发明名称

用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧结制备方法

摘要

本发明公开了一种用氧化钇作为稳定剂的四方多晶氧化锆陶瓷(Y-TZP陶瓷)的低温烧结制备方法，其主要特点是，包括前驱体溶胶的制备和细晶陶瓷的制备二步骤：以含Mg、Al离子的可溶性盐和Si(OCH₃)₄为原料，其中MgO：Al₂O₃：SiO₂的摩尔比为(0.3-0.8)：(2.3-6)：(1-3.5)制成前驱体溶胶；氧化钇稳定的氧化锆纳米超细粉末按固液质量比为(75-85)：(25-15)加水配成浆料，加入3-8wt%的前驱体溶胶，均匀混合球磨，然后造粒、成型，在1320-1420℃烧结1-3小时，获得纳米晶粒Y-TZP陶瓷。本发明制备的Y-TZP陶瓷由纳米晶粒组成，具有良好的力学性能、烧结温度低和成本较低的优点，可作为高性能的耐磨部件材料广泛应用于化工、机械、通讯和航空航天等领域。
1. 用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧结制备方法，其特征在于：以 MgO·Al₂O₃·SiO₂ 复合前驱体溶胶和氧化钇稳定的氧化锆纳米超细粉末为原料，包括前驱体溶胶的制备和细晶陶瓷的制备，具体工艺步骤如下：

 A). 以含 Mg 离子的可溶性盐，含 Al 离子的可溶性盐和 Si(OCH₃)₄ 为原料，其中 MgO·Al₂O₃·SiO₂ 的摩尔比为 (0.3-0.8)；(2.3-6)；(1-3.5)；首先将 Si(OCH₃)₄ 水解 24 小时，再将含有 Mg，Al 离子的可溶性盐分别溶在去离子水中，以 Si(OCH₃)₄ 水解溶液为基液，将含 Mg，Al 离子的溶液分别加在与基液混合，并通过滴加氨水控制 pH 值为 9-10.5，在滴定过程中不断搅拌，滴定完毕后仍搅拌 30 分钟，形成镁铝尖晶石和莫来石的 MgO·Al₂O₃·SiO₂ 复合前驱体溶胶；

 B). 将氧化钇稳定的氧化锆纳米超细粉末按固液质量比为 (75-85)；(25-15) 加水配成浆料；

 C). 在上述浆料中加入 3-8wt% 的 MgO·Al₂O₃·SiO₂ 复合前驱体溶胶，均匀混合球磨；

 D). 喷雾造粒，成型，在 1320-1420℃ 烧结 1-3 小时，获得纳米晶粒的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷。

2. 根据权利要求 1 所述的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧结制备方法，其特征在于：所述的含 Mg 离子的可溶性盐是 MgCl₂·6H₂O 或 Mg(NO₃)₂·6H₂O，所述的含 Al 离子的可溶性盐是 AlCl₃·6H₂O 或 Al(NO₃)₃·9H₂O。

3. 根据权利要求 1 或 2 所述的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧结制备方法，其特征在于：所述的 MgO·Al₂O₃·SiO₂ 的摩尔比为 0.3:2.3:1。

4. 根据权利要求 1 或 2 所述的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧结制备方法，其特征在于：所述的 MgO·Al₂O₃·SiO₂ 的摩尔比为 0.5:4.5:2.3。

5. 根据权利要求 1 或 2 所述的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧结制备方法，其特征在于：所述的 MgO·Al₂O₃·SiO₂ 的摩尔比为 0.8:6:3.5。

6. 根据权利要求 1 或 2 所述的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧
结备方法，其特征在于：以MgO-Al_{2}O_{3}-SiO_{2}复合前驱体溶液和氧化钇稳定的氧化锆纳米超细粉末为原料，包括前驱体溶液的制备和细晶陶瓷的制备，具体工艺步骤如下：

A). 以MgCl_{2}.6H_{2}O，AlCl_{3}.6H_{2}O和Si(OCH_{3})_{4}为原料，其中MgO:Al_{2}O_{3}:SiO_{2}的摩尔比为0.5:3:1.5；首先将Si(OCH_{3})_{4}水解24小时，再将MgCl_{2}.6H_{2}O，AlCl_{3}.6H_{2}O分别溶解在去离子水中获得含Mg离子和含Al离子溶液，以Si(OCH_{3})_{4}水解溶液为基液，将含Mg，Al离子的溶液分别同步滴入基液中，通过滴加氨水控制pH值为9-10.5，在滴定过程中不断搅拌，滴定完毕后仍搅拌30分钟，获得白色溶胶，将溶胶抽滤后用去离子水清洗，如此循环多遍直至抽滤水中检测不到Cl^{-}存在，将清洗、抽滤完毕的MgO-Al_{2}O_{3}-SiO_{2}前驱体制成的溶胶体系，密封待用；

B). 称取氧化钇稳定的氧化锆纳米超细粉末，按固液质量比为75:25调成浆料；

C). 在上述浆料中加入3-8wt%的MgO-Al_{2}O_{3}-SiO_{2}复合前驱体溶胶，再加入聚丙烯酸铵分散剂及蒸馏水，混合后置入搅拌磨中混磨4小时；

D). 在温度380℃下，压力6×10^{6}Pa条件下喷雾造粒，粒径为30-50μm；然后加湿处理后装入模具中，再施压成型为试条，再于180MPa压力下等静压成型；将成型试条在1380℃烧结，保温1小时，获得纳米晶粒的氧化锆作为稳定剂的四方多晶氧化锆陶瓷。

7. 根据权利要求1或2所述的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧结制备方法，其特征在于：以MgO-Al_{2}O_{3}-SiO_{2}复合前驱体溶液和氧化钇稳定的氧化锆纳米超细粉末为原料，包括前驱体溶液的制备和细晶陶瓷的制备，具体工艺步骤如下：

A). 以Mg(NO_{3})_{2}.6H_{2}O，Al(NO_{3})_{3}.9H_{2}O和Si(OCH_{3})_{4}为原料，其中MgO:Al_{2}O_{3}:SiO_{2}的摩尔比为0.8:2.3:1；首先将Si(OCH_{3})_{4}水解24小时，再将Mg(NO_{3})_{2}.6H_{2}O，Al(NO_{3})_{3}.9H_{2}O分别溶解在去离子水中获得含Mg离子和含Al离子溶液，以Si(OCH_{3})_{4}水解溶液为基液，将含Mg，Al离子的溶液分别同步滴入基液中，通过滴加氨水控制pH值为9-10.5。在滴定过程中不断搅拌，滴定完毕后仍搅拌30分钟，获得白色溶胶，将溶胶抽滤后用去离子水清洗，如此循环多遍，将清洗、抽滤完毕的MgO-Al_{2}O_{3}-SiO_{2}前驱体制成的溶胶体系，密封待用；
B) 称取氧化钇稳定的氧化锆纳米超细粉末，按固液质量比为 80:20 调成浆料；

C) 在上述浆料中加入 3-8wt%的 MgO-Al₂O₃-SiO₂ 复合前驱体溶液，再加入丙烯酸钠分散剂及蒸馏水，混合后置入搅拌磨中混磨 4 小时；

D) 在温度 380℃、压力 8×10^4 Pa 条件下喷雾造粒，粒径为 30-50μm；然后加湿处理后装入模具中，在压力 50-80MPa 条件下干压成型为试条，再于 180MPa 压力下等静压成型；将成型试条在 1320℃烧结，保温 1 小时，获得纳米晶粒的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷。
用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧结制备方法

技术领域

本发明涉及一种低温烧结细晶用氧化钇作为稳定剂的四方多晶氧化锆陶瓷（以下简称 Y-TZP 陶瓷）的制备方法，属于结构陶瓷材料的制备技术领域。

背景技术

用氧化钇（Y₂O₃）作为稳定剂的四方多晶氧化锆陶瓷（Y-TZP）作为综合性能最好的一种氧化锆材料，在加工、机械、通讯和航空航天等领域的日益发挥着重要的作用。然而，目前广泛应用的 Y-TZP 氧化锆陶瓷普遍采用固相烧结工艺，烧结温度在1450~1600℃，对设备要求高，能耗大，使氧化锆产品的生产成本居高不下，严重限制了该材料的进一步应用。现有涉及的 Y-TZP 陶瓷的低温烧结技术专利主要包括三大类专利：在氧化钇的基础上采用复合稳定剂和添加玻璃助烧剂，以及借助其他烧结技术采用非常压烧结设备实现低温烧结；综合来看，上述几种方法尚存在烧结组织力学性能有待提高，烧结温度相对较高，成本较高等不足之处，不能满足工业化生产的要求。

下对几种典型的制备技术作一简述：

采用复合添加剂的专利有日本专利JP7187774，其特征为：选用两种或多种稳定剂，如 Y₂O₃，Yb₂O₃，Ho₂O₃，Er₂O₃，Dy₂O₃，再添加 0.05~2wt% 的 B₂O₃，所有添加剂的总量为 2~6wt%，复合粉末在 500~1200℃ 加烧，材料在 1300~1600℃ 可以致密烧结，烧结体由四方和少量立方相组成，平均晶粒尺寸为 5μm，材料密度大于 5.8g/cm³。中国专利CN02111146.4 属于同类型专利，其特征为：采用共沉淀法制备氧化镁和氧化钇共同稳定的（Mg，Y）-ZrO₂ 粉体，MgO 和 Y₂O₃ 的添加量分别为 5~14mol% 和 0.2~2mol%，再添加非晶态 Y〈sub〉₂O₃-Al₂O₃-SiO₂〈/sub〉 助烧剂，样品可在 1250℃~1400℃烧结，晶粒大小为 200~400nm，材料的抗弯强度为 384~815MPa，断裂韧性为 5.2~8.3 MPa·m²/³。此类专利主要是通过复合添加稀土氧化物，一方面可以促进烧结，另外可以起到改善 Y-TZP 陶瓷低温性能退化的问题。第二类专利是通过添加玻璃助烧剂降低 Y-TZP 陶瓷的烧结温度，典型专利有中国专利CN02110868.4，报道了
用熔融玻璃法制备CaO-Al₂O₃-SiO₂玻璃，通过机械混合法在氧化钇含量为2~3mol%的Y-TZP纳米粉体中加入0.5~3.0wt%的玻璃添加剂，在1350℃~1450℃烧结1~3小时，可获得纳米晶粒的氧化锆陶瓷。材料的弯曲强度和断裂韧性分别为820~960MPa和9.5~9.8MPa·m³/2。此类专利是通过机械混合法把预制的玻璃粉末分散到氧化锆粉末中，烧成时在较低温度玻璃熔融，产生液相烧结，从而促进致密化烧结，降低烧结温度。由于玻璃助烧剂是以机械混合法加入，可能造成分布不均，将影响材料性能的稳定性。另外助烧剂在烧结体中大多以玻璃相存在，分布在晶界上，将影响材料的中高温性能。第三类旨在降低烧结温度的专利有中国专利200510052090.X，报道了以纳米氧化锆原料，采用等离子体活化烧结，在温度为1250℃~1300℃，压力为30MPa的条件下制得细晶氧化锆陶瓷，本专利特点主要是对等离子工艺的改进，且其烧结机理与常压烧结完全不同。

发明内容

本发明的目的在于提供一种用氧化钇作为稳定剂的四方多晶氧化锆陶瓷的低温烧结制备方法，即低温烧结细晶Y-TZP陶瓷的制备方法。以此方法制备的Y-TZP陶瓷由纳米晶粒组成，具有良好的力学性能、烧结温度低和成本较低的优点，可作为高性能的耐磨部件材料广泛应用于化工、机械、通讯和航空航天等领域。

本发明的目的是通过下述技术方案加以实现的：以MgO-Al₂O₃-SiO₂复合前驱体溶胶和氧化钇稳定的氧化锆纳米超细粉末为原料，包括前驱体溶胶的制备和细晶陶瓷的制备，具体工艺步骤如下：

A). 以含Mg离子的可溶性盐、含Al离子的可溶性盐和Si(OC₂H₅)₄为原料，其中MgO:Al₂O₃:SiO₂的摩尔比为(0.3~0.8): (2.3~6): (1~3.5); 首先将Si(OC₂H₅)₄水解24小时，再将含有Mg、Al离子的可溶性盐分别溶解在去离子水中，以Si(OC₂H₅)₄水解溶液为基液，将含Mg、Al离子的溶液分别滴入基液中，通过滴加氨水控制pH值为9~10.5，在滴定过程中不断搅拌，滴定完毕后仍搅拌30分钟，形成镁铝尖晶石和莫来石的MgO-Al₂O₃-SiO₂复合前驱体溶胶；

B). 将氧化钇稳定的氧化锆纳米超细粉末按固液质量比为(75~85): (25~15)加水配成浆料；
C). 在上述浆料中加入 3~8wt%的 MgO-Al₂O₃-SiO₂复合前驱体溶胶，均匀混合球磨；

D). 喷雾造粒、成型，在 1320~1420℃烧结 1~3 小时，获得纳米晶粒的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷。

本发明的目的是还可以通过下述技术方案加以实现；

所述的含 Mg 离子的可溶性盐是 MgCl₂·6H₂O 或 Mg(NO₃)₂·6H₂O，所述的含 Al 离子的可溶性盐是 AlCl₃·6H₂O 或 Al(NO₃)₃·9H₂O。

所述的 MgO: Al₂O₃: SiO₂的摩尔比为 0.3: 2.3: 1。

所述的 MgO: Al₂O₃: SiO₂的摩尔比为 0.5: 4.5: 2.3。

所述的 MgO: Al₂O₃: SiO₂的摩尔比为 0.8: 6: 3.5。

本发明的实现途径之一为：以 MgO-Al₂O₃-SiO₂复合前驱体溶胶和氧化钇稳定的氧化锆纳米超细粉末为原料，包括前驱体水胶的制备和细晶陶瓷的制备，具体工艺步骤如下：

A). 以 MgCl₂·6H₂O、AlCl₃·6H₂O 和 Si(OCH₃)₄为原料，其中 MgO: Al₂O₃: SiO₂的摩尔比为 0.5: 3: 1.5; 首先将 Si(OCH₃)₄水解 24 小时，再将 MgCl₂·6H₂O、AlCl₃·6H₂O 分别溶解在去离子水中获得含 Mg 离子和含 Al 离子溶液；以 Si(OCH₃)₄水解溶液为基液，将含 Mg、Al 离子的溶液分别同步滴入基液中，通过滴加氨水控制 pH 值为 9~10.5。在滴定过程中不断搅拌，滴定完毕后仍搅拌 30 分钟，获得白色溶胶，将溶胶抽滤后用去离子水清洗，如此循环多遍直至抽滤水中检测不到 SiO₂存在，将清洗、抽滤完毕的 MgO-Al₂O₃-SiO₂前驱体制成的溶胶体系，密封待用；

B). 称取氧化钇稳定的 ZrO₂纳米超细粉末，按固液质量比为 75:25 调成浆料；

C). 在上述浆料中加入 3~8wt%的 MgO-Al₂O₃-SiO₂复合前驱体溶胶，再加入聚丙烯酸胺分散剂及蒸馏水，混合后置入搅拌磨中混磨 4 小时；

D). 在温度 380℃、压力 6×10⁴ Pa 条件下喷雾造粒，粒径为 30~50μm；然后加湿处理后装入模具中，在压力 50~80MPa 条件下，干压成型为试条，再于 180MPa 压力下等静压成型；将成型试条在 1380℃烧结，保温 1 小时，获得纳米晶粒的用氧化钇作为稳定剂的四方
多晶氧化锆陶瓷。

本发明的实现途径之二为：以 MgO·Al₂O₃·SiO₂ 复合前驱体溶胶和氧化钇稳定的 ZrO₂ 纳米超细粉末为原料，包括前驱体溶胶的制备和细晶陶瓷的制备，具体工艺步骤如下：

A). 以 Mg(NO₃)₂·6H₂O、Al(NO₃)₃·9H₂O 和 Si(OCH₃)₄ 为原料，其中 MgO：Al₂O₃：SiO₂ 的摩尔比为 0.8：2.3：1；首先将 Si(OCH₃)₄ 水解 24 小时，再将 Mg(NO₃)₂·6H₂O、Al(NO₃)₃·9H₂O 分别溶解在去离子水中获得含 Mg 离子和含 Al 离子溶液；以 Si(OCH₃)₄ 水解溶液为基液，将含 Mg、Al 离子的溶液分别同步滴入基液中，通过滴加氨水控制 pH 值为 9-10.5，在滴定过程中不断搅拌，滴定完毕后仍搅拌 30 分钟，获得白色溶胶，将溶胶抽滤后用去离子水清洗，如此循环多遍，将清洗、抽滤完毕的 MgO·Al₂O₃·SiO₂ 前驱体制成的溶胶体系，密封待用；

B). 称取氧化钇稳定的 ZrO₂ 纳米超细粉末，按固液质量比为 80：20 调成浆料；

C). 在上述浆料中加入 3-8wt%的 MgO·Al₂O₃·SiO₂ 复合前驱体溶胶，再加入聚丙烯酸铵分散剂及蒸馏水，混合后置入搅拌磨中混磨 4 小时；

D). 在温度 380℃、压力 8×10⁶ Pa 条件下喷雾造粒，粒径为 30-50μm；然后加湿处理后装入模具中，在压力 50-80MPa 条件下，干压成型为成体，再于 180MPa 压力下等静压成型；将成型体在 1320℃烧结，保温 1 小时，获得纳米晶粒的用氧化钇作为稳定剂的四方多晶氧化锆陶瓷。

本发明具有以下显著的优点和进步：制备的 3Y-TZP 陶瓷的密度为 6.0-6.05，晶粒尺寸为 200-500nm，抗弯强度为 826-1020MPa，断裂韧性为 10.2-14.6MPa·m³/²，泊松比数为 16-18。通过在 ZrO₂（3Y₂O₃）浆料中添加 MgO·Al₂O₃·SiO₂ 前驱体，制得组分均匀的复合粉末。在烧成过程中前驱体在较低温度可起到液相烧结的作用，材料可在 1320-1420℃烧结。在高温下无定型前驱体发生析晶，析出相分布在晶界上，抑制晶粒生长，使材料具有更好的抗低温老化性能和中高温性能，因而具有良好的力学性能、烧结温度低和成本较低的优点。

附图说明

图 1 为本发明实施例 1 制得的氧化锆陶瓷表面的显微镜照片
图2为本发明实施例1制得的氧化锆陶瓷XRD衍射图

具体实施方式

实施例1:

MgO-Al₂O₃-SiO₂复合前驱体溶胶的制备:

按MgO: Al₂O₃: SiO₂摩尔比为0.5:3:1.5分别精确称取102.6克MgCl₂·6H₂O, 1428.6克AlCl₃·6H₂O和321.45克Si(OCH₃)₄。将321.45克Si(OCH₃)₄水解24小时，然后加入去离子水至2升，作为基液；将102.6克MgCl₂·6H₂O和1428.6克AlCl₃·6H₂O分别溶入1升和2升去离子水中，获得含镁离子和铝离子的溶液，再将含镁离子和铝离子的溶液分别滴入Si(OCH₃)₄水解溶液中，同时通过滴加氨水保持溶液的pH值为9-10.5，在滴定过程不断搅拌Si(OCH₃)₄水解溶液。滴定完毕后继续搅拌半小时，获得白色溶胶。将溶胶抽滤后用去离子水清洗，再次抽滤，以此循环多遍直至滴定水中检测不到Cl⁻离子存在，用硝酸银检测Cl⁻离子。将清洗、抽滤完毕的MgO-Al₂O₃-SiO₂前驱体制成体积为3升的溶胶体系，密封待用。

氧化锆陶瓷的制备:

称取含3mol%氧化钇的超细氧化锆30kg,按固液质量比为75:25调成料浆，加入4588.5ml本实施例制备的前驱体溶液，再加入2590ml聚丙稀酸铵分散剂（PAA）及1.2kg蒸馏水。将混合料置入搅拌磨中混磨4小时，料浆在380℃，压力为6×10⁴Pa条件下喷雾造粒，造粒粉粒径为30~50μm。将粉末加湿处理，再装入模具中，在压力为50~80MPa条件下，干压成型尺寸为3.5×6.5×40cm³的试条，再于180MPa压力下等静压成型。将成型试条在1380℃烧结，并保温1小时。用三点弯曲法测定试条的强度，每组测试结果为5根试条的平均值，材料的弯曲强度为868±28.9MPa，断裂韧性为13.5±0.24MPa·m⁰·⁵²。

实施例2:

MgO-Al₂O₃-SiO₂复合前驱体溶胶的制备:

按MgO: Al₂O₃: SiO₂摩尔比为0.8:2.3:1分别精确称取205.1克Mg(NO₃)₂·6H₂O, 1725克Al(NO₃)₃·9H₂O和208.33克Si(OCH₃)₄。将208.33克Si(OCH₃)₄水解24小时，然后加入去
离子水至 2 升，作为基液；将 205.1 克 Mg(NO₃)₂·6H₂O 和 1725 克 Al(NO₃)₃·9H₂O 分别溶入 1 升和 2 升去离子水中，获得含镁离子和铝离子的溶液，再将含镁离子和铝离子的溶液滴入 Si(OC₂H₅)₄ 水解溶液中，同时通过滴加氨水保持溶液的 pH 值为 9-10.5，在滴定过程不断搅拌 Si(OC₂H₅)₄ 水解溶液。滴定完毕后继续搅拌半小时，获得白色溶胶。将溶胶抽滤后用去离子水清洗，再次抽滤，以此循环多遍。将清洗、抽滤完毕的 MgO·Al₂O₃·SiO₂ 前驱体制成体积为 2 升的溶胶体系，密封待用。

氧化锆陶瓷的制备：

称取含 3mol% 氧化钇的超细氧化锆 30kg, 按固液质量比为 80:20 调成料浆，加入 9648ml 本实施例制备的前驱体溶液，再加入 2670ml 聚丙烯酸铵分散剂（PAA）及 0.5kg 蒸馏水。将混合料置于搅拌罐中搅拌 4 小时，料浆在 380℃，压力为 8×10⁵ Pa 条件下喷雾造粒，造粒粉粒径为 30-50μm。将粉末加湿处理，再装入模具中，在压力为 50-80MPa 条件下，干压成型尺寸为 3.5×6.5×40mm³ 的试条，再于 180MPa 压力下等静压成型。将成型试条在 1320℃ 烧结，并保温 1 小时。用三点弯曲法测定试条的强度，每组测试结果为 5 根试条的平均值，材料的弯曲强度为 922±36.7MPa，断裂韧性为 11.7±0.31MPa/m²。