

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

<p>(51) International Patent Classification 5 : C12N 15/00, 15/38, A61K 39/265 C12P 21/08, A61K 39/395 C12Q 1/70, G01N 33/569 C12N 7/00</p>		<p>A1</p>	<p>(11) International Publication Number: WO 92/21751</p> <p>(43) International Publication Date: 10 December 1992 (10.12.92)</p>
<p>(21) International Application Number: PCT/NL92/00097</p> <p>(22) International Filing Date: 5 June 1992 (05.06.92)</p> <p>(30) Priority data: 9100989 7 June 1991 (07.06.91) NL</p> <p>(71) Applicant (for all designated States except US): STICHTING CENTRAAL DIERGENEESKUNDIG INSTITUUT [NL/NL]; Edelhertweg 15, NL-8219 PH Lelystad (NL).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only) : RIJSEWIJK, Franciscus, Antonius, Maria [NL/NL]; Spiegelgracht 19, NL-1017 JP Amsterdam (NL). VAN OIRSCHOT, Johannes, Theodorus [NL/NL]; Oostrandpark 18, NL-8212 AN Lelystad (NL). MAES, Roger, Kamiel [BE/US]; 2476 Arrowhead, Okemos, MI 48864 (US).</p>	<p>(74) Agents: SMULDERS, Th., A., H., J. et al.; Vereenigde Ocroibureaux, Nieuwe Parklaan 97, NL-2587 BN The Hague (NL).</p> <p>(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC (European patent), MG, ML (OAPI patent), MN, MR (OAPI patent), MW, NL, NL (European patent), NO, PL, RO, RU, SD, SE, SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent), US.</p>		
			<p>Published</p> <p><i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>
<p>(54) Title: BOVINE HERPESVIRUS TYPE 1 DELETION MUTANTS, VACCINES BASED THEREON, DIAGNOSTIC KITS FOR DETECTION OF BOVINE HERPESVIRUS TYPE 1</p>			
<p>(57) Abstract</p> <p>Deletion mutant of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene. The mutant may further have a deletion in the thymidine kinase gene and/or the glycoprotein gI-gene, or have an insertion of a heterologous gene. Recombinant nucleic acid which comprises the gE-gene or a part thereof. Glycoprotein gE, peptides based thereon and complexes of the glycoproteins gE and gI, and antibodies against them. Vaccines and diagnostic kits comprising any one of these materials.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NL	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	Ireland	RO	Romania
CA	Canada	IT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Côte d'Ivoire	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark	MG	Madagascar		

Title: Bovine herpesvirus type 1 deletion mutants, vaccines based thereon, diagnostic kits for detection of bovine herpesvirus type 1.

FIELD OF THE INVENTION

This invention relates to the fields of vaccination and diagnostics in connection with diseases which are caused by 5 pathogens and involves the use of both the classic methods to arrive at a live attenuated vaccine or an inactivated vaccine and the modern methods based on DNA recombinant technology.

More specifically, the invention relates to live attenuated vaccines and inactivated vaccines for protecting 10 animals, especially bovines, against bovine herpesvirus type 1 (BHV-1), these vaccines being so designed that they are not only safe and effective, but also create the possibility of distinguishing infected from non-infected animals in a vaccinated population.

15 Diagnostic kits which can be used for such a test for distinguishing infected from non-infected animals in a vaccinated population are also an aspect of the present invention.

20 BACKGROUND OF THE INVENTION

BHV-1, including the infectious bovine rhinotracheitis virus (IBRV) and the infectious pustular vulvovaginitis virus (IPVV), plays an important role in the development of 25 respiratory diseases and fertility disorders in bovines. After an acute infection, BHV-1 often remains present in the host in a latent form. Latent virus can be reactivated under the influence of *inter alia* stress - which may or may not be accompanied by clinical phenomena - and subsequently excreted. 30 As a consequence, infected cattle must be regarded as lifelong potential spreaders of BHV-1. BHV-1 occurs endemically in an estimated 75% of Dutch cattle farms. Especially older cattle are serologically positive.

There are a number of inactivated ("dead") vaccines and a number of attenuated ("live") vaccines available for inoculation against BHV-1 infections. Inactivated vaccines are prepared by killing the BHV-1 virus, for instance by heat treatment, irradiation or treatment with ethanol or formalin. However, these often give insufficient protection. Attenuated vaccines are prepared by a large number of passages on homologous (bovine) or on heterologous cells such as porcine or canine cells, and sometimes viruses are also treated physically or chemically then. In this way, unknown mutations/deletions develop in the virus genome, which often reduce the disease-producing properties of the virus. Attenuated live vaccines give better protection than inactivated vaccines, *inter alia* because they present more viral antigens to the immune system of the host. Another important advantage of live vaccines is that they can be administered intranasally, i.e., at the site where the first multiplication of the wild type virus occurs after infection. Yet, live vaccines leave room for improvement. Some live vaccines still seem to possess their abortogenic ability, which becomes manifest in particular after intramuscular administration. Moreover, probably all live vaccines remain latently present in the vaccinated cow. Also, there is a chance that if the vaccine differs only little from the wild-type virus, reversion to virulence will occur. But one of the major problems is that the BHV-1 vaccines cannot prevent infection by wild-type viruses. The result is that vaccinated cattle can also spread wild-type BHV-1.

For a proper BHV-1 control program, it is necessary to have disposal of an efficacious and safe vaccine that can be distinguished from wild-type virus, since the application of an efficacious vaccine can reduce the circulation of BHV-1 considerably and a test which can distinguish between a vaccine and a wild-type virus makes it possible to detect (and then remove) infected cattle in a vaccinated population.

