaaagggg agacagctga aatataaaag 81720
gcgaactcgg aacagtggcct gcggagggcg cgcttggtgtg attacatagcag 81780
agttcctctct cggactactctt ttaatctcag ggaactctgct ttagaactct cttttgaa 81840
attttcagct aacgacattc tggtagacac gctttccatc ttctccactt 81900
tattggaagaacagttgcctgc gctctgtcctgt cagatctatctt ctttttaagct 81960
tctaaagatct atacttgaatg ggttattttt cttttttcat gttctgg 82020
attttagcgt ttttttacttctcttacat aattgggac ccgacgaggt aagcagatcttcc 82080
ccagactttgc tcggacgagct ttttttcaattcc agttgagtct gttttttctact ttaacttctctc 82140
atctttcgag aatatttttttt ctacaagattttt ttagattttt ggttaaatcc 82200
Continued

tgycagggc tggtgcgcgcg tggcctgctgta gttacaccc tggggtcat gttaccctg 82260
atcaanatt aaatgtgtt ttttcacaac ganaacagctg aacaagctta gaaagtttct 82320
aatcatact gacaaatagc gcacgtaaa tgcgtagttc atgagtcgca gacaaatgct 82380
ttttagct gacactctc taagtcaggg tggagttgg ggagtagctg 82440
atgacacgc gttacccctc ggaaatgaggg agcaagcctg tggggtcatgta gttacactt 82500
ttcacatata ctttttaacc taccaccaagac gttttttgtt gaaatactttga aacaaagaa 82560
tgatatgtag taaatctaaac acgcaacagctg tgaacaatgtc tggggtcagct tggggtcagct 82620
catatgtctt ggagtgacgac gacacagcc aacgtagctt ctttttaacc taccaccaagac 82680
tttggtcata gacagtatag taaatctaaac acgcaacagctg tgaacaatgtc tggggtcagct 82740
tgagttaaaac gacaagtcatg taaatctaaac acgcaacagctg tgaacaatgtc tggggtcagct 82800
ttttagttct ctttttaacc taccaccaagac gttttttgtt gaaatactttga aacaaagaa 82860
tacagaccgc gtaacaccc aacgtagctt gttttttgtt gaaatactttga aacaaagaa 82920
gaaagttaggt ctttttaacc taccaccaagac gttttttgtt gaaatactttga aacaaagaa 82980
gtcagttgg cgtacgtagtt cccgtgacacagctg tggagttgg ggagtagctg 83040
tgacacacac gttttttgtt gaaatactttga aacaaagaa 83100
agcatagtcg aaccgcttgct tgtatcgatt ctttttaacc taccaccaagac gttttttgtt 83160
atctagtcg aaccgcttgct tgtatcgatt ctttttaacc taccaccaagac gttttttgtt 83220
tagttgtaa ggtatttgct ctttttaacc taccaccaagac gttttttgtt gaaatactttga 83280
agcaagctgt tttttttttt gttttttttt ctttttaacc taccaccaagac gttttttgtt 83340
tgagtaagtt ccttttaacc taccaccaagac gttttttgtt gaaatactttga aacaaagaa 83400
cattatcatt ctttttaacc taccaccaagac gttttttgtt gaaatactttga aacaaagaa 83460
acagtccgctg tttttttttt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 83520
acggtgcagt gttttttttt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 83580
tctcgttag gttttttttt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 83640
tgtgcttcat gttttttttt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 83700
tctctgaatt gttttttttt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 83760
cattatcatt ctttttaacc taccaccaagac gttttttgtt gaaatactttga aacaaagaa 83820
acagttaagtt ccttttaacc taccaccaagac gttttttgtt gaaatactttga aacaaagaa 83880
ttttagtag taggtgctt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 83940
gcaagggtt ctttttaacc taccaccaagac gttttttgtt gaaatactttga aacaaagaa 84000
acagttaagtt ccttttaacc taccaccaagac gttttttgtt gaaatactttga aacaaagaa 84060
cgtcagttc tttttttttt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 84120
tctcgttag gttttttttt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 84180
ttttagtag taggtgctt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 84240
ttttagtag taggtgctt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 84300
tctcgttag gttttttttt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 84360
ttttagtag taggtgctt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 84420
ttttagtag taggtgctt ctttttaacc taccaccaagac gttttttgtt gaaatactttga 84480
-continued

gtagagtgaagaagcaaaacctaaaggtactgaacacttgacagaattactgtcatctgatctgtaattcggagtctctctgcccttrttgattcatgtttttttttttaagcctttttttttattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ggagatggac aatgtgtgatg gctgcacaa acctgygaaatg tggtaaatgc cattaaccuu
aatggtctas aacagtctgac tttattgtaa tggataattta caaaccatta atttttttttt ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ttctaaaggtg gtgaccaggaga ttgaaaaatgt cttgaccttta aagtttctggatt ttctttcttttt 91380
ttttctcaca aaggtgaacc ctttagcccc gagaattctc agaggtatgtt cctgctcttatt 91440
tgtgtgccac gtagccttta aagatcgcctc atctgttctt tctccttcctttttc 91500
tggtccata tcatgccccca ttttattttttc ctacttcgac gccttattttttttccttct 91560
tgtgaaccttg tttcttttcc ccttttccctatttcttgtt attttgcttttttccttt 91620
cactgctttct ctcctgttttctcttttttcttctttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
aacctggaac agttgaaccc tgaatattggc catcacagtg acaagaacag aaggtgtatt 95940
gacgaggaac gcacccctgac gccggccagc tgaagaatgta caggcgagcc ggaggtgccg 96000
agagctcctt tgcacagtaat gtcgaagagc attgctcctgc ggtgcagggta tgaagaatgtg 96060
taaaagagagacagggaccag gtctcttcct ccctcactattt cttcagcagc tgcacagcag 96120	tattgtgct ctgggcctcctg agcccatatct ttcgaacccca cagatgaagtg tgaacctct 96180
gttattatc acctagactctt gaaaaacccg atcataatct cagttgaccc atcatttcttct 96240
aaatctcta ccctcatactg cctcagggggc tgagctcctt ttctgggaaag gtaaatttctca 96300
agaagggagg tttctatgct cctcagccca gcggagataa ccaactactc ccagtgaaagc 96360	tctagttata cttcgagggct cctccaaaacca caactctctag caaatctagtac gcacacagc 96420
gcctagcaaccttgagctc caaagggcgc gcctgtaacc ccctcagttt cttgcttttc 96480
cactcaacct aaaacacaggg gcattaaggtg aagcaactct cagatgacttt cttgcggtg 96540
cactcaacct tggatgtttgc caggaagagca cttgttcagcct gctacgtttc 96600
tgtctgcgt ttctgtgacct tgaagagggg gttattattct ccatttactt cacgtctcttc 96660
attcttaaan tttcttatagtt ggggagaaaa ttccttgctg gtaaagtccg cagctacacct 96720
ggcggcagc aagagacctg gctgaagcttg cttcagcaagc gcattctggc gtcgggaaaa 96780
gacagtggaa cccatctaac cagatgacct ccaggggact gcggcgcaca acacgtgagg 96840
gtcggcgtcct tgtctggtccc agggctgcca ctaatctctc gccttcgaaca aataatttc 96900
taataagctga ccaggtttcct gcgaagccac cctgctggag aagagagtggc agtggggattt 96960
gtctccccagc agactctttttt atctctaggg ggacagcagg aacccaccac ataaaaaggtc 97020
ttgccacact gtcggcctct ctcgccactt ctatcactca ggcagagctg gctctctctg 97080
cocccaccggc gttcaagcg ccgagaactca ctgcgctgga cnaaggtggcc 97140
tgagagacct gcgcggcata aacgttctcttttta cccactctc ttaaatcctc atcctctcttg 97200
gacttactct aagagctcctg tgtgaacaca aacctcaagtt ttcctgagct tttcttcaaa 97260
taaatctgc acaacaacaac aacggttttata tcccttggag gccttgtaag cagcatcttgg 97320
ccttgaacac gggctaaagg tgaacctcttc cttgatgactc tttggagtct ttttttataa 97380
cctttattttc aatattaagc tttttttttt cttttttctt tgtgcggact ggggtctagt 97440
tggctcctgct aaagaaaaaa aaaaattgct aagttcggttt ttcctgagg gggtgaatttg 97500
cttccccagc cttagttacta gaaataggag ttttttccttt aatgctatat tattattatt 97560	tttagatgtt ggtgtgctct cttccaccca gggctgggagt cagtgcacagc atttttgctc 97620
acgcaacacct cgcggcctgac ggttcagccg ctcagctgctc ccagtaagttt 97680
gattacacca tggtcagacc caacaactgtg tcattgctgag cagcaggttt 97740
tococaagct ggcacggcgct gtcctgacaact cgttggcaca ctgtgacatcc cggccacagc 97800
cctccccagat agctgcaaatg ggagagcttc gcacgcgctg gggctgtcatt atcattttttt 97860
gtcagcttgct ccaagatgagc ggtgtggtgct ttttatttttt gcctggctcg 97920
tgttcctgtc aagttgtttttt ggtcagctgct cagcttggctg tggatttattt 97980
agocctgtag aagtcggatg tgaagagtttgaaa aagagagttgct cagctttgct ttttttttgtttg 98040
tagatgctct ggtctttatttt ggtggcttaca agtaattttt tttgcatgtg 98100	tttcagttct tggagttacat gtcctgctag ttcgctattg aatcactagtt 98160
ttgcttttgag ccgtatgccc cttttatga tatattcttt tctatattct gagctaggga 98220
tgctttttct attgtgttgt gctaccccttg attatttggac gacggtttt gtagtttttc 98230
ttgtagaag tttccaccttc cgggttacgt gtctttctag tttttttttt ttttttgg 98340
catttggag cgctggtgtc taccaatgtt gctgttttgg gcattactttt tttggtgat 98400
ggaagcttac gtttttttttt ctttttagttt ttggtccctt gaaagtctgc gacttcttt 98460
atcagctgaa gcagcttttt gcggctactc atgggggttct ctaacataag acagctgtca 98520
totgcaataa gggatagttt gacactctct ctttcatattt ggtatgtgta catttttttc 98580
tttggcgtttg tttgcctgac caggactcttc aatctctgct gaaatagggc tttttgctgg 98640
gggtccac gttcttggct cttgagccctt ctttgcacacca cttttatatca ctaaactcag 98700
attgatattaa gctttcctctt aaagcgccaa acctgctgag acacctgcgg atttctgag 98760
taaactcctc cttgatcagtt ttttgggaac cttttttttt ctaatgactga ctaaaacaaat 98820
tggcaacaa aacagatttg cagagttgagc aacacttctct gaaatagcg acaacactgcct 98880
aataactaat cctttttcatt gcttacagcg ttttttgcac ccagagccac ctttttttttt 98940
ctattgtctg ctcctaatcagt cttctataag gaaatttgaatt tttaatatat gataaatc aaaacaaact cttttttcatt gcttacagcg ttttttgcac ccagagccac ctttttttttt 99000
aacacattt cttttttcatt gcttacagcg ttttttgcac ccagagccac ctttttttttt 99060	 tacagtcgga caacatagcg atgattatata cttttttcatt gcttacagcg ttttttgcac ccagagccac ctttttttttt 99120	 aaaaacaaat cttttttcatt gcttacagcg ttttttgcac ccagagccac ctttttttttt 99180
atattatattttt ggtattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
atataccag ccacaggttaa atataccag tcgggggtttt ccatactcota ccaatactcota 100500
cactttcoco ggtctggcoco cactcaagcc ctctgggctgc agtgataggg aggtttggag 100560
tttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttt ctaatagccaca ctattagattct 100620
taxtctctca ccagaagctca ggtggtggtgg gtctgggtcgg gcattgtgtgg ctctttggtg 100690
gggtgtgttc ccaatgttgttc ggtggtgtgg ccaatgttgttc ggtggtgtgg ctctttggtg 100740
ggtggtgttc ccaatgttgttc ggtggtgtgg ccaatgttgttc ggtggtgtgg ctctttggtg 101010
ggtggtgttc ccaatgttgttc ggtggtgtgg ccaatgttgttc ggtggtgtgg ctctttggtg 101160
tttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 101220
ggggggggg ggggggggg ggggggggg ggggggggg ggggggggg ggggggggg 101340
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101400
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101460
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101520
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101580
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101640
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101700
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101760
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101820
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101880
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 101940
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102000
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102060
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102120
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102180
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102240
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102300
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102360
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102420
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102480
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102540
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102600
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102660
catggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc ctggtggtc 102720
gtcgaacat catcaagtgc acctatgccc accctacttg tttataccac ctaatacota 102780
ggttggata gttacgccgt ttgctctag gttataaaac ttgctagtct gtctactgctc 102840
tttataaggg ggcctactgta aataaatggt atattttgt atataataac acacatccac 102900
attgacaaaa cctagctgaaaa atatgctata agatgaaaaa atatgcctcacc ctcctacaggg 102960
caccttggac aatggacctt gcaggacctgg atgtgctctct gggagagctca gcaaatggctt 103020
gatgtgattg tagggagcct cttgcacatta tttatagota ctgtaaacatt tataataacact 103080
gtggacactg gataacactaa atttatatta aatatttttt ttttctcaca ataataatag 103140
acacctttgt tatttttttttc ttttttatct tttttttttttt tttagatata 103200
gggttgcggct ttagtttgac ggtttggagt cgattgaca cttcataaatg atacacact 103260
tgcacactg gatgtaaccg aatactccac ctcctctccct ctttattagct gctactgagga 103320
gctgcacactg ttgccctgactc atttatatttta attttataga gcaactgggt tctgtctatg 103380
tgcgtagtgg ctgtttagaca aagactattc ttcgctactc ctttgcctcct 103440
gtgggattatt tagttgttatt caatccactg cttgcttataa ttcattttttttt atttcatct 103500
tatgcttttt attataacact tttgatttga aacaaacaaa aaagctactg tgcataaaaa 103560
ttgatttttt tttttatattt ctttttataa attttggatttttt ttataataacttgg 103620	tttagtattctgttaggggct ataaaactacac tattttttt ctttatttttt attttttttatttgg 103680
gcatacatg gttggtttgccgagtact gttattcatc caataatacc aattggattgt 103740
acaataaaataa aaaaaaaa gatgggggat gatgggtttgccgagtacgt gatgcttc 103800
taggagtga gcgggtggaat tggactatc ggcgggtagatttgattta gttatttttttgtag 103860
ttctcctctg gctgggaca gactggactg atactctattcctgctcact ttttttttttttt 103920
aatgttctga atccctttataa aataactaaac ttcaccaaca aactctgacttacctta tgcattctc 103980
tactggctcg gatataataatg gtcctccttc gatctgcctcg catgttttaatg 104040
ttcctcggtt gacatgcttct tggcttcaca atatggcgacg 104100
ggccactgc gcagttggct tcgctgtgct gcagttggattg 104160
tatctgaaaagtactgactg atataataataa gtaataactatttattatagttgggcttatta 104220
agtgcattctat cttatatttt tctagtattctg tataattg atatgttct 104280	tttttatataa cttgcgcctcg atacggtttgct attttactca ctactacttag ctactactcct 104340
atgtgtgtgtgctaatctgattggggactggagcatgcttttgctcgatagctgttcttgagtcgat 104400
ttcctcttattgtatattg gtaactttgtttgctttaagctggcaagatctggttttttctggctgggctt 104460
gatgtttttt gctgttgtgattg gttactttgtt tatttttttttttaaattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
---continued

tgcaattgt gaaacaccgtc atagatgttc atgtaacagc ctacaggtatt tattatgat 107340
ttggttctt gctattaaa aagtaatggt ttggcatta gttttataa 107400
caaaaacc acattttgc gcaacacc caaaccttaa ctgctctgctg aggctcaga 107460
agagagactca taagtaaagc caacttagaag ggttgattaa tatattttct ctttttaaaa 107520
cctgggtgc tcaagactgt ctcgaagggaa actgtaacagc acaggtctgtc atcgcacc 107580
acagtattg ttggatcaca aaaaacatttt tcctccacact atcagctcgg ccagacgc 107640
gagagagcagc atgctcctgg gcaaacacc gcctccctaa ccctacgctt ggttgatcco 107700
actacaccgc ttcagaggtc atacacacgt ctcttctagct cttgagcaga gctttcggaa 107760
ggagagctag ctgtagactc atagaggtctt atctagccg cattcttca 107820
gcaaggtgaa ggcagatgcaga ctggctttccc acgctttcgc ctaggtgtag 107880
attacccaa aagttacagc ggtctcctag gacaggttgc gcaggttgttca taaacacata 107940
gttaagggagc aacggtgcatt gatttcggaa cagttctgg ttaagctga gctttttttt 108000
cacagatatg ctgtaactgc acattgtagc caaggttagt atagggtctg cacgctctga 108060
tgctcaatatg gagaagctc aaccagcagc ccagacgggg ttaagactgct catttttcct 108120
gaaaacatg ccctgaagta ttagtgccgc aagttacctt ctctttcttt tttttttttt 108180
gactacacaag cctctcttttt tctttctct tttttagttcac ttttatttt 108240
agagagcttg tttgactatt gtaacatcac cttctcttcct ccctctctttg gcctcact 108300
gctctctctg ttcattttttc attcactttgg ttttttttttt tttttttttttaaa 108360
cctctttagc cttactgctt actcactgct ttcctcctttttt ctctctctcttctctct 108420
cctctctctt cccttctctctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
agtccaaatt atacagatag aagcattgaga ccttaatgaa cttcttctcgc attagtaatga 109620
aatggaaagtt atagatactct cccttcatac ttcnaaanac aastatttgtc ctctgacaaca 109690
gttggtcnnag ttgggccatac ttgagcttcg caagtctgcc catttctatta taagtcagtc 109740
gggacatagtga aggcaagctt gttgagatttt cccagattttt aggcatattttt gagaccttta 109800
gaanactctttttaa taaaagatgct ttaatttttta atlactgtagc caagcaagcc 109860
cncaactaan agtcgagact cctctctcctact caccagagacct tccaacgtccag 109920
gaacggacta cttcaggtttg ggacccactg aatctttatatg ttcctctagcttc tgcatt 109980
ctcagcaag actcagcggt tggcagcgg ccaccttcttc ttaaatgctg cattgagagtt 110040
ttgcgaacc ccaaccttaa aaagacactc atcttaacttg gtctttctgct gaagacactg 110100
tgagttggtc tagaattatc gacagtctgc cccacattttg ttcocagcct tgggatcataa 110160
ttctagtatt tatagatattc ttcttctgaga gacagttgtagc ttaacagtaa 110220
gatgagttct gcaagaggttt ccaacgccttaa ttttccaaagttt tttgggccac 110280
taacactaan ttcgagggcg cttggtgtcata ttggtgctcttc ttccagagctc 110340
tttgttgtcct ttttggtatta taagagccgct cttggagca gcaagagacatg ttataa 110400
ccaaactgat gtaagctagt ataagccccgt tttttagggg gacacagcag ctatacggag 110460
taacactaan cagagaaatc cggggctctgt cacagct tgttctcctc gtcaccatcctc 110520
tgaggagattg tggagcccttc tggagcctttt ccggattcag ggaagattttt cagctgtgct 110580
aattttctg cacagattttt tacagacaa gacagagagg cggattcggag gccactaaaaa 110640
aattttctg atcagagggg ccagagaccgcc gttggtggag tggagctgctc tqaataactg 110700
agagagagattg taaagtcctgttgccagttt gatctagctttt gcacctgtttt cagtttc 110760
agttagctact tgggagccag tgtaataaaa ttttctatgc gattcacttcg gtaagcataa 110820
attctattt aagttatattc gaaagactcgt gcgggtgtgc atttttcttctattctcctttc 110880
ttcttgagc tagaattttatt gtaaatgct gaaagactcgt gcgggtgtgc atttttcttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttcttttctt

---continued---
aaccaagaa aagggagatt taaggtagaa gaaagaanaa gcttgagatt cttggattat 114180
taaatttct cttgtgctaa gcatagttta cagtcggagg agatggaacta ggaaggtcg 114240
ttatggycag aagaggaacg ctgactcatc gggygaagtct atgattgtgg tttaaagaca 114300
gctggctca ttcgaagcg gatctccagact cgtaaaanaa aatcacaagaa agtaanacgc 114360
ggtcagaggt ttagaatgaa gtcoggggagg aaggggacga ggtgctctta ggggggccctt 114420
agcgaactga agtagtaaa gttcnnncg gatggccgaa agnnctactgc cnaagcagaa 114480
ttgataaac ggaacctgct gttgtgttgact gttggagggc cnggngaattt 114540
cagcgcctcga aagacacagc gaaattttaaa tctggggttg gcggagacaa ggtgactgcttg 114600
gccacacac gggygttggag aagacacacact catggttggag atggtgtact catattcagaa 114660
cagcgcctcga atggccagca aagcgcttgaga aagggggcgg gtcggacaca ttcnaaggggag 114720
qacgcacat gatccctacc ctcttcncac ttcggagacag aclggctccc gcggaaacgc 114780
ttggttcaca gacggaggag gttggagggc cagcagcgac aagctgaggt ccyagtgaag 114840
tttttgcacac cgggacggag gaaagtggcg gctggtacag tatacttccc ccaoactgcac 114900
cacaaanggg cagcagaaag ctcaccaaca tgggttggga aagaagtgtc ggggaggnaga 114960
tgattggaan aagcttcctt actgacactt tttggcnaac tttttgtagta aacgctcgaa 115020
cactaanaa ctaacagcag acctaatnnc acctatattc acctagtctca aatagcaca 115080
attgatcag aacccttcact cttctctcctct tttcncctttgt cctcttcccc cccctactgc 115140
ataccacctgg gttttctcga gacaggtggct ggcotaggtc tcgcctacag 115200
agggcaccat gtcaccaaca aagggacacg gttcncctct ttcnataaattctatcaca 115260
qatattat tcatattgta ctgtgaggag aagcttctcgct ctcaccaacata ctcacattact 115320
gggggccttc ccaaagaaca aacatattat ttcaggtga gctacactacat cttttttactg 115380
gttttttattt ctcctttttt aagagctca aaggggacact ctaataatcct cgggactcgcg 115440
atttgttcac gggggcagag acggcgcaact cttggcttggttg aggctactgt ctttttataat 115500
ccagaggtgc gaaagactgc ggcaaacct aacgactgctg ggtcggggcg 115560
ctgggggcgg gcgggcttgac gcgactgc ttcgtggagt ctttttactg ggccagagga 115620
atagtagga actggctcgc ggggggctggg ctgagccagcg acacgggggag actgggacacc 115680
tgcgtcccc ttcacagcgc gcgggctggag cggcactcgc cgtgggactgc gggggctcgg 115740
ctcatcttt tatttttcct tattattcat ctctttattc ttaaccttttt ctcactacttc 115800
ccagagacg ctcacagcgc ttatttctat ttaacttttt ctcactacttc 115860
gggggaggtt ctctttctat ttcctattct cttttattc ttccttttttt ctccttttttt 115920
ttcgccccctt ggcggtgcgg ccgggcttttgc ctggttcgctt cggggtcggg 115980
ggcgtgggtg actgggtcgg ctggtgggtg actgggtcgctt cttggtacgctt cggggtcggg 116040
ccacagccgtt actgggtcgg ctggtgggtg actgggtcgtt cttggtacgctt cggggtcggg 116100
atctattttt actgtggagg ctacagctgcc aacgacctcct tttttttcct tttggcggg 116160
tgcgtccccctt ttttctctcg ttccttttttg ctggtgcgg ggtcgggctt cggggtcggg 116220
ctctttttttt ttcctttttttt ctcctttttttt ctcctttttttt ctcctttttttt ctcctttttttt 116340
qatattat tcatattgta ctgtgaggag aagcttctcgct ctcaccaacata ctcacattact 116400
cattacatga tattcaaaa cttcttagag aataaaaaaa gagaacacga actaataaat 121020
taaaaaaa aacttccaaas atgggcatct gtgtgggaaa tcagttttag tagtttattttt 121080
cotggttttt attccccgaa tatcctttttcc ttttgttttta gattttttgc tgtattttat 121140
cagaasgaa agagagatac tattcagtttt cttctatgag acagatatta tttagatatc 121200
tccctctctctt agttttttctct tttaaatgac tctgggctata aaggaagga aggctggggc 121260
ttttttagaa aacttaataaatttttacattatgt gttctccaaa gtttgctggc tgaagacagt 121320
gttttcaac tgtggctaat gacccagaggg gtcgggaacct acgttttaatg agtctagaaat 121380
atctttttaa aagcaacaaaa tggagagga tataatagan attatcag agctatggttat 121440
tgcttggagt taaaatttgtg ttctctgaaa tttggtttaa ttagtttgc tctgggtggc 121500
tgatatgtag ttaaaaatgc tttctctagt ggattgaaat tctaaagagaa attgggaaaag 121560
tataatgcat aaaatattat agcttgctata gaccaaaaaa aacctccgga aagtgcgggttt 121620
tgtggtttacc tatacaaatc aaaaaagcttt ttgagttgtc tcctttttccc cttctaaaat 121680
tagagttggg ctctttactc aaaaggacaa gttttttttct tttttttctt ctttttttatat 121740
tgtgagatgg tgtggtgcttc ttgactgctgc cccgcagagg gttcaggaaa 121800
ttttgctag ggtcagctgtg tttctctattt gtaggtgttggt ttttctttttt ctattttttttt 121860
catatagct cagcagacaa cttggtggtt gaaagttgta atgattatttt tctctgtgaaag 121920
cataataag tgggagatct gtcctagctc cccgcagata ttttttttatt aaaaaatatgt 121980
actatcagtc ggctaatagtc ccggagatc gtaaaaatg aacagacagtgg aacaaagggg 122040
gcttacatc atcttggttt cttctttttaaattt attcttacctt aacgtgaaatg 122100
actaaagatg acggtaacat ataaaaact cttcttttaag gttttttttttt aaaaatattttttt 122160
yttctgcagtc tttatcagtc aagttctttt acgttttttttc agaggtttttt gctctctact 122220
ttttccaaa aacaggtgaaac ttttttccaa gttctcccata accctcaattttt cttctctttt 122280
ttctttctcttccttcttttcttactttaa gttttctttttt gttttttttttt aaccctttttttt 122340
ttcttctcttccttcttttcttactttaa gttttctttttt gttttttttttt aaccctttttttt 122400
aacgcttccg ttagtttttcctttttctttttacttttat gttgtactgag tttttttttttttt 122460
tttttttttcttacttaa gttgagtttc tttactttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
aaccotgatt atgtgtaaac aattttcac ataggaaat atgatattta attatatattt 123300
totaatcct gtaataaac atgtcttttt gactttctgt gacttttta 123360
atatatttas cgaaatcctg atatattttc gagaaagaga actgttcttc agttttgttc 123420
atctcctcag aacaaaaaat ccagctttg caatatgtaa acactttttg 123480
cctaggttcg ttaatcttaag aaaaagaagta agaggtgtta ccctctttta gaacatactg 123540
cataaagc aacagagggct totaattaco cnccaaattac agcacttgtag aacccggcnaa 123600
agcggagcg ttagaggtct cagaaaaaggg cagagagtca caaagtttatt tcagggtttct 123660
tatatatttgc aaccgcgcgct caatcatc actatctac cacatcataa ctcacatgac 123720
agtctggtaa tttttttttt ccatttattt cttcattctt ataaggctgtt taagctcacta 123780
agatataattgc ggctggaggt tctgttgcgca gcgcctttagct atatatccat attccttcttt 123840
gggcgaagat ataatccctt gatctttcgt cttgtgttttt cttcattgagtt gctcctgag 123900
agtatttggt gtaactaca agttttcact atttttcagat ctttttttaaa atatatatttgc 123960
atatttagc gggtagctaag gaaaccttcag cttttttttt gcccatttccatt tagtttctttt 124020
taatagattc atatatttacc gacaagctgg gcaaatagatc cttctttacaa 124080
cocccctgta agatgtgtgg tctgtgttata gatcaaatg ctttctttttcagctgatgtg 124140
tttttactt gttttgctgt cagttttgcgt atggttgtatt cttctttttcctcatagttc 124200
tctggagcata ccccttcctt tctttatctt cttttatcatt ttttattctgat 124260
taaaactattag cttttttttt ttatattag ataaatcacta atatattttcctttaaa 124320
tatattttt cctttttact tttttttattttt ggcttttttta ctttttttt 124380
agcactggta cttttttttttt ccattttatat tggctgttttcc cttttttttttt 124440
tatattctat ctttaaatcgc tgtatatcag tattttttatttttgugctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ttttccccagc agttcattgca acacaggtgc acctagcgac tgggaagtct tatagataag 125580
atagtgaga ttcatcttac agaatctctc gaatgtgtaa aactaagctgt tagctctgagc 125640
tgtgtcttcg cgaattacct gtttccaga gttttggtac catagtaagc ttagcacaag 125700
aattttgta caggttacctt cctcatctatt ccaacaagc acaacaacctt aattttgagac 125760
atccgtaagc ttcattagta atccattaac ccccaacaag ggtaatcttc cagttgattt 125920
tgggcyagc ggtaaaccgct ttcgaangaag cacagtgagct gacattttga 125980
atcatttctg gtgaccttgga ctctggttcttt ttgaagac agttaacaga gttttataaa 125940
ttctctctgtg aatatttccga cgaatcttca gtaaaggtg ataatattcctt attttggtat 126000
gagataaatt ttagtttcatgt tgggaagtcatt ttttttcttt tttcaagggga aaaaatgttag 126060
gggttttgtag cccctttttgttta catttaataa gggaggatccc ctagagactgtg tccaaacagc 126120
aataccttc tttttcttgtg ctgtttttcc tcacactttct tggaggaagttc ttaggaagct 126180
gaaacccgg aggcccctgtt ggtttgacgag atgatggagt ggcggagggag acataccgag 126240
acatgggtgcttcc gtttctgtgga ggaagccat cttgaggaagttc ttagctcattt 126300
gocaccgagc gaaagttgca atgcttcttt ccatcttttc tccagacaac aaggagaaaa 126360
aggttctcgc ccagcagctgc acacagctgc ggcctcttctt aagcaccattt atgtatattg 126420
cnaatctctg ctccatctctcc ccttccactaca gacgagctttc ttaggtcttt 126480
tcagctctg ccagcaggtcc tctgaagagc aaaaatatttg aatgtaattg ctagatactt 126540
cocoagctgg agctgaagaac gctagctct cctgtagaag ctagaaccat aaacagtttt 126600
ccttctctgt cttctttcttct tgtgtgttaa gttttttcatt ctatcctctg ttttggtt 126660
tgtgttttt ctatcctccc tttgtctctc tttgcgctacc cttacccctg gtaaatacagc 126720
aggtgcttcag gctttctattgc aagaaacgct ccagctgttcag tggctgatatg cttctttttg 126780
aatacagctg tgccttcttggt aagatctcagc cagaggcacg ttagatattttt aaaaaaagatc 126840
ttttttgaca gaaaaaccca taaaacagc aggattgatgt cccattatatg cagtcggtctdc 126900
tgcaccaagc cctcctctgg gctcctttctt ctccctctctt ctcctcattctctctcttttc 126960
ctatacctgt ctggaggtgct acattatatg aacgagcactc atctgatactg ctagacattg 127020
tctctatttt gcagcgcttgc agctgggtgg gcagctgtttc cctgagttttc ctaagggcgtc 127080
gctggctgc gggacyttgct ccagctcttg gtaaagctggct gctgttagctc 127140
tactctgaa aagaagactg ctgtgtgact gttgagcgtc aaaaattttg atagctctctctttgt 127200
aggggttatctctctgg cctaaactcga gctcattctttt atattttactgc tctggaagct 127260
gaatggct ctacccacctg agaagaggtc tgggagctttc tttctctgatt tttggaagttc 127320
cctctatttt cctctctggtg ctaaacagtgc aacagctagt ggttgaagttc 127380
gttacaccc tgcaccaagc aggagctgtc aagtagcatt tacgctgtcttt gtttttagct 127440
tggttctgatcg ctaacatcaag ccccagctgg gggaaagctg gggaaagctg 127500
ttggtgtcgtagtctgc gtccttgagc ggaacttcggt cggggaggttc cttagtt 127560
tggtgtagctg acctgctgagtc ccaccaagagccagcggatggcc tcataaaaaa 127620
aacaacagc aaccaagctg caccacaagc taaatcagct taaatcagcttca 127680
tggaggtcct gttgtaagc aacccagcag gagaacactg ttgggagttc 127740
gttgctgctg ctctttcttt cggctgctgctg tttctctgttct gtttttttgg 127800
gacatggac tcgtactgtg tggggtctg ttaggaactg ggccgcaacg cagggagtga 130140
ggctgggc gtcgaagtct gattcatttg tatttacag gtcgccocct cggcgctact 130200
tgcgtgggc tggctgtcct ggctgtgag cgggtgggggt cgggtgggggt ctggtggggct 130220
tacatgttg cattttggag ggttggggagt ggttggggagt ctggtggggagt ctggtggggct 130320
gtagatcttg cattttggag ggttggggagt ggttggggagt ctggtggggagt ctggtggggct 130440
acagatattg cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 130540
acacatcct ccctgcattc tgggtgag cggggctggggcc gcgaggacagt gcggctgccgcg 130640
tggggtgag cggggctggggcc gcgaggacagt gcggctgccgcg 130740
yggggtgag cggggctggggcc gcgaggacagt gcggctgccgcg 130840
acagatattg cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 130940
tgtgatcag cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 131040
tgggtgag cggggctggggcc gcgaggacagt gcggctgccgcg 131140
tgggtgag cggggctggggcc gcgaggacagt gcggctgccgcg 131240
acagatattg cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 131340
tgtgatcag cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 131440
tgggtgag cggggctggggcc gcgaggacagt gcggctgccgcg 131540
acagatattg cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 131640
tgtgatcag cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 131740
tgggtgag cggggctggggcc gcgaggacagt gcggctgccgcg 131840
acagatattg cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 131940
tgtgatcag cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 132040
tgggtgag cggggctggggcc gcgaggacagt gcggctgccgcg 132140
acagatattg cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 132240
tgtgatcag cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 132340
tgggtgag cggggctggggcc gcgaggacagt gcggctgccgcg 132440
acagatattg cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 132540
tgtgatcag cttcttttag cttcttttag cttcttttag cttcttttag cttcttttag 132640
-continued

```
atatatgct caataccccc aatgtgaaaa tggactttgc attatattct tatagatatt 132420
ctactttag attggcagaa ttaaanat aatgtgatct gtgtgtgac ttagcagcac 132480
gttaaattag aactttttag ttaacctgtc caacctgtga aaatcacttg tttctttctg 132540
gactaagag taacccogat cttggttata tctgtttcac tataanat tccccctgta 132600
gttaatatt gttccagagaa atgaatagaa gtaatagcag tggatggacc 132660
atatgggca agataaacta atgtccccgt tcaacctgtt gaaanagcco atggctgttg 132720
gtgttaacatt tatactacccc aacagcttt gccaaactt attctacgca gataatat 132780
tataactagaa gatatttata ctaaacaaa atatacctt tttttttttt gtttttttt 132840
aatgtattc agaagctttg agaatttgcgt gtttcaaatct ttaaatagag 132900
aatcttacta ttcaacactgc tggaaagcag taattcaggt attttgatatc tttgtatac 132960
aatatttatt gatatttata cagttcgacg caaacaatct tggagtatggt gaaagttgta 133020
tggaccttc gcgattggcc ttccacatct tttttttttt gtttaaanat tggagagccaa 133080
aatgtgattt ctttccacct tgaanatcct cttcagcactc ttgacacac caa 133140
ctgagacct gcnaacaaag ctaatcctccc tcgggtgatct ctgagagctt tggctgoaca 133200
tcggctcct cttggttcctt cttggagacag gtagctaca aaccaagggac attagctcaaa 133260
ttttctttctt tttttctttt cttggagagag atattcctaa ttaaatcttt taaatctttcc 133320
tttaatacttt taaatcttttt cttggagagag atattcctaa ttaaatctttt taaatcttttt 133380
tcgaattggt ggttggagttt cttggagagag atattcctaa ttaaatcttttt taaatcttttt 133440
taaatctttt taaatcttttt cttggagagag atattcctaa ttaaatcttttt taaatcttttt 133500
tttttttttt tttttttttt tttttttttt ttttttttttt ttttttttttt ttttttttttt 133560
aatgtgattt ctttccacct tgaanatcct cttcagcactc ttgacacac caa 133620
aatgtgattt ctttccacct tgaanatcct cttcagcactc ttgacacac caa 133680
tcggctcct cttggttcctt cttggagacag gtagctaca aaccaagggac attagctcaaa 133740
atgccttatt cttggttcctt cttggagacag gtagctaca aaccaagggac attagctcaaa 133800
atatcacta ctaatttttt tggagagccaa cggcacaagt tgtggggttt atcctttttc 133860
tttattctgg tatttttttt tggagagccaa cggcacaagt tgtggggttt atcctttttc 133920
tataactagaa gatatttata cagttcgacg caaacaatct tggagtatggt gaaagttgta 133980
tttattctgg tatttttttt tggagagccaa cggcacaagt tgtggggttt atcctttttc 134040
tataactagaa gatatttata cagttcgacg caaacaatct tggagtatggt gaaagttgta 134100
tataactagaa gatatttata cagttcgacg caaacaatct tggagtatggt gaaagttgta 134160
atatattccttatattccttatataataatctgtaataatagtcagattg 134220
atatattccttatattccttatataataatctgtaataatagtcagattg 134280
atattttccc actattagcg ctaacagtgc agggttgtagg atagtttttag 134340
atatatttccc actattagcg ctaacagtgc agggttgtagg atagtttttag 134400
atatatttccc actattagcg ctaacagtgc agggttgtagg atagtttttag 134460
atatatttccc actattagcg ctaacagtgc agggttgtagg atagtttttag 134520
atatatttccc actattagcg ctaacagtgc agggttgtagg atagtttttag 134580
atatatttccc actattagcg ctaacagtgc agggttgtagg atagtttttag 134640
```
caggaatgag atttctgacg tcaatacaca aaatttataa taecacatct aagggoaata 136980
aagatataa gttgattttc ttcttttcca ggccaaactct tataaggaca taagagcga a 137040
tggatctaag ccctgggaaat ttgagcttat attcagagat tttaaggttcg ttcttacattc 137100
gtgaatctaga aaacacacac agaaggattg gttgaaaaat gagagagagc tcttcacagt 137160
cagagcctag aatgctctag cctgctgctgc gaggctcggg ctagagttgtt ctgaaaaaga 137220
aaggggagac ttcocatgcct gatacctgtg ctcctagcttc ctaaaaactc tggattatct 137280
actctggtta cttctcaggg accacatggg aatctggttt ttcctcctag taagcagtaa 137340
tggaatcaag ttggcagagc tgttttcagc ttggactgtg ggctttgcct cgtttgcttt 137400
aactactctg tgtgattttc taaaaactacc agcaaaacttc agggggttgg ggacccacgt 137460
tgtctactat ttcatacatag cctatattcag tgcacatotca cctatgaagc ggtatatgta 137520
taagccagag gatataatcata gtaaatagctg tctatagggg caaatggaca 137580
aaggggagaa aacatctgatc cagccggact aatataaagca aagttctgtag aagggagggg 137640
aagggagac ttcocatgcct gatacctgtg ctcctcagctc ctaaaaactc tggattatct 137700
agcgctgtg cggagcaccct ctggctcttt gagagcagcang agaaggcagc gttgacacag 137760
tggaatcaag ttggcagagc tgttttcagc ttggactgtg ggctttgcct cgtttgcttt 137820
agagcaccct ctttttaaaactataagc caatggagca cccagctggtt ccaatgggtg 137880
agagcaccct ctttttaaaactataagc caatggagca cccagctggtt ccaatgggtg 137940
tatgcatac gcccatggag cggagcaccct ttcctgtagg ggtgagagag cggagcaccct 138000
agagcaccct ctttttaaaactataagc caatggagca cccagctggtt ccaatgggtg 138060
cagagcagag gatataatcata gtaaatagctg tctatagggg caaatggaca 138120
gnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138180
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138240
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138300
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138360
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138420
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138480
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138540
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138600
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138660
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138720
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138780
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138840
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138900
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 138960
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 139020
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 139080
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 139140
nnnnnnnn nnmnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 139200
-continued

ttaatgttct ttgtgcataaa agaatcttca aacttgatata tatagccatt aagtctgctt 139260
catttttcat ttgtagatta aactaggtat tattgtta atatatattta ggaacaatcc 139320
aacttttcat caagacttta tottatagta cttcgagtt cattaactct tttttttttg 139380
aactacagc agtgtttcata gccggaactt taatattata taatttttccc cctcaagaa 139440
gattaactg ccattaataa aactttgtga gacaaatttttt tttttttttttttttt 139500
cttgagacag ctttctcttc tgcacaacctg gttgggagtc aatggcaaaac tccaagcota 139560
ctgcaagctt gaaatgctgg gctccaagaa ttttcccctt actcatctct gatagtagtag 139620
aatataggt gcaaccagca actgctata attttagaat gtaaatctgg tggggtcttg 139680
ctatgtggtc cagggggcat ttaaatccttt gggccgagac attctcctca cagagccttt 139740
cagagcagct gaaatcttcg gttgtgagct ggctgccgac caaattcgcc ggtattttota 139800
atggatta ccaattttt gttataagct gagaatcgat aataaatcttt gtttttcacaga 139860
tgggataac attttttgct ggttttttgg gcttgagc gctacaacag acatcttgag 139920
ttttgggatt ccacacctcc tggggtgggt ctgcttctcg ccctttttttc 139980
aatcaaac ttgatgtggt ggaattcatttc cttgatgcttc tggattatatttt 140040
tactcaacac cttggtgatt agtagactcgt tttaatgattt taaaagttact 140100
aatcacta taacactttaa aactgattcg gcaaccacaa caaataaatc gtaaatcttg 140160
gcatacggc ttgcgtgggcc cccttttctt taaaataacg aagtagcggc 140220
agaagcttta gttggtcagc aactctttcttg acacagcga atacatctc 140280
cctactgct catttttggg cttttttgaa ctctacatct ttcattgcat 140340
gaaattttg ttaatggatt ttagggtgta gaattcattgc cttggttata taacttttaa 140400
gacccaccc tttacaaaat aattaataat atattgtata cttgatataa taattattga 140460
tattatat aagtttttcct cttttctcata atattagagtt aagttattttttta 140520
gggagagct cttttttgct ggaacaattacct tttaataaatc gcgtcaaaaag cagactag 140580
taccactagct ttaggggattt ccacacctcttt cccagagatt ctgcttttct 140640
aaaaagagg atatttttt ctttctcttt acctctcata atattttttgt gttttttttt 140700
ctattttttt ttaaataatatat tttttgtataa attttttgtt ctaaanattt 140760
acataaaaa tttgctttcag aattaacctctt cccagagattt tttattagggt ccaacagca 140820
aactgatccac aacttttgtt catctattg aactttttaa cttgtggagct gacacacctg 140880
acacactttg aataataggt gatggttcoc ccacacaaaca atatatatttag ttttcttctt 140940
atattctgac ctttttttctt tgcagacca gacacoctc cttgttctttc ggaacatatt 141000
tttttttttt ctttttttttt cttttttttttt cttttttttttt 141060
aagagctttag cctggtttctt ctatttggatt ctggtttctttt ggattttttata aactattttata 141120
attttcttct ctttttttttt aagacagtc gtagaagggc caccagccata atagagag 141180
cagaaattttta atatatattttt cttttccttggg atttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
gaggtgact aaccttggtca ggccaggggtg acacatataaa tcacctatca cagggagaagg 141540
tagggctga ggccagcat gtggccaggt tacactgagc tgagcctang gacatgttgt 141600
atatctgta ggccacttggg tttttctcttg aagtttcttttg ggcgcacagct ttatcagctt 141660
caggagactt gttgctgacc tcagtttata aagtaaatct aactggcttgt cactacagct 141720
AAAGCTATT TTGCTGGGC CAACCATCAA AGAGATTTT GAAGCTTCTT GATAGCTTGG 141780
gaggagacat gntgcccata tttggctttg aganccctgct ctgctcttcttt ctgcagttctt 141840
AAGGGCAAG TTTGCTGACT GGAGGCTTGG AAGGCTGTGA TTTGGAGCTG TTGGCAAG 141900
agtacttagc ctagttggtt gctacagcag gcttaagcttct tttttcttctct cttttttttt 142000
CAGCTGTGAT CTCAGGTTT CGCGGTTTT CGGGGGGTGA CGCCAGCTAG 142080
CATTGAAGTT TATCATAC TACCTGCTTG TTTTTCACACG GAGGCTCTTTT CGGCTTTT 142140
AATGGTAGTG AGGAGAGTAC AGGAGAGTAC TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT 142200
CAGCCTGATT CATTGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCACACG GAGGCTCTTTT 142260
CATTATTAAC AACTGTTTTG TTTTATTTTT CAGGTTTGT TTTTTCAGGG CAGGCTGGT 142320
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 142380
AAGGTGAGG CACTTATAGTT GCTACAGGCT CTACAGGCT CTACAGGCT CTACAGGCT 142440
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 142500
GAACCTTTT TCACAGGCT CTACAGGCT CTACAGGCT CTACAGGCT CTACAGGCT 142560
AAAGGTGAGG CACTTATAGTT GCTACAGGCT CTACAGGCT CTACAGGCT CTACAGGCT 142620
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 142680
GAACCTTTT TCACAGGCT CTACAGGCT CTACAGGCT CTACAGGCT CTACAGGCT 142740
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 142800
AAGGTGAGG CACTTATAGTT GCTACAGGCT CTACAGGCT CTACAGGCT CTACAGGCT 142860
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 142920
TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT 142980
TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT 143040
TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT 143100
TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT 143160
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 143220
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 143280
TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT 143340
TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT 143400
TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT TTGGGAGG AATGGTTTT 143460
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 143520
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 143580
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 143640
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 143700
GGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG CAGGCTGGT TTTTTCAGGG 143760
acgctgacat gccagcagcg gctagccagc tggagccgac aatccgccg aagggcaggc acatggacac gcagccagcc 143820
gcgtggtgat gccacagcag gctgctgctg acatgctgctg aaggtgctgctg 143880
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 143940
acatgctgacat gccagcagcg gctagccagc tggagccgac aatccgccg aagggcaggc acatggacac gcagccagcc 144000
acgctgacat gccagcagcg gctagccagc tggagccgac aatccgccg aagggcaggc acatggacac gcagccagcc 144060
acgctgacat gccagcagcg gctagccagc tggagccgac aatccgccg aagggcaggc acatggacac gcagccagcc 144120
acgctgacat gccagcagcg gctagccagc tggagccgac aatccgccg aagggcaggc acatggacac gcagccagcc 144180
cacgctgacat gccagcagcg gctagccagc tggagccgac aatccgccg aagggcaggc acatggacac gcagccagcc 144240
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144300
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144360
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144420
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144480
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144540
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144600
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144660
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144720
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144780
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144840
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144900
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 144960
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145020
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145080
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145140
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145200
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145260
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145320
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145380
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145440
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145500
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145560
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145620
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145680
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145740
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145800
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145860
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145920
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 145980
gttggatggt gaaacccctg gtaaccggc ctcagctgctg aatccagaat 146040
atcataagtc ttaaatgctga gcttggttac ccagtcacct tctctatctg a gctttaagg 146100
aagtgtcaga agatgacgaa cggtaagcgg tcggtaacaa ctcacggtgta aaataagaagaa 146160
tttcacaag aggctgtctt cttctatatt ttgctcaaga agatgtaata ctctcaatcta 146220
taatcttggg atagccgtgct gtgaaggtgtt gttgagaatc ccccttacaa gaccaacactt 146280
gaaatatttt gaaatcttta aagaaggaata atagaggtct tttcataaata ttttaaaatata 146340
tatcttttctttttcatttatcagcgttc ttatcagcttt gtatctcgacagtt 146400
gttatcatg agctcaagtc agcctggaat gctctggctac agcggctttt cctgctccacag 146460
cctcgcggac agctcggcgc gcagccggtc gcaagcagaa acacatatttttttcttttttttttttttttttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
-continued

taaataata gcgttttttt aatgagcggct ggtggaaga ctacttcaac agtgaacttt 140380
cggcctaga ggatgcttg ttcggtggcg cccctaacat ggtggttcat tttggagacg 140440
atttgctttg agttgctgg cactgagta gatgaacaa tttaataagc tttaagaaca 140500
tggaaactt caattcagtta cttgttaaat ttacactcct cttaaacataa acttgagctt 140560
tatacttta gcagttttaaa acgtcagctt gctagcata ggaatatagt 140620
aanacangac taaansagatt tgaagctttt ggggttgtgt cacccacagt ttaagtttaga 140680
tggaangaga tgggttaacag aactagaacct ggaattaaac ctggtgacg ggtttcatct 140740
atagcagctt aaaaaaatgact tgaacctta ggtggctgct ccaacctcaga ctactgtaattt 140800
ctgtaaaaa agaataaggag aatgagtacgc gtaacacac ccaggaagoga ataatttttgtgt 140860
aatatattgg caaatgttagtt tgggaannca ctaccacaa aatggaacaa tataataatga 140920
tgtagaagcg ggagagagct tatacaactt gttggggatt gcttaaacgg ttcattaag 140980
ggctggagcc cttgagacgtt gttgggcttc ggttttttgta tgggtgaggag agcagagaa 140940
ttcttaccgc cttttcgaac agacctagcttg gcgggtgtatc ttccatacgct 141000
atatataaggat ttggatcgtgta taaasggact tcaaacgttcc ttaacacttttt 141060
caatggctgcc tttttgctttt ttaatttacta acgtgacaaa cttttctctg aatccatttaa 141120
atatataaggta gctgcaacta ctgcaagctt actggtgagg gcgggttaaa cgaacccatttt 141180
tgtaggagaacatcaccctg ttaaaaacctt ctaaacttggat ttcgtctctg 141240
ggtgggtggt ctagaactctttg cccttttcgcag cttcttttctttcttttctttttccttttt 141300
aatagctgat aatgcaatggct aatatggcttt tttctttcttt tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
-continued

gcctgtgtct ctaatggttc tgaaataatt gtatattcct gccaaaccat taagctcatt 150660
gaaacaccag taattctact tgtctatcttt tattgtaac acattaattgc gcagttgacta 150720
ttgattttaa acaggtttgc aataaaacat ttcocctcga gtttaaatata atagggaca 150780
cottttgct ccacgcagcc caaggggtaa tgaaaggttt gttcactttatgattttaa 150840
ttcacaaatcg tcaggtttaaa tcaggtgtgc tggcctctccc agagagctgca tggccttcctt 150900
ttcattagtc agtagcttta ctgcttttt cccocacccg ccaactccagc atatcagcagc 150960
caggtgcgga gcacaacatt gcgccactcc aatgcacaggg gacgtatggtc tattgaaacct 151020
gcacagagc atctgctacgt tgtcagtgcc aatgcaattct cccaccgtca catctagga 151080
gtctttgtct tggaggttctg cccacgcttc ttcocagaga gattccagag taatagcttg 151140
tggaaaaagc tttctattctc tgtocctactg agcagatocct aagagcaccat ggcacgtgag 151200
agagaacac tacatcagcag cattggtac caaactgaat caactctagg tacacttga 151260
tttcttgtag aacaactgag aagagcagg atctcaggg agaaggttga caactccagc 151320
gccctgctg gcattgaat caacatcctct ctctttggcc gaactctca actttgtgac 151380
aactocacag aagacttcctc atcgctggtat cttgctagag aaaaagaaatg ttgcttggc 151440
cotgctgccg gcaactcaca tgtgctcctag tgtctctctgg gaacttttttct ctatatgctg 151500
tgtctactgc tcgatttcag ccctgctcctact ctgcaggtcac gtcacctcca 151560
aatctctgc tggtaatgct ctccttgcct ctaacctcctt ggctctctctc ctctctctctc 151620
gtcocattgc atgcagctgt attttgtctag gacgctgct actggctgtgg gtcttcttct 151680
gggagatatt cttcccttt ccaaaactaa taactctctag cagctagtgt cttcttttcc 151740
cgcctgctg cattgcttct ttccttttag ttcctctgtta taagcgagct 151800
tatacttacttt cctccacagc gaaatgtcctc aatattgtca gtttaattag cttactgggg 151860
gaacoatca tcattttctct attctttactt aacatatggtg ataatccttctt ctctgtaggg 151920
aacagagggc tctctcttctg atgcaacccct ctgcaagggt gcacttctncc nnmnnnnnnn 151980
nnnmmnnnnnn nnmnnnnnnnn nnnnnnnnn nnnmmnmn nnnnnnnn nnnnnnnn 152040
nnnnnnnn nnnnnnnnn nnmnnnnn nnnnnnnn nnnnnnnnn gtccttgaac cttttacttcg aatctttgac 152100
agttccgag cacaaattc aagcttcagct cttctctcct cggccacagg 152160
caacacagt gcacaccacta ttcagactac actctctctct ctacatattg ccaaaacaa 152220
aaaaacacaaaaa aaccaaaacc aaccatcagc gaggtgtagc gacocctcctt aacggacc 152280
caacaatcct cttcacacca taatcctact atgcocacac caactgccca caaatctcct 152340
gttctctgggc atttttggttt aatttttgatgagttttcct gcaacgcacca 152400
aocactcggc agcatcactcttttctgtt ttcactattcc aacaaaaca 152460
cotaatctt ccatataggc ccaggccgctc tattttagact cattgatcgg 152520
gacaacctg gcggccatcc cattaatttt 152580
cgaaagccgctgtgtctggt atataaatag caggtgagac caagggcaca gaagtaggaa 152640
cggaaaaattt aacccacatta cctcagccag aagtttctctt gcaagccaga aaaaaaccatact 152700
aagtttgggaa agaagccccc tatctcactgtagttccc gcacattttg 152760
tagagatt cactttgtcct cttctttccat aacatcaca caaatcactctcagttggg 152820
caagctcttc atctctacac atggaacctt gaaactctgat ccaggaaccc 152880
-continued

tttctagaca tggtgcttga caagcatttt atgcaccaaa acccnnaccgc aacatcaca 152940
aacacaaaga taataaggttg gacctagttt aacatcaca gctttttgccc aaaaggagca 153000
goacagcagt aacacaaaca accacagaga aggacacata acotatcaot ctaacaaag 153060
attaggacg accaatcactaa aggacactaa accataagc accaaaaanaa aacaaacaact 153120
caacacaaga gtggcttgaactgaacattagccccagttcctacctcaaaagagatc 153180
accaacanat atgaaaaaact actcaacact accnnacagctc aggacactac acctnnacac 153240
caacggtccaa aacnnacatt cttccaaag agtggcacttt tccaaaaaat ccnaaataaa 153300
tgaacagttgg ggccaagagc gacnnntcatt aacnnntccggt gggaatgcta 153360
aatgacagca actcatcaggg aacacagtgg ggacccactct tttggtgatt ccnnntcaac 153420
naaactctc tcaacctatag tctgagacca ccnnntcagag tccaaattaa agaaggcacc 153480
ntcctcgggt aacnnntaactt gttccnnnccccacctcacttactcagatgg 153540
acccacataa ggtctcagttg tgttacctgg ggncccaccct cagctcaccg agocacotagta 153600
agocacacag atgcacgctta aacnnnttccagc gttccnnntata cagatgta 153660
ttgacataaca tgtggcagttc catcaggga a.caracatcata aataatgcot 153720
atättattt aacnnntaattt ctccnnnccag aacnnntcattt cttccattt cttccattt 153780
aatnnacncaaa aacnnntaattt tgacnnntcct cttccattt aacnnntaattt 153840
aatnnacncaaa aacnnntaattt aacnnntaattt aacnnntaattt aacnnntaattt 153900
ccaaacnccaa aacnnntaattt ccnnntccctt cttccttctacc ccnnntccctacc ccnnntccctacc 153960
ntaaccnctttt accnnntcactt gcnnntccctt ccnnntccctacc ccnnntccctacc 154020
ntccnnntcctt caccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc 154080
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154140
tccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154200
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154260
tccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154320
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154380
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154440
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154500
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154560
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154620
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154680
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154740
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154800
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154860
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154920
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 154980
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 155040
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 155100
ccnnntccctt ccnnntccctacc ccnnntccctacc ccnnntccctacc ccnnntccctacc 155160
aggaccaacc agtgggtcaa agaaaaata aaaaaaag tggaaaaata ttggaaaaac 157500
aatgaaaatg gacacacac ataccaaat tggggagt acgacaggt atttcacga 157560
gccagctta tactccatata ttgttcttct acgacagaag atctacaaca actactacttt 157620
atatcaccata taactcgcg gacataata aaaaaacac ccatatcgga gacgagagaa 157680
aatataaatctccgagaa aataaatatata aattggaact aaaaacagca aacaaaagct 157740
cgctgaact ccgatctttct ttttaaaagag atacccaaaa tigattaaaattttactaga 157800
ctagaagaaaaa aatggaag aacaataa gactaactag aataaagaaga ggacattta 157960
caactcatac ccaacacgga ccaaaatata taagatcact aagttgaccc aacaacacc 157920
aatctcctac acgctgaaat aactgctaaag gcggctgagag cggctgagag tcagctctcag 158040
taaacactcct ttcttcgtgaa aagccagcc caactaacc gatactac 158100
caaatattta aagataaata aaccatcttc aaccctcc gaaatattga agagagggca 158160
ataatccca atctacttta ccaggcccga cttgctgaga cccttaaccgc cccaaagggtt 158220
attcttaca atataatacct tgcgtctcag tatactacg aaaaatacct 158280
aacaaataa tgcgcttaat gccgctgcag acgacattc cctcagctga 158340
cttggcttgg cccggagtga ccgcgtgtgc ttcatctgtc ctaactataa attactgctac 158400
acccattaa aatggaag aacaataa gactacaact ctaactattcct ctaactaggg aaaaattgca 158460
tttgaaacc ttcctatacta cccctcctta tcaactataa cccctcctta tctagaaga 158520
tgctatcctt aacaataaaag gcgtataata aagctgctta ctcgctatc ctcgctatc 158580
ggcgtataa tggacatctt tctcctataa ttcatacatc cccatccatcg cccatccatcg 158640
cctactctctt atatgcaggg gacagcactg cctgtgtaa gaaaaaaaagaa 158700
taagcggcg caatagccac aagaagacg tagacccgag tcagcaggtg atttcagatt 158760
tttcataca gagcagcag ttaagatcctc cccacaaatg gctatttaga ctcataaaac 158820
aactagtga aaatccagcg gaaacaaa cccaaagata ctcgaaataa ttttttataa 158880
ccctatcagc aacaataaa gagaagaat ttcctttgaa atagctataa aaaaatatcct 158940
aataaaaaa aataatttgg gataatattt aacccagca gigaagagt tgttagtttca 159000
aatgctagc atataataa aagacattg cccagcagag ctcgctatc ctcgctatc 159060
tatctcgcga gagaagata atatggttta aatttcatc aagctgctta ctaactataa 159120
gatcccttc agtgggtcct ttcgtagttt cttataaacg aaaaaaatc 159180
cataaaatc ggtggagccc cggaaatcttt ccagagcactg ctaaactacgctc tggattc 159240
agacagagc tggagagc gccgagagag cagagagag cgtgtggtt cggctgaataa 159300
ttaaaacctgc tggagagag cagagagag cagagagag cgtgtggtt cggctgaataa 159360
ttagggctg aaaaactctc ccaagagctg ttaaagac cccatccagag tggagagag 159420
cctttgataa ggtgcttctag gaaacagat atacacacaa gaaaagactg aatggaagaa 159480
aatcctcatgc ccaatcagc ccaatcagc ggaagatcagttt ctgtaatcctg aatggaagaa 159540
taagagtttga cccaataca aagagatcag ttgtggttct gtcgctagtc tggagagag 159600
atgtggagc gtcgctagtc cctagctctt cagcagtcag tggagagag aatggaagaa 159660
tcctctctct cctagccgcc cctagccgcc cctagccgcc cctagccgcc cctagccgcc 159720
-continued

ggctcctcat acttcgctgtag atgggatgge gcggctgggac agacactact cactttcagc 164340
aactgggcg ccagggcagag gcgctcctca cactccacac gcagctgagcc acggcagacac 164400
gctctcact tccacagcgt gccgctggcc gcggcagctg caactctgcta cccttggygga 164460
ggccaagcgc gcgctcgctg aggcggaggt ttgactgctg ccctgtccagc ccactgtgact 164520
cacgctggg cacccattgag ccctgagctg gcgggtctttttgctt atttttttattttttttttttttttttttttttttttttttttttt 164580
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
-continued

ggttaaga tgtgatcct gacacacca tcacgccaa ctaaaagtyga anagagtcta 166620
ttcacaaaa ataggccaa acctctccaa ttcctcaag gacctagggc tgygatyygc 166680
ttaaaatct tgtgctctcc acctccaaoc ccagtttggga ttcttctcctt ccggytaag 166740
ggaacctag gtttttgcgg tcttttgcttc aagttttggtt cagttatctac tattttgcaag 166800
tttactgtt accatctcta gctcgtcttt ttctctctttg tgyttccagt ctctcttcaag 166860
ttactaat ctgctgctctc caaccaaac ctaaacaagt gtaagactctc anagagtcta 166920
actctactttt gtcctacca aatgatgta tagatgcag atacaaccc tttgtaattgt 166980
agctgtgtgg ttaaatgttct aagctttgga acctcacttc tggcttttcctt atttactgct 167040
ttgtgcag tgcctacttc ttcgacacaa gtagaactctc ttcagacctc ttcctctcttg 167100
tttctcactctt aacgacactaa atatactaa cttgttaagtt tctatagagg aggcatgtaa 167160
agttaattt ctgttttggt ctgtttgtgc acctccataa tcctcttttctt cttctttttct 167220
gaanctctg gtttaatctt ctccacatag ttttcabtaa tttcctatata cttataagct 167280
ctcttactt gtttttgcgtt tattttgtag tttctcttcgg cttcttatc cttcttcatg 167340
tttccacat tcataactgt gccatgtggt gctcagcttct ctctctcctg 167400
taagactctt ctgctccttt gctaactcc gcaagatgctgct gctggtttttt 167460
ctctttgttc ctctacctttct ttctccacccct ctctctcctgt ccagacacttc 167520
tttccacttc ctctcttcctt ccagacacttc ctctctcctgt ccagacacttc 167580
ctctttttctt tagatgcag ctctttttctt cttatattg cttcttttttctt gctcttttttt 167640
acacgactctt gtttttggctg tttctttgttg cttctctctct cttctctctct 167700
tattctagaag acctctcctt gtttttggctg tttctttgttg cttctctctct 167760
ctctttttttttc ctcttttttttgt cttctttttgt cttctttttgct cttctttttgt 167820
ttttggggtt gctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
actctttaa tgggtttttt tcttttggatt ataccttttat gttatttatt tgttctgtyg 168900
gggttcacaa aatcatgctt ttattgccttt ctctggagga tacttatana ttattagttg 169060
taxatagca gttccccatt gaattttcca gggtttcctt tattcgaacc gataataagt 169200
catttgggt tgttttccacaccttttattctt ttcattttact 169000
tattttatg aagaggctaa aatggtccta acacccccaa taataacccga ttttggattta 169140
actgttatg tgttcacctt gccttttgatt acctttactgt cctctttgatt ccttctccaa 169200
atctcactatga aaacctcgag aatggtcctt cttctacttt gtttccctat atctccaaat 169280
agttgtgatt gcaggtttta tgggttaata cgggccctca cggcccctctt cctattttgt 169320
tgtttttttc gttcttttta ggtcttttta ccaccttttta ctctggagga agtaccccaac 169380
atacctttagt atactatttta tttttttttt tttttttttt ttttttttttt ttttttttttt 169440
agcccaaccact aataagcccc aaaaaccacc ccccaattcc aacgctaaacct ccccaaccc 169500
cttttttattctttttccttttttttttt ttttttttttt ttttttttttt ttttttttttt 169560
cagagttaaccttaagaggtt acacgtcttac aagcagcttacagcttgctt attgagagtc 169620
taactgttacctc ttctatctattc aagcaggtttt cttctttttt ttttttttttt ttttttttttt 169680
ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 169740
ggtctttttt ctttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 169800
agctttacctta gacagcccta gttatcctct cccctttttt cctttttttt ctttttttttt 169920
acaatagct aataagcccc ctttttttttt ttttttttttt ttttttttttt ttttttttttt 169980
ataacgcttaattc aaaaaccacc ccccaattcc aacgctaaacct ccccaaccc 170040
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170100
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170160
ataacgcttaattc aaaaaccacc ccccaattcc aacgctaaacct ccccaaccc 170220
ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170280
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170340
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170400
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170460
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170520
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170580
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170640
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170700
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170760
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170820
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170880
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 170940
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 171000
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 171060
cttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 171120
toctacagy ccataacagt gtaaccagct tggctctgg ggtggggag tcctgaatta 175740
tagtaataas atatgtaaat ttcttgagag tgggtgtcag aatatttttt ctataagag 175900
tagaataaat tagaagatgt gaaacccttg cggcagagt atataattttt aaaaagcct 175960
tggctctgg taaaccagt gtttaaagt tcttattttt tcctatatttg ggtgcttct 175920
atataaggy aagtatataggt tattgcaagt cttctccctta cttgatattc atataactta 175980
stataaggct catgttagtg ttatattttaca atttctttttt atatctatttctatcttcctg 176040
sttctcttcac gcgctctcgt atcgttctac atcctcagtt cttatgtcctgtc 176100
tctctcaac acatctgag aacccacagc cggcggtgct ttcgtctcagc 176160
ctctctcagt gggcatccct ttccctatca cagctggtct acgtgctgct gtaaatttca 176220
taccagtgc gcaataagcgc tcctggaaca ccttccctca ctagttagtt cttatggacg 176280
gatatattcg acatgctactc acttccctcc aacgctctta gttggaacct 176340
ttgagacgac gccagcagc gtaacccctct cggcagcctgt cggcagctgct 176400
cacccgcgag cccacactgt ccgcatcattc gcccgatgct gcgtttagg ggtgtcttcgc 176460
tgctgtgcag ttcgacgaag cagcctttcg aagctgctgct gcctggctgg 176520
taacatctcct tcctctgatt tcatgctgct aggctgctgg ccgtgctgtc 176580
caaccatcatt gtcgctactc ctctctctct ctctatattttctg ggcggtatt 176640
atgctcttct ggcagctgtc cttgatattttttt cttatattttttt cttctatatttttttt 176700
tgtcataacg gcctggcagc gtaaacccctctgc gagcttctg ttctataata 176760
stataacgag gcctggcagc gtaaacccctctgc gagcttctg ttctataata 176820
aatttttagt tttacctttt gtaacccctctgc gagcttctg ttctataata 176880
agctatgct cagcctttcg aagctgctgct gcctggctgg 176940
aggttggttgt ctcgtttccttc gctttggatt cttctcttctctt ttcttcttctttt 177000
aactccactg cttctctttttt tttcgttttctttt cttcctccttcctg ctcctccttcgtt 177060
acacatttggt ggtgtggtgc ctttctcttctttcttttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
-continued

ttgagaggt tacctggac ttcactggt tttttagatt taagaanatt attataaaatg 180300
tatcctact gattttaagaa actgacagt gattttgat ttttttcttg taccctgyttg 180360
ttgatataca tgcataaag cttgtagatt taacctaggag 5ctctctccgc ttttctctcto 180420
ttttttctoc tctttctccaa gacacacagt agtatgytca gttgctcagta tattttcccga 180490
tctgaagacaa aatatttctgg agcagcatat atttagcaatt tcagatttggta taacaaagct 180540
tgttggagat atttttcacatt taccttcgaht tttggcaatt gtaagcgaagatcagttg 180600

ttaattttagc asatggcaca atyggcaca gctgcctgta ctgtgagcga taattaatttc 180660
tgaaatttgg ataatgcattt gctgacatga ataanacgta toacacgta gtagttggaga 180720
tattaatata ctagacaaat atacacatag ttaacctacttg tattttatggta 180780

gggagttggc taattgctgaa atataagcttg agaaaagggaga ctgtgaaattt atataagga 180840

gacgctggtgct ctaggtttatag acagttctgtcag ttttggctttc 180900
tgtttcaactataatactagca atacacattat attataatttt 180960

cagcagacagc gtaatacagta tagtggacta tgaacacacttacagcatcaa 181020

ttttatattc atgtggaata ttttacagag aatttcotctg cttgggggacaa tatttagctt 181080

tttttttattc agaatgctca 181140

ttttttcttoc ctataaatat ttttttctgg ttttttctgg atatatcagttt 181200

tttttttattc atacacacag ttttctttagcataaattttc 181260

ttagacacagc tatactctgct tagaacacgattttttatttttaaaac agcccacacta 181320

ttttatattc atgtggaata ttttacagag aatttcotctg cttgggggacaa tatttagctt 181380
tttttttattc agaatgctca 181440

tttttttattc agaatgctca 181500

tttttttattc agaatgctca 181560

tttttttattc agaatgctca 181620

ttagacacagc tatactctgct tagaacacgattttttatttttaaaac agcccacacta 181680

tttttttattc agaatgctca 181740

tttttttattc agaatgctca 181800

tttttttattc agaatgctca 181860

ttagacacagc tatactctgct tagaacacgattttttatttttaaaac agcccacacta 181920

tttttttattc agaatgctca 181980

ttagacacagc tatactctgct tagaacacgattttttatttttaaaac agcccacacta 182040

ttagacacagc tatactctgct tagaacacgattttttatttttaaaac agcccacacta 182100

ttagacacagc tatactctgct tagaacacgattttttatttttaaaac agcccacacta 182160

ttagacacagc tatactctgct tagaacacgattttttatttttaaaac agcccacacta 182220

---end
aataaggaatt gtaaatataaa acacacgtgt agcgcagag ggaatcctctt tgattatcct 182590
gccggttttg cttctagcagt gcggcctgct caaagccatc gacccgtgac 182640
tccttataat gtaaactttt ggagagatac ecggttgatt ggccagacat aagagatctg 182700
gttgacagc tcggggagct gtctctctcc gjgctgtctt tgtgcaagct ctgctctgctc 182760
agtcggagt tcgcctacgct agttgaagaac caaagctgctt ttgcttgggt gaagaggaac 182820
ccacaaagaatt cttgagagctt cacgctgct accggttttg gcggcctgctt aatctctcctg 182880
agttgagcga aagagagagcc gtaagatcgttt gtcggatttt aagagagaag ggatctatgt 182940
gcccttgcc tggccaggg gcaatctggc tcatgttgcgc ttcatagcng ttatcancgg 183000
accaagtcc acaacagttc aacaccacag aagatctacag ttatagtaga aaccctgcag 183060
gattgtgat tctggtgcc gcattagcc ttgctgttatt ccatataaat 183120
gtagttttt gtagggagcgt gtagcctgct tctggtttgt gcagagctgaa gctggctggg 183180
tgctgttattt caacatgtgta catttcgatgtc tggcttgtttta ctagatcattt 183240
agtgctcgaaaa ctaacctgtg ctaaagctacc ggtagctgtgcttt tctgcttctac 183300
tgaggagcct cttcctttcct tcatatatgc atttggcgct acccatgatgca agacacacat 183360
aataagagct gcaagcagtt ggaagggatt ggcgggtaaa ggtgaatttt cgctgcacag 183420
caaacatact ctaacagcgt gctccagagg ctttagacag ttgaacgtct ctaaacttat 183480
ttcacatctg atgttttgtct tctcccatatt tataagagtt tgtgctgtctt 183540
ctgctcaac ctaatgttctg gctagatagt gataaccaccttt ctagatcattt 183600
atatataataa ctaaagctgtt ttgctgatatttatc atatatgtact 183660
tgctgcacag ctcgctgct tctccgtatg tctgctgtttcctt gcaatccttc 183720
gggcagacac cttcctttgg ctaaacatgct cttacgcgtc ctgctcttctt 183780
acagtttct gctaatccttc tgggttttgtt ttagttcatg ttggtatggg ctcgctggctg 183840
atatattgtg tcagagacgg ctgctcttctt ctaaacatgct cggctggctc 183900
tgctgctgtt gccggattttt tttctccat attggttccag cttcctttttt gctgggtctg 183960
aatctgttgcca atatacaggt gttgctgtttg ggggcctcggt ttgctatctt gctgggtctg 184020
ggtggcttt cttctttgttg ctaaacagct cttcctttttt gctgggtctg 184080
catacatctg tctcacagaa ctaaacatgct cttctttgttg cttctttgttg 184140
gagggctca actgacttcc ctcgctggct cttcctttttg gctgggtctg 184200
acacacaaccgcc gctaatcttc cttcctttttg cttcctttttg cctgctgtttg 184260
agttgagcct gcgaagacagc gcgggttctg ggggacatgtc gtctgctgtt gttggtatggg 184320	tagaggtgat cggctgttctt cctcctctttc ctgctgctgtt gctgggtctg 184380
agttgagcct gcgaagacagc gcgggttctg ggggacatgtc gtctgctgtt gttggtatggg 184440
acacacaaccgcc gctaatcttc cttcctttttg cttcctttttg cctgctgtttg 184500
tgggtatggg ggggacatgtc gtctgctgtt gctgggtctg 184560
ttttcctctt cttcctttttc ctgctgctgtt gctgggtctg 184620
tttttttttttttt cttcctttttc ctgctgctgtt gctgggtctg 184680
tttttttttttttt cttcctttttc ctgctgctgtt gctgggtctg 184740
tttttttttttttt cttcctttttc ctgctgctgtt gctgggtctg 184800
caacagtga agggcaacg taacactaat tttaatatatta tatgaaagta cttcttgcoc 184860
ttgaatgctt tttaaaaaaa tgaatgtgcc ctaatctttac ttagattaaca 184920
gaatattgc aaggtatgct aagagttctt ctaatacgcc tcaacagatg ttaattatta 184980
ttagactctt atacctatatc gtaaatcctat ctaaacattgcc gaaacactat tgggaatctt 185040
tataatcacta actctattcat tttacagat tttaataatt ttaattcataa gttctttttct 185100
tggcctgaa cccctgaagg atatggtagtg tata tgttcccct atgctagccaa aggttcgaca 185160
tttgctgagc agtttcttcg gctttatatg tttttgataa cccaggtact ttagaatattt 185220
tttgaaatgc ctcctcagttc cattttttct taagtttgcttg gttcgccttttta 185280
atggctctggt gggagaga cccagagtgg taagagttctg tgcctctatc tggcttttga 185340
ggtgacgcataaactagcttgttttcttgattacagctggtcttctgagcttttgagatggtctgttttcttttttttaaa ttttttttttttatttttttttaagtttctggaagttctgagttctctggattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
-continued

tagtaact ctaagaga aagataaagt gtagcataa catgtcctaa ataaaaactcc 187140
gaaagccaa aaaaacgctg tttggcacaata atagaataa gttataaact acaggttttat 187200
tttatatca atatacact acctgtttta atataaatt gttataaatg acagtttaaa 187260
agttgaaac gctcagatt gataataaga aagcgaacac tatacttggt ctacaanaacg 187320
cocoacctt atgtattttc atttttggc ttttctgctt gacccctggag tagttggcctg 187380
cocacacact cagotaattt aatcctactt tttatatttt ttttatattttt 187440
acttttaact cttgatcatct gccagagcttg ggccggttta tcctccatagt ataccagytcg 187500
caggctgct gctcagactc attacactg cttctgagtt ttagccgctg catgcaanact 187560
acatttacg gattatcctt gtagaatatt gccccctctat gtaataaat ctcctggttg 187620
ttanagatg agaagatgc gagctgataac cgtcgatcag taaacaaaata taaagtgcgga 187680
gtctcctcct ctaatacagcc agagaggaggg gccagatca aagctttggg 187740
gactgataa agggctcg ccggataaga cagcagacgc aacaactatc aatctgtata 187800
tgtgtagtt tacaaacagc aacgagactc aaagatggtga aactaaaaggg 187860
gagaagcactg caaaaaccctt ctagagccat tccacatcc otctgctata ggtgataa 187920
atccagtct cagccgagg cagactaatg acagatatacg ttgcatcaag cgtctctgtg 187980
aactaaactcg tcctaatatt atataataatc ccacaacccc taaaatcaac 188040
tcttctcctt gttccgatg agacaacagc agagagccg acaccttggg tcaacaccac 188100
coccttctcct atataaata acaagagcctg tacaagctgc gctctccacoc caaatggaa 188160
ataataata aatctcagct gcagactgct gaaatactag aatattttat agtaggaaca 188220
aacoctctc ataaaagttg tgaagctgac ccacacactc taataaatagt taaaacttatc 188280
tctagotaa tcagatgtc taaaagctc caagattttg gggatggcgg gaaagacttg 188340
catgagaanga aacactattc attaataaa taataagcag agaaaaatta ttataataoc 188400
atacacaac caagcagagc cccaaggaata ctagagatatt aataacgggt aaaaagctcg 188460
agacaacg agagagagc taataaggct gcctcagccc taaagcagttt gatttatttct 188520
atttttcttc caatccacct gttcagaaaa tactgtactgt gcatctcgta aacagctgtat 188580
ttttctttct cctttttcag agcotaatag gcacacactc tctccacatca 188640
tgctcggcgcc cagagcctgc gctcagctct ctctgatgctt ggtttcaca 188700
atacaactc tatacagtct ttttattgata cccatctgtg ccgtatcctt gatgataata 188760
tggtcctgga gcacacttcta ggagaacctgg gotaacagctg aagttgtgcttg agttctagtg 188820
cactacactt gcaaatgata tttgtatatc taaataactc aagctgtctg ctgtagcaga 188880
acacacccat ccacacacac gacacttggaa ttagagccgtg tcaagatatg aacacatag 188940
gacaactgcat aagacactc actgcagaca aaaaacctga ttataaactt gcaaaaaatc 189000
tgataactc ttaaatcagc taataaagaa aagagaacg ggcacggttgg ctaacagctg 189060
tatacttcc acttttgagg gcggagcagc gagcagactc tggagcagag gctacacac 189120
cacatctgcc gcatactagc actctatctt ctaaaattttt taaaattagttc 189180
aagtttatgc gtaacgcact gtaacgtcag gccgtagcga ctaaaatcaca 189240
tgcagacac gacagcaggg ttcagctgct aagctgcagcc aacatgtgca tcaagcttg 189300
gtggcgagct gcagctctgt caaaaaaaag aagagacaag aaaaataaaa ttataataat 189360
-continued

cataaatgaa agagagagct ccaagcttg gctcttggg aattaagaga taataaagga 189420
atatattgga caactctcat gctccgaaat tggagatttg gatgaatagc accaaattctt 189490
tgaatcacao anactaccaaa cactccacac tcggagaaata atagcttata atctctctat 189540
atatctataa tcataaggca gctacttaaat tatactcttata aagaataaatct ctagccttcg 189600
tggggtacc accaatttcata aaaaaagaataa ttctggagct tcctccataat 189660
catggcttga cagctaggcc aaagaaagct cactctataa ttcacccaa 189720
taatcctaa actcactata gatattatag aagaatctaa cttgacgaca atatcttctt 189780
tggagagtct ccaaacacat ccacagagtt tagcaagcag aagaaaacag atgctaaa 189840
taatatatg aatacactgc cagcctgcc cagcctgct cggccaaat cactcttctc 189900
gaaatatct cattataatc tcagcaatat acagcgaataa acggaaaattact atagctgtca 189960
ttaaatgtaa cagcagcttatt tcctgctgct tcaagaaaaat ctatctcactaa 190020
cagagaaaac actcactataa ctaagctctct caacctatttt taaaatctaa 190080
tgctcccaact tcttctttt tatactcttct cttgcttttt ctaataagct 190140
taatctataat tattctctctct ctctctattt ctagctatag ctaagacag 190200
caaagaaatg aagaataaatct cagcctgac atgctctctc ttaataaatc 190260
tatattcata ctagatgtatt atcctctcatct gctccgacat cccgtggtgctaa ttgctcct 190320
aatcctctcttg gcagatgtattt atcaatctct ctgctccgactc tttatttctc 190380
aaaatctctctt cttgctttct cctttgctct ctaagcttattt cggagagat cctctcttat 190440
acctcttata atagctatttat cctacctaatc atagctattt taacctctata 190500
atatcttataat aatcactaatc ctctcttata ctagctattt tcaaagctgt 190560
aatcttataat ctagatgtatc atcctctcttc tttatttctc 190620
cctcttctt cttctctcttct cttactttttt ccctcttttctc 190680
atattcattta ctagataaatc ttaagctacct ccctctctctt ccctctctctc 190740
agtctctctt ctagatgtatc atccttctctt ccctctctctc 190800
acaggtctt gtagaggttt atgttctttg tttatatata 190860
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 190920
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 190980
atattcattta ctagataaatc ttaagctacct ccctctctctt ccctctctctc 191040
atattcattta ctagataaatc ttaagctacct ccctctctctt ccctctctctc 191100
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 191160
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 191220
atattcattta ctagataaatc ttaagctacct ccctctctctt ccctctctctc 191280
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 191340
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 191400
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 191460
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 191520
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 191580
aatcttataat ctagatgtatc atcctctctctt ccctctctctc 191640
-continued

gcagaactgg tctcaactct ctaacatcag gctgatgcct tgcctacgt cccaaattg 191700
tggaattg aacggtgag cagctgccc agccaaanac cccatctttta aatgggca 191760
agaattgat ttcccagct taccaaaata tctagcttg cccaaattg 191820
aatattctt aacctagaa caaatagtaa ttaaaaata ttagatgatc aatcctac 191980
cagctggtac acctttactt aaaaacaa aaaaacaa aaaaacaa 192040
tggagggac tgttcgagaa aaagagagca ctttcatctgcc gttgatggtc aattgac 192080
gaacccact tggagggaga acgccagggact tcttagtctt aaatctttatttt cctacag 192120
ctcaaccttag cccctagctt gctgatccgg agaaaatttt tgtctctat cctcaacct 192180
cccacacatg ttcgagttgg tgtctctatg ttcgagttgg ggttctctatg ttcgagttgg 192240
agctactattatg acatgtggtact ctttctatggg ttcagctctattctt cccttctat 192300
ccttctctct cccctctctc cccctctctc cccctctctc cccctctctc cccctctctc 192360
ccaacccact aatcttcttt cccctctctc cccctctctc cccctctctc cccctctctc 192420

ggcggacgcc gacccctcag gcgtgag cggcggacgcc gacccctcag gcgtgag 192480
gcggagagcc gacccctcag gcgtgag cggcggacgcc gacccctcag gcgtgag 192540
cagctctttt atctctctttt atctctctttt atctctctttt atctctctttt atctctctttt 192600
ccacacactcc ccccaaaact tcccaaaact tcccaaaact tcccaaaact tcccaaaact 192660
gttctctttt atctctctttt atctctctttt atctctctttt atctctctttt atctctctttt 192720
ccggcgccgg ccggcgccgg ccggcgccgg ccggcgccgg ccggcgccgg ccggcgccgg 192780
acacacctac gcggccggcc ggccggccgg ccggccggcc ggccggccgg ccggccggcc 192840
gtccatattc tgcgttcttt cccctttact cctttactt tgcgttcttt cccctttact 192900
acacacttct tgcgttcttt cccctttact cctttactt tgcgttcttt cccctttact 192960
agtccctctt tgcgttcttt cccctttact cctttactt tgcgttcttt cccctttact 193020
ccacacactcc ccccaaaact tcccaaaact tcccaaaact tcccaaaact tcccaaaact 193080
agacactttt tgcgttcttt cccctttact cctttactt tgcgttcttt cccctttact 193140
tcggcgcgttcttt tgcgttcttt cccctttact cctttactt tgcgttcttt cccctttact 193200
cttctttactt tgcgttcttt cccctttact cctttactt tgcgttcttt cccctttact 193260
acacactttt tgcgttcttt cccctttact cctttactt tgcgttcttt cccctttact 193320
acacactttt tgcgttcttt cccctttact cctttactt tgcgttcttt cccctttact 193380
agaatcactc gctgatctct ccccaaaact tcccaaaact tcccaaaact tcccaaaact 193440
attcactactc gctgatctct ccccaaaact tcccaaaact tcccaaaact tcccaaaact 193500
attcactactc gctgatctct ccccaaaact tcccaaaact tcccaaaact tcccaaaact 193560
attcactactc gctgatctct ccccaaaact tcccaaaact tcccaaaact tcccaaaact 193620
attcactactc gctgatctct ccccaaaact tcccaaaact tcccaaaact tcccaaaact 193680
attcactactc gctgatctct ccccaaaact tcccaaaact tcccaaaact tcccaaaact 193740
attcactactc gctgatctct ccccaaaact tcccaaaact tcccaaaact tcccaaaact 193800
attcactactc gctgatctct ccccaaaact tcccaaaact tcccaaaact tcccaaaact 193860
attcactactc gctgatctct ccccaaaact tcccaaaact tcccaaaact tcccaaaact 193920
-continued

aagcaaaaag aacgttaaat aaacaacta ctctattgta taacggtggt tcggatcgaa 193980
gtacagatta acaatattgga aacttccotta gaggatagc ggaaatattt ataatagtaa 194040
ataaatacga gaattgacga gcccagttt acaatattgg aataaggaat gaaagataag 194100
taaggggaga aggcttctgt gccctttgtc gcggaggttg tgtgaattgg aactcctagc 194160
gtacctcaggt ttcgcttcagc atagttttag atggatacag ataggataa cacagaaatc 194220
tgtaagatt atagtttttg cacccaaact atatctcttc gcgtttctca agttagttat 194280
tgtaggtata caaatacaaa taaccaaaa gacgcaaaac gcctttctaa tggcctttct 194340
tgacggaat attattttcg ttggacttgg gccggtacga aacgctttaa aaaaaaaa cc 194400
gaaacatacg ccataaattt gcaattgtagac agaaaattgaa aaaaagttt aaaaaaaa cc 194460
taataaggaac caaagagata cagagcccag ccagaataa aatctaaa ttgacagaa 194520
cacaggtgta aacgctggtc attccattaa atagattttg aacgcttacg caaagagata 194580
atattctctgt gttgtcagtt atggacgact aatctaaa atggcaggtg 194640
atagaaatat ccataaattt gacggtaccc aacagagttc aagagatttt aagctt 194700
tcacccttt ctacatattg ccacatattt atctattcct acccttttta 194760
taattctttg cggaggggct cagttcttaaat ttttcgtctgc gtgtacctcc acacagcag 194820
caccatat ttaaaggtca atctctttct ccataaggtgc ttgctcatttat ctgggtgtg gttcttcag 194880
gtacctt cccattttt gccttcagtt ttggcgtccttc ctctactgtc tttacattca 194940
atgttgctgc aacggttaaa aacagagattc gttcttcagtt aacgcttatc 195000
tgcagcttcc caaacttttaa atccccattcc aaccctggca gggccagcgg aaccctggca 195060
taccaaatgc acggtcgc acgccagcag gcacagcgcga acggtcgcgtc 195120
ggtgcgctgc gtacatgccgc acccccatttc gttcttcagtt gccggtatttt 195180
gggcggaaa cggagttggtc tgttgccgcttg gggcgggcttt gggcgggcttt 195240
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnn nn 195300
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnn nnnnnnn 195360
acccgttgg cggaggggttg cttgctgagca gttctccttc gcctttctaa atagactcta 195420
tgtgctgaac ccccttttct ccagcttcttc atctatgcac aacaatacagtt tttccttct 195480
cotcatgatt atagtttttg ccacaaataa acacagatc ggttacgattt 195540
gttggatgc agttaggggt ttccttcggca atagaaatcc aaccctttcg 195600
tgctgggttg tgtacggttt gctaacagtt cttctctctt cttctctcttt gttctggattg 195660
aocctttcct ctccaatgac aggcttccagc atctatttc 195720
taaagaagct ccctcttttt 195780
taacagtga cttccaggaag accttctcctt gttctctcttc ctttcttcttc 195840
tgtccctcc acacacagtgt tttttctttt cttcttcttc 195900
gattacttttat cttcttcgcc cccacagcctt ggttacctcc cttcagctttt 195960
acactctac agcttctagca ctccttctcc cccaggtgagc 196020
cctccagta ctccatatcc aaccacccagtg tttctctttt ctctctatttt 196080
cgcttttgc tcccttcttc cctcctttctt ctttctcttc 196140
ctctttttctt cccattttt gttacggttctt tttttttttt 196200
-continued

tagtocatgg ccctccatct caccaaactgc agatcactca gatgtaagc tccccacaac 196260
aacctctctct ctagctctgt gtgtcatagt toccagtcgc cacaggaagt tttgctotca 196320
agatgtcagac gcctacaactta ctcttttttct cccttactatatc atctgtgattc atacagaagc 196380
gattacattata attacaaat ctttaaatctt tagcatgtttt ttaatataagc ctgctgctata 196440
agtttacattctatcgattatt tcgctgaatt tagactaaggg aggtcatatca 196500
tactattgta acacaggttt ctctctctctt ccocccaaac ccagtaatata attcacaacc 196560
cattttcaaa ttctctctctt aagttctttt ttcttttctt tttactaaggg cagatgccaa 196620
catcagccga aagttttttaa atccagacct ctttgctcttt ttttcatctt aaggggtctaa 196680
cocaaaataga agaggtggtgc gttttgttac tttttcagaa gattgtgtctct ctaaatgg 196740
tttctcctctt ttaattatcatt atataaaaaagctttgggtaa cagtttttga 196800
acaactttgcta cttttctctt cagcaagcag cagcaacacag ttaatatttttt 196920
tagacttct tagactttactt ccagaaactct gagtaaatct tagacagacagt cagacacatt 196980
actctgtcag aatggctagtcc caagccaaaa gttgtaactt ctctctctctt caagaaactct 197040
toactttaa gttgggggtt gtatttttact gtaaatgtgctgatattttata agcttttaaac 197100
aaaaatagtag taatagctggt gttttggtggt ctttctctctt ctttctctctt ctttctctctt 197160
ogayggaagg gattaaactt cagacacgct ctttctctctt ctttctctctt ctttctctctt 197220
atattcagct cttttctctctt ctttctctctt ctttctctctt ctttctctctt ctttctctctt 197280
taattcagct cttttctctctt ctttctctctt ctttctctctt ctttctctctt ctttctctctt 197340
tggaccagcg cagctctctctt ctttctctctt ctttctctctt ctttctctctt ctttctctctt 197400
tottttttttttt cattttttttttt cattttttttttt cattttttttttt cattttttttttt cattttttttttt 197460
tagcttttattt cattttttttttt cattttttttttt cattttttttttt cattttttttttt cattttttttttt 197520
cagatgccaa cagcgacttc agaagaggtg gtttctgcct gatgctgggtgt 197580
ttctttttt attttttatttt ttttttatttt attttttatttt attttttatttt attttttatttt 197640
tgatattcattt cattttttatttt cattttttatttt cattttttatttt cattttttatttt cattttttatttt 197700
acaaaaatagtag cccaaacacttc tattttttatttt cattttttatttt cattttttatttt cattttttatttt 197760
agcctattttt cagcgtgctttttt cagcgtgctttttt cagcgtgctttttt cagcgtgctttttt cagcgtgctttttt 197820
atattttttttttt atttttttttttt atttttttttttt atttttttttttt atttttttttttt atttttttttttt 197880
cggctgactgc aacgacacttc gttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 197940
ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 197900
agctttttatttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 197960
cttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198020
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198080
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198140
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198200
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198260
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198320
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198380
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198440
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198500
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198560
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198620
atatttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt ttttttttttttt 198680

aggagttgaa tggatatgaa ccagaagac agaagaggg gagaagaacc gctctcagt 190540
aggatacgc ggcccaccc cagccccctga agcgacagac ggaccacact tcagcttttc 196600
cocaagcttc ccgggctttc ttcccctttcc ttcgatatc cctcctcttgy tgtacagtgt 198660
gttgctttt cttggcattc ccagaanagct ctcgattttgc tggaggtaa ctaataaaat 199720
ggccccgacat ctcgagagag cccaaaggt tagcttctgtg taggggtgaa atataaatatt 199800
gaaagcagcc taataaatag ccagttcttc cttgcgctccct cttccttccct ctatagtttt 199840
cgcttggtcct ctcagatcta aaatttcttcct ctcattttcct tcagttctta cctgccccctg 199900
tccataacaag ccgctggcttc tcagctcctt gcaagtgctat gggccggag cagagccgac 199960
gacgttcttc tggcctgctgc agttgcttcc tttactatctc ccaggtgagc ccagaagatt 1999020
ctggtcagcag cagctgaac ccggccacct tctcagatct ctcctcagagc 1999080
coccccccocc cggccgacaa cagctataa ccataattttt ctaatttttgt 1999140
tccaaagga aacacattttt gcctggggca cccataaccc ctctcagagc cagatcatga 1999200
coccccccacc ggagcggagac cttgctcctcc gctcctctcc ccagctataa 1999260
tgcccagagt gtttatttccct aaatactcat ggcctctagc cactacactcg cctcattgtg 1999320
cgagttgttcc tccagcagcc tccataacttc agccttccacc aagttcgtcaaaa 1999380
gctctactag ttcttttaggct ctcctctccc agcctaacc cggcactgac ggcgtgcc 1999440
gccttggtcagc ccggttccgcc cccctcctctc cctccaactct ctctctagccttc 1999500
ccagccggaa ccacatatttt ccctctctgg ccccaagtcag ctctcactttc ctctcagty 1999560
tcgcagcgac gtcgcttggc cccattctag cccactatcc tttacttttttt ccatagttt 1999620
tggtctgtc tctagtattgt ggttttatct gttgtctca aggcagagt 1999680
cagtttagc agggcagggg atgggcctga tctgttccttt tctgttcttg ggggggtaa 1999740
cocoacacca tccagagcct ccagcagact catactttctc atcagcagact gatcagcagc 1999800
ccagatctac agcttcctggc ccccaaccct ccccaaccct gaaaaagagcttgcttt 1999980
gagttcagctgc gtttataata ggaagttagt ggggggagg tgtctcctgc 200040
ccagccggag cggccagcg acggcagacc ggtgcgtgtg ggcgtgatagcc cggcaggt 2000440
ccacccagcc ccagcaactc acatcacttt ccagcagagc ttgctctcct cagcagcagc 2000700
tctactttt ggtcttggtc cctctctctgg cctctctcct ggcaagtcctc 2001160
coccccaaga cattcataa attcataaatt tctctccctcc tcttttatct taatggtcttc 2002200
tttctagca ataattttt ttcctctgcata atactcctgt gcattttggt gcattttatc 2002800
atgtgcatttt ccggttttttat tctactgtgc ttttaaatatttt ttaataaatctt 2003400
tcagagcagc ctctctctgtt atctctgtcgc gcagctgcttt ccttatcagctt 2004000
cocoacacac gggagaggtg cccctctctct cctctctctcttt tttaaatattttt 2004600
catagctaat atccagcttta atcaagtttc gtaattcct atttccttctcat 2005200
atcctcaata acattacatc gtaaatttt tctccttcttc atcactctgtg 2005900
gagctgctgg tcagctgtttc gcgtttggtg gcttataatttc gataactacaac 2006400
atatggtctccaaattaatgta cttacactt gccgatccat ctttt ccgtttttttttttttt 2007000
ttggctcatt ggtctttggc cagtttattatt tccttttttccttc cattttttttttttttt 2007600
cttttgctgc cattgcttttc ggtcgctttac ctcctagctc ccatgctgct 205380
gactgattt gcatcttgg ttttctggtt tttagagg tttagttctt cactttatag 205440
cattcttca taaccttttat aagtctcag ccatgcattg cgaaccttcg 205500
tttcattttttt ggtctagcc cttttctcag ttctttattt taaaagggga tttttccttc 205560
attctctggtt ttctctagtt ttctctttag ttcagagcct gtagctgtg gtgtactttt 205620
tcgacgctc cgctctgtgg cctagcctta tatctgtgtt ttcgctagcc tttcttatct 205680
ttcacattg tgttgagagt tcctgacgg gcacaggggc agagagagag aaaaagaag 205740
atctcattag caaacagag cctaaatatt ttcctgttctt ccattgactt gtttatttat 205800
tccaaattta cactctggag agcccaaat acctcagag tctcagattttta ctccagc 205860
gttcagatt acacatttttc ttgacaaaaa ttataaggag ttgagctactaa aaaaagag 205920
aacacagac ccacatttgg ttagcctgct acatatattt tttccttattt tttttcataa 205980
atcctgaggt caaacatcaca agggagcttt cagcctcttta ccaagctgat caccacct 206040
ttgcacagtt aatccagact gacacagcag acacagatct ttctaggtta 206100
ggaagagtc atacagctta ctgagcctatt taatatatcc atatattttt gctggctc 206160
atccacatc agctgaaagt ggcttttttt argaagtgct aaagatagon ttctctagtt 206220
ataaggaacc aaaaaagaga atctgctatca tgaagagtttt tttttcttag tttcttatt 206280
nnnncatttt atttatatag ttagacagag cgtccctttt cttgtgccc acggctgcag 206340
ttcgagctgtc gaccccttatt tcattgacgc cccattcttc ctctattacg 206400
gocgtgtgtc cgctcaaggt ctttcttttt cttttgtgttg ggcctgtgtg tatcagtttt 206460
gcctgctt cagaggttagc tgagcagctt gctgctttc taatctattt gttttctcttttt 206520
gtcagccctt gttttctttt cttttttact cttttttttttttttt gccttttttttttttt 206580
gcgtgtgagc cttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
-continued

ggaagtataa ttaaaaataa ttttaattgt cccaaagtttt aacaaagttt aatgaaacct 207660
tgtaaatatg aagtttttga gggattagtt tattttgact ttttattttt gataggaag 207720
gaaacaaatag cctaatggct cggtaggtt tagaggactt ccgtaatttcc cggtaggact 207780
tatggcttgc aacctctctg tcttttctcc ttcttcctaga cttaattttaa 207940
aacggggttct tttttagaggt cccggttcct cccggttcct cccggttcct 207990
acacacatcaatagctgt ttttcggttt gatagagta agagtagctc tccagttttt ccaatagctc 208050
gcgagagaa tcagagccg tttttgagttg gcagttttttt ctttcacatc ctttcacatc 208090
ggccccag taagcttttt actttgaggg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208140
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208190
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208240
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208290
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208340
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208390
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208440
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208490
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208540
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208590
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208640
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208690
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208740
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208790
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208840
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208890
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208940
ttttacatcg cagctttagg cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 208990
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209040
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209090
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209140
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209190
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209240
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209290
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209340
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209390
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209440
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209490
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209540
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209590
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209640
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209690
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209740
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209790
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209840
cttttattttaa ctctatccttc cccacccgg aagcagagttt gtttctttttttt gtttctttttttt 209890
-continued

cattaacac atctaaacaa gggtcataat ccgaatagta gaaggacatt caacaaatct 212220
 accacacac acacacac acacacac acacacac acacacac acacacac acaacaggt ggtaaggagta 212280
tgacacacac gttttcaaaa gaacatattc acactgcaaa caactaata atgcgtgcaca 212340
cagcatatgg aaaaaaggt tcatcttctc gcacacagag atgcaaacat aaaacacaca 212400
tgacacacta tcctacacaa gttagaaagg caaacatta gaagtcagga aacaacagct 212460
gctagagag atgtggggaa ataggaagct ttataaacctg ttgtaggggg tgtaattagc 212520
ttcaacactt gtaggaagaa gttgagcgt atctgaagga cctacataa gtagttatcc 212580
caggtcgtca cggggtgttc tgtttgttct ttctttatct gcaggttgcc tataaccaat 212640
tttaaacaac ggagagcact accttcgtgt ttacttctgt ctacacagn gcttgggaca 212700
tgttagcagga acaacacagag tggtttgctcc ttacttcttt tttttttgtct 212760
ttttttttttttttaaaaaa actagcaggg gatcgctcttg gatcctgtaa caagttttttta 212820
ttgatgttgag ctggtgcgtc gcatatgga gatctggttac ctcattgatt gacgctgaag 212880
cocataagta gttttttttttttttttttaa accacacagc gtttttttttttttttttttttttgc 212940
gttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
-continued

ttttaaaa gcaaatgaaa gatgctatt taagtcagaa gggccaaat tggatatattt 216780
atgatatatt taacatttgc ggccataagaa tgaagtctcc ttaagatgty ttttagacag 216840
agtccctggy atggttatata taagcagatc tgcctgtgac tgcagagcc agatataac 216900
cttgcattt actctcaagga aaagaggtct caactgatc tgcctgcttt ttcctatttt 216960
atttcagga gtgtggtgagc gtagaggggg cttaggctota cctacatacc actagctatg 217020
tgcctatttt atatactttc ttaaaaygcc ctcacagatc tgcctgacag 217080
ctagaacag gcaaatattag atattcatg gatctttggc caggaagaca tggttacagg 217140
gtaggtcg itatctggtg aatctcagg ggccctttag ctcatacagtc ataacacctga 217200
gccgttcaca cagctggctta ggaagttccga gggctagaca gttcagacgg ctggatgcag 217260
cctttaacag ctggtggcggc taacagcagca cttattcttgta aaagactaca agocctatta 217320
gcagctcaga cgtggttctg tgcgtctgctg ttgataaggtg tttcatccttt cccactcctt 217380
tgacccctt gctgttccttg gaccttttaaa tgattgtccat ttaactcggtt gtagagatg 217440
actccacatt gccctttggt gtcctttctc ttcgcagagc tcgaatgaggg ttcctttccttca 217500
tgtgtttttt ggcagctataa attgctttcttt ggatagagct gtcgtctccg ctctccgccc 217560
acctttggg tgtttttttct tgaacaiatgtt ttcgatctcgc ttgtagttcctt 217620
tgtatatag cctttctgca gatgagtgac ttcgaaagag ttttctccocat gttgatggtt 217680
gcgcctcc acctgtgcgta gttttcttttg tgccttgagaa gttccttttctc ttaacacatt 217740
cocatctgcc aatattgtgct ttgctgctca tgtcttttgggt ttttttggga atagattcct 217800
tgacacgcc atagctttgct attgtaacct cgtgctttct ctcgtaggctt ttattgtggtt 217860
tattgtgct gcagtaacac tcgcttcccac attgttaagag ttcgtctggct gccttcacag 217920
gcgatacgs ctagaataaa ctcgggccac cttgctgatctg tataaaaataaa 217980
ggctcataaa tcagctgtctt gaaacagactt aaagccctgg aacagctatgtt ggggcatttt 218040
cacaactga aagagttgca acaaacacat ctcagcagctg ccagtttatttt 218100
aatttctgaa atatacaca ttgagtaaaa gaccccttacttc ttaaaaaaaa 218160
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 218220
nnnnnnncac taaactcactcg caaacacaaa aacaccaaa accgatatcctt tcaactctag 218280
gtgggtaagg aacaagagca ctcgctgacag ggccagaggg gcatactcctcctgcagctaa 218340
tggtggtggg tcgggggggg ggagggagga ctcatctgga tgcatacata gttccttattg 218400
aagatgtgatt ggtgtcgacgg cccagctctg gaactacattata catgtcctc tcacctggcc 218460
aatgaacct caactcactaa aactagtata ttaaaaaaa aaaaaaataa 218520
agaagtctg ttcctttttg gttgggacact cttctttcttt gactcctttgg 218580
ctacatattt tttcacagtt gttgtcggcct accttctgcgg tgcgtttgtct 218640
tggaaaagttg tagaagaattgg ggggtgctgac gggcatcctag tcaactcttt 218700
atctttttcct aacataacat gaccccttaa ctctctggtcct cttctttttt ccaactcctt 218760
cctataaaat tcaattcata ggaacagaga tttgatataa ttaaatataat 218820
ctataactg ttagagtccag aagcggcttac tcagctcctac tttcagagata 218880
ctgctgctg gacacttatgc catctctttgct cctatccttcc ctgctctctg 218940
ccctcagca caacagatttt ttttttattt tattttttgg ctattctcctc aacagccaa 219000
ttgattcttt ccttttctkg tctctctcctctt aataactctcctg ccataattaat ctgcataaattg 221340
gacttctctt cctggcctgt gcgggggtccct gctgggttaat cccacagctc ggaggagccaa 221400
agggaggtag cctgaatctg cctggagggg gtaaagccag ctggccacaa tgtgaaaccg 221460
gctgccct cctaaactctt aatctctatc ttcctaatgg cttggtcgtg ctaactatcg 221520
cattctcggc cctgcacctgg ggagaactgg tgtgaaccccg gagacagggag tgtgtgtctg 221580
gtgcacagtt gctggcgcgtctcc cggagaactgt gagacagtctg cctcaaaaaa 221640
aaaaaaaat ccttcctact acctttccag cttgtgaaaaa gtataaatgg tttggtgtgc 221700
taagccacac aacagataac ttttttgact ttttttattattat ttttgtgtctc 221760
tgaaatatc gcggctctcc cttttaaagag ctctagctaa gcctggcaca gacactgggc 221820
ataaatactc atgcaatcact cttgaaataaa atctatcctg gccttctgga ggagaactgt 221880
tttccattc ttttttcttttg cttacacaaa gctccttttg attggggttgc gaagatatatc 221940
taacaggttct cttgagaaac atttccgcag aagaantaag acatctcata ttgtgagag 222000
acacagtg tcaactgtgtg tggaggtcct atttctcaag ttaaataatgt gcatctaaaa 222060
tgacgataga gataggttag aaccaagattc tcgactgcttt tgaattccttg ctttcagc 222120
atcctgtgct gtttatgtgact tattaagaggg tatttatatt gatctgagtc 222180
ttttttatg ccacacttac actgtgcaaag tgtgtgaatg tgtggcgtcag agaanaagc 222240
actacaaa acgccgtttag aacgctggaa gcctggcaca gacactgggc aacataataaatttgtgac 222300
atcctgtgcg agaataatac acctcatcaca gccttggctaa aatctatattatc 222360
gagtagatag ctcagatgcc ctactaacag cttgagaaac gcctggcaca gacactgggc 222420
taagacccac ttcctctctc cttggagcttg gtggaggttgc aagacagaacgcttcctcaca 222480
aagggcagctt ctacagacac cagcaggagcg gggcctggcg tggaggggg aagacagaacgcttcctcaca 222540
gactgcagc gaaanacaga cttggctggcg actgtgaaaag gatctgagtc 222600
agaattcgac aacagtctac actgttggg aacaaaactc atcattattat ctttcttttc 222660
gcttctttctg gccttggagtc aactacatcag cttggctggcg actgtgaaaag gatctgagtc 222720
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 222780
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 222840
aactgtcgac gcggagttgct ttctattcatt tgtggccttgc aacatccttc 222900
aggcatttac catctttaca taatgtgctac ctttcttttc tgtggccttgc aacatccttc 222960
tactggttcct ctttcttttc tgtggccttgc aacatccttc 223020
ccagctgttt ctttcttttc tgtggccttgc aacatccttc 223080
cggttttgct ctttcttttc tgtggccttgc aacatccttc 223140
ccctcttcag ctaatgctgc atcatactac ccagtctgcag aacatccttc 223200
atataagcttc gcggggtcttgc gctggcataa aacagggcttg ccggggtcttgc gctggcataa 223260
gctgggctc gcggggtcttgc gctggcataa aacagggcttg ccggggtcttgc gctggcataa 223320
tcagggtgct gctgggctc gcggggtcttgc gctggcataa aacagggcttg ccggggtcttgc gctggcataa 223380
attcagctg ctccttacagc gcggggtcttgc gctggcataa aacagggcttg ccggggtcttgc gctggcataa 223440
ctagaagcag acggggtcttgc gctggcataa aacagggcttg ccggggtcttgc gctggcataa 223500
actagaagcag acggggtcttgc gctggcataa aacagggcttg ccggggtcttgc gctggcataa 223560
gctggggtactgaacagctgaaaacagccttcacatcattgctctttgctattctgtgytgcttgcttgcttgctggcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgcttgctg
-continued

taacggctgag gttggccagat catctgaggt cagaggttcg acagacagctt gccacaaaacg 225900
gtgaaccct ctctctattg aataatacaca aataagcttg gtaatgctgc gattgcaagta 225960
gcggcagcta cttggagagtg gaggccaga gcaattaactg aacctgctg gctggaggggg 226020
cagataggcg agcatggcgc actgcatccc acgtgagggc atagacgttgc actcgtctgc 226080
aatataataa taataaataa aataataaataa taataataataa taataataataa gtaaggtgttc 226140
cattttagtt tccgaagaga tactgaaaggg aggaagggcg tgaatgcttg gtaaacctgct 226200
gacttgttaa gggaaagcgc cgtttctttct ctgnaagagtg tgaagcttg ggtaattttaa 226260
gggaacacca atctaataagaa aaggaataag ttgatatgtca aataaagttgc agtttaacctt 226320
tatctactca tcactgaggg cacgggggac aacggaaagc gcgcacaaacat gcacatttcg 226380
atgagacacag gctgtttgctg tacaagcttt caacacgacag atctcagctc tgcggggtca 226440
taataacgcc aacacagttcg agttttgaggg taccacacca tcaataatct tgtctgtgtaa 226500
agagatgtcagctgagtccttac agctgtgtga catgtactat acaacatgaa 226560
catcggacaa agcagcttgc attcacaggg taataatactg aagaagtttttt caagctcact 226620
tcaacaagctc atcgagcagc ctaatgattg aatatttaataa ggaagaacttc tlctttttgta 226680
tgcttgccac gataacttgc cttaaataa cttcacaataa gacgtttaag gtaaaccttgg 226740
aagtgaaggc atataaaagc cttgcatataa aagcatttga atgtcaagttc acggaggggg 226800
ntataattca ctcttggagg atataatata aattgaacac agctgttccc atacatcttc 226860
ctgacaagt gaaaaccatac agctgtgact atgcttacaa caatttttaa atgtgtgaggg 226920
tgacactgtc atgacccca cttttttttttt atctttttttt ataatataataa 226980
tcagataagc ctgtagtgcag atgataataa atatacctct tttcattttta aataaaaaa 227040
atctcataa tcaaccaaca taaaataatttttttt ctttttctttctt ggaatactgta 227100
tatttgagtc atacaccacac gacgtctggag ggttacccagactcctgtc aagtgatacc 227160
attacgtcataa atataataaca tcctagagtt tctctgtggtg cggataataga atacccacac 227220
gctgggtcag ttaaccaacg gaatataatct cttcactcag tggggaggtgt gcacattgct 227280
aatcaagctc ctggaatatg ttgacttctag tgacccctct ctttttttttt tttgagagat 227340
ggagtgttc cagctgtgagc ggttggaggag tggctgttcag cttacttccac cactcggact 227400
cttccacact caggtcatcag cgattctgtt gttcatcttc acacacttcag tggcattaca 227460
gggtgtggtgc acataacaca gtaatnntnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 227520
nnnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 227580
nnnnnntgca tctcgaacct taccoccacac ctttcgctcc atgcacactg tgggttatcc 227640
acgctggtag ggtatgaatta agggctgggtc aagttgtgct gttgtaaaca gatttttgga 227700
gcagctgtc cagctgtgaag tcaactcacc tccactatct atagatccaa ggcacaaaca 227760
aacctgagaa ggcccctggtc cttctgctctt cagacaatct gcaacccttcac gttgctggtt 227820
tatctgtgag cttctcttcc acaattgctc ctgctcagtc ttaaatccc cttggtgaca 227880
aaccaaccaag aagtagatca taaaaaaaaa aagaaaaaaa aaaataaaagc 227940
aaccccaac gacgttggag cagataaatta aacaccaacta ctaagatcata tgggtgtcc 228000
tgagaaagag ggagactttaa aagttcagtaa gggagtatac tggaggaaag 228060
cctcactcgcttattagag acaaatagcc catcataccac ggaatccaan ggaatcctaaa tcnatacgtg 228120
-continued

agattacaaca tcacgaca ttggttcata ga gtttaa actttcttt ctttttcataa atgttataca 232740
atgttcatt ccttccacag agaagaaag ctattatct tattttctaa agagaaaat 232800
gacagcaaat tatttcataa ttagttaact ttcttcacag ttcocatttt actgtttaeg 232960
aacatccac taaacctgga gttcttttac caaaatattt caaattttcg tctattttgc 233220
cttttggtcc tattgggaact ttagtcaggt acttcaggaac atgycaaggag tcgtttactctg 232980
accttcaggt gtacattctt aatatttggc ggaatctcag ggtagttcag tataaacactt 233040
atattttcac aatttgaaatt aaagaatttc aatttgagta ttagtgcct tattttataa 233100
aatccttcct cattttggaata cacacatatc ctcacattgta aataacctgtg ttaacctctag 233160
ctttccacag agtctggatag ggttcttttt aatgtttgta aactatctat ggtctccagta 233220
gttattttggttt tattttttgaaat cactagctcg aatagttagaa ttcagttttgaa 233280	tattttttgaaat cactagctcg aatagttagaa ttcagttttgaa 233340
ggctttctt cttttttttt ttttttttttt aatgttttctg ggtagttcag tataaacactt 233400
aatccttcct cattttggaata cacacatatc ctcacattgta aataacctgtg ttaacctctag 233460
tattttcttc cttaattttt catttttctt catttttctt catttttctt catttttctt 233520
atatatatgt ctatttttctt catttttctt catttttctt catttttctt catttttctt 233580
ctttttcttt aatgttttctg ggtagttcag tataaacactt 233640
gttattttggttt tattttttgaaat cactagctcg aatagttagaa ttcagttttgaa 233700
ttttttttctt catttttctt catttttctt catttttctt catttttctt catttttctt 233760
tgtggtgcac ggtggtgcac ggtggtgcac ggtggtgcac ggtggtgcac ggtggtgcac 233820
agttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt...
-continued

aegtagtco tctctttttt ctcctccttt ggcataact tctttatcct ggagataatt 237300
agacaanaa tgcctctgac aatactaatc agtataaac ccctaacatt tgtccacttt 237360
tgcagaca gctgacgctt tcagaggtct tgaasaacc tgcagacana tgcagcagaa 237420
ggcctagc aggtgcacaa tcgtttttt acgctggcgt cttttctcata ccatcttaag 237480
catttttcct cattttttct ctcattctgc aaatctatttt tctcaaacttc ccatctaaat 237540
ggttctgctc tgcctcgtcc aatcatcttt ttctatattag ttcattaggtc tgtggccoca 237600
tatggttgct agcatacttc acaatctcct tgaataagtc tgtttactcag tgcacataat 237660
tcctatacta aatcatagt aaggttttata ggcacacttc tcaaaaagca tcaactcttcg 237720
tcaaatata tgcgagcaca ctctctctac acatctggtt cgctgactaa tcctaaacaa 237780
tctctctct ttcactagag aactggttgc agtctgctta ttcctttttctt aangactttgg 237840
tgtgtatctc tcgtatcctt tcagagaaa gatagattga gctatatttta 237900
gctatatcc tcaactatgt cccacatact tagtitatct tgaaacctgc tgtctctgct 237960
atgtggctg aatataatca ccacgtatgaa ccatcctttt catatgtccca tcatccttct 238020
tgtaaacttt gtcgctgcta cttggtttaa ttctactttc tttctcactaa cctgtggcagt 238080
tttgatttt ttttaagcgg agatagcgcg ttctctgagaa aaaaaacaata tgggggaaag 238140
cattctatt atttttctca tatatctcttt tctctttacag ggaataataa acatcatctca 238200
gtctctctct ctcgccaaga tgggctgacta aacacaaaa ccatctatttat aataatatc 238260
aatttttttctgtaaacg agctgtgctc ttcgctgtttc cggggaagat gatggtggac 238320
ttcataactt atcgaattaa cgtcttctttt ctcgctgacta ttcgctgacta 238380
tgtctgtgctt atctcttactt tgcgaattgt cttgcttgcact ttaaatattgctc 238440
tgcgactatt gctattttat gctatagtt ctaaatgatt taaagaagttc 238500
cgtctgacta tttgagggcct ttcattcatt cgtgacacat ggttttttcc tttatccatca 238560
taataagagc attatatttc ataaatagat atcactcttt actattttttt tggctttttc 238620
aactcagcagc taactaatct cttgctttgct ccacatgaca atactattat cctacttagc 238680
aacgctttgcct ctcgctgtgc ctcgctgcag ctcgctgctgc gcctgctgcac gcctgctgcc 238740

nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnn nnnnnnnnn nnnnnnnnnn 238800
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 238860
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 238920
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 238980
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 239040
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 239100
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 239160
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 239220
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 239280
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 239340
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 239400
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 239460
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 239520
-continued

acagcagagt acctacagtt tccataacag tgcgtctcct tggcactttt tggatatgct 250980
attgttttac tctcttttga attgttgaga ttcctttttt atttttatga ttaactccctt 251040
attagttta tgggtggaa atattttccc cccatcttgg gctatatcct tcaatctttgt 251100
aatgtttta attctttgta gcgatgacct ttagtttact ttgatatcgg ctaaaaacctc 251160
ttcttggtct ttgctcctc aa attgtatcc aaaaagaaa taaggccag caaggctatg 251220
gcgcacttt ctaatttttt ccctcgtttat ttatatattt tccgtgctctt 251280
ttaactccatt ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 251340
tggtacccca gttctcccac cccactttaa taangaggtg gioccttoccc tatttggtat 251400
tctgcacgt ttgcttgaat aaattgattg tcttccttttt tgggtttttt ctaaaaacctc 251460
ttaactccatt ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 251520
caatagtatt atatatattt tccagctcag agatcttttg gcoctcaggt tatttttttt 251580
tgctcagct tgtttttttt aatccttttttt ttggtttttt ctaaaaacctc 251640
tttttttttt tctgcagcct aatccttttttt ttggtttttt ctaaaaacctc 251700
gcgcacttt tggatatgctg gataaatatatc ttaaaactttt taatttttttt 251760
gaatgacaat ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 251820
ttagttactg aggtcttttc ccctcctttgt tgttttttttt ttttatattttt tccgtgctctt 251880
gotaccttcct aatccttttttt ttggtttttt ctaaaaacctc 251940
agaaagcta tggatatgctg gataaatatatc ttaaaactttt taatttttttt 252000
atcgttattt aacattttttt tggatatgctg gataaatatatc ttaaaactttt taatttttttt 252060
atcgaann cagacacatt tcaattttttttt ttttttttttt tttgtgatgg 252120
agcgcacttt ctctcctagt gccagggct gctctctcctg tggatatgctg 252180
tgctcagcct ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 252240
goocoaaccion gatcagcact gatcagcact cggcaattttctttttttt gataaatatatc ttaaaactttt taatttttttt 252300
ttacgcagaa cggatctttt tctctctcctg tggatatgctg 252360
gatgtctctat gaaagctat cggatcagcact ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 252420
tattttttt ctcattttttttt ttttttttttt tttgtgatgg 252480
ctataatttt tcaattttttttt ttttatttttttt tttgtgatgg 252540
tgctcagcct ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 252600
tttataagct ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 252660
caattttttt ctcattttttttt ttttatttttttt tttgtgatgg 252720
ctataatttt tcaattttttttt ttttatttttttt tttgtgatgg 252780
attttttttt tcaattttttttt ttttatttttttt tttgtgatgg 252840
agaactttcct tggatatgctg gataaatatatc ttaaaactttt taatttttttt 252900
tcattcact ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 252960
attttttttt ctcattttttttt ttttatttttttt tttgtgatgg 253020
tttctctctg ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 253080
atatatatttc ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 253140
ttctctctcct ttaaaaggtat tttaatagtg gcaataagtgt ccctctcatt ttttatattg 253200
acatattacc ttctttttcc ttttttttcc ctacccactc tttctttttt ggctaaatga 253260
ttttctttag ttgtagaagg tttaataag atctgctct gttgtagata aatgttgcttc 253320
atatttttag tgtgaattgt cttactacaat agcattcaaa acatattatt ataatattatta 253380
gattctgcct tccaacagtt acagctcaag aggcttattat caagcataca gttcttaactc 253440
tttttgtttct tcttacagtt ttgttctcttc tcattacgtt ctgctttcttct 253500
ttttttactt gcatatatct ctggatgat ttttcagaaat cgtattgacg tgtgtgaaatc 253560
tttttttactt cttccttttt ttcttttttt ttttttttttt ttttttttttt ttttttttttt 253620
ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 253680
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 253740
tttatttttt ctcttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 253800
gttctttttct cttacttattct cttacagtgt tcttttttttt ttttttttttt ttttttttttt 253860
attatttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 253920
ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 253980
ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 254040
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254100
tttatttttt ctcttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 254160
attatttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 254220
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254280
attatttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 254340
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254400
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254460
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254520
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254580
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254640
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254700
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254760
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254820
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254880
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 254940
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 255000
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 255060
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 255120
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 255180
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 255240
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 255300
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 255360
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 255420
acatattatg tgttaaaaga aatgtcttctg ttaatcgtga tctatttctttat ctatatctttct 255480
ggtcgttctt tttcctgtta aatggcttta atgcocaaah acgataactc atgcgtaggg 255540
acagaaaaag agctcctaga atcactcaca cacctcaca acctcttcgct cttggacaaa 255600
cggcctaaa acaagaaaag tccctcttta aataaattgtg tggggaaacc 255660
tgaccttgcc tgtcctgaag acacaaactg gaccttcctc ttacscotta cccaaaaact 255720
aatcctactgt gatctatggt ctttcataaat ccataaacaacct tctctgaaga 255780
aatcctacg gctacaattg gcaacagggc atggccaaat actctatttc ttaataaacc 255840
aaacagcaag gaaacaaagg tctaaattgga caacattgggt ctaattaata ctaagaggtt 255900
tgtcctacgta cagaaagagc tctctgattgu acatcctggc cctacactcga gggaaaccat 255960
ctttgccata tctctgcctt gccttacctt tccttctctt cgtatcttcaca 256008
gtctctccttc tgggtcctgct gcctcttcct ctctctctcct ctatcactctctgctcctc 256140
acctactaaca cctgctggtt attcctctctg aacactagctgt cgtagtctcctctcctcctc 256200
tgtcctccgct tcgatcctttgt gccttctgactc gctctctcctgc cactctctgcct 256260
scaactactctc cctctgctgct tctctcctccc gcaactactctgctcctcctcctcctc 256320
tgcgctctag tgcgtcctt ggtcccctctt ggtcctctctg ctctctctctt ctaatcacttctctctcctc 256400
aggtatacca cctgcacatg gataacttcctg cctctctcctc ggtgctctctcctctcctcctcctc 256500
aggtatacca cctgcacatg gataacttcctg cctctctcctc ggtgctctctcctctcctcctcctc 256560
aggtatacca cctgcacatg gataacttcctg cctctctcctc ggtgctctctcctctcctcctcctc 256620
tgtctctcctgc ggtgctctctg ttctctcctcct ctctctcctct ctctctcctcctcctcctcctc 256680
ctctctcctg tttcctctct ctctctcctcct ctaatcacttctctctcctcctcctcctcctcctcctc 256740
attacttact ctcgactgct gttggggtcct caagctctag tctctctcctcctcctcctcctcctcctc 256800
aatctgctct cttattttctc ttgctgctggt tggctctgtgct ctaatagattt ctaatcacttctctctcctcctc 256860
attctctata tgaatcctcgg gactgtgctg cctctctcctc ggtgctctctcctctcctcctcctcctc 256920
gttgctctctg cctctctcctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctc 257040
tggtctctctg cctctctcctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctc 257100
ccagagagtct cttccctcctc ttcctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctc 257160
tgctctctctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctc 257220
ctctctctctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctc 257280
tgctctctctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctc 257340
ctctctctctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctc 257400
ctctctctctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctc 257460
ctctctctctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctc 257520
ctctctctctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctc 257580
gactctctctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctc 257640
tgctctctctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctcctc 257700
cagtataac atgcggagctctctgtctgct gcctctctcctc ggtgctctctcctctcctcctcctcctcctcctcctcctcctc 257760
gttttctgt cgtagcatac aagacaacat cttcgttcttt cttattgccgc ttcocagttga 257820
gaacctcc cacacagata tacaatttc atggaaacac acaaaaaattt gtagggaagc 257900
aatcctcctc aagttttatgt tttcgcttc gctttagaag taagtctgtt gatggggccag 257940
tacgaccagt ggtccttttg cttgctggagc agatctctagt taaactaaga 258000
aatgcctggg cagacagtaac cttgacatctt cttcaatta taagcggac ggaatttctt 258060
acacatttatt gtaataaaaa ccattatacggtt ggncacocca gagcagcggcc cagggaccct 258120
gtgcctgaaa gttcctcttc ttgacgagg gcagcagcgtt cttcgtggtt tagcagacag 258180
catttttttct cctgcttttct ttcacaaac tctttcagac agttcttcat tcttgtttct 258240
tocctcatta acccttctg tggcctttccc caccctcttc ttcctccttc aagctgccct 258300
attctggttt tcaacatcc caagccacag ctgagatgctt atatgtcctata taaccttcttc 258360
ccacattact ccaataaaaa ccatttaattttt ccttctttctt tcttttctttt atctttttttt 258420
tttttgtcgattaccagagtctgtgttgcgatcactctcgtgctccagctgtatt 258480
atgtgctttc cttcgtctttc ctccatccattccttttcttcttttctttttctttt 258540
taaaagttgctttttgtctgccccttttttctttaaattttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
-continued

cotacqacgc ctatcctttc ctaaggtttt gatcgtggtc tcotgtgttc aggccoaatcc 262380
ctactcaaca cgaggacgtc gatatttttt ttccttcttt tcgaatgggt gagaagaattt 262440
aaccttttc acotggcact ttcctagatt actaggcgtg gatggaaatgt ggttagtgtt 262500
 gagtctggga ggtcactgta caatacagct aatgaatctg gatctgggtc 262560
aagactgacc tcgtcagcac agttttgagg cactatcct tcagctcttt ccgtcctttc 262620
ggctggcact ctggcccaact tggtagatct tacttttaag gatggaagctc ctcagcactc 262680
cctcaagtgt gtcctcttag ccacacaaaa gtaaaagatg atggccaact tgtatgcgtc 262740
ctcttttcca ctgaagcttt cccccctaa tattgttgctt aatgaaacttc cccacctcctt 262800
 tttttttctt atgggttttt ttttttttcct taanagacta tcataaccttg gatgtttagt 262860
tagggtttcc tcggcagaaa gaaacagtga gatcaatgga tggctcacttg atcaacacaaa 262920
qacaacaaag gatcggatgt gacgggtaat tagcagctca aatgagcacaag 262980
geactgtga aggcgcctgg cgctgcctttg gcaggtcttt ccgtgcagct 263040
cgaagcgaas ctcggcttcc tgggaaacac ctgcctttcc ctgcttaag ctccaaatg 263100
atgtgtgtag gcotaacaca ctgattgaga atactgtggt ttaactaaag ttgactgtgct 263160
gtaacactta attatatattt aaaaagatctt tcacacaccc attagaactct tggctgtaccc 263220
aacaactggg caacagctgc aagccaggtg ggctataga ataaaaagac agcttggtta 263280
 tcacatcct tgcattagg tcattatctt aacatacgag gtttagaaa cgcgtgtccct 263340
tgtacaaact ttcotcagta ctagccagtt ccttactagtg ggtacccagt 263400
gtagaaaaaca ttcgctgcttt tcgcctctgg ctcgcaacctgct gctgcagct 263460
tgcgctctag atatatataa ttcacgagc ctaaactgaag cagactggtt ttcacagcag 263520
agaggttgag aatgtgtatt ttaacacatg cagccgagga cctgttgaag gttctgttcttt 263580
ctttgtgttt tattattatgtt tttttttttttt atgccttgcc taataagctttt 263640
attaaaaac aatactgaga agaaggagga agaaggtaggt agctgctttt 263700
 ttattgtgac ccaacgcaacgtg ctagcttggt ttcctccttcgg taataaaaatactttcttctttcttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttctttc
agtaagcc acgtgagag atctgagca cttgatgccc ttataagttccc atttgacgtg 264660
gctgtaac acctgcaagaa cttccacaga acatcgaggt tccaaatggt aaaaacgttg 264720
tgacattgggg gctacgccaa gaattacactc gtacgagaa gataatcata acacctggtgct 265470
tgtcataaatt ctgctgtcgt gccgggaaag gaaaaaagac cttccacaga atgtgtaacc 266400
tgacattgct acctgtgctg gatctgagct aggctggagt ctatgctgtgt aagtcggaaaa 266900
 aaanaaaaa anaatctag ccatattttg gtcttttaagtg cgaccttacg tccaatcgga 266960
tgacacagcc acaagcttgt gctacaacctg tggattcag agatctgcag gaaatttaaga 265020
gctagctcc acgtggacgg gcgtgacagc cagccgtgga ccaacgtggc aaaccctata 265080
tactaaa ataccaaaag gacgcttacag tggctgctggg tggctgtatt cccagctact 265140
tgggagtcgg aaccccacaag atgtttgga cccgagggcg gggattgctgca tggagccaaa 265200
atgccaccc ttcgtaatttac gcctgtgcac acacagctag accatacata aaaaaaattt 265260
aaaataggg ggcagctggg ccagagaaac aaaaatcttta actggggaat 265320
ggaattcctgg tctgtacgcc ccaacattttg acaccacaaa cccggtgac tctctgcgaa 265380
taaacatatc gctactgaca gcggaaaaaa aaaaaaaaag aaaaatgca aaaaaagaa 265440
agagagggcc aagatacgacctcataac ctaaaacttct aaaaaattaaa taataatgat 265500
cagacctga gctctctag gcctgattaa atacgttatata caaaaaggtct ggtgaaaaaa 265560
tgtttaaag gatttaacag tcggctggcgc gacagctcga gctggagcata 265620
ccctggttttat cattttcatcc ttgcccctttct tttgaaactag 265680
agttggagct ggtatagact ggtgagatc gtagaagaga tatcagcata ggaagtacgtag 265740
gtaaccaaa atatatcctt cctagagagcc gcttcgcggc cgttcaaaaa 265800
tgctgtttaa gaaaggtgag aacagtctac gccagattttc taaatcttatc 265860
ctttggttga agaggggttat gtgggattgc aaaaaggggg aaaaacataa cttttggttga 265920
ggtcctttg cttcccaagag taattttttt gtaataccct cccccctgcttt gacgattcga 266040
taatgaattag cagattttac ttcgaaaaag cgcagcaagag aaaaagtttt aagtctttaa 266100
aggagggcc aacagagagta gttgggcctc ttttagatc aatacagact gaaattttgc gggctg 266160
acaccataaa tctttgggaa gtataattta tctcaattaa aatacagact gttgttttaat 266220
tacattctaa aaaaaaggyg taggtatagct ccgatataaa atacaactaa ttaaatttc 266280
ccacttactc aaaatagact ctggtgagagct ctgattatgct ttttataaa ggttgtttga 266340
tatgctggagg aataagagttg ctaataatag tggaggaata gaacaagaaagcc 266400
taactcata atagaaaaat cttcagtttat atagagtttt attataaatata gaaactaaaaa 266460
attgaacctta taataagctag taagcgggag gcctgaggat gataattttg 266520
ctctctctattgt ctctgtgtct ccaacacttaa tttccttttaa aaccagaccaag 266580
attgatcct gttgggctca cctaatgcoc ctattttact tattttgctc gtttaagggt 266640
atatatctaa ccacagctcgg cctcctctag ctattttacta cttaaaggtg 266700
cttggggga ccatcctagc cggatagcaat ttaaaatctc ccccttattgta gaaagggg 266760
atctctagca acagctgag aacaaggttt ctatttttct ctaagacaca aatggtttta 266820
aatattgta anaatgttagt aagagggagc gcttcatataa aatacaattt ccttttttttt 266880
Continued...

attttttattattttattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ttgactagtg atttgctgt ttgctttgt ttcaccaact ctctcgtgac agagggcaca 271500
cagacacga aacccaggg aagaacaccg tgcctgtct tgaagagttc tcaagcacta 271560
toccccaag ataatggtct accttttaaa atatatcgtg aaggggattt cagtcgttta 271620
cotttttcct gtatatcctg ttccctactt ttccacagt tggcagttaa ctctcact 271690
cctaacata cgcctgcttt ctctcaggtt gttctatatta aaggtacttc cccataatao 271740
ttatatttatttatattc ctggagagtga ttagttttag tgaacatcag aaccttgctt 271800
aataagtgaa atgtgccattt aacagcaact atcgaggata atgtgaagca ggttccatt 271860
ggagaaccga aacactgacaa ccaactacct ggtatcact gttgagactt ggatggagc 271920
taataaatg aacagcagga ctgccgagta caaagcact caaactctgatt 271980
ctgccctg tttttttcata ctgctgtgct tctgtagagc agtcggcagct ctgcacatgto 272040
gtcacacct gggaggactt gatgctgcac tggaggtggct ttaatttttca gcatctttc 272100
taactgaca tttttttcata cttgctagtga aatgttttttt tttttttcag aaggggctca 272160
attttttta ggaagcatgct gttgtgttta tctaaactta cacccatatg tctcacta 272220
tgtgtaaaa tccaccaatt ttcaacacat tttgatggca ttaatttttt ttttttttttt 272280
aataattata cttccctatt tcaacctatgt tggatttttt gagaacttttt gaggaagc 272340
agacacgact ctggcggcact gaaacagtat ttcagacatt agtccctttct ttaatttttt 272400
aacaacttat taacactact cctccactta tgtccactca ttttactccag aagaagtttt 272460
tocccctgct tggagtttct atagcactaa atagctactaa atgtgtgttg tgaatgcccc 272520
ccatacata gaactaactaa aatggagacg ctgcacatgct atcggctatt tttttttttt 272580
tctcagccg aacactattt gaaacagtcg cttgctgtgct tggaggtggct tcaacttt 272640
tctcagccg gaaacactattt gaaacagtcg cttgctgtgct tggaggtggct tcaacttt 272700
tgtgacacta gcaacgtgacg aagcagtcg cttcagcact cctgagcctg gagggttagc 272760
aacagctggg ccaacagtattt gaaacagtcg cttcagcact cctgagcctg gagggttagc 272820
gagtgttgcg atgtgcttggt aacacgtctg aagtggagga ctggccagcag atagactttt 272880
gaacccagct gatgagacct gtagcggcgc gaagttggcgc cagctgactcc tagctggggtg 272940
aacagctggg ccaacagtattt gaaacagtcg cttcagcact cctgagcctg gagggttagc 273000
aaaaagagaaaa aacagcgtctta tagctggagc cagcgtcatct tttgtgagc 273060
tgacacgctga ctagcctgct ttatccctag tggatgggag cagctgcctc atccttttaaa 273120
aaatattattt atattttttttttagcagcttt tcaactctgtt cccacaggtgt gtagcgttct 273180
gagtttacct ggtccagtctt cccacaggtgt gtagcgttct 273240
tgacacgctga ctagcctgct ttatccctag tggatgggag cagctgcctc atccttttaaa 273300
tagtatacg aaggtttcag ctcggtgagc cagctgctttgctgcatct ctagcctgct 273360
gatcaccctg cctgccagctg aacactctg cctgcacatgct tgcagttggt 273420
cacaactcat aacagtttttt aaggtggattaa ttagctgcttt gaagggctaaa 273480
gtataacgatt ccttccatct ttattttcttg ttagtttttt gtagcgttct 273540
tctggtgtcct gcggtgtccag ctagcctgct gtagcgttct 273600
tgacacgctga ctagcctgct ttatccctag tggatgggag cagctgcctc atccttttaaa 273660
gacacgctga ctagcctgct ttatccctag tggatgggag cagctgcctc atccttttaaa 273720
acataaaacg agtgtgtgcc ttagtggcgt atttataaat taggccatct ggtctttctcg 280620
atatcctaa atatatttat atatgttaaa taacagtgtt tctggggtcaga ctggccatct 280680
ataaagagag aacatccttg aagctctggag agataaaaaa acataatatg gtggcgaacaag 280740
tgctgcgac atacgtccga atgagacacc caagcctttt gctatcagc agcagacggtg 280800
tgagctgta tgaattgata tatttattaa tattagctttt tctttctcttggt gtaggaacttg 280860
gccagaggc agtgcaacag acctataatct ttctttcactt aaagttacgct cttttctacc 280920
aatatttata cactaagcc caagaaacac aagagagag aaggacagag ggagcagacaag 280980
ggcatcgcc cgtgtcagcc accttgggag cagtcgcagc tggagtttcct tcagagatcccc 281040
ggttttctag agtgggtttg ctttttctct tagttttttttct ctaactactt caagcgtacta 281100
cagcatttag caattttata caatgcttttaa taaatcagact aatcactattgg aaaaatgaatgt 281160
acgctgggagg aagcagagag ggttttactgt tctcactttg ttgaaatgtgtgagagagcctc 281220
tcggagaggtgtgcttcttg gcctcaaggtt cacagctttgctcttttcttttttttctt 281280
tgcagccatgt cttctatctctg gaccaagctg acctattactg ctttttttttttttttttttttt 281340
agttagagcag atgttagagct gccttctatgc tatttttttttttta taaaagcgcgaa 281400
aatattttata aataatataat ctgataactttg cattatatgaga gacggatcca 281460
tgatttttatat ctataactctt cattactaaga tctagaggtatgcttactata 281520
tttatcgct ttttattattg ggaacactgag tcttataatgag tggcgtccttcg 281580
tccagagcc actctagatg gtcgctaagag tctgagagc ttcagtttttcg aattttctatc 281640
ttcagctgat cttgtttcttt ctatttttttttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
atccatocaa gatttatagc gcacctacat qageggaggt atgagacaca aanaaaaatt 282900
cctacacttc ccctctagga actacactca aagtttagac aaatatattg ggaaggtagc 282960
tccagtaaa aatagactt aagatataca tcgatattt gagaaagatc ttttaaatg 283020
cacagtagt aactttctac ctagttgctt ttttccctca tttttaggtt aagcctttttt 283080
gagatatac atcctctgga ttcattcatc tttgctactt tttatatttt ctttacctat 283140
gattcgttat aatattttag aaagttgagat gcccataaaat ctaatttttag caaactgtgtat 283200
tgatccacct tgaatcataa ctagtttactt gagaattact ttaatagtta 283260
tagccacgcc aggccacttc gttctctgcct tttatactttta ctagttcctt 283320
gataacctca tggacaggtc gctttttcttg taagctcatt cttccagcctg cagacagctag 283380
gctgaggagc gtacatcagc tttctctcgg ttctcccactc aagagttggc ttaggtgcag 283440
tctcctcctg cggctcgcgc gttccagggc acactcctca aactcctcatc ctcgatctca 283500
tgatattcct gttccatcctg gtatggagaag ggtccttcctt gchaaacacca 283560
tcttactatttt gacatttatc cttgtttaga cttgtttagg acacggcactc 283620
tgtttagcgtc gtaaggccag gcacattcag cggctccttt gttgctcagg cagaatctca 283680
tcctacgttt tcaaatcttc gttatgcttc cttctgttaa aagcagcagtc ctggagagcc 283740
aggtgctctg ccctctccct ctcgattcac ggacgccctt acctgccctct 283800
cattggctc tattgtcttc ctagttttag aacagctcttc tttctctcctt 283860
ttcctccgc ctaagctgcct cggccttctct ctgcttctcc ttgctttttg 283920
gttggcctg aatccctcctg cttcatctct cttcattctc gttttttttc 283980
tctctctggc cttcttttac tcacatcgtt gccccacggg ccctggtgagc cagaccggcag 284040
tgtgattttt ctcatacaac aatactagac cagttatttt aacgcttcctt cctgcccttc 284100
ttctctcc tgcctcctcag ctagctgtgc aacgctcctc cttttgttagg 284160
tcctctct ctttgatttc aactcataa aagtaaaaatt atcgattttt cttacttttca aacatgaaat 284220
taggttaaat cggcttcact cttacttttttt aaggttttttg 284280
ttaacctggg ctaacttcag tgcgctctcc gctgggagtt atctttttttt 284340
ggttacttttct gtagccctctt ggtcaacca gcacagctttt cctggtttttt 284400
gacaacgcc tctcctttct cctttcttcc aacgagctgc aacagctttttt 284460
tgtggcaact aacgaccaac ggtgcttct tttctttttt cttttttttt 284520
ggcaaaaaac aacaagtgag ctccttcctt gcacagctttt aacgacagttt 284580
catcttccgg tctctcttct tttttcactt agctccctct ttcaccttgg ctctttttct 284640
tgttctggt gttctccttt cccttcctgcc ctctttttctt 284700
taatatatttt tttaatcact ccatcactca acacattttt taatactcttt tcaatttata 284760
gatataagaat ctctatgatt tccctctcag aacatggatat cagccattta gccttttttt 284820
aacacccact cttgaacttt ttgaatggca aacttaggaq accgagaaat ctttttctct 284880
tctgataag gttttaatttg ctacaacgtc aaatgtaggt cagagaataa 284940
aacgatcaca taggtaatcttttattagct aacagctgctt ggtgagtcac ctcaagctca 285000
attagactttt ctagttgagc ccagagacat ccatatagcc gattaagagctaa 285060
aacagcttg gtagggagac acagcacttct gccgacctcg gtaaaaattt aagacacttt 285120
-continued

gttccacttc tagctctttt cttgacattg acdygttttt taaagggaattatcct 285180
gaaatttttt ttagatagtc accttttaat cgttctttct ttgctaatc ctcaactggat 285240
gagytcggag aangaaaaaa aacacaagat aangaaagaat cagtaatgga gatggaaaaa 285300
tttttaaaag tggatcattc ctgaaagagct cggaagagaa ggcacggyggg 285360
ggaaagagc gtctagagtt gtccccaaag cttccagaag tgtctagggga aaaaccaagct 285420
cctctgctca cttccagca cttttgctct cttatacctc gtttcttgctt actctctct 285480
gtctactatt atctcgttta taannattaca cattactctc tiggcttctc acctcactta 285540
apaatactta tattttctct cggcttatata agaanaatatc tigctctctt cttgtagggg 285600
tttttttattcttctcttttttta tagcttctcttttatttttcttacttatttttctt 285660
tctgagct atccattctttg gtcggccgag gggtcaaatttg attctattttt aaatattaca 285720
tggtaatttt cctaaacttt cttatttttctaatcctc atataagagct gctataatctg atgcctca 285780
ttcctactcttc cttatcctcata atataaagagct gctataatctg atgcctca 285840
tttttatttctctcattc taactcaagaa ctcttctttgga atacgtctctttatttttct 285900
aacgctgcgg gttcttggggg aaaaagccag acctggccga atctctacgct atacgtctctt 285960
agctctgcag cagctctctt ctaactctttgg ggcgtgaactac gttacatctc 286020
ggggaaagt taggagagat ctagcacttt ttttttacct tttaatctcatg ttttttttttct 286080
agataagaatctc ataatctctc ctagcacttt ctagattttctc atatacattatatctat 286140
cattttttc tctttttccttcttgtttact ctgggtatatc tttttttctcctcattatttt 286200
tttttttcttctctttgc atcctttttg atcctttttcctt ctcctttttgcttttttttttct 286260
tttttttcttctctttgc atcctttttg atcctttttcctt ctcctttttgcttttttttttct 286320
tttttttcttctctttgc atcctttttg atcctttttcctt ctcctttttgcttttttttttct 286380
acagctccag cagctctctt ctaactctttgg ggcgtgaactac gttacatctc 286440
atcgtctca cactcccattttc gaggtgggtg atcctctctnt cttgacagttt cttgacagttt 286500
atcgtctca cactcccattttc gaggtgggtg atcctctctnt cttgacagttt cttgacagttt 286560
ctgcacagct ctcttctatg cttgacagttt cttgacagttt cttgacagttt 286620
cgttttattctcctcctttcct cttcctcctctccttcttcttcttcttcttcttcttcttctt 286680
acgcattttttctttcttcttcttcttcttcttcttcttcttcttcttcttcttcttcttcttcttctt 286740
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
atgtgtgtgt ttcacacat aatatttata tgtgtgctc atgtgctgt ggttaagtga 287460
gaatggcta tcgtgtaatt atttagctact ttatataatt aaaaagggag ttatataatt 287520
atactatcct aaaaagggat aaaaagggat aaaaagggat aaaaagggat 287580
ataaataatt ttcgcgcgcg ggtgttgtgg gggtggttgtgg 287640
tcgcacatc gaatggtaaa cccgacacaa ttcggtcatt cttctcataa atatcatag 287700
agataatgctt angagagctg cctcgtcatt ggacacacct gcccagaaat gacacacct 287760
cacacactc ataatggacg aagcagcggc taaaagacg aatatcttat tcatctatac 287820
atatattatat aatcataaca tttctcatac agagaaaaaa aacaagctctg tggagacact 287880
tgcacactc agagagagtt cacacacact ttttctcttt aatattatatt gacacacat 287940
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288000
tcctgacatgc tgcagagcct cttgatcctt ccttcgacatgc 288060
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288120
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288180
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288240
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288300
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288360
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288420
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288480
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288540
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288600
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288660
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288720
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288780
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288840
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288900
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 288960
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 289020
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 289080
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 289140
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 289200
tttctctctct cttgacatg gtttttacta tcctgatcactt cctacgacaa 289260
atgtgtgtgt ataatggtg gtgaatggtg gtgaatggtg gtgaatggtg 289320
agaggagaac ctttttttaga ttttttttaga ttttttttaga ttttttttaga 289380
agaggagaac ctttttttaga ttttttttaga ttttttttaga ttttttttaga 289440
agaggagaac ctttttttaga ttttttttaga ttttttttaga ttttttttaga 289500
agaggagaac ctttttttaga ttttttttaga ttttttttaga ttttttttaga 289560
agaggagaac ctttttttaga ttttttttaga ttttttttaga ttttttttaga 289620
agaggagaac ctttttttaga ttttttttaga ttttttttaga ttttttttaga 289680
-continued

taagtagaag gcacacaag ttcacactg atgtaacaac ttatatagaa gctaaagtctg 298860
ttgctcaagt tgtgaacctt ctctagactg gacocatgct gcocataac ccctaaagaa 299020
catggaacc atctgagaga tgtcgacactt aatattatcc actgactttc actataaagtt 299890
atgatctgt gatctttcactc ctactctaga gacagactac ccctcagcctt caaaccctcct 299040
tgtgaccat ttacccagta atggggtttt ttcgctttggg tagcggagggct 299100
tgattttccttgctgtccag tttgacccccc attgatctgct ccaccccttta gaaatgctctt 299160
ggctagacat ctcgagagat gctctgctct ccgctgctct ggagccaccc ccgaagctaa 299220
tgctgtgctc tcaactgtgc ttcgacacgg tgtggagcct cctcctgttc acggtagcca 299280
ttgcttttct ggtgcgcgaa actcattttt ctactctctcg ccgactgcttc 299340
agagactctc attaggttag tgttttttaa ccacacacac aaaaaacgtc atggggggtg atgaagacca 299400
gtcaacatca cccgacagta aggataacct tacgtagagc attcctctagc agaagttttaa 299460
cttctctac tccacccacc ctctacatca ccacacacac ccgactctct ctcctctctt 299520
cctctctgta tttgactggtt tattccccct ccacctctct ccactctctct ctatataaaa 299580
atatcatac tctcttttaa ttataaatctgt tgtttgcttc tttgctttttg atcacaactt 299640
agcctttctc ctaactttcc atccttctca atcaacatca ttgacaatctg 299700
tttcgtacgt gcacacacac attcctcttc tttataattg tattctcttt 299760
acacactcat gttggggtcg cttgagacat gtttccttttc ttctccacca 299820
ttgctgtag tacatgagtt tagtatattc atcctagcg acagcagcgtga tagagctctt 299880
acctctctac agcctgtttct ctaaactctt tacatattt ccataatattt ccataacagc 299940
ggctctcag aggacgaaat gctcatacct gttcttttac ccacacacac aaaaaacggta 300000
acacactcat gctctcagag tatttatttt ctaactttcc atccttctca ttgacaatctg 300060
acacactcat gttgctgtcc tggcctttcc cttgagacat gtttccttttc ttctccacca 300120
cacacactcat gttgctgtcc tggcctttcc cttgagacat gtttccttttc ttctccacca 300180
gttgtactgt cttgagacat gacacacacac cttgagacat gtttccttttc 300240
tttgcaact tctattttcgc ctctgctgca gacag_ttcag gtcggagacag gtcgacaag 300300
gcctctcag atgcagagcc atcctgctct ctaactttcc ctctgctgca gtcggagacag 300360
cccctgcaac gttgctgca ctctgctgca gacag_ttcag gtcggagacag gtcgacaag 300420
tatggttgc tatttttttt ctaactttcc cttgagacag cttgagacag cttgagacag 300480
acagcttt accatgtcgt gttgctgca ctctgctgca gacag_ttcag gtcggagacag 300540
acagcttt accatgtcgt gttgctgca ctctgctgca gacag_ttcag gtcggagacag 300600
agctctac ttcctgctt tttcttttcc atctcttttt tttctttttc tttctttttc 300660
cttctctac tctctttttc cttgctttcc cttctttttc cttctttttc cttctttttc 300720
ctatgctgt tctctttttc tttctttttc cttctttttc cttctttttc cttctttttc 300780
tttgagagct tatttatttt ctaactttcc cttgagacag cttgagacag cttgagacag 300840
cttctctac tctctttttc cttctttttc cttctttttc cttctttttc cttctttttc 300900
cttctttttc cttctttttc cttctttttc cttctttttc cttctttttc cttctttttc 300960
tttgctgt ttttcttttt cttctctttc cttgagacag cttgagacag cttgagacag 301020
tttgagagct ttttcttttt cttctctttt cttctttttc cttctttttc cttctttttc 301080
gaccoccaaa aacotcattt gccagtggag tgatattgcc tagattaatta ccagctacag 301140
cctttcttt cttctctgta cactccagtgt gttgctaatt tctttctcct tctccagagaa 301200
gtatagtga cttaaagttcg tctctctttt ttcttcacac ttcttaaaccc ttgcagacgg 301260
aacttggatt tctgctttaga cccgaggttgg tctctctttt ttctctgttg ccctttggtgcc 301320
agttttcttt tctcttttcttt cttggtggtag ggggttgaatat agttttcttttt tcttttagagt 301380
aactttccttn ttaatatgcttc cagattatacc atgtgtcgatt cggggctttt cacgggtttc 301440
aacttgaatat ctaaagagag tagttgcgcctt tctccctcttt tctttcagttg tctttcagttg 301500
tactaaagtt cgggtgtccctt cgggagccgcc cgggacccccc cccgtttgccc 301560
atgttgcgtgt cgttggccctt cctctctctcct cctctctctctt cctctctctgtt cctctctctctt 301620
aacttgctct ccaaaaaatc tctctctctct tctctctctct tctctctctctt cctctctctctt 301680
tccgcttggagct atgctcgaaat atgctcgaaat atgctcgaaat atgctcgaaat 301740
gcgtccctgg cacccacacac ctgggtctgc atgtgcctga atgtgcctga atgtgcctga 301800
aactctatgct gttcggacgtt tctctctctct tctctctctct tctctctctctt 301860
atctctctctct tctctctctct tctctctctct tctctctctcttt cctctctctcttt 301920
tctctctctct tctctctctct tctctctctcttt cctctctctcttct cctctctctcttt 301980
aacgttgagt cggcctttcg tctctctctct ctttctctcttt ctttctctctcttt 302040
tccgcttgcctt ggttgtgcctt tctctctctct ctttctctctcttt ctttctctctcttttt 302100
acacacccagtt tcacacccagtt tcacacccagtt tcacacccagtt tcacacccagtt 302160
tccgtgcacat cctctctctct ctttctctcttt ctttctctctcttt ctttctctctcttttt 302220
tctctctctct tctctctctct tctctctctcttt cctctctctctttct cctctctctcttttttt 302280
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctct 302340
acacccagtt tcacacccagtt tcacacccagtt tcacacccagtt tcacacccagtt 302400
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttt 302460
atccgctatgtt ctctctctct tctctctctcttt cctctctctctttctcctctctctctttt 302520
aataacgcttt tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttt 302580
atccgctatgtt cgggacccccc cccgtttgccc 302640
ccggtctttt ctttctctctcttt cctctctctcttt cctctctctcttttt cctctctctcttttttt 302700
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttt 302760
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttt 302820
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttttt 302880
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttttttt 302940
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttttttttt 303000
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttttttttttt 303060
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttttttttttttt 303120
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttttttttttttttt 303180
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttttttttttttttttt 303240
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttttttttttttttttttt 303300
agtcctctctct tctctctctct tctctctctcttt cctctctctctttctcctctctctcttttttttttttttttttttttttttt 303360
---continued---

tagccagtctg aagttggag ttcgagacca aectgacca aatcgagaaa caatggatct 310260
taatcatata aaaaataa attgccggg ctgggttggt ctagctgta atccccgata 310320
tcaggggac tggagggag gaaactctac aggccgggg gaggaggttg gtcagagca 310380
agttccatt aacctggagc gcccctggtg aacgaggtga aectgcgcc tctcctctct 310440
aaaaagagag aaaaagaaaa agagaggtga aatggcgcag ataccagaga gatggcaggg 310500
agaaagaga aaaaagaaaa agagaggtga aatggcgcag ataccagaga gatggcaggg 310560
ataataagt taaaagaat ggaatataat aagtaatatc taaaatatgaa taatataat 310620
atatataaga aaaaagaaaa gggagttttt cccgagtttt cggccgagtttt ccggccgagtttt 310680
agttctgagc gtcgagaggt gacctttttt cttttttttt cttttttttt cttttttttt 310740
gtttattttt tataaataat attatcatttt tttaacacttg aataattcag aataattcag 310800
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 310860
tatatctttt aataattcatttt tatttttttttt tatttttttttt tatttttttttt 310920
atttaaaaat aataattcatttt tatttttttttt tatttttttttt tatttttttttt 310980
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311040
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311100
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311160
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311220
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311280
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311340
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311400
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311460
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311520
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311580
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311640
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311700
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311760
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311820
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311880
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 311940
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 312000
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 312060
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 312120
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 312180
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 312240
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 312300
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 312360
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 312420
ataataaat ttaaaaat tataaataat attatcatttt tttaacacttg aataattcag aataattcag 312480
aaatatatc acattatatc acatcttctt aagcccaacc cccatccccgcc atattagctt 314820
tatatagc atattaactc tccacctcga gattatagc ttgatattt ttaaatgctt 314800
ttgctgctg cggacttctt tacgttttat tttcaggaag agctcattgat aaccctcttt 314940
tttcttggctt aaaaatgttgt ataattatatt tttctctgac ttctatactga gaaatggtgc 315000
tgcataacaa atcctcctgcatt tacacatattc ctcacacttt atttaacagct tttgatatca 315060
ttttctgtgta anaattgtgtg ttaaaccagaa gttgatcgcc agctctgatttt tctttctctc 315120
attagctatt taagcccccttt gctgcttgt tgaattttata atataaaaaca taatgtgca 315180
tactcttatt aagactgttg ctcgcatgaa acatcctagg tccgcttacc taggttcata 315240
gaatagttgtt gataatgtttg aacatctatg atctctcctgtctt ttaaatcttt 315300
taaatatttg ttggggtgcgtt ggtgctggttt ccccctgtcc tcactacccg acctctgggag 315360
gccagggggt ttagctcataa agctttcagc atttacgaca caacatggttc gaggctttaa 315420
cocctcctctcta aacaaaaata caaaaatatt agccccctggt ggtgggagcc acccttacgtc 315480
ccgctatcc gccagcagcgg acgaggggg ggctgttcat gcggagggca gggctgtccag 315540
tgcacaccag tccacgctcc gaacctcggtc aagccggaga cggactgtgatt tctctctaaa 315600
aaaaatcataa taggggttgctc taagattgctg caagttcctc aacgcctcacaatttactg 315660
cocagtcctga ttagttacgga aagccagaaa tttttgtcatt ttcacatttg caacagctgtt 315720
cactctcctc gggagtacctt ggaacagcctt ggcagcagcgg ccgagctgatct 315780
gacgcggaag ccagcgccag cttgctcacc atgggaagtt cagccggtcaca gggacctccc 315840
cttctctaat cgacacaggtt tgccactagc gcaaccctgg ctactctcaccctcttac 315900
aatatgtgcgt tttccctcatt gccatccaa agccgcaacc acaagtacctat atctctgacc 315960
ttgctgctgac aaggtctcagc acaacagtacc ctcagcatgt gtagctcgac agctctgagat 316020
caacagagcg ggcagctaggg ggcgggtctg gocactctagc cagcctcagtt 316080
aggtcactaa aacactgctg ggtgctgtagc acggacaact gcaacaccgcc ggcagcggag 316140
tctgctgctgtg caacctttagg gccaggtggtg gatcagatcc gcaacaccgcc 316200
aacccctttc agctctgtcact tgcaggttcc cagcatacctt ctgggttccttt cagccttgcct 316260
agctcagcgg ttcagcgggac gctggctcctc caagctctagc cctccctccc 316320
cgagctgctt gattggtccaa aggagggcag aagcccaactc tgggctggggta 316380
ctccctctcag ccacctaaccc cagacaagcctg cagccagtcc agctctggttt 316440
ctcctgtggtcctctctc gtcctgctag acggctcacc acaagctctgg gacaggtctctg 316500
acgcaacctca tgcagctcagc ttcagctcagc gttgtctgact gttggaaggg aacatcctac 316560
aagaaagggct gctgttgctcctc atgcatacctt gcaggctcacc caaacaaggg 316620
tagataata acaccagatg gggaaaaaac agagcagaaa aaccaagaaa ttataaaaact 316680
agagccagct tcggcttctca aaggaacgca gttccctccag agoacccggaa ccaatgctgg 316740
tggcatttga tttgacatcattc ttggaaaaag aggttcgagt aagagaaaaa ttcttggaac 316800
taaagaggg aagctcagcgg acaagccagaa aaaggataaaa cttgaaaaa aagattagctc 316860
aaggtatatc tagagctccg catacagcag tgcctcagc gacaccttga ggcagcctac 316920
ccagccgca aacatctgag cgaactactt gcagcttcgcc aagctctgtgct gtagctcctcg 316980
aagaaagggct atccatggtcat gataagcaca tggtaggtaa gataataactgctctaa 317040
gagaangag aataaanaga aatagaacsaa gococcaaga aatakagggac tattgaaana 317100
gacnacatac agctcgttct ggttatcacg aacagttggg ggaatgacca accaaagtgg 317160
aacaaaaat ctgcagttatt aacagccaga aatccccaa cttcagacag caggcccaca 317220
ttcactta gagacaccaag acgaaacaaa aagataactc ctgacagaga gcacccacaa 317280
gacacataa ttgcacatat accaaagttag aatgaagaga aaaaatttta aggcagcccc 317340
gagacaccaaa tgggytaacca ccaaanaggg aaagccctag acacccagcg gttctcgagg 317400
cagaaactc acaaacacga aagagtgggg ggcctgatatt cccacattcg aaagaaaaaga 317460
atttccacc caagactcca tacccaaacct caataagctt ctaagctgga ggcgaaaaaa 317520
aatcttctta agacactcag acggcagtgc attaagtcac ccagggcgct gccatcaag 317580
agcttcggaa ggaagccact aacacggaaa ggaacacta gtcacgcgag ctcacaagac 317640
atcggaccat gagacactag aagagagtcg aacactacag ccaaatagcg 317700
agctactac aatagcagc gataacatt cacataaca atattaacct taataattga 317760
tgggaatca gacatcattc aagacacag actgggcaat ttgatagaaa gtcagacccc 317820
atccagctgc tgttcatcagg aacaccctc taacgycnga gacacacata ggtctcacaat 317880
aaagtgaggg aaagaaact gccaaagaaa tgggaacac aaaaaagacc gggtggccat 317940
catccactc cttaaacagc acaatcaagc aacagagact aagagccca 318000
ttcactata gtaagagcga caataacaca aacagagcta actacatcga attatatacg 318060
aacacaaac ggcagccacca gattcataaa gaacctggti cgtcctgacc aacagactt 318120
agcctccaa acaataaatt tgggacagg taaacattc ggctcatacat tagagcatac 318180
aacagacag aaaaattaaca aagatcatac gaaagactgc tggcctgtgc ccacaccaca 318240
cotaataaca aatccacaga ccctccagcc caaatcaca gattatacat tttctctcgc 318300
acccagggc acttcataaca saatttgacca cgatccgttg aag aaaaaccc ttcgacgca 318360
agttaaaga acacacatta taacaaactc tttccagacca caagctgaca caaasataaga 318420
acccaggti aacaactcata cttaaaaccg ccctacacta gttacagcga aacactatcg 318480
cotggtcgac taactaacgtt gaagcagaga taataagctgt tttttgacaac 318540
caatgggaa aacagacaca acacagccaa ctgtccggac agaaccaacc aagagtgtag 318600
aggyacccttt atagccattc atgccccgaa gacagcagc agaagactca aaaaatccac 318660
cotaatcata caataaaaaa agaagagaac gcagacancc aagccgctgca agttgactgcg 318720
acagcagaa aataactacta tcaagagcga actgaaggag atagacaccc aaaaaaccct 318780
taaanaatc aagactgcgtt ggtgttgaac atacaataaa ctgataagct 318840
gtacagctca taataaagaga aagaaaaaga gaaatcctaaa atagatcga aaaaatatga 318900
taaggggat atccctactc gtccacacga aataaactt actctcgacg atactactaa 318960
acccctac aacacatatatt taagaacctt aagagaaatg gataaatccg ctgaccaaca 319020
ccocctcaca acaataacgg aagagacag gtagctcttga agtacaacna taatagcttc 319080
tgaagtttag gccaatata atacgccttc acactaaaa aaggtccagga ccaacggtat 319140
tccagctgc aatctccagc agggagctgctt actacccctt cggaaacctt 319200
ttaaatcatt gaaaaaaag gagatacctct ctaactattc tttgactggcc agataatcc 319260
tgtacacaa gctgctcaca gacacacaa aanaagagaaa tatggaacca tatactctga 319320
tgaacatcga tcgaaaaaatg ctgagtaaaa tacgagccaa ccggatccag cacgaatcata 319380
aaaggttat ccaacatgtg caagtggtgc ttcacccctgg gatgcaaggg tggctcaaca 319440
tatgcagtc ataacataa atccagcata taaacagca caccgacaa aaccacatga 319500
cttcctcaat gatctgcaaa aagggcttttgc acacn ataacccttc ataagtcnnaa 319560
ccttcctac aaattgatttc gatgggaacct atcctcaaat ataaagagctt acctataagca 319620
aacccgacgc caatacataa ctaagatggac aagcctggtt ctgccacagt 319680
gccagacg gggtgtgcct ctctcctgaa ccctatcataa catataagttg gacttcttgt 319740
ctgaggacc cagcagaggg aaggaasata aggtatatac atattgaaanag gggagacctca 319800
aatggctc ctgctgacgc cacagcattg cattctgctg aacacatgcac agtccgagc 319860
acacactcct taaagtttaca accagccttga gacnngcttac atcacacnctac 319920
acacactac gccacatccta tacccacattt cagacacnagc cagagacatc ngtgcaac 320040
tgggagagc ctctcatcag acagatccttac aacocagcttc aacacacnaa 320100
aacacaaact acagacatcct aagttttgctg ccttcaagc atcaacacnctac 320160
catactcctg cagagcattc atacacctaa ttctgcacct ctcatacctac aaggtccttc 320220
cctcagatg gacacatccttt ctaatcataa gacgcttacctt cagcagcttctt 320280
ttagctagct aacagatcctc tgcctgctc ggaacatcctc aacacacnctac 320340
aacatcactg aagcagatcc aacgctgtctg tgtctcagttc acacacnctac 320400
agcagacatg agcagacatg aacgatcctc tgcctgcttc accatccttc 320460
cctgggacatg cctcctgtgtg cagcagatcgctt cctcacttcctt aacacacnctac 320520
tgaggctct cgttcgtctg ctagtctgac tcttacagttg gcttcatctccttc 320580
tacaccactt acagatccttc gacgctgtctg cagatccttc ctcctctcct 320640
cctagcttac acagatccttc gctgtcttctgc cacatccttc 320700
atcattcctt ctaactccatt tgcctgcttc aacacacnctac 320760
aagatgttc ctgctgcttc ggcctgcttc aacacacnctac 320820
tggggagaacctgggacacttccc acttcccttt ggaacagcttc atacatccttc 320880
acacactac acacccactt cggggaacctgctgg actacatccttc 320940
agcagacatgc atcctacatgc gctgtcttctgc aacacacnctac 321000
tcttactgcttc ggcctgcttc aacacacnctac 321060
coagtcgtt ccctgttgtt ctaactccatt tggtctgcttc aacacacnctac 321120
gaagtgctcg ccttcatcttc ctgggttctgc ctggtctgcttc 321180
tggttctgctgc ggttcatctc ctaactccatt tgcctgcttc aacacacnctac 321240
tacactccgt ccttcatcttc ctgggttctgc ctggtctgcttc 321300
atggtgctgtt ccttcatcttc ctgggttctgc ctggtctgcttc 321360
atggtgctgtt ccttcatcttc ctgggttctgc ctggtctgcttc 321420
aacggtgctgtt ccttcatcttc ctgggttctgc ctggtctgcttc 321480
gaacggtgctgtt ccttcatcttc ctgggttctgc ctggtctgcttc 321540
aacggtgctgtt ccttcatcttc ctgggttctgc ctggtctgcttc 321600
tgaggaggg ggagggagc ataggagat acacotaatg taataagcga gtttaatggt 321660
ggagcaca acacctgcc ac atgtcgtat atgtaacca aacotgcatgt ctgcaacagt 321720
acacaaaaac tttaagacta ataaaataaa atanaataat aatataataat atatagtttt 321780
agtgtcagt tcctttctttt cttttctttt gcctgtatgct accatacaca ggtataacatt 321940
tacttgcttt cttatagact ttcctcttaaa ttctttctttt ctctttgttctt aatcttttta 321990
tctatactt gtttacttgtg acctgtgctt ttgctgtctt tggctgcttt 321960
atattattgcc atgyttcgtc ctcttttcctt tttttgctg acacagctct 322020
atattctctgct tttttttttt tttttgtcgt aatgttctt aaaaagttta 322080
aaggtgctga gtcacatgc gataatgact tagacatgat acctctttttt tttttattttt 322140
acgaatagc ggtacagtac ctctttttttt ttttttcctt gacagttta 322200
tgcttgctga gacacatgtg ataatagac gcatatgaa gatctggaa 322260
agtatacaac ttaaaatttg gtctacgcac acacagact ctctactgct tgaangaact 322320
tctacacac ctgatctgtt ccacagatta ctcttttttttt ctctttttttg 322380
ttgaggtgag aagatgttgc ttacaacgtac ggtcagacaa atggcagctat agaagacagt 322440
gtttaatt cagttccttttc cattttcattt gttttttttaa gttttttttt 322500
aatatacttc cttctttttt ctcagctttg ccactatataga taaaactttttt 322560
acacagac atgttacagc cattttctttt gcttataattt ataatattttt gatataacac 322620
tctctttttt atttttgtac tatacaacca ccaacatttt ctaacagcgt ggtgtagttta 322680
taatatacct aatataataac tatttttattg tgaacccca atacataaata taattataca 322740
tatataatac tataataattta attattatatacattt taatacagcata taacaact 322800
atataataac tttataataattt aataatcacat atataataata gacatcgtgta 322860
gacataatactg taataaatac ataatcattt taaatccttg gacataaatttg 322920
attgtagcgtg aaagttacat tggataacat ataataattt gacatcggagg 322980
cattttcattg ccactataaat tattttttgtt tatayggaa aagtagtagta 323040
ccacagatgac taaatggtttc agaatgagct tagatgagag ggataaaaaa 323100
tataacatat ttttattatt tataactaag ctagatgttg cttgdcgcc 323160
gaacataagc cagtttattt ctaataagag atatatagctaa aaacacactaa 323220
atgaaagact gaaactatcc agagactcagat ttgagcctac aggagacag agaagactag 323280
aatatatgga ctcttttttt tctatgatttta aataaatcattg gacgataaggtt 323340
ctctttttttt aaataaaattt tagatgagtg tctttagttt gcaacactaataa 323400
ctctttttttt gaaatatattt atcagatggt gggaatagtg tctttagttt gcaacactaataa 323460
tgagcactaa agtatcacc ataaagaataa attataacaa attaatctttg tgaatataaa 323520
caaaatatattttttttttt ggtgataacg ggtgtagaac gcgtcctatt gccaagagc 323580
cacgagagc agatacagcctttttagt ggtagaccat ctggaacact ggcacactg 323640
tgctttact gaaaatatattttagctg gggcttggttg gggcttggttg gtaagcctgca 323700
ctctttttttt ggtgataacag ggtgataacag ggtgataacag ggtgataacag ggtgataacag 323760
tgaaagact gaaactatcc agagactcagat ttgagcctac aggagacag agaagactag 323820
aaaacacta aacactaata aacactaata aacactaata aacactaata aacactaata 323880
ctgaacact cgtctcctg gttcaagcag ttcctgtggt cagcttcagc agtagctggg 326220
ataacgagc ccacccgcca cacctggctta atttttttgt ttttagtana gacgggggtt 326280
tgcacacttg gcaagctggc ttgtgaacct ctcacacttg gctcagccac cttcgcctc 326340
caacagtggt gataacccaa gtaaccttcttt caccagtggg taaacccacta 326400
aatcttttag cacactgatgc aggaagaagag aaggaagataa aactgaagata ttgtctttagt 326460
accaacactt ccagaccaaa gactgtctatt caaanataa caggaanacta ctcattcaaca 326520
ttacagttga cttggtggtgg catcactcact catctctgtact gctgttattcg atgcatacct 326580
tttccactac ccactattcagt tttccctttcg cttctgcaaaa gactctcagcc agggcatgtt 326640
tttttcttttg gtagtgcagt ccaacccctct cttcctgaag ggtcgctggggt cttggtgttc 326700
tctggctgct ccagttagttgc gctttttttta ttgcttcttta ttcacggggt gttgattactc 326760
aagacaccact caataagacct ttctctattc actcattcgtta cttctcttacc ttcacattgtg 326820
agtgaagactcg aggcttcatct ttgatagcc aatgcaagc ctccgacaca ctaacacttc 326880
ctctcttttg gtagtagggg ggccagcagc ttaaattattctt actcattcctt 326940
ttaatgact caattttcgt ggctctccttg gcacatccag gctgccttcgtg aactgaagcct 327000
ttcgacgac gaaacttgat tgggtggagc aaggaacaga aactcattact caaggggtctt 327060
aggggtgattgg tggctggtggttc ccattctatt ttcatctatt gcattgaatt acacctaagt 327120
cctggctgt cagggaaacc tacaactataa tgcacctgca tgcacgtctgc aacagctttt 327180
cctganaact ttcgacagcact ccgcaagatt tggctggtgattc ggtgactgtg taattgtgaa 327240
tttcagaagag cttctctactcc ttgctctttttt ctagctgttgc ttcaggtgag ggaggggaag 327300
gtaaagacct cgaatctacag tgggcttgcct gctctgctggtg caggtgagac 327360
agtgttctgc tgaagacaca aggctggtct tctgtttctct caggtgtgaa aagcattcct 327420
aagtgaatgc tttgcagttgc aatgcgaagc agtggcgcta aagtggagcag 327480
aggttacattg ccaccctcag tgaagacaca aactgtgtgt ctgctctttgc aagaggtgcc 327540
agattaatc aacctgcagc aaglaggtgc ctcagctccag ggagagtagg tcagtcgtta 327600
cggtccacct aggctcaggct caggtctggcc aattgggacc tggctgttggc ctgtgacgag 327660
gctaggcttg tgcaccgagg gttggcttcct ccgactctgcgc atcctctgtgc 327720
accagcgtcc ctcttcttcct ggctgatttg ggccagcagc atggggtgtg gggagaggaag 327780
ctgagctgctg ttcacagacg gactctatct cttcaactttt ctttaaactt actaagactgtgc 327840
tcggtaaag aattgggttc tgggaggacttt ctctctattt cagataaact ctctctattt 327900
ctcagaggag ctcacactttt gccacactct ttcacattact ttcacttttc 327960
aatatattt ctttaagact ccatcacttg taggtctacc atgggtcttc aactgttacttt 328020
cactgtatata ttcacactttt ttggtgctatt caaacatgtgta caggaagagtca acatgttatttg 328080
cggtgctgcag gctgttgcct gcagctcttc acctgtgggt gcggactgca tacgctgcag 328140
tagaagggg ctgatgtggt gcagctgcc aactcttggt gcggactgca tacgctgcag 328200
cctgtgtaa caacagcagc tttctctctct cttgcttttc gttcactagta gggaaactcc 328260
ctagacgctg ttcgctttgtcg cttctgtgctt gggagagggg ggaggctggtg gggagaggaag 328320
ggagagggt ctaacactct cttgaaggcactt gttggttttg ctnagagatcc 328380
ttctctctact ttgctgttgc gactcttcgtg gttggttttg ctcacactct 328440
ctgatggt caaagaacct ctagttcatt atagcgatt tagtacct gcggatgta 328500
tgacctgtg tcaacacct agttctgcc aacgaacagt accggcacc gatgtgcctc 328560
tcacaagct aagtaattc tgcaggagtt gcggggtctg gccaacaatt ctaaagcgc 328620
tcctggtca ttgaccataa ggagctctgcc aagggctcaca aacacatatc catctgcacc 328680
tgcacacatt aacgaacatt ggttcggcaca gttcatatgg cccaaagcgc agacaggatt 328740
gcaacagct ctgacagcct gcggacagct ttcctcttcg gtcocaccata aaactggaag 328800
ccttccagtg caactgaata ctgggctggg gtaacacacc caaatagagga actgtggtgcc 328860
tcacaaccttc aagtaggc aaaaaccagc gtcotcctt ttattagcgc gtaaagggcaca 328920
aacagggcacc ttttacccag gtagagtcct caaaaatctttt aagcctatctt atttcaccac 329040
tctgcccaac caagtagctc accaataata ccaagtattt gttcctcttg cttgcaggtcgc 329100
atcactccg ctaaagtcag caataataa gcggacagtt gagtatattgg gaaaaagaaa 329160
aactatacag aactttctcag caaagtagctt aacgagacct gcggacagct gttaaacctcc 329220
agtggacagc aatccttagg attctgcggcc tggctgcagtc aaggaatattt gccgtcgtgc 329280
ggctacttac gcaggaaggg agaatcacacc aatggcacc acaattctgg catcacaagt 329340
aacagggctt gtagtaactt gcataagtt aacaccatca ctggtagcttc cagctgcaaat 329400
tgcgatccag gcggataagg gccctgcata aatcctattc attttacag ttcctctctg 329460
ctctgacgc gacacaacc gaaaaaggtgc cggagaagtg gaggcagag ccccaactgc 329520
atgcttaga ctgcttagg cagcctaacc tctcctccag gatagcaatt tgtgtctgtg 329580
cttaatttt atctagtaga gcggatccttt atgctgctttt ccctcctaca aaccaacctt 329640
tgcggctcct ctcagactag aggagccgaa tgtgggggtt ccggccagct cttatattcg 329700
tcgggcaat ttggcacttc gggagcggc aataagacc aagagagttg cggagacacc 329760
tcacatttt aagcagctag cagagaggtgc cttcgagacg ctcacttgat ttcaccagt 329820
ttcacattt ccaagagctg cgtgagcacc aatacttctt cttcaccagtt atcctctgat 329880
gcgagatgc aattgcgcg acgcgacgct aatttttcct ccccctccag gttgcaggttt 329940
acacgagctc cctctaggcc gtatattttc cttcctccag gttgcagggg ggaagagagt ccgtgctaca 330000
attcctgcaag atcagagggg gcctgccct cagggagct agtgacctgc ttaaagccgg 330060
gggtctcgtt cttatacctt gttcagcagt gcnaattgtg tgagggcgcc ttgtcttttg 330120
ttatttttt ctcacaatt agttttcttg aatcctcactt tcctgtcctc tgggaattc 330180
ataataagc gcagctagtt gcgtgctggct gagcagcatt tcggagcactt ggctggcttc 330240
agacagccat cttggtcatt caccagggt ttaaagagtt gcaccctgct cggagagc 330300
tgaacgagct gcggatgcac ccgggagcct cggacagctt gcagctgcgg gggccgcctc 330360
atgggacagc aatcctctag gcggagcggc cggagagcatt ctcggagcag cggatgcagc 330420
gggtcgctgc tcaacaccgt ttgctgccga cctgcagctt ccaggctgcc 330480
gggtcgcctgc tcaacaccgt ttgctgccga cctgcagctt ccaggctgcc 330540
ttcagcagct gccagcttcg ccagacagtt gcggagccag cccagccagc 330600
agccttgcc tttctgccag ttcacaccgc cccagcagct gcggagcagc cccagccagc 330660
agccttgcc tttctgccag ttcacaccgc cccagcagct gcggagcagc cccagccagc 330720
cotatcctaa taactctctg gggcactcag ttttggtttt tttttttttt ttttttttttt ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttt...
taagaacctct tgtggtgcc tgtggcact atgtgtcct gcgtctcag gcctcatcag 335340
ggcaccagt gcctggtcag caggttcaag ggtgctcacc cttcttcgct ccttctgcag 335400
ttcctcacta tttttttttttttttt tttttttttttttttt tcctcaacc ctaaccatgt g 335460
ttcctctctt tgcgcactctt ttttctgcgg taagtctgtac ttatattgtc 335520
ttgatattag tctcctcc tgcgcttgc ggcgtgctct acgctctgtaa ttcgacactt 335580
tctggagcc gcggcaggttg gaacgcaagg tctagagctc gcacgatacc tgcgcaacct 335640
ggtggaaaa cgtctctatt aaataataaa aaataattag ccagggcttg g ggcgtgcttc 335700
tgtaactcc acggccgcgg cgggtgctgg agggtggttt tggaggtggc 335760
tggcctggtg gtggacgcttg actgacgaca tggagacaaa gtggagaccc atctacaaaaa 335820
aacaacaagaa aaaaaaagac actaactcaac agaggcttc acgcctcggct ccctgcccagc 335880
ttatattttg tgcacgcttt tgtgtatttt ctaaaaaacc cctctcttctt tcctctggca 335940
tttgctcagaa tattttattt tagacgggttg agtgaattat tgcatttaaat 336000
ggtgcctcc tgcctaacat gtacgcgca gccgatgaaa actgtcgtct gcctgcctctt 336060
tgtataacc tcaagcgtca aactgcgtag ctcnccacat gagaratccgt cacataatttt 336120
ttgctgtaa ggaaggaatc aatcttattg tccgctggt gcctatataaa gcgctctcag 336180
tcaacctccca aacacagtggac atccgagttt cggagaagaga tcgaatttc 336240
tatattttct ctcaacaata caaatggccta gcgctctcag acgcgctctc 336300
atatattt cacatccctct tccctttctct tcggcttcatt ttcagttaca gccgtgttctc 336360
actgattagg agacgaaaaa aacctcttaca ttcgctgtgc tttgctttata caaaaaaaat 336420
aaaacagagcgacagttggtttctc ctcctcttctt ggcctggacc 336480
aaaaattag aacaaatttc tcctgctggt gatgtttagt tagggcacacc ccttaaacag 336540
tttcctctca ggcacacttt ttaagactta acactatgta actgacgcac caaactaacg 336600
ttgctcatt ctataagtct tctgactctt ctctctctctc gcctacaaa tctaaacca 336660
gaaggtgttaa tcagaggtgac acttgatattt acacactata acctctcttc 336720
ttcacacttt acacaaaaaa agttataaatgttggtcag ccttctacttgg 336780
ttagatata ttcgcaattt ctctgtgtta aacgccttcc ttctcgctgtc 336840
tgaaaaagct atataagcc gcagcccagct tagtctctct ctctctgttgagacagacttca 336900
agaggagaca tcagaggtcaca ttcgtactca ttcaggtcag tcatactctc acacatatttt 336960
ctacagggc atataagacttt ttcgctctga atttcacaac tcaacatatgct ctctgcttct 337020
agaagaggggc ctgcctggttc gggagggctg cttgatattat cttcctctctc 337080
ttcacaggatt tcggtggttt cttcggggt gatgggatgt gttgctctgt gcagggctag 337140
ggctggaaaaa aagagagagttcagagacgtctctgcag gcccagggctg 337200
tgatagagc gcgcgggtgg cctgcattca tcccggggag cggaggtggtt aatcagtgatt 337260
tgctgtagta ccctgtagatc tgtctcagac ccctgctcctc ccctgaatgta cggagtttaa 337320
tgcgcctcaag cggagcccgc ccctgctcttc ttcctctctcc tgaatcagatac 337380
tgcctgagac atatatctcaacctcctctgtggta ctctagttaca gtagtactctcctctctctctc 337440
aaaaaagttt ctttgccgct gctcccccctc tctaactggaa atctatccac cttgggcaac 337500
tctgttggat gctctttccc ctagatttct tagtctttactattctaaa aacancataa 337560
-continued

gcgagggggctgccagagataaagtctgggtgaatttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
continued

cotctttgctc agtttcctct tttcacaata gcaagagtctc tgaactagat tcaataaat 342160
tcctgataa gtcttctctct tcctccccct gccggctt tcagagctt tcacaatac 342240
tggaatacg tgaatattct ttcctccataat ctccagatgcc caacacatc 342300
tgctacataa tattcttccct ttatctcagtc atccagatcg gaaagatgg ccaatgttga 342360
gcggggtgct catctatgata catttcttta agcttttggagcttttggaa gaaagatgctc 342420
cataatcac ctccagctc agtatcttctt gcacagcgct cagatattttc tcttttttac 342480
aggggtgatg gcatctcaact atcatatatct ttaattttttt ttttaaaagtt 342540
tggtgttcac caggttgattc tcatctttct ggtcatagtt gtaatggtgta cattgaccc 342600
gggagagc atacatcctg aacatagtgg tttcttctttc ttggtttataca tttattttcg 342660	ttggatatgtg gttcaaaatg ttaattatatct tttattttttc gggcggggc cttcttgagta 342720
tgctacataa tttctttctacat atcttcatat cctacaagaag atgcagagctg caagctttttc 342780
ttaatctgctcg cggcagacgc ctatctttct tattctgctcg ttagcgattc caagctttttc 342840
tgtctgcata ctctctctgtc attttctttct caatagagtttttttttttttattacgg 342900
aatcacttc ctggtgtcacc cttgctgact agagctgtt actttttttt ccaaaaagat 342960
tattctctgc tgttatgcagg ccagcctttt ttaattttttt ctaatgggca 343020
aanaatgcttg gtctctgcaaa tttttctttc ctattatcttg atcctggttgc tcatctttct 343080
ttcatttag gttgcagatg atcagtcttct gctggagTTTTTTTTC ctttttttttttca 343140
tttaaatttgc gttcagctac gcctctgcatc attttattttattc ctttttttttttca 343200
ggctctctgtg tctactttcact atctcttattttct tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
tctgtttact ttccagatctc taggaactac ccctttcttg atggctgtga tccatcata 344460
cccactgaa ttgagctaca ttgctctgac tgttttgcc cttgaagttta gtatagaata 344520
tttttctag actttagaa tgaagcccc cccccactag ataatgacct cgtagaaccc 344580
tgaagctgct ttctgcaat ggcagatgc aagatactat tctctttctca aagctcctcat 344640
agatatcct gcagatcttg agttgcaaaat cttccttcca catagtcacg ctaggaagct 344700
cttcatccttg taataatgtct gatgagagac cctataatat gcagctcttt 344760
gagatcagc caacattcgg ataaattaca aaaaataaata tcaagatcat caaagatct 344820
aatttttatt taatttaacaa atagttggtc ctaaagttgc cttgagaacca ttaatttctc 344880
cocctgaa acaggggca tttttatcct aagataatatat cagggataac cttcttctac 344940
cctaaacagc tagattctgag aaaattgac ccctaacatc ttcctttcac 345000
cctaaacagt ccagatcactc gaaacacacg tgcagatcagc cccgagagaa 345060
gctgttggct ctctctcata taattgctgt atgatgtact gttcatcata gcaccctcca 345120
catattccatt attctactacg cactgcatc accaccaccg accaccaccg accaccaccg 345180
aagtgagagac tgaatggaga gtttgaggtta taccatctac ctacaggcgc cgtcaataag 345240
tcataattagg tctgttgag ccaaccttag attgattgac ggtataatatt ctctgtgagg 345300
aatctacgaa tagacgggtca gaaaaatcta tccatttcg gaaagatcatt 345360
aagagttacct cctttttttc cattagttgcc ctcttttttcccc tgcactggac 345420
ttgtaagttctt ctcacattctg ggttttctctt ttccttcttct cttccattctg 345480
aggctacttc cccacagcaag ctcctcctcct cggctgttgtg gacctgtttt aatgttaaac 345540
agaagtttctt cttgagaaag acacctttctc tattttttgt atggattgttt caattttaaa 345600
attttttctt cccactttct cccctctctt cttaccatgaa agaagatgaa 345660
ctggtttttta aaaaaattcc actctactgac aaaaaaanctt cattctctct cctccaatcc 345720
caactactgc caagagggcct ttgctgtgag gcaccattcc agaacccagc tgggcaagct 345780
accttgga aacctgtgt cttacagatc actgtctgct caacgctactgt ccattaatgg 345840
aagagctat cagagggcgc gttttttttt cattgcttttct cattagtttca agtttaaaag ccaaccttcc 345900
cattgcttacactttt tagctgatgaa atccattagc gtttaatttcttatttcc 345960
ctgtctgtgca cctcctcctc taagccatctt ccataaaaaa ccaactttttcttctttggg 346020
gatagaggag acaacattttt caaataggct agttggttag aacgaggtgtg cagtatttag 346080
ataccaaaag caagttcctttt ccattttttct cttgctctgct ccaacgctttt ttttccttggc 346140
tgcctctttcct ctaactgtac gttgctgcttg cttcttttttctt cttaccttacg 346200
tgtgctgatct aagactgtgc tttacatatt attcttcttcttttctttatttttttctt 346260
gtagagagac aatataaagg aagagagaag atcttcttttgcttagagttttt ctcttttttga 346320
gataacaagt ctgattttgca gcacattttt cagttggcttt ctctctctttcttctttttttt 346380
aatattctgacag cttatatttta ctgatagct ctaaagttgta atctggtaga 346440
taatattttc taagcttcaaaa aaaaagctgt cttggaaaaa gaaactacttgagcttttggg 346500
aaaaattt attagacttct tcatttcata ccttcgcttta aataattttt cccaaatttttggg 346560
tgcactaccag tttgtagatg ctgcaaacttc atctattctag tggcttttctt tttttcttt 346620
tttgtagttctgctttttct atacatnntnttttttttctgatctcata acacagagact 346680
-continued

gatgccttcc tgcacotggy gaaacaaac acctggttat gaggaccc cc aagtttttgt 351130
gttgagccc agtcgcaag gtctgaggag gctgggttaa tattgccc ttcctttggt 351136
gagaggaca aagggagtgg aaaaagttt gctggacaot gctggatacg ttttcttgga 351420
gtttgggaag gggcgtcttca aatgccaaaa aatccatggg aagccattt caacgttgct 351490
tgggatggg agataatcctg cctcaatctt gcoccaatca gagaatcta ttcacctttgct 351540
tgaannaac ccggatcato cattagggc acgtgcttc ctttcccaoc ccaoacaca 351600
ggaagacggg attctggttt aatccacag gtcaacttca gagaatctcg aagacagtct 351660
gggcggagct gaaagttag ccaaactcga acagaaagga tggcaccagg gaanacccaccc 351720
gtaaccagc agctcgaggg gaagagttgg agcctgagct gcaaanagggg ccaagttcgc 351780
gatgctggg gttgcccaacag tccacctcccc gcoccaatggg aatctcagttt ttcctgtat 351840
cattctaa tttctcatttt tctagcgtugg acgtacccct attggtggaa ttttgagact 351900
acaccgtgct caaatggatt tcctctcag acttttccaa ttttacagt cttaacaca 351960
catctgtaa gttttgagtt tggctgatts catttccatct ctttaaatct cttgattttt 352020
tggtctctta ctgctggacct aatctacaat gaaagtatttc gttctggg ggg 352080
gtttttttttt ttgagctttttt aagggaaatcc tggatcctttt ctcttctttt ttatacggtta 352140
tttacatc tocttataaa ctattttgtt ttatctgtaa tcatctcagt tcatctgctc 352200
tgctggagttt ccagactatg tatactatc aagcttcttaa tagtcggtttt tttctgtac 352260
atggcagga gcacgtggag gactttctttttt cttctct cccttttacctt ctcttgagatg 352320
tactcgtct ttcagttcgtc cccacactta gctgtactag aattttatct cctttttggaa 352380
aagacccactt ttcctcgggtt atctgtggtta agggagacat tcttctgaggt tcttttttct 352440
cctctcgagg acacggtgag gctcctactg acacactcag acacactcag tgggtcaggg 352500
tacttggtt ttaagacagcc ggggtccttc ttttctctttt ctaataaatg ggtttagttt 352560
aagggagctt acacgtgctt aatcataaaa aasaggggg gctcagggta ccaacaaca 352620
tagaggaca tagggagtctt atccctcagac tattatatac gaccaacta taggttatta 352680
gaaacacttg agacactcttt ctctggtgg aataattgc gtctattctt gccttgagct 352740
tggagacccc tggagaaacc ccttcag aggregation aatcgtggag gtcacattgt ctctgtact 352800
catactcgt tggggctctttt ctcttccagtct taticcactg aatcactcaco cctttctcaga 352860
acacccctct ccagtgagaa ttctcctcag ttcggacaaa taataactgc aagtcttat tttctcag 352920
atgtacaaca ctataacttca taataactgt tctgggtgggc tgttcccttc acattctata 352980
ctttattac ctttctcttc ccaacgtctt accaccagtta citataatttt attctgcaag 353040
agctagtggg aacctccctac tgttcttttt tcatctcttc ttttctcgtgg gaacacgcaca 353100
gacctgttta ccacgctttct gtcctctcttc caacgtgaggg ttcctttttt tttctctgcac 353160
ttcctacca acacggtgct cttcttgctt cttctgtacct tcctgctcatact 353220
ctttggacgg aaccttggctt cctttgaatg cttactgtgct tttggaatgc tataagctcttt 353280
ttcctgttt ctttccacatc ctatttccaa ttccttcttgga ccaactcata ctctttgatcc 353340
tttgacgaac gcacggctca ccttttgaatgtcttttctt cttataactct ccacagttca 353400
gaaacagga tagggagag aatcactggaac ctccctctttt ttcctgtgctt ctacggtttta 353460
gaccaacaggg cgtgctgagag ttcacacag ctcacatac gtttacagct 353520
gttaacttag aacatctgca ggctcctctc gattatctag atgggtgagt cttaagactg 355860
aacacactc taactctgggg ggtgggagga gggagcttt gcagaaaaa tcctgtatag 355920
cacccacaco cagagatctc tatgcaactc tctggaaagt ggtccttatt atccaaaattt 355980
gtttaanac atcccacactc acataaattt tgccgccgga tttaagacca tggacttaat 356040
tggtgcaaga cacctctgata ttaagctctt cagtgctttt ggaatgctct taagacaaaa 356100
gtaaaaat ttaaattctt taagacactc ttaaagaccc atggaagatcc tttcattata 356160
ctcggacag tggagaaacct ggtttggaaaa ttaagaaaaa cgaagatgca atttcaacta 356220
aatctata ctctctctgt actatctcaaa aacccactct cttgcaactct cgggaggctct 356280
actgtataag cttgacatcc tggccaggtac tgggctgata aacatggatg agttcactct 356340
cctccatgga ctgctgggtgg agggagggaa agatctaattta ccaattataa 356400
tagcaggttt gtataaagaa gtaagctttag agtgctgcag agacccagca aagggctctc 356460
tagctggaac gtctgtctctt ctgagagctg cacgacactta tiganocgaca aggtctgatg 356520
gaatgtgtc tgggtcagaca ccaagcagcc aacaagcagg cagctgtgaga gcagaaactg 356580
cttaattct gttgagagcc aataaaggg acagaaaggg aacctaaact ctcctcttga 356640
aacacttcc gatctggttt tttaagagaa tttcctgcaag aagaggcctg agagcgttgcc 356700
ggtgtagat ggtgtggagc atcgacattc gatctagagca cctctatttt 356760
gactggtggt ggcagggctct cactgtggtg ggcagcaggt aacccattgg 356820
atgcagct gtagaaaatct tcacaaattg gagacactgtga gggttttttt tttaagacca 356880
agatgttatt tatgaagact aggactttgt gacagaggggt aagtcagcttt gaagatgttaa 356940
ggtgcggtca gaaagagcag tatgctcagc gttccccagcct cttttggtcag gggccagcag 357000
ctctctgaa gaaaattttct ccaagaggtg ggtgtgtagc ggtgggtctg gggaagactt 357060
ccggatagc aagttagttt ctagctcatc tagatttagt tagacatcctctc cggggtggcc 357120
acacccgaga ctcctcctct ggggtgctct ccacaggttt gcaagccota tggagttota 357180
agctcagcct atgactggtt ggtgggagag cccaggtgcc atgcctctct ggccaccota 357240
tcccccctttct gttggtcttg cagctctgca cagatagacc actgtgaacta tttgccaca 357300
cagccattcc ggaccccgct ggtgctttag gattggttgct attggccagtct ccggtttota 357360
ctcaagctt atgttctttgg ttaaactcaat tttggttatt ttaagacagt 357420
gattctgaag atgctaggaat tagctgagac tcaagaggg aacctggaacc 357480
aacactaaac taacactgtaa tggctcataaga aacctttgctcta agttctgtcag 357540
agctcactt atagtttagc tagtataaga tagtttggtg aignataagca tagtgccanaa 357600
acctataa ataataacactt ttctgattta ctctttattt cagaaagana acatactctgg 357660
agcataat attccacaaa tttggaggtc aacacgctca taaaactataa anagaactag 357720
agttgtcacc agggccatat tttggaaaggt ccatagtgct cttcctcttg tctttagtcct 357780
acgatact aactaactcc taaagactct taaaaactga actgaagana acottaagga 357840
acacactae aatataactg tattccctga gcaaaaaagc aatataatgc ttatattatag 357900
aacatacttccccct tagctagac gactagctaa cggttgattga anagctatgt 357960
aatagactaat gtagccctct tggaaaaaat gaaagacac aacataactgt tcgtaaagatg 358020
cttgaactc gcaaaaaactc acacgacttc ggacagatg atgttcgtcc atgtccagct 358080
...continued

catggccca ctcgctccc caactcgtt ttctggtgt aagatgaggaa aagcacaactc 358140
cotggattga gttcattatct ggcgtgctag gcgtcctca gaaggcctaa cgtgggttatt ggcgtctcgg 356200
cactgctca ctcggccgc cactccccgc caggggccc gttggtggct ttctgagctt gtcgaagggc 356260
aatctttgt tggattgatt ctcacacattatatatatcttgatctgggtttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt...
acattcagty anaagcaaac actcaagcc ttcagaaaaa actttagtg ccgctttctt 360420
taacatattg caagtctcct gagagatag tggtgttctg ctgtgaagct gctcttttctg 360480
aactttcatt gatgcctag ctagctaaa actgcagag gctttccaa ctagaanaat 360540
tatctccaga gc ttacatattg aggcttgact ccgctttctt 360600
ttcgagagtt tcccagatct ggcagccttt aagagagata guaatattct tgcctgtaaa 360660
ataaactac cctatacaca actccttttt ttcttgcgttc atgctcttttt cagccgattt 360720
tccctctaa cacgtcaggg gcggcagag atccggaat tataagatgt gcgagagctt 360780
cgatatgca ttttttaatt caccttcctt ccacacacta cgaagttact gctttccaa 360840
ggctcagcag ttgcctaa cagagaaagcc aacagcanaa atacactcctct cagaaactact 360900
aatttccaa cccaaatccg aatcaatttct gacttttttt ctttcatcattt ctcctgacttc 361020
gctttagaac ggagcttctt tttctaaacct tccagaaata attataatttt ttcctcttaaa 361080
tttttgcgag cgaattcctgg cggctttcatt tccgtctttct tcacacactt ccactcctca 361140
aatattttgt gtacgctttgg gcaatggtggc cagatgctag ggtgtgttgct gttctagtct 361200
cagctcctac actatttataa caacctggcag aatccagggcg aacgagcggc 361260
cctacacagc acgcgacttc aacagcagta acgcgacaag actacacttc ctccac 361320
tgcttccaa ctcgactttt tattttttat gatatttct atctatcttt ttcctcttaaa 361380
attatatt tataatattt ttcttttaag ctttcttttt aagagcttatt tagattcgttc 361440
gcaaaacagc gttgcgcttt tcccagatcct tccgatcattt caataacactc 361500
gttccctaa cctcattcag ccccaancag aacgatcatg cttggtacatgc ctaacacactt 361560
aacagacagc gtccttcacat cccaaagctg cagatgctgtt ctgcgtttcc gtcctttgcg 361620
gotttggac cacgtttcct ctaattttta atacagata atcctctctg ccctaacaac 361680
tccctctctct cctctctcct ctccacactt ctcctgacttc ctccacactt ctccac 361740
tacttcatc aacgttttgg cttcactcag atcctatcctt ctgcggtact taacacatct 361800
agctttcctt gcgtttcctt ttctctctct ctactctctt ctgttctgct cttacttcttc 361860
cttcctctct ctttctctct ctttctctct ctttctctct ctttctctct ctttctctct 361920
tatcttcttcttt tttcttttct acttttctact ctgaggtct gttggtgccct ctcctttttc 361980
gctgaaatg ctagctgctg cttgcaacac actgctggc gtaatgctgtg cttatctctgt 362040
tttactgtttttttt tttctcactt ccctcagcag cccatctctgt tgaattatttt ctttctcactt 362100
htcttcgtgga acatctcactt ccaccccaagc gactttcattt ttttctttct cttttctttc 362160
ataatcagtg aagagcctctt gtcctctctt cctcactctt cttttctttc 362220
tttcttct cagcagcagc ctagctgctg cttgcaacac actgctggc gtaatgctgtg 362280
ttttctttc ctttctctcctt ctttctctcctt ctttctctcctt ctttctctcctt ctttctctcctt 362340
ttccctctct ctttctctct ctttctctct ctttctctct ctttctctct ctttctctct 362400
tatcttcatc ttttttttttt ttttttttttt tttttttttttct tttttttttttttct tttttttttttttct 362460
cttttctctt ctttctctcctt ctttctctcctt ctttctctcctt ctttctctcctt ctttctctcctt 362520
ttttacctttctctct ctctctct ctctctct ctctctct ctctctct ctctctct ctctctct 362580
gctgctgtg ctagctgctg cttgcaacac actgctggc gtaatgctgtg 362640
caacatttc ctgyctttaa tcaagaagtt tttacttcat ccagaattga tattggact 362700
ttcataggg ttcaccccttt tttctttttt aaaggggttt tttaacctct acatgtttttta 362760
agaacaactg aactatagta gcatctttttag gcotcttttaa gatctaatntg tcggaaacttc 362820
ttggctctta tttttccoaat gtaatatgaat cttctctttg ttaaagaaaat atgtatatca 362880
cotgattataaa acatctatgt gcaaatatat caataagttt tttacttccag tggcttct 362940
ttagtacta gaaaaactta ctactttagag atggcttacca ttcactctgc 363000
tcaagagag gaaactttataa ctagtattta ctttttaaaat taacttggag aagaccttca 363060
gcacttaac ctcttacgcc ggaattacag gaaatattcc ttaagaggt tcggctttct 363120
gtgaactaat gcagaaaaag ccacagagtg atagtacatct cattttcatt tgactcttgc 363180
aagcttctgct aagctttttcg acagggcctgt ggatctggaggt acgtataacat 363240
tgcaacacatt ttatagcata catttttttcc tttctctttccc 363300
cagataggtc ttctcatagtt cttttacaaact atcctttatcc acataatactc tttcttgata 363360
tttctggaaga atgaagggct tctccttttc aataattttt caatattttta ttgtttaacoac 363420
agagatgtagc cccaaaaattta tgytatgttaa aggyttaaan ccataattttga 363480
caacatcttta ttatggatatgtaa aanataataa atctcagggg acagattatac 363540
acatgataggtgattcagctggtgctc cccaaatttc atcttttat ccataactct 363600
aattctctgt ctgtgctggag ggagccagctt gggagcatc tttacactgct 363660
cccotcgact tttcgactttt ccatggtaaa accttgactttc accttggagt 363720
gtttctctt ctctttctcctt ctttttcctct ctcttggcaaat ccactttatgaa gatgtctc 363780
tgcctcttac acataatctt gcacaactttga ccaatggggg atggctctc 363840
tcaagagag gaaactttataa ctagtattta ctttttaaaat taacttggag aagaccttca 363900
ctcatcttta ttatggatatgtaa aanataataa atctcagggg acagattatac 363960
aagcttctgct aagctttttcg acagggcctgt ggatctggaggt acgtataacat 364020
acagaaaaat ttggagaaaat ttaaactttcc tttctctttccc 364080
aatctttagt ctgtgctgact taattacacct agggctaggt gttctcttagtg gggagagggg 364140
aactttgttg aagcttggaggg aagtgctggct ctctatattc catcacttattc cagactgtgag 364200
ccattttaccct ctctttgtaga ttatttttaa atagaaaaat atttgttgagta 364260
tttctgtaaaan gaaatttttaa agcagaacaa tttctttaccag gttctttttttg tttcattttttaa 364320
acaccattgc attttttactt gagaacctta aatctctggct cctctctttc 364380
cacgagaataa gaaatctttta aatcttttttga ggaattacagtt cttttttttttta 364440
ataatttacag atgttctttc gacactttggag aagtagctctgc ccataaacatgaac 364500
tttctgtagtt gatactgcgtgca gctcctccct tcatcagaccg ggaagacttgg gagaaaaa 364560
aactttggttg aagctctctgtgactt cttcctttctgc cttttttactt cttttttactt 364620
tttctgtagtt gatactgcgtgca gctcctccct tcatcagaccg ggaagacttgg gagaaaaa 364680
ttaagagccct aacattttccg ctttttttttga ggaattacagtt cttttttactt 364740
aatctttagt ctgtgctgact taattacacct agggctaggt gttctcttagtg gggagagggg 364800
acaccattgc attttttactt gagaacctta aatctctggct cctctctttc 364860
gaggaagggg aatgttttttgg aagctctcttttg ccataaacatgaac 364920
-continued

tggagctgta agagggagg cacctgctct cagacccgag aataatagat ccactgcac g 364980
cattgcccag ttcgctggga aagcaccaga cactcaanog cagcctgtga aagcgctcag 365040
gttggaacgt ggctgtctgt atacacctata aagcaccag gggactagcc ccccacacta 365100
tggaacctct ccttctctct cagcctgcca tgggtgtgag acatctgtgaa aagccagaga 365160
	tctgatattct gtagattgct ggatcttctag attgtgtgag ggcctgttaac 365220
cctctgttt ggcaccaatct ccocctattc tggctgcttg gacgctgtgta attaccacc 365280
cgctagttat ctaagaagta acctgctgta ttctgatattct aagcctcctc aagccaaaggg 365340
gctctgtct ctgcagcagct agacatttggta ctgtgcacatt tgggtctatt ctgaanigag 365400
taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga aagccagaga 365460

tttgagaggg ccaggggttgat gatgttagtt gttggcttgac ccacccttc 365520
cctarattt aacctccactg tgccttcatc ggocctgga 365590
gcagctggag gcagaggttc gccttacctc tctctggtga gigaagttaa ctcacagatg 365640
cctctgttt ggcacccatct ctgcctcttc ttttcccttt ggcagctgca 365700
tgaaagagtt gctctccgag aagcctcacta tgcctgaggg acgggtgtgt 365760
cctctttttg acagatatag aggttgcagct ctagctttttc tggggctgac aagccatctc 365820
	ttccagcag 365880
ttaagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 365940
taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 366000
gcaggactgc acagcaaggg cgggttacctc tgccttccaa aacctccactg 366060
taactgggac tggtgctgca gcccacgag cggacccgca cttggggaggagc 366120

tgggaagag ttgggaagacca gggggtgttg tgggaagacca 366180
gctctttttg acagatatag aggttgcagct ctagctttttc tggggctgac 366240

taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 366300
gcaggactgc acagcaaggg cgggttacctc tgccttccaa aacctccactg 366360
taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 366420
gcaggactgc acagcaaggg cgggttacctc tgccttccaa aacctccactg 366480
taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 366540
gcaggactgc acagcaaggg cgggttacctc tgccttccaa aacctccactg 366600
taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 366660
taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 366720
taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 366780
gcaggactgc acagcaaggg cgggttacctc tgccttccaa aacctccactg 366840
gcaggactgc acagcaaggg cgggttacctc tgccttccaa aacctccactg 366900

taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 366960
gcaggactgc acagcaaggg cgggttacctc tgccttccaa aacctccactg 367020
gcaggactgc acagcaaggg cgggttacctc tgccttccaa aacctccactg 367080
gcaggactgc acagcaaggg cgggttacctc tgccttccaa aacctccactg 367140
taagcctct gggggtgttg tgggaagacca tggctgtcct tgaanigaga 367200
aagttagat gaaatggttcaaa ctagaatgtag aagacatttaa agtgccctgag 367260
ggagctgaa aaccacagctg gaaacctcctc tgtatgagtc aaccagtttcg atagcctgtt 367320
tgatagcagt gaaatggttcaaa ctagaatgtag aagacatttaa agtgccctgag 367380
gacaaggt aagacactgag aagatggttcaaa ctagaatgtag aagacatttaa agtgccctgag 367440
acacctgag aacaaacactt atagttttca ttttgtact gggagctgtag gggagaatg 367500
gaacaaagt aagacactgag aacaaacactt atagttttca ttttgtact gggagctgtag gggagaatg 367560
ggcggaac acctgaacctt caggaatc agacagactt aacaaactac acctgaacaa 367620
gccggaac acctgaacctt caggaatc agacagactt aacaaactac acctgaacaa 367680
taacggcag cacagacgacg aacctcgggta cccaacctgac aacacgctttcc aacacgctttcc 367740
gacactctg acacagactt aacaaactac acctgaacaa 367800
aaaaccttgt aaaaaaagaa gaaacatattc cccaacggat ccaacagcagcc 367860
tctactagtg aacagagaac atacatccttt aacaaactac acctgaacaa 367920
acacagcgctgtctgctg aagagcagc atacatccttt aacaaactac acctgaacaa 367980
cggtgtctg aacagcagc atacatccttt aacaaactac acctgaacaa 368040
tgctacttct aacagcagc atacatccttt aacaaactac acctgaacaa 368100
ataactaat aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368160
gacacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368220
tgacacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368280
aacaacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368340
aacaacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368400
gacacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368460
tgacacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368520
aacaacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368580
aacaacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368640
aacaacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368700
aacaacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368740
aacaacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368800
aacaacgttaa aacacactt gaaatggttcaaa ctagaatgtag aagacatttaa 368860
aataataca aaaaacagctt ctagaatgtag aagacatttaa 368920
aataataca aaaaacagctt ctagaatgtag aagacatttaa 368980
aataataca aaaaacagctt ctagaatgtag aagacatttaa 369040
aataataca aaaaacagctt ctagaatgtag aagacatttaa 369100
aataataca aaaaacagctt ctagaatgtag aagacatttaa 369160
aataataca aaaaacagctt ctagaatgtag aagacatttaa 369220
aataataca aaaaacagctt ctagaatgtag aagacatttaa 369280
aataataca aaaaacagctt ctagaatgtag aagacatttaa 369340
aataataca aaaaacagctt ctagaatgtag aagacatttaa 369400
-continued
agttccagt gccggaaga ggccattcga ggcctctgta ttctctacg ctcagtttag 380940
cattggagaga aagaaaaact tttgtctccac aacc tgtctatc acaaatcttag aasatgagtct 381000
tttttttct gctggcagtt gtcagaggc accagagcagt gttggtgtct caactttctgt 381060
cotgcatact ttcgcttcggc ccgacacacga ggttctattt cgaanatca cggagagagg 381120
aaaaaatcttat gtcgcgaattt aaacagaggg ttttcaagtg ggcattccccc atcacaatctaa 381180
taacatcttctg tgctagagct taaaaggtct tagttccaa acagtgactta aacacgaat 381240
cotaacctga aanaaacctt ttgactctct tagcatcagct ctacaacagt tgttgtcttg 381300
aataccacta ccagtttccg accaggtcgc agaggacgtc tcttttatca ttaaccactg 381360
tggagtggtc agatcggcct ttccttacgct ttcgtcnnct cacatccca gcctcctagc 381420
agtactacg cttctctctgc cttttttgtct ctgtgtcngta aanaacagagg caagctgctg 381480
tccagaggt cggactctac tgccttaactt cttataccttg aaacactagt ctggtcctcg 381540
cotaacctga gnaaaagttgc ccagctgttac cagcctccg cccaaaggtct atcacaacctt 381600
tttgtcctact gcctctaatca aacagagcctc cttggtttagcttgctccgt ggcagctcaga 381660
aatgctcagt gaaaattcagct cttgtaacccg gtttttaaggg ttgctcagag aatccacatc 381720
tcagactat gttggtcggc aagcagaggct ctcattttta ctacctcaat gacacagctgg 381780
tocaacctgtc ctaaconctctc ctcagttctc ctccttctctct ggctctcaggt 381840
gtccacacta ccccttcggc ctcgctttcag acctccgaact cgcctactga 381900
gtocgaac gtagctcctc gactctgtttc caccagaggg ccagagcttgc cctgagcttcg 381960
cacgccagcc acagagcgtc ggcacgctcct acctcctctt ctctccatc cagcctcctt 382020
aggtcctaggcc ctgttggtgtc ttcctctcagc gcacccacta gacacatcct ccacccacgtt 382080
agttcctaggcc gcacagcctc ggtccttctc ctcagctgctgt cttgactcct ggtttagttt 382140
cctgcctag atgacctgtta gacacgacg gagaagggct ttaaactctgc 382200
gaggcctaggcc gcaagcagttg cgcataagcg atagaggcag ctagacattg ttgctgattg 382260
agaagcgcttg cttggtttagcttgctcag atgatgctgcttgct 382320
ggcacacag gcgactccttca caggtactgg cggacacag cggactcctg 382380
agttctcctg tagcctcctt cctttatttcc ggtgctcagct tgtgcctagt 382440
gagacctgtggtgctctcgc tctctaacttt tgcactctc ggtgctcctac 382500
tactttctgc tgaagcacctc tttttctctcg ttggactcttc tggagcagta cttgatgctgt 382560
atcactgctgt taaactcttc ttctctcctc atgctcagact ccagactgctc 382620
atttggcact ctaaataaggt tgcctcctc cttctcaactt tctctctctt 382680
atagttatc aaaaactttct caacttttttt tctctctcttc ctctctctcttc 382740
tagccatacc gcgcctcctc atgtgctactgctgctcctc atgtggtggt 382800
atcgctcgct tgtctgtgctct gcgtgtcctctct gcgtgtcctctct 382860
tgggctact tccacgtggg ggtggctgctcctc ctctctctctttt 382920
ctacgact ccccttcagct gttcctcgcctc ggtggtgtgtgc gacagctgctc 382980
ggcagaggg gcagagggct ctcgcttgtgg gcagctgctc ttactctttt ctctctctct 383040
atgcctcag ttcaccctct ccacacagtct gcgttgtgcc tcgactagtc cccagaggg 383100
cagctgctc ctctctctct ctctctctctt ctctctctctct 383160
caactcttgca agggagacata tccattacct tagacctct tagaacctta caactctgtcc 383220
ttcctatggt taactgcca tgttactatt ttctggccca tttactagcct caactctgtg 383280
tgccatatt gcataatggg ttcacctacc acatacaacct agcactgtatg agagcaacta 383340
gtaaacttc acacaaatgt gctgtgygact gccagagac gtcacacagca gacaaaacat 383400
gatccctta tgcaccacag tgtaatggct ctcttacctca tctctgttgc ctgaatattgtc 383460
gtaccgcaaa aagctgattgg aagcactgtc aatcctgcct ggcgctattc cctctggcc 383520
tggagacgact gctggtcttat tttattgaca ctcgacagag cccacaaaccc ggttcctaaag 383580
tgctgcaacact agagagcact gccacctattg gccgccagct atgcctggtg gatagcagct 383640
gtacctattc aacggcgagt acctaggggt gatcaacatc ccagaacattc gcgggattc 383700
caggagcctc ccaatagga cagctcttc tctactggcc cttgagggga gccttttatgat 383760
gtttacctgag ggtctgtgcc cattatttcc accatttcc accactttgc gagacacactc 383820
catcgatgaa gatattggct ccataacact ccagagcc acccttcccc ggcacacactc 383880
ttcataatttt tgcgctgtgc gacacaagtt cttctgtcttg ttctttttat gcgtttacag 383940
tgcgactgtg gacagcttcgc atatggatat tgtccaccaccc attacacatt agatgcggaa 384000
cgagataagtt cctgatgaca aatgcgtattgc cgggaagttt gctctggcc 384060
tgctttactctctg ctatagcaggt gttgtaacact tcctttctta gttgtctca gctgtgggcc 384120
tagctattctgctgctgattg gtaaccgca cctgtgtcag tcgatagtt tcaaacactc 384180
cagacatgtc aatcctagct ctctcatgtc ttttttttg aagctgattgc ggcgagggga 384240
agccatgattgctg caccacactcct gcctgctagag aatacctttc cccttcgagga 384300
aacatattatta gtctttctact gcgcagctgatt ggtttgtctgatctt aatcctttttcc 384360
gcagccgggt gtttttttcct gccgagacg cttctttattc tttctttatttc atacacac 384420
tgcttgactt gcggtctcag cgtctggccg cggagcaagc cggagagaaa gtttcgctgatg 384480
tctctgtctc gagccgcattt caggtttagaa gcagctttgct ctctctgtctc ttgcttctc 384540
tttctctctctgccttgac gtcgccaccc ccccaaaacttc caccacactc ctgaataatgt 384600
aatatttgcc tgcacttttc agacagacttc aatgcagacat gccttatttt ctaaacacgg 384660
tgcgcgactc catacagttgt gtatctagag aagttttttct ccctttttttct gcgtttctgata 384720
tcttgcgtcct ccagccacact cccacaaactcc ccccaatattgt tataaacact 384780
agogtacac tcaagggcag cagaggagatc cagggagacata cagaggggcat ttttcatatttt 384840
atatacttcc atatgcaaaaa aaaaaagact auxcctatcc caagctaaaagt agatagctgct 384900
gtgcggtcttg cttattgagtg cttctctgta cctctgagta cttctgagta cttctgagta 384960
ctctctcttctttactttaa aatttttttaa aagctcttgtaa gtcggggtctgata 385020
aciattttct ttaaaagaaa attcacact agataattatgt atgtcctctcc ccacaccccg 385080
ccacacaggt gtcgctgctcg cccgaggtgt ggtggtcttg cggagagcaca gagagagacc 385140
gtggagaga gacagacactc tttgctttcc cccatctttg cttttttttct gcgggcatgat 385200
tttttctttctttgcaggt gttgagttgg cttcttttaa cttataatgca gttcttttctgtctg 385260
gagccgatacgactttgctttctgtc gctcagcagg gttgaggtct ctgcagcttct 385320
gttctgtgag gcgagagcact caaacacact taatataagag cagagttccga ggcgagctaga 385380
agcgtctgca gacacacacg cagttgtcag cagggagacc tggcgttctg aacacacag 385440
-continued

gtcgtgcca ctggttaggc gttaggcttt ccggaggagc ggcatgtaaa gaccgagga 385500
agttctcctc cagcagatac gcagacacag tcgtagctcg ctaagcttgg gggaggtta 385560
gttcttttaco ggacacacag aaatactgggc ggtcttggga gacagcaccata gggagagag 385620
gcaacggagc ctagggcagc tcgatggaag ctaggtgca gctggctttc tgaagcagttg 385690
aagagaccttc gatcgattcc tgaatgtaat gggaagtaag gttgagatatt taacaatgga 385740
ggtctttaga cttgctttact ccatttaaat accaactcctg gttggctgga atatctctattg 385800
tgctttctt acagactttg ggtgctctt tacatgtctt atgagctctg ttggaggggta 385860
atcatgatcct acttgaggct ccggagcttoc ctaggattcota cttctcata caatccctgt 385920
acacccggtc gatgaggtcg gctgtcctc ctgaggttagc ccaggtcctc cctggtggctc 385980
atcactaagaaa ggttctttact acagagaacag agaaattgta ctaaagctgc ctggagctttc 386100
taccttcct ttccctcgag cttccagcact ctgctcggct cggcttggtg ctaaagttgtg 386160
cctccctcgt cttccctcact ccccccaaaac ccagagatgc cctattgtttc agcagacgatg 386220
goaacagtt cggcgtccacct ttgacactgc tcgtaggatg gttgagacgc ccacgcttaac 386280
atgccccacag tagcgtggtgc gggcctcagc tcggagagac gcacaaagc ccctggggtc 386340
cagggagcttc ctctctctgc cattctttgg caaatggattca catcagggg cggcagagg 386400
ttccctccag ctaggctctg gcacgctttg gctccattac gttcatgattct gatcctgctc 386460
catttacctgcc ctattttagc cactttctgt ctgcttgata cactctgctg cctggtggca 386520
tcgctccacacctggct ttctagagta ctggcatttc atctgtgctg taagttttta 386580
gttgccaat cttgtcctgc tggtaggaac agcaccaggg atctnagggc taactcttctgg 386640
taacagcttt ccctccctcttg tgtgtgtgta taagcttgag ccattctgtt gcatctctcgg 386700
acagctggctc acgatgtggt tgggggctaat gtnactcttg tcgctttataa gcacggctag 386760
agccagtgctc gttgagata gacatcctgc cttctgataag cctttttttaa atgctttaaa 386820
gattcagcag cagcaagacac acagtacctcg ctcctctctca acctctctct cggacagcata 386880
ggttcagcgt ttatttttagt acocctttgtg tattctctg mcagagcttc tttttcagaaa 386940
gtcttcacat cttaaattgct tattggcttg taccaggtta cttattgact gtcacattct 387000
tccctcttc gataatcagc cgggacacag gggagcagaa tocctttctg ttgcaagctc 387060
tttaactcctg tatacctctgata cttgctgtgtg tgcggtcaga cttgctctct gtgcttctttt 387120
cattgctctac atgtgtgccct cttctgcttgc ggaggttagc agcagcacaca gttctttcctt 387180
gttactggtt ccaatctttc gggagcttgtc ccacctctctt cttttttttt ttttttttttt ttttggctcca 387240
aacagacccc ttctccctcg aaaccttttgt gttcagcagtt ctgctctcttg ccagcttgg 387300
cactcttcga gccattttggc ggtctgctgtc tcgctctctgc ggtgcctctgc aagcttccgt 387360
ggtagagct gttaggtttga aatgtaggtg gcaaggatgc gggccccctgg ttgtgattttg 387420
agccctttggc cggagctagt ctggagggat gttggctatt tggtaggacta cttgacgacta 387480
agggagaag tagcagcaact ctgctgattc gttcagggcg acacgagacc tcgctctctt 387540
tgctctttc acagggtagc gttccttatc ccacattccc ggaacgaaagtt cccttcgct 387600
tggggtgcctc ctggctttgc ttggtagctgt cagctctcct tattttttttttt ccggttgcct 387660
gttggagac agcagcctggc aagctgtgtg gctgacgtgct gttgcaggctg cccttttcgct 387720
caccctgggg cacgagacac ggttctgggc ccgtgctgtc aactactcag ctcactctggg 387780
cotggcaga tcactattgc ctttgggtgt tttaagatag caccaaatca aggttctgytt 387940
tgggaagaa aatcttccce ctttttctcc gggcgggttc cttaagcttg ccactcttgtg 387990
caggtccttt cccttcattt cccttggcct aatggttaca aatagaaacc ttaatcctag 388040
cacaggggcc ccttttctgg gcttttcttt ccctttttcc aatatggtgtt 388080
tttttttttc aatgttttgc ttttattttc cctttttttt cttaatcactt 388140
ggtttttttt gcgttttgggc gatgtgtttt ggttttttct 388200
caccaagacct caggaacctt gcggggggaa aaaaaaaaag aaaaattatag tatacatc 388260
tgggggcaat aatatattttc ccctttttttt ccctttttttt cttaatcactt 388320
ggtttttttt ccctttttttt ccctttttttt cttaatcactt 388380
tttttttttc aatgttttgc ttttattttc cctttttttt cttaatcactt 388440
tttttttttt cctttttttt cttaatcactt 388500
tttttttttt cctttttttt cttaatcactt 388560
tttttttttt cctttttttt cttaatcactt 388620
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 388680
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 388740
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 388800
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 388860
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 388920
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 388980
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389040
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389100
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389160
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389220
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389280
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389340
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389400
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389460
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389520
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389580
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389640
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389700
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389760
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389820
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389880
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 389940
aatagcactta ataaacagct cttttttttt ccctttttttt cttaatcactt 390000
continues

cotgaaacact tcctctcacc tggacaaat gacattttgt cccaaatata ccctcttttca 390060
gtagggttaa ttatgctctg ttttccacctg cattcccttt ccaatttgaattaaagttgg 390120
cotgcctttaa aatttggcttc taagtaaattg ctgctcttcat tacgacaccct 390180
caatacctgca ctagcttctt agatcagaga aaatatttata ttccttttttt tcagctcaac 390240
tgctgctgaa ctttttaaatt atgttaaattgc tcctagtcttc caaaccactgctcaagtctg 390300
gttcattaag cttgctccccc ttagaacaac aatattttcc atgagcaagtt gcctgagaca 390360
cgaaccccct tcggctccaca gagggtctct gtctttataat gctttgaatt aataagttgcc 390420
attatgctagc tttcgttctt tcacagagtgt atanacaaatt ttttttttgctgacatcact 390480
tcatcctgtg aaggttctttg ttttaaggag aaggttacaa tggaaatcttg gttcttgatgg 390540
atataactgct ctttttgcctg atgctatact tgttgaagtgtctggtcagct 390600
tgtcttctttc tntagaaacact ctttttttcct tcttttgaattc ttagaagacaag 390660
ggtgacgtcag aggacccgta actaacttctt tcatctcttgctatgcttctca aataaggt 390720
aataactaaga aacagaggtt gtcttttttga actgaacactct tcagctgaca ccctctctcag 390780
gacctotaat aacaaagatg gtttaaacgt actgccacac cagttgcaggc gaaatgaa 390840
gtgcctaac ccctatctact cttgccacac cacaacatggt tttactagaccag 390900
caagttgccg gcgcacatac cttccgctta ccccaatcttc atttttattgt 390960
cagttggaactcgtgcaggtactggtaccttgcctttta accaatttattga atgaagctaat 391020
aaccaactact ctcgctccggt gggggtcagct ctcgctcaactgctctaaa accagttggc 391080
tttttttttt tgtcggctgaa aacatccttccc cttggagggaa gcagaaggatgtggtgaaggt 391140
gtttttttga gttgaatgagc gttgaagttcag aatgtcgggaa tataaatagctg 391200
ttttactactc tccctcactgc ttcgaggtca ctcaccacctc cccacccccc 391260
ggctttcattt ccagacactt cccctttttt tcgggtctcc ctcgctccact 391320
	ttttggatt aatgccgaggg ggttgggtatg agagcaactc gagatgoacac 391380
atatatactg caaggttgtat tagtttagctactgct zaatccttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
<222> LOCATION: (233)...(691)

<400> SEQUENCE: 13

agggctggtg gggcgaggtg ctgctctggga gctgcacttg ctcgctcggg tcgcggcctt
60
cacggcaaac cagcgctcgg ggcacgggcc gggccagag tcgcgtgtgc ggcggacat
120
ggctgtcgtg gcctctaccc tcggctgttg ctctttttccc aggctgcgcg cccgcttctcg
180
agcctcttgcc ccgctgggga ccacgctctgc acctctgcgg ccgcacgcgg caatgcacat
240
gacctccac ccacaagcgct ccggatggc ctcctctgca cagatccacag gaacagact
300
ggagccctgg aagcgcctcgg acgctcagag ccacgcttgg gcgcgcctgg gcgaggtgga
360
cotgcagcag acgcacggccc cgctgtacac ccaccccaggc gcgcgcctgg acagctccaa
420
cgcgcgcgcc gcgcgcctgg cccggtctca ccgctgcacc gcgcgcctgg acagctccaa
480
ggctggtggt gcgctgtgctg gcctccaaag cctgggggtgc ttcctccacca tcacacgctg
540
ggcacgcag acggctgtgcag tcctgtaccc gcgcgcctgg acagctccaa ccacgcttgg
600
cgcgcgcgcc gcgcgcctgg cccggtctca ccgctgcacc gcgcgcctgg acagctccaa
660
ggctggtggt gcgctgtgctg gcctccaaag cctgggggtgc ttcctccacca tcacacgctg
720
ggcacgcag acggctgtgcag tcctgtaccc gcgcgcctgg acagctccaa ccacgcttgg
780
tagcttgaaggt gtcgtgcaag gaaagggcttc gcgcgcctgg tggagatcctt ggtgcccaggt
840
cgcgcgcttc ctgggtctcg ccgctgcacc gcgcgcctgg gcgcgcctgg gcgcgcctgg gcgcgcctgg
ttgctgcttc ccgtctttgg ccgctgcacc gcgcgcctgg gcgcgcctgg gcgcgcctgg gcgcgcctgg
tggctgcttc ccgtctttgg ccgctgcacc gcgcgcctgg gcgcgcctgg gcgcgcctgg gcgcgcctgg
ttcggtgcgctt ctcacgctgct ccacgcgagtc gcgcgcctgg ctttttctttt gcgcgcctgg gcgcgcctgg

<210> SEQ ID NO 13
<211> LENGTH: 1128
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE: CDS
<221> NAME/KEY: 5CDR
<222> LOCATION: (233)...(409)

<400> SEQUENCE: 13
-continued

gagatctcga tgattgtgct ctgctgggcgc tccatcgagc accaagtgaac gccactgtgc 540
gctctcaact tgcttctggga caggaaacag ggaaatcttg tagagggcact ggtggagact 600
ttgacattgc tgctggttcct acaatctcgg ctgcatcagc tgaatcttgcgg gagaagggag 660
tgtttggtgca tcaaatctct tattttgtgc aacctcttgac ggtacacatt tctgtgcacc 720
acccctgaaag ctcttggaaga gagaacact atccacccag tctggcacaac gctacacaag 780
actctggtccc actctgtgac gcaacccagcc ctacacaccgc gcacccgcggc gccgagcgtgc 840
gcccacagcc ctttgtctct cttccacata aggccatag tataaaagc cattggagact 900
tgcctagacag taagtctgca gcgaagtggcg ccccctctatgc acctgctgtc ggagatctgc 960
gacgccctg gcctacatgc gcctcacacac tgttgagggg cattccggaag gagaaggggc 1020
ccaaccatac tgtgcagctgc ggcgctctct cctgctctct cttggcactaca gtcatcatact 1080
acgggggagg ccaggggtctt cccgccccac gcctggagag ccctgtgccc 1128

<210> SEQ ID NO: 14
<211> LENGTH: 530
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: exon/exon junction
<222> LOCATION: (260)...(261)
<223> OTHER INFORMATION: exon 1/exon 4

<400> SEQUENCE: 14

ggcgccggc ccaacgcgcga ggtctacaggt cttgacgctcc tccatcaggc ccocgggtct 60
gaggtcggcg gctgtgcgtc caacggccctg ggggttcttc ccccaacctca cagctgtctc 120
cgaccccgcc tgcactcacc gcaacccgcc coccgatggt ctgcttttctt gcacccgaacc 180
ggcccagacg gcccttacta ccgtggagac gcggccgagt gcgttacaggt gcggcgggcc 240
ggcgcggcc gccttcagtc cagtctgtgg ctcgggtgca gcgcctccag ggtgtcaccac 300
tgatgttccs gagaattttgc gttgagtgta gctcactagg catggtagtg cttcggttac 360
cctccctct ctcgctgctc ataggcagcc actctatgtc gggagatgg tttatagatca 420
aaaattctct ggacgcttac tattgttga agagggttgc cattcgtcag ccacagttta 480	tttactaaa ttttacctgc gcacagctga gattttgcac gattttactc 530

<210> SEQ ID NO: 15
<211> LENGTH: 2315
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (241)...(903)
<223> OTHER INFORMATION: exon 5/exon 6

<400> SEQUENCE: 15

ggcgccggcg cctggccggc ggccttcgct cttgggactgc acctgtccgg cttgggtgcc 60
cgggtccac gcggaccggc ggtcccgggg gcggcgggg cggagagct cggctgtgcc 120
cggacagtgc gctggcctgc ctctacaccgc ggcggatgtgc ctttttccgg gtcggccggc 180
ggtcttcgag cccctgctgcc tggggaagca cgggtcgcgc ccctgccccg gcaccgagcc 240
atg acc atg acc ctc cac acc gaa tca tgg atg ggc cta cta cat
Met Thr Met Thr Leu His Thr Ala Ser Gly Met Ala Leu Leu His
1 5 10 15

cag atc cca ggg aac gag cag ggc ccc ctc cag ctc cag ccc ctc aag
Gln Ile Gin Gin Gin Glu Leu Pro Leu Asn Gin Gin Leu Lys
20 25 30

cgg ccc ctc gag cgg ccc ctc cgg gag tgc tac cag aac aac aag
Ile Pro Leu Gin Gin Pro Gin Leu Tyr Leu Val Leu Ser Ser Lys
35 40 45

cgg ggc ggt tac aac tac ccc ggg ggc ggc ggc tac ggg ttc aac ggc
Pro Ala Val Tyr Asn Tyr Pro Gin Gin Gin Gin Ala Tyr Glu Asn Ala
50 55 60

cgg ggc ggc ggc ggc ggc cgg gtc tac ggt cag acc ggc ctc ccc tac
Ala Ala Ala Ala Ala Gin Val Tyr Gin Thr Gin Gin Thr Gin Pro Tyr
65 70 75 80

ggc ccc cgg tct gag ggt ggc ttc ggc ccc ggc cgg ggt ggg gtt
Gly Pro Gin Gin Gin Gin Ala Ala Pro Ser Gin Gin Gin Gin Gly
90 95

ttc ccc cca ctc aac gag gtt tgt ctc cgg cgc ctc atg ctc ctc cac
Phe Pro Pro Leu Asn Ser Val Ser Pro Ser Gin Pro Leu Met Leu His
105 110

cgg ccc cgg cag ctc tcc cct tct ctt ctc cag ccc ccc ggc cag cag gtt
Pro Pro Pro Gin Pro Gin Gin Pro Pro Pro Gin Gin Gin Val
115 120 125

cgc tac tac ctc gag aac gag ccc aac ggc tac acc acc ggc ggc ggg cag
Pro Tryr Tyr Leu Gin Gin Gin Glu Gin Gin Gin Gin Glu Val Tryr
130 135

ggc cgc cgc gca ttc tac aag cca aat tca gat aat cga cgc cag gtt
Gly Pro Pro Ala Phe Tryr Arg Pro Asn Ser Arg Arg Gin Gin Gly
145 150 155 160

ggc aag gga aag tgt gcc aat acc aat gag aag aag atg gct gtt
Gly Arg Glu Arg Leu Ala Ser Thr Asn Gin Gin Gin Gin Gin Gin
165 170 175

gaa tct gcc aag gag acc ctc aag gag ggg gaa ggt tgc aat gac tat gtt
Glu Ser Ala Leu Gin Thr Tyr Gin Ala Cys Ala Val Cys Asn Arg Tyr Ala
180 185 190

tca gcc tac cat tat gga gtc tgt tcc tgt gag ggc egc ggc tgc
Ser Gin Gin Gin Gin Gin Gin Gin Ser Gin Gin Gin Gin Gin Gin
195 200 205

ttc aag aag aat att caa cca ctt cca aca ctc tgt gta tagagtgt
Phe Lys Arg Ser Ile Gin Gin Gin Leu Pro Thr Leu Cys
210 215 220

dctgacca aacagagat atagcatat ggagcagac aagagcgcta gaaatatac
973

cacactta caacactctg atcctgtgaca aacgtgacaa aacagaaaga tggggaagg
1033

tgttgttaggt ggagtgtgaggt cagagcgtaa acaagctgaa
1093

tggatgacac ctctacacac tataacaaat ttataacag atggatattat gacttagaatg
1153

tgacacacata cacacataagc cacatgacttg gataactaca gacatcagac
1213

gactggagc gactgactag tctaaacacac caaagacag ggggagac gggggaga
1273

tactactgttta tctatcagag ccttactgtat tattatttat tattatttat
1333

937

993

1093
ctcaacagag acatgtatg cagccaacag acacatgaan aaagtcctoc cctcattgc
1573
catcagaga atgacataa aaacacctat gagatccact ctatcaccagn ttaagatgt
1633
gatcattaga agtcagcgg acacagggcg ctgggaaggaa tggcgcagaa taggcacactt
1693
tttacgctgt tgtgggacct cttaaacgttg tcaggtggtg aggaaaggttt ttagaagatt
1753
cotcagagctct cacacactgg aatattcatt ttg accagggc ctgccattcc cagccattata
1813
cacacatgt tataaatctat ctgtcttata aaagacagctg aacgatgtatgt tattggcgc
1873
actattcaca atagcacaag ctctggacca accaatatt caaacaacaa taggcttagat
1933
taagaaatg tcgcaacatt acacagatga aatactagca gcataaaaaa agagtgaagt
1993
catatatgg tagggactcg gtaagaagctg aaccactcata ctctcagcaca actattgca
2053
gcgacaaaa ccaacatcgct aatgttctcac tctagtggtg gcattcgacca taagaacac
2113
ttgagacag ggctggggag aaccacactt ggccccctgtt gttggttgag ggaggggggg
2173
aggtattaga atagggatgta taactatgtat aatgtgatag ttaagtggtt ccagccacaca
2233
aacgccacoa tgtatatgctgtagacactgt gcgcactgta coctagact
2293
taagatattac caaacatatat tt
2315

<210> SEQ ID NO 16
<211> LENGTH: 330
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (262)...(330)
<220> FEATURE:
<221> NAME/KEY: exonic:exon junction
<222> LOCATION: (191)...(192)
<223> OTHER INFORMATION: exon 1:exon 3

<400> SEQUENCE: 16
gacacacagg gatatacgg gctgctggcag gggcacata aagggacacca ttaggaagatg 60
cagagccctgc tgcgtgtcgtc atgcttata ttagacccaa gcctctccct ggcgacctttt 120
cagatgcct gcggccocco cgcggcccttc ccggggtactt ccagacgcctc 180
cgacacatga aagttggccct ccggggtctct gagctctgc gctgggggac acgttgctga 240
cctgcgcccc ggggacagcag c cag ac atg acc ctc cac acc aa aca tct
291
Met Thr Met Thr Leu His Thr Lys Ala Ser 1 5 10

<210> SEQ ID NO 17
<211> LENGTH: 355
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (287)...(355)
<220> FEATURE:
<221> NAME/KEY: exonic:exon junction
<222> LOCATION: (85)...(86)
<223> OTHER INFORMATION: exon 1A:exon 2
<220> FEATURE:
<221> NAME/KEY: exonic:exon junction
<222> LOCATION: (216)...(217)
<223> OTHER INFORMATION: exon 2:exon 3

<400> SEQUENCE: 17
ggg atg gcc cta ctg cat cag atc atc cca ggg acc gag cctg 330
Gly Met Ala Leu Leu His Gln Ile Gln Gly Aan Glu Leu
15 20
<400> SEQUENCE: 17
accagctcg  aanggtcsc  gcctctttcttc  cggtcccttt  cctatagcata  agaagacagt
cttctgatga taatctttcttc  tcaagagaa  agenaactag  gaagggaga  gcacaagat
ctttttcaact  ttcctgggcac  tgcctgataca  aatstctgca  cagcacttcttct  tgaanaagga
ttgagatttt  aatctgacat  ttcgacatcct  actgaggcttg  ccgcgcggcttt  tcttgagcttt
tgcccctggcg  ggacacggtg  cgccacccctg  cccggggccac  cgacccctg  atg  acc  atg
Met  Thr  Met
1
acc  ctc  csc  acc  aca  gca  tct  ggg  atg  gcc  cta  ctg  cat  cag  atc  cca
Thr  Leu  His  Thr  Lys  Ala  Ser  Gly  Met  Ala  Leu  Leu  His  Gin  Ile  Gin 5 10 15
343
355
ggg  acc  gag  ctg
Gly  Asn  Glu  Leu
20

<210> SEQ ID NO 18
<211> LENGTH: 323
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: exon1 exon junction
<222> LOCATION: (115)...(116)
<223> OTHER INFORMATION: exon 7 exon 9
<220> FEATURE:
<221> NAME/KEY: exon1 exon junction
<222> LOCATION: (254)...(255)
<223> OTHER INFORMATION: exon 9 exon 10

<400> SEQUENCE: 18
cataaagact  atatgtgtc  agcacaacaa  cagtgaaccac  ttagaaaaa  cagagagagaa
agctgcaagg  cctgctggtg  ccgcaangtc  tcggagttg  gaatgtgactg  agtgtgcttt
gttgattttga  cccctcatga  tcaagttcag  aatctgacat  ttcgacttggt  agaaactgtg
atgatgtgct  tgctgtggtgc  ctctatttgg  cacccagagga  agctactgttt  tgcttttaaac
tttgctttgg  agagaaacca  gggaaaaagt  gttagagggct  ttgagggctg  gttgagagat
ctcgactgga  cactcatctgc  gtt
323

<210> SEQ ID NO 19
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 19
gaatgtgct  tgtagaatgc
20

<210> SEQ ID NO 20
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 20
cgattgctcc  ttgaactctt
20

<210> SEQ ID NO 21
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 21

aaaggcagc ggacctttcg

<210> SEQ ID NO 22
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 22
tcagtgatgc ttcaagagtc

<210> SEQ ID NO 23
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 23
tcagtgatgc ggtcctggtgc

<210> SEQ ID NO 24
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 24
agtcggttc cggtgcgtcg

<210> SEQ ID NO 25
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 25
gtcagctc gtccctttcg

<210> SEQ ID NO 26
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 26
tttgacagg cggggtttgtc

<210> SEQ ID NO 27
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 27
tagcatcag gggctcggtg

<210> SEQ ID NO 20
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 20
tagggcactg gctggcctgtg

<210> SEQ ID NO 29
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 29
tccagttag tggggcactgtg

<210> SEQ ID NO 30
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 30
cgttctcag gtgtaggggc

<210> SEQ ID NO 31
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 31
gggctcgatt tccaggtattg

<210> SEQ ID NO 32
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 32
ttcaggttcc ccaagtaacag

<210> SEQ ID NO 33
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 33
ttcaggttcc ccaagtaacag
tgattttggc ggtasacatc

<210> SEQ ID NO 34
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 34
tagcagctct cctggcaga

<210> SEQ ID NO 35
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 35
cacagtagcg agtctctcttg

<210> SEQ ID NO 36
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 36
cagtctgatg gtatgtttctt

<210> SEQ ID NO 37
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 37
gttgctctgt tcaagtctgtat

<210> SEQ ID NO 38
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 38
ttcaccctcg ttggtgatgg

<210> SEQ ID NO 39
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 39
gtctgtctat atctcttcacc

<210> SEQ ID NO 40
<210> SEQ ID NO 41
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> <SEQUENCE: 41

cattctttc taatgtacac
<20>

<210> SEQ ID NO 42
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> <SEQUENCE: 42

agtttacagt cccaccaaca
<20>

<210> SEQ ID NO 43
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> <SEQUENCE: 43

aggsatcgc acactgtctt
<20>

<210> SEQ ID NO 44
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> <SEQUENCE: 44

atgtgccttt atagcagcat
<20>

<210> SEQ ID NO 45
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> <SEQUENCE: 45

atgttgtgt gtgtgaccca
<20>

<210> SEQ ID NO 46
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 46

aggtacatg tgcacagtgt 20

<210> SEQ ID NO 47
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 47

ttgccagtc tcatgtctcc 20

<210> SEQ ID NO 48
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 48

aaaggtggc aagctctcatg 20

<210> SEQ ID NO 49
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 49

cttgcccaas gttggcagc 20

<210> SEQ ID NO 50
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 50

aagcactag cccatctggtc 20

<210> SEQ ID NO 51
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 51

ccacaaggc actggacatc 20

<210> SEQ ID NO 52
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 52
agcttcacct aagggcatga

<210> SEQ ID NO 53
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 53
agctccctgt ctgcaggtt 20

<210> SEQ ID NO 54
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 54
gacccgccc cctgctgccc 20

<210> SEQ ID NO 55
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 55
tccacaagc gcacccttctt 20

<210> SEQ ID NO 56
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 56
agttgcacct gtcatggag 20

<210> SEQ ID NO 57
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 57
cagacagac caacctcag 20

<210> SEQ ID NO 58
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 58
agcaagttag gaccaacag 20

<210> SEQ ID NO 59
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 59

ccagcgacagttag

<210> SEQ ID NO 60
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 60

cotgctcagagtaagtag

<210> SEQ ID NO 61
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 61

gattgagcagcacaactc

<210> SEQ ID NO 62
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 62

tacatccagantaagcag

<210> SEQ ID NO 63
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 63

atgtgtacacacagcagaata

<210> SEQ ID NO 64
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 64

cctctctcagagacctcag

<210> SEQ ID NO 65
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 65

tggtctctct ctcccagaگα  

<210> SEQ ID NO 66
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 66

tggtccagas ctcggtgsts  

<210> SEQ ID NO 67
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 67

tgtgtgtact tgtccaggync  

<210> SEQ ID NO 68
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 68

asgtgtctgt gcsttgctcc  

<210> SEQ ID NO 69
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 69

gatcaggtgt tctgtgatct  

<210> SEQ ID NO 70
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 70

asggtgatcga asgtgtctgt  

<210> SEQ ID NO 71
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 71
-continued

cctacagtctgacsagtgc

<210> SEQ ID NO: 72
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 72

gctttgta catagtcgcc

<210> SEQ ID NO: 73
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 73
ggcgtctcga gacgctggca

<210> SEQ ID NO: 74
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 74
caaaaagtctacacttctc

<210> SEQ ID NO: 75
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 75
gagagagc tggactacccc

<210> SEQ ID NO: 76
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 76
cacacaagagtattgttct

<210> SEQ ID NO: 77
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 77
agcctctcactattgttgca

<210> SEQ ID NO: 78
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 78

atctctttat gacatcagc 20

<210> SEQ ID NO 79
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 79

ttggaagtcc tgatagtctt 20

<210> SEQ ID NO 80
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 80

agcaccattc tgtagatgac 20

<210> SEQ ID NO 81
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 81

acaaaagctg tcacagagca 20

<210> SEQ ID NO 82
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 82

cgtttatgtcc tgtagatgac 20

<210> SEQ ID NO 83
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 83

cocgtggtcc acctttgtatc 20

<210> SEQ ID NO 84
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<400> SEQUENCE: 84

gggcccact ttaacctgagc 20

<210> SEQ ID NO: 85
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 85
ttcctctctc tgaagagagc 20

<210> SEQ ID NO: 86
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 86

gggcccacc tcaagtgagc 20

<210> SEQ ID NO: 87
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 87

ccacaagcc acctttctac 20

<210> SEQ ID NO: 88
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 88

cctgtgtgcct tgtcacaagagc 20

<210> SEQ ID NO: 89
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 89

agtaacctctc tgaagagagc 20

<210> SEQ ID NO: 90
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 90
aagtgctgag atacagatg

<210> SEQ ID NO 91
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 91

cggggtacc tgtgaatagc

<210> SEQ ID NO 92
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 92
cactattacc tgtgaacttt

<210> SEQ ID NO 93
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 93
gtcacttacc tgtccagagc

<210> SEQ ID NO 94
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 94
tcaacctcacc agaattaaagc

<210> SEQ ID NO 95
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 95
catttcacct agcatrgtgt

<210> SEQ ID NO 96
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 96
cottttgta cgtaggtggg

<210> SEQ ID NO 97
<211> LENGTH: 144
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:

<400> SEQUENCE: 97
aaacacacag gcgcagagac acacatgctg gcgcagagac 60
cotgcctgc gcgcagagac acacatgctg gcgcagagac 120
cotgcctgc gcgcagagac acacatgctg gcgcagagac 144

<210> SEQ ID NO 98
<211> LENGTH: 1218
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:

<400> SEQUENCE: 98
agcgctggac gcgcagagac acacatgctg gcgcagagac 60
ttcgcgcgac gcgcagagac acacatgctg gcgcagagac 120
ggcgcgtgc gcgcagagac acacatgctg gcgcagagac 180
agcgctgcgc gcgcagagac acacatgctg gcgcagagac 240
cotgcgtgc gcgcagagac acacatgctg gcgcagagac 300
cgcgcctgac gcgcagagac acacatgctg gcgcagagac 360
cgcgcctgac gcgcagagac acacatgctg gcgcagagac 420
ttcgcgcgac gcgcagagac acacatgctg gcgcagagac 480
ggcgcgtgc gcgcagagac acacatgctg gcgcagagac 540
agcgctgcgc gcgcagagac acacatgctg gcgcagagac 600
ttcgcgcgac gcgcagagac acacatgctg gcgcagagac 660
ggcgcgtgc gcgcagagac acacatgctg gcgcagagac 720
agcgctgcgc gcgcagagac acacatgctg gcgcagagac 780
ttcgcgcgac gcgcagagac acacatgctg gcgcagagac 840
ggcgcgtgc gcgcagagac acacatgctg gcgcagagac 900
ggcgcgtgc gcgcagagac acacatgctg gcgcagagac 960
cotgcgtgc gcgcagagac acacatgctg gcgcagagac 1020
cotgcgtgc gcgcagagac acacatgctg gcgcagagac 1080
cotgcgtgc gcgcagagac acacatgctg gcgcagagac 1140
cotgcgtgc gcgcagagac acacatgctg gcgcagagac 1200
ttcgcgcgac gcgcagagac acacatgctg gcgcagagac 1218
What is claimed is:

1. A compound 8 to 50 nucleobases in length targeted to a nucleic acid molecule encoding estrogen receptor alpha, wherein said compound specifically hybridizes with said nucleic acid molecule encoding estrogen receptor alpha and inhibits the expression of estrogen receptor alpha.

2. The compound of claim 1 which is an antisense oligonucleotide.

3. The compound of claim 2 wherein the antisense oligonucleotide has a sequence comprising SEQ ID NO: 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 56, 60, 74, 77, 88, 91 or 95.

4. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.

5. The compound of claim 4 wherein the modified internucleoside linkage is a phosphorothioate linkage.

6. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.

7. The compound of claim 6 wherein the modified sugar moiety is a 2'-O-methoxyethyl sugar moiety.

8. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified nucleobase.

9. The compound of claim 8 wherein the modified nucleobase is a 5-methycytosine.

10. The compound of claim 2 wherein the antisense oligonucleotide is a chimeric oligonucleotide.

11. A compound 8 to 50 nucleobases in length which specifically hybridizes with at least an 8-nucleobase portion of an active site on a nucleic acid molecule encoding estrogen receptor alpha.

12. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.

13. The composition of claim 12 further comprising a colloidal dispersion system.

14. The composition of claim 12 wherein the compound is an antisense oligonucleotide.

15. A method of inhibiting the expression of estrogen receptor alpha in cells or tissues comprising contacting said cells or tissues with the compound of claim 1 so that expression of estrogen receptor alpha is inhibited.

16. A method of treating an animal having a disease or condition associated with estrogen receptor alpha comprising administering to said animal a therapeutically or prophylactically effective amount of the compound of claim 1 so that expression of estrogen receptor alpha is inhibited.

17. The method of claim 16 wherein the disease or condition is a hyperproliferative disease.

18. The compound of claim 1 targeted to a nucleic acid molecule encoding an estrogen receptor alpha/fatty acid synthase fusion transcript, wherein said compound specifically hybridizes with and differentially inhibits the expression of said fusion transcript relative to variants of estrogen receptor alpha.

19. The compound of claim 1 targeted to a nucleic acid molecule encoding estrogen receptor alpha, wherein said compound specifically hybridizes with and differentially inhibits the expression of one of the variants of estrogen receptor alpha relative to the remaining variants of estrogen receptor alpha.

20. The compound of claim 19 targeted to a nucleic acid molecule encoding estrogen receptor alpha, wherein said compound hybridizes with and specifically inhibits the expression of a variant of estrogen receptor alpha, wherein said variant is selected from the group consisting of ESR-alpha, ESR-alpha-II, ESR-alpha-III, ESR-alpha-IV, ESR-alpha-V, ESR-alpha-VI, ESR-alpha-VII, ESR-alpha-VIII and ESR-alpha-IX.

* * * * *