Meanwhile, BHV-1 vaccines have been developed which seem to be safer than conventional vaccines and are distinguishable from wild-type virus. A thymidine kinase deletion mutant has been isolated which is abortogenic to a lesser degree, becomes 5 latent less frequently and cannot be reactivated. Further, using recombinant DNA techniques, a BHV-1 vaccine has been constructed which has a deletion in the gene for glycoprotein gIII, which makes this vaccine distinguishable from wild-type BHV-1 by means of serological techniques. However, there are 10 still some objections to these vaccines. On the one hand, the thymidine kinase gene is involved in the viral replication and less replication can lead to less protection. On the other hand, the glycoprotein gIII is important for generating protective antibodies, which makes a gIII deletion vaccine 15 less effective. A practical problem is that intranasal administration, which generally gives the best protection, of recombinant vaccines is not allowed in some countries. Accordingly, there is a need for a vaccine which is safe as well as effective and yet can be distinguished from wild-type 20 BHV-1, it being further desirable that at least one of such vaccines is based on a virus attenuated via a conventional route rather than a virus constructed by recombinant DNA techniques.

Now, via passages in cell cultures, a BHV-1 strain has 25 been obtained which lacks the gene for glycoprotein gE. The first results of our research indicate that this gene is quite useful to make a serological distinction with regard to wild-type BHV-1 and that it is involved in the expression of virulence. Therefore, its deletion contributes to safety and 30 may render the use of thymidine kinase deletions superfluous. The glycoprotein gE seems to be less important for induction of protection than the glycoprotein gIII. A conventionally attenuated BHV-1 strain which can be serologically distinguished from wild-type virus is unique. The location and 35 DNA sequence of the gE gene described herein for the first time were not previously known, nor were oligonucleotides,

polypeptides and oligopeptides that can be derived therefrom. A test for making a serological distinction on the basis of the gE gene is also unique.

An important advantage of this "conventional" gE deletion mutant ("conventional" refers to the use of a conventional method for isolating an attenuated virus) is that it will be possible to administer it intranasally in countries where this is forbidden as far as recombinant vaccines are concerned. Taking due account of the different views on safety, however, 10 in addition to this conventional gE deletion vaccine, well-defined recombinant versions have been constructed as well. These recombinant vaccines also have a gE deletion - and may or may not have a deletion in the thymidine kinase gene as well - and can also be used as vectors for the expression of 15 heterologous genes. All these recombinant vaccines can be distinguished from wild-type virus with the same gE-specific test. The use of a standard test for a set of different vaccines can be a great advantage in the combat of BHV-1 as an international effort. Such an approach has not been previously 20 described in the field of BHV-1 vaccines.

Serological analysis of the anti BHV-1 response in cattle showed that an important fraction of the anti-gE antibodies are directed against a complex formed by glycoprotein gE and another BHV-1 glycoprotein: glycoprotein gI. Serological tests 25 that can (also) demonstrate the presence of such complex-specific antibodies may therefore be more sensitive than tests that can only detect anti-gE antibodies. Cattle vaccinated with a single gE deletion mutant may produce anti-gI antibodies that can interfere with the detection of anti-gI/gE 30 antibodies. Consequently, this invention also includes a vaccine with a gI/gE double deletion.

SUMMARY OF THE INVENTION

In the first place, this invention provides a deletion mutant of BHV-1 which has a deletion in the glycoprotein gE-gene. The words "a deletion in" intend to cover a deletion of the gene as a whole.

A preferred embodiment of the invention is constituted by a deletion mutant of BHV-1 which has a deletion in the glycoprotein gE-gene which has been caused by an attenuation procedure, such as the deletion mutant Difivac-1 to be described hereinafter.

Other preferred embodiments of the invention consist of a deletion mutant of BHV-1 comprising a deletion in the glycoprotein gE-gene which has been constructed by recombinant DNA techniques, such as the deletion mutants 1B7 or 1B8 to be described hereinafter.

Another preferred embodiment of the invention consists of a double deletion mutant of BHV-1 comprising a deletion in the glycoprotein gE-gene and a deletion in the glycoprotein gI-gene, such as the gI/gE double deletion mutant Difivac-IE to be described hereinafter.

Further, with a view to maximum safety, according to the invention a deletion mutant of BHV-1 is preferred which has a deletion in the glycoprotein gE-gene and a deletion in the thymidine kinase gene. The invention also covers a deletion mutant of BHV-1 which has a deletion in the glycoprotein gE-gene, the glycoprotein gI-gene and the thymidine kinase gene.

The invention provides a vaccine composition for vaccination of animals, in particular mammals, more particularly bovines, to protect them against BHV-1, comprising a deletion mutant of BHV-1 as defined hereinabove, and a suitable carrier or adjuvant. Said composition may be a live or an inactivated vaccine composition.

The invention is further embodied in a mutant of BHV-1 which has a deletion in the glycoprotein gE-gene and contains a heterologous gene introduced by recombinant DNA techniques.

Preferably, this concerns a mutant of BHV-1 which contains a heterologous gene introduced by recombinant DNA techniques at the location of the glycoprotein gE-gene, which heterologous gene is under the control of regulatory sequences of the gE-gene and is optionally attached to the part of the gE-gene which codes for a signal peptide. Said heterologous gene may also be under the control of a different promoter of BHV-1, or under the control of a heterologous promoter. When the mutant of BHV-1 has further deletions in addition to the deletion in the glycoprotein gE-gene, such as a deletion in the thymidine kinase gene and/or a deletion in the glycoprotein gI-gene, said heterologous gene may also be inserted at the location of this additional deletion(s). Plural insertions are another option, either together at the location of one deletion, or distributed over locations of several deletions.

The heterologous gene introduced preferably codes for an immunogenic protein or peptide of another pathogen, or for a cytokine which promotes the immune response. Examples of suitable cytokines are interleukin 2, interferon-alpha and interferon-gamma.

The invention also provides a (live or inactivated) vaccine composition for vaccination of animals, in particular mammals, more particularly bovines, to protect them against a (different) pathogen, comprising a mutant of BHV-1 having therein a heterologous gene coding for an immunogenic protein or peptide of that other pathogen, and a suitable carrier of adjuvant. Of course, the protection may concern more than one pathogen, i.e. a multivalent vaccine wherein the mutant contains a plurality of heterologous genes.

The invention further relates to a composition comprising a recombinant nucleic acid comprising the glycoprotein gE-gene of BHV-1, a part of this glycoprotein gE-gene or a nucleotide sequence derived from this glycoprotein gE-gene. This composition can contain a cloning or expression vector having therein an insertion of a recombinant nucleic acid which comprises the glycoprotein gE-gene of BHV-1, a part of this

glycoprotein gE-gene or a nucleotide sequence derived from this glycoprotein gE-gene.

The invention also comprises a composition comprising glycoprotein gE of BHV-1, a part of this glycoprotein gE, a peptide derived from this glycoprotein gE, or a complex of the glycoproteins gE and gI, and a composition comprising an antibody which is specific for glycoprotein gE of BHV-1, a part of this glycoprotein gE, a peptide derived from this glycoprotein gE, or a complex of the glycoproteins gE and gI.

5 "Antibody" is understood to mean both a polyclonal antibody preparation and a monoclonal antibody preferred for most applications. The terms "a part of glycoprotein gE" and "a peptide derived from glycoprotein gE" are understood to mean gE-specific amino acid sequences which generally will have a

10 length of at least about 8 amino acids.

15

The invention further relates to a diagnostic kit for detecting nucleic acid of BHV-1 in a sample, in particular a biological sample such as blood or blood serum, blood cells, milk, bodily fluids such as tears, lung lavage fluid, nasal fluid, sperm, in particular seminal fluid, saliva, sputum, or tissue, in particular nervous tissue, coming from an animal, particularly a mammal, more particularly a bovine, comprising a nucleic acid probe or primer having a nucleotide sequence derived from the glycoprotein gE-gene of BHV-1, and a

20

25 detection means suitable for a nucleic acid detection assay.

Further, the invention relates to a diagnostic kit for detecting antibodies which are specific for BHV-1, in a sample, in particular a biological sample such as blood or blood serum, saliva, sputum, bodily fluid such as tears, lung lavage fluid, nasal fluid, milk, or tissue, coming from an animal, in particular a mammal, more in particular a bovine, comprising glycoprotein gE of BHV-1, a part of this glycoprotein gE, a peptide derived from this glycoprotein gE, or a complex of the glycoproteins gE and gI, and a detection

30

35 means suitable for an antibody detection assay. Such a diagnostic kit may further comprise one or more antibodies

which are specific for glycoprotein gE of BHV-1 or specific for a complex of the glycoproteins gE and gI of BHV-1.

The invention also relates to a diagnostic kit for detecting protein of BHV-1 in a sample, in particular a biological sample such as blood or blood serum, blood cells, milk, bodily fluids such as tears, lung lavage fluid, nasal fluid, sperm, in particular seminal fluid, saliva, sputum or tissue, in particular nervous tissue, coming from an animal, in particular a mammal, more in particular a bovine, comprising one or more antibodies which are specific for glycoprotein gE of BHV-1 or specific for a complex of the glycoproteins gE and gI of BHV-1, and a detection means suitable for a protein detection assay.

The invention further provides a method for determining BHV-1 infection of an animal, in particular a mammal, more in particular a bovine, comprising examining a sample coming from the animal, in particular a biological sample such as blood or blood serum, blood cells, sperm, in particular seminal fluid, saliva, sputum, bodily fluid such as tears, lung lavage fluid, nasal fluid, milk, or tissue, in particular nervous tissue, for the presence of nucleic acid comprising the glycoprotein gE-gene of BHV-1, or the presence of the glycoprotein gE of BHV-1 or a complex of the glycoproteins gE and gI of BHV-1, or the presence of antibodies which are specific for the glycoprotein gE of BHV-1 or specific for a complex of the glycoproteins gE and gI of BHV-1. The sample to be examined can come from an animal which has not been previously vaccinated with a vaccine composition according to the invention or from an animal which has previously been vaccinated with a vaccine preparation according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to a set of BHV-1 vaccines, both live and inactivated, which have in common that they lack the 5 glycoprotein gE gene in whole or in part. This set comprises both a natural gE deletion mutant and constructed gE deletion mutants which may or may not also comprise a deletion of the thymidine kinase gene and/or the glycoprotein gI gene, and constructed gE deletion mutants which are used as vectors for 10 heterologous genes. The invention further relates to nucleotide sequences encoding the BHV-1 glycoprotein gE-gene, oligonucleotides derived from these sequences, the glycoprotein gE itself, peptides which are derived therefrom and (monoclonal or polyclonal) antibodies which are directed 15 against the gE glycoprotein and peptides derived therefrom. The invention also relates to complexes of the glycoproteins gE and gI of BHV-1, and to antibodies directed against such complexes.

These materials according to the invention can be used 20 for:

- 1) the vaccination of cattle against diseases caused by BHV-1, such that a distinction can be made between BHV-1 infected animals and vaccinated animals; the conventional and the constructed vaccine can be used side by side;
- 2) the vaccination of cattle against both BHV-1 diseases and diseases caused by other pathogens of which coding sequences for protective antigens can be incorporated into the BHV-1 deletion mutants;
- 3) testing blood, serum, milk or other bodily fluids from 30 cattle to determine serologically or by means of nucleic acid detection techniques (e.g. PCR) whether they have been infected by a wild-type BHV-1 or have been vaccinated with a gE deletion mutant.

Synthesis of oligopeptides, polypeptides and glycoproteins derived from the coding sequence of the glycoprotein gE-gene and the glycoprotein gI-gene of BHV-1

The results of the DNA sequence analysis, described in 5 the examples, of the glycoprotein gE-gene (Fig. 3A) and the isolated DNA fragments which code for this gene, make it possible, using standard molecular-biological procedures, both to synthesize peptides of the gE protein (oligo or polypeptides) and to express the gE protein in its entirety or 10 in large parts via the prokaryotic route (in bacteria) or via the eukaryotic route (for instance in murine cells). Via these routes, gE-specific antigen can be obtained which can for instance serve for generating gE-specific monoclonal antibodies (Mabs). Furthermore, gE-specific antigen (and gE- 15 specific Mabs) can be used in serological tests to enable a distinction to be made between animals vaccinated with a BHV-1 gE deletion vaccine and animals infected with wild-type BHV-1 virus.

The results of the partial DNA sequence analysis of the 20 glycoprotein gI gene - described in the examples - and the isolated DNA fragments that code for this gene, together with the eukaryotic cells expressing glycoprotein gE, allow the expression of the gI/gE complex in eukaryotic cells (See Figures 13 and 14). This glycoprotein complex can be used to 25 produce gI/gE specific monoclonal antibodies. The gI/gE complex can also be used as antigen in serological tests to differentiate between cattle vaccinated with a single gE BHV-1 deletion mutant or with a double gI/gE BHV-1 deletion mutant and cattle infected with wild type BHV-1 virus.

30

gE-specific peptides

On the basis of a known protein coding sequence, by means of an automatic synthesizer, polypeptides of no less than about 40-50 amino acids can be made. Now that the protein 35 coding sequence of the gE glycoprotein of BHV-1 strain Lam has been unraveled (Fig. 3A), polypeptides of this BHV-1 gE

glycoprotein can be synthesized. With such polypeptides, according to standard methods, experimental animals such as mice or rabbits can be immunized to generate gE-specific antibodies. Further, using these gE-specific peptides, the 5 locations where anti-gE antibodies react with the gE protein (the epitopes) can be further specified, for instance with the PEPSCAN method (Geysen et al., 1984, Proc. Natl. Acad. Sci. USA 81, 3998-4002). gE-specific oligopeptides can also be used in serological tests which demonstrate anti-gE antibodies.

10

Prokaryotic expression of gE

For the synthesis of the gE protein in bacteria (i.e. the prokaryotic expression of gE), DNA fragments which code for the glycoprotein gE or for parts thereof must be cloned into 15 prokaryotic expression vectors. Prokaryotic expression vectors are circular DNA molecules which can maintain themselves in a bacterium as a separately replicating molecule (plasmid). These expression vectors contain one or more marker genes which code for an antibiotic resistance and thus enable the 20 selection for bacteria with the expression vector. Further, expression vectors comprise a (often controllable) promoter region behind which DNA fragments can be ligated which are then expressed under the influence of the promoter. In many current prokaryotic expression vectors, the desired protein is 25 expressed while fused to a so-called carrier protein. To that end, in the vector there is located behind the promoter the coding sequence for the carrier protein, directly adjacent to which the desired DNA fragment can be ligated. Fusion proteins are often more stable and easier to recognize and/or to 30 isolate. The steady-state level which a particular fusion protein can attain in a certain bacterial strain differs from fusion to fusion and from strain to strain. It is customary to try different combinations.

Eukaryotic expression of the glycoprotein gE-gene

Although prokaryotic expression of proteins offers some advantages, the proteins lack the modifications, such as glycosylation and the like, which occur in eukaryotic cells.

5 As a result, eukaryotically expressed protein is often a more suitable antigen. For the heterologous expression of proteins in eukaryotic cells, such as murine cells, use is made of eukaryotic expression vectors. These vectors are plasmids which can not only be multiplied in *E. coli* cells but also
10 subsist stably in eukaryotic cells. In addition to a prokaryotic selection marker, they also comprise a eukaryotic selection marker. Analogously to the prokaryotic expression vectors, eukaryotic expression vectors contain a promoter region behind which desired genes can be ligated. However, the
15 promoter sequences in eukaryotic vectors are specific for eukaryotic cells. Moreover, in eukaryotic vectors fusion to carrier proteins is utilized only rarely. These vectors are introduced into the eukaryotic cells by means of a standard transfection method (F.L. Graham and A.J. van der Eb, 1973,
20 *Virology* 52, 456-467). In addition to the eukaryotic plasmid vectors, there are also viral vectors, where the heterologous gene is introduced into the genome of a virus (e.g. retroviruses, herpesviruses and vaccinia virus). Eukaryotic cells can then be infected with recombinant viruses.

25 In general, it cannot be predicted what vector and cell type are most suitable for a particular gene product. Mostly, several combinations are tried.

Eukaryotic expression of both the glycoprotein gE and the
30 glycoprotein gI

The final structure that a protein obtains, is depending on its primary amino acid sequence, its folding, its posttranslational modifications etc. An important factor that contributes to structure of a protein is its interaction with
35 one or more other proteins. We have found that also BHV-1 glycoprotein gE forms a complex with at least one other

glycoprotein: BHV-1 glycoprotein gI. The first indication for such a complex came from our results with candidate anti-gE Mabs 1, 51, 67, 75 and 78 (See table 2). These Mabs did not react with Difivac-1, nor with Lam gE⁻ but also failed to 5 recognize glycoprotein gE-expressing 3T3 cells. However, these Mabs did react with gE-expressing 3T3 cells after infection with Difivac-1, showing that complementing factors are needed to give glycoprotein gE the proper antigenic conformation for these Mabs. In some of our radio-immunoprecipitation 10 experiments with Mab 81 we found coprecipitation of a protein with an apparent molecular weight of 63 kD. In view of the fact that the herpes simplex virus glycoprotein gE forms a complex with a protein with a comparable molecular weight (HSV1 glycoprotein gI), we inferred that BHV-1 glycoprotein gE 15 forms a complex with the BHV-1 homolog of glycoprotein gI. To study this BHV-1 gE/gI complex and to produce gE antigen with the proper antigenic structure we expressed both glycoproteins in one eukaryotic cell. For this we applied the same procedures as described for the eukaryotic expression of 20 glycoprotein gE alone. The only additional prerequisite is the use of expression vectors with different eukaryotic selectable markers.

Serological tests

25 Serological methods for making a distinction between cattle vaccinated with Difivac-1 and cattle infected with wild-type BHV-1 on the basis of antibodies against gE are preferably based on the use of monoclonal antibodies directed against gE. These can be used in the following manners:

30 a) According to the principle described by Van Oirschot et al. (Journal of Virological Methods 22, 191-206, 1988). In this ELISA for the detection of gI antibodies against the virus of Aujeszky's disease, antibodies are demonstrated by their blocking effect on the reaction of two Mabs having two 35 different epitopes on gI. The test is carried out as follows. Microtiter plates are coated with Mab 1, overnight at 37°C,

after which they are stored, e.g. at 4°C or -20°C. The serum to be examined is preincubated with antigen in separate uncoated microtiter plates, e.g. for 2 h at 37°C. The Mab 1-coated plates are washed, e.g. 5 times, after which Mab 2 coupled to horseradish peroxidase (HRPO) is added to these plates. Then the preincubated serum-antigen mixtures are transferred to the plates in which the two Mabs are located, followed by incubation, e.g. for 1 h at 37°C. The plates are washed and substrate is added to each well. After e.g. 2 h at room temperature, the plates are spectrophotometrically read. Four negative control sera and four serial dilutions of a positive serum are included on each plate. The serum which has an optical density (OD) value of less than 50% of the average OD value of the 4 negative control sera which have been examined on the same plate, is considered positive.

b) According to the Indirect Double Antibody Sandwich (IDAS) principle. Here, microtiter plates are coated with an Mab or a polyclonal serum directed against the gE protein. Incubation with a gE-antigen preparation results in gE binding to the coating. Antibodies specifically directed against gE in the bovine serum to be examined subsequently bind to the gE. These bound antibodies are recognized by an anti-bovine immunoglobulin conjugate. The antibodies in this conjugate are covalently bound to peroxidase enzyme. Finally, the bound conjugate is visualized by addition of a chromogenic substrate. The specificity of the reaction is checked by carrying out the same procedure with a gE-negative control preparation instead of a gE-antigen preparation. On each microtiter plate, positive and negative control sera are included. The test is valid if the positive serum scores positive in a certain dilution. A serum is positive if it scores an OD which is 0.2 higher than the standard negative control serum.

c) According to the IDAS principle as described under 2, but after incubation of the serum to be examined an anti-gE Mab/HRPO is used instead of the anti-bovine immunoglobulin

conjugate. An anti-gE peptide serum or an anti-gE polyclonal serum may be used instead of the anti-gE Mab. The plates are washed and to each well a chromogenic substrate is added.

After e.g. 2 h at room temperature, the plates are

5 spectrophotometrically read. Four negative control sera and four serial dilutions of a positive serum are included on each plate. The serum which has an OD value of less than 50% of the average OD value of the 4 negative control sera which have been examined on the same plate, is considered positive.

10 d) According to the principle of a blocking ELISA, whereby virus antigen which may or may not be purified is coated to the microtiter plate overnight. In these plates, the serum to be examined is incubated for, e.g. one hour or longer at 37°C. After a washing procedure, an anti-gE Mab is added to the

15 plates, followed by incubation for e.g. 1 h at 37°C. An anti-gE peptide serum or an anti-gE polyclonal serum may be used instead of the anti-gE Mab. The plates are washed and to each well a chromogenic substrate is added. After e.g. 2 h at room temperature, the plates are read spectrophotometrically. Four

20 negative control sera and four serial dilutions of a positive serum are included on each plate. The serum which has an OD value of less than 50% of the average OD value of the 4 negative control sera which have been examined on the same plate, is considered positive.

25 In all the above arrangements, conventionally grown virus antigen which contains gE can be used, but so can gE-antigen which is expressed via prokaryotes or eukaryotes.

30 Alternatively, oligopeptides based on the BHV-1 gE sequence could be used in the above diagnostic tests instead of conventional antigen. In addition, such oligopeptides could be used for the development of a so-called "cow-side" test according to the principle described in an article by Kemp et al., Science 241, 1352-1354, 1988. Such a test would then be based on a binding of the antigenic sequence of the 35 oligopeptide by antibodies directed against gE, present in

infected animals. For such a test, the oligopeptide would have to be coupled to an Mab directed against bovine erythrocytes.

Nucleic acid analysis using the polymerase chain reaction

5 Oligonucleotides (probes and primers) can for instance be used in the polymerase chain reaction to make a distinction between vaccinated and infected animals. The polymerase chain reaction (PCR) is a technique whereby nucleic acids of a pathogen can be multiplied billions of times in a short time
10 (De polymerase kettingreactie, P.F. Hilderink, J.A. Wagenaar, J.W.B. van der Giessen and B.A.M. van der Zeijst, 1990, Tijdschrift voor Diergeneeskunde deel 115, 1111-1117). The gE oligonucleotides can be chosen such that in a gE positive genome a different product is formed than in a gE negative genome. The advantage of this is that also an animal which has
15 been vaccinated with a gE deletion vaccine gives a positive signal in a PCR test. However, this approach depends on the presence of nucleic acids of the virus in a sample, for instance blood, coming from the animal to be tested.

20 After an acute BHV-1 infection, there is a great chance that BHV-1 specific nucleic acids can be demonstrated in the blood, but it has not been determined yet whether BHV-1 nucleic acids can also be demonstrated in the blood during latency.

25

The use of BHV-1 as a vector

For expressing heterologous genes in the BHV-1 genome, it is necessary to have disposal of exact information on the area where the heterologous gene is to be inserted. There should
30 not be any disturbance of essential sequences, and regulatory sequences must be available for the expression of the heterologous gene. In principle, the glycoprotein gE-gene is a suitable place to express heterologous genes. The gE-gene is not essential, hence there is no objection to replacing the gE
35 gene by the heterologous gene. As a consequence, the heterologous gene can be so positioned that it will be under

the influence of the regulatory sequences of the gE gene. However, it is not necessary to use the regulatory sequences of the gE-gene. The expression of heterologous genes may be controlled alternatively by other, e.g. stronger regulatory sequences of different genes. It is also possible to ligate the heterologous gene to the (export) signal peptide of the gE gene, so that the secretion of the heterologous gene product can be influenced. It is clear that detailed knowledge of the gE gene and the gE protein affords the possibility of using 5 BHV-1 as a vector in a very measured manner. The vectors developed can moreover be serologically distinguished from wild-type. The construction of BHV-1 mutants which express heterologous genes can be carried out in the same manner as the construction of gE deletion mutants shown in the examples. 10 15 However, the deletion fragments should then be replaced with a fragment on which a heterologous gene is located at the location of the deletion.

EXAMPLES

20

1) Isolation and identification of a natural gE deletion mutant

25

a) Isolation of a natural mutant

Genomic DNA was isolated from a number of conventionally attenuated vaccines according to standard methods and analyzed using restriction enzymes. In particular, we searched for genome deviations which would be suitable to enable distinction from wild-type BHV-1 virus.

30

Attention was directed in particular to the Us region of the BHV-1 genome, because in that region - by analogy with the herpes simplex virus - probably a number of genes coding for non-essential glycoproteins are located [Identification of a herpes simplex virus 1 glycoprotein gene within a gene cluster dispensable for growth in cell culture, R. Longnecker, S.

35

Chatterjee, R.J. Whitley and B. Roizman (1987) Proc. Natl. Acad. Sci. 84, 4303-4307].

A batch of a BHV-1 vaccine coming from the University of Zagreb, Yugoslavia (Lugovic et al., Veterinarski Arhiv 55, 5 241-245, 1985), after a great number of passages on bovine embryonal kidney cells and embryonal bovine trachea cells (Ebtr), proved to have a deviant Us region in addition to a normal Us region. This vaccine moreover appeared to form both large and small plaques on Ebtr cells. From this mixed 10 population, a virus with a deviant Us region was isolated by three limiting dilution steps, with small plaques being chosen each time. The virus isolated via this route was examined further and called Difivac-1. It was deposited with Institut Pasteur, Paris, France, on 27 May 1992, deposit number I-1213.

15

b) Identification of the deletion in the gE gene in Difivac-1

For further analysis of this deviation in the Us region, genomic DNA of Difivac-1 was isolated according to standard 20 methods and subjected to Southern blot analysis (Fig. 1A). Hybridization of this blot with a ³²P labeled wild-type HindIII K fragment confirmed that this fragment, located centrally in the Us region, is some 1.0 kilobase (kb) shorter in Difivac-1. Moreover, by this analysis, the position of the 25 missing part could be approximated (Fig. 1B). For further analysis of this deletion, the Us region of the wild-type BHV-1 strain Lam was isolated and cloned into prokaryotic vectors. To that end, according to standard methods, genomic DNA of the Lam strain (Fig. 2A) was isolated and cloned into 30 the vectors pUC18, pACYC and pBR322 (Fig. 2B). A physical map of the area around the supposed position of the deletion was composed (Fig. 2C). Starting from this physical map, subclones suitable for the determination of the nucleotide sequence of this area were constructed in the vectors pKUN19 and pUC18 35 (Fig. 2D). Using these subclones, the nucleotide sequence of the two strands of the entire area (indicated in Fig. 2C) was

determined using the Sanger method. This nucleotide sequence (SEQ ID NO:1) was analyzed using the PC/Gene program. From the conceptual translation, it appeared that nucleotides (nt) 168 through nt 1893 code for an open reading frame of 575 amino acids (Fig. 3A). Further analysis showed that this amino acid sequence has the characteristics of a transmembrane glycoprotein as is shown in Fig. 3B. The fact is that the first 26 amino acids (aa) are recognized as a typically eukaryotic export signal and the area between aa 423 and aa 450 is recognized as a transmembrane region. In addition, three potential N-bound glycosylation sites occur in this sequence. This predicted amino acid sequence exhibits clear similarities to the glycoprotein gE-gene of herpes simplex virus (HSV); see Figs 4A and 4B. These and other similarities justify the conclusion that the gene found is the gE homologue of BHV-1. For this reason, the gene is called gE. To determine to what extent this BHV-1 gE-gene is missing in Difivac-1, the p318 fragment was isolated. The p318 fragment starts on the AluI site 55 nt before the postulated BHV-1 gE open reading frame and ends 133 nt behind it. Genomic Difivac-1 DNA was analyzed with this p318 fragment using Southern blot hybridization. This revealed that Difivac-1 contains no p318 detectable sequences (Fig. 5). This experiment confirmed that Difivac-1 contains a deletion and clearly demonstrates that this deletion extends throughout the entire gE gene.

To determine the size and the position of the deleted region, genomic sequences covering the U_s region of Difivac-1 were cloned into prokaryotic vectors. See Figure 11C. The 14.5 kb EcoRI fragment was cloned into the pACYC vector and named p775. The 7.4 kb HindIII fragment was independently cloned into the pUC18 vector and named p728. From clone p728 two subclones were isolated: the 1.4 kb PstI fragment in clone p737 and the 350bp AluI-PstI fragment in clone p754. Restriction enzyme analysis and Southern blot analysis of these clones (data not shown), demonstrated that the gE deletion in Difivac-1 is 2.7 kb long, starting just 5' from

the gE gene and ending at the border of the U_s region. These 2.7 kb have been replaced by a duplication of a 1 kb segment, located in the U_s region opposite to the gE gene, as an aberrant extension of the repeat region. See figure 11B. To 5 confirm the results of this analysis and to determine the exact recombination point, the nucleotide sequence of most of the insert of clone p754 was determined and compared with the wild type sequences. See figure 12. This analysis showed that the recombination point is located 77 bp upstream from the 10 start codon of the gE gene.

c) Evaluation of safety and efficacy of Difivac-1

Difivac-1 was tested in BHV-1 seronegative specific pathogen free calves of seven week old. Eight calves were 15 intranasally vaccinated with 10^5 TCID₅₀ in 2 ml, of which 1 ml was sprayed in each nostril. Eight BHV-1 seronegative specific pathogen free calves of seven week old, that were housed in a separate isolation unit, were given 2 ml of culture medium intranasally, and served as unvaccinated controls. Five weeks 20 after vaccination, vaccinated and control calves were challenged intranasally with 10^7 TCID₅₀ of the highly virulent BHV-1 strain Iowa. Six weeks after challenge all the calves were treated intramuscularly with dexamethasone for 5 days to reactivate putative latent virus. Clinical signs, rectal 25 temperatures and body growth were monitored. Virus isolations were performed from nasal swabs, and neutralizing antibody titres were determined in serum.

After vaccination, behaviour, appetite, rectal temperatures and growth rates of the calves remained normal, 30 but the vaccinated calves had some serous nasal discharge and some hypersalivation. Lesions in nasal mucosa were not observed. Difivac-1 was excreted from nasal swabs after vaccination (Fig. 17). All vaccinated calves produced neutralizing antibodies to BHV-1.

35 After challenge, all unvaccinated control calves showed apathy, loss of appetite, ocular and nasal discharge,

reddening of the gingiva of the lower jaw, severe lesions of the nasal mucosae until 14 days after challenge, and a growth arrest of 4 days. The vaccinated calves had small, quickly healing lesions of the nasal mucosae and had no growth arrest.

5 The daily clinical scores, the rectal temperature and growth development after challenge are given in Figs. 18, 19 and 20. After challenge, all calves shed virus from their nose, but the amount and period of virus excretion was markedly reduced in vaccinated calves (Fig. 21). A secondary antibody response 10 developed in vaccinated calves and the unvaccinated calves all produced antibodies after challenge.

After reactivation, the challenge virus was isolated from one vaccinated calf and from 5 unvaccinated calves. Difivac-1 could not be reactivated.

15 The above results demonstrate that Difivac-1 hardly induced any sign of disease in young calves and was not reactivatable. Difivac-1 markedly reduced the severity of disease and the amount of virus excretion after challenge.

20 In conclusion, Difivac-1 is a safe and efficacious vaccine for use in cattle against BHV-1 infections.

2) Construction of recombinant gE deletion mutants of BHV-1

In order to be able to have disposal of differentiable BHV-1 vaccines which are molecularly better defined than 25 Difivac-1 and which, if so desired, contain a deletion in for instance the thymidine kinase gene, in addition to a deletion in the gE gene, recombinant gE deletion mutants were constructed, in addition to Difivac-1. Starting from the determined position of the glycoprotein gE-gene and using the 30 cloned DNA fragments which flank the gE-gene, a gE deletion fragment could be constructed. Using a standard technique (F.L. Graham and A.J. van der Eb, 1973, Virology 52, 456-467), this deletion fragment could be recombined in the genome of a wild-type BHV-1 strain, resulting in a gE deletion mutant.

a) The construction of the gE deletion fragment

For the construction of the gE deletion fragment, a fragment was aimed for which, on the one hand, lacks the entire gE sequence and, on the other, contains sufficient flanking sequence to allow recombination with the wild-type genome. At the 5' (upstream) side, the 1.2 kb PstI-AsuII fragment which ends 18 nt before the start codon of the gE gene was chosen. For the 3' (downstream) fragment the 1.2 kb EcoNI-DraI fragment was chosen, which starts 2 nt before the stop codon of the gE gene (Fig. 6).

For the construction of the gE deletion fragment, the 1.4 kb PstI-SmaI fragment coming from the 8.4 kb HindIII K fragment of BHV-1 strain Lam, located at the 5' side of the gE gene, was subcloned into the SmaI and PstI site of plasmid pUC18. This clone was called p515. The EcoNI-SmaI fragment located on the 3' side of gE and coming from the 4.1 kb HindIII-EcoRI clone was cloned into the unique AsuII site of p515. Thus, the construction of the gE deletion fragment was completed and the clone so constructed was called p519.

Although in principle the entire PstI-SmaI insert of p519 could be used as gE deletion fragment, this is not advisable. The fact is that the PstI-SmaI extends approx. 100-150 base pairs (bp) into the repeat sequence which flanks the Us region. This piece of 100-150 bp could recombine with the repeat sequence on the other side of the Us area where the gE gene is not located and could thus yield undesirable recombination products. For that reason, the PstI-DraI fragment was chosen for the recombination experiment, so that 100 bp of the repeat are removed.

30

b) Recombination of the gE deletion fragment with the genome of wild-type BHV-1

In order to effect the recombination between the constructed gE deletion fragment and the genome of wild-type BHV-1, microgram amounts of the two DNA molecules are cotransfected to Embryonal bovine trachea (Ebtr) cells

according to the standard method of F.L. Graham and A.J. van der Eb (1973, *Virology* 52, 456-467). Cellular recombination mechanisms lead to the recombination of a small percentage of the DNA molecules (2-4%) which have been incorporated by the 5 cells. For the selection of the recombined gE deletion mutants, the virus mixture that is formed after transfection is disseminated on a fresh Ebtr cell culture. In most cases, the separate virus populations which thereby develop (plaques) originate from one virus. For the isolation of gE deletion 10 mutants of BHV-1 strain Lam, 230 of these plaques were isolated and examined according to standard immunological methods with BHV-1 specific monoclonal antibodies (Mabs) which do not react with Difivac-1 infected cells. These Mabs are directed against the glycoprotein gE. Five of the 230 plaques 15 did not react with these Mabs. The DNA of these 5 plaques was further investigated.

c) DNA analysis of the constructed gE deletion mutants of BHV-1 strain Lam

20 DNA preparations of 3 (1B7, 1B8 and 2H10) of the above mentioned 5 candidate gE deletion mutants were further examined using the standard Southern blot analysis technique (Sambrook et al. 1989). Double digestions of these DNA preparations with PstI and DraI, followed by gel 25 electrophoresis and Southern blot hybridization with the 2.3 kb PstI-DraI deletion fragment as probe show that the gE gene of the genome of virus populations 1B7 and 1B8 has been removed exactly in the desired manner; see Figs 7A and 7B. Population 2H10 has a deviant PstI-DraI fragment. Southern 30 blot hybridizations with a gE-specific probe show that no gE sequences are located in any of the three DNA preparations (results are not shown). BHV-1 virus populations 1B7 and 1B8 are intended recombinant gE deletion mutants. BHV-1 virus population 1B7 has been tested for vaccine properties.

d) Construction of thymidine kinase/gE double deletion mutants

Because BHV-1 recombinant deletion mutants with a deletion in only one gene may not be of sufficiently reduced virulence, deletions were also provided in the thymidine kinase (TK) gene of the BHV-1 strains Lam and Harberink. These mutants were constructed in an analogous manner to that used for the above-mentioned gE deletion mutants (results are not shown). These TK deletion mutants have been used to construct TK/gE double deletion mutants.

e) Construction of glycoprotein gI/ glycoprotein gE double deletion mutants

Because cattle vaccinated with a single gE deletion mutant may produce anti-gI antibodies that can interfere with the detection of anti gI/gE antibodies (discussed below), we also invented a vaccine with a gI/gE double deletion. Such a gI/gE double deletion mutant can be constructed using the same procedures used for the construction of the gE single deletion mutant. Partial nucleotide sequence analysis of the upstream end of the 1.8 kb PstI fragment - that covers the 5' end of the gE gene - revealed an open reading frame with significant homology to gI homologs found in other herpesviruses. See Figures 13 and 14. Using the 350 bp SmaI-PstI fragment that encompasses the putative 5' end of the gI gene and the EcoNI-SmaI fragment, located downstream of the gE gene, a gI/gE deletion fragment can be constructed. This fragment can be recombined with the wild type genome to yield a BHV-1 gI/gE deletion mutant. See figure 16. The 80 - 90 amino acids that - theoretically - may still be produced, will not be able to elicit antibodies that can interfere with the detection of anti-gI/gE antibodies. Further sequence analysis of the gI gene will allow the construction of a gI deletion that covers the complete gI coding region. This gI/gE double deletion mutant has been named Difivac-IE.

f) Evaluation of safety and efficacy of the Lam gE⁻ and the Lam gE⁻, TK⁻ mutants

Vaccine properties of the Lam gE⁻, and the Lam gE⁻, TK⁻ BHV-1 mutant strains were tested in seven-week-old, BHV-1 seronegative, specific pathogen free calves. Each mutant strain was sprayed intranasally in 6 calves. Each calf was given a total dose of 10⁵ TCID₅₀ in 2 ml culture medium, of which 1 ml was sprayed in each nostril. Another 6 calves were sprayed intranasally with virus-free culture medium, and served as unvaccinated controls. Five weeks after vaccination all calves, vaccinated and controls, were challenged intranasally with 10⁷ TCID₅₀ of the highly virulent BHV-1 strain Iowa. After vaccination and after challenge, clinical signs, rectal temperatures and body weight were monitored. Nasal swabs were taken to determine the number of days of nasal virus shedding.

After vaccination, behaviour, appetite, rectal temperature and growth rates of the calves remained normal. Serous nasal discharge and small lesions of the nasal mucosa were observed in all vaccinated calves. Virus could be isolated from the noses of the vaccinated calves for approximately 7 days (Table 1).

After challenge, all unvaccinated control calves showed apathy, loss of appetite, ocular and nasal discharge, reddening of the gingiva of the lower jaw, severe lesions of the nasal mucosae and growth was reduced. Calves vaccinated with Lam gE⁻, TK⁻ all developed some nasal discharge and showed some minor lesions of the nasal mucosae. Not all calves vaccinated with Lam gE⁻ did develop nasal discharge or lesions of the nasal mucosae. Apathy, loss of appetite, or other clinical symptoms of disease were not observed with vaccinated calves. Rectal temperature, growth and clinical score after challenge are shown in Figs 22, 23 and 24. Unvaccinated calves shed virus from the nose 2 times longer than vaccinated calves (Table 1).

The above results demonstrate that the Lam gE⁻ and the Lam gE⁻, TK⁻ BHV-1 mutant strains hardly induced any clinical sign of disease in young calves. Both mutant strains prevented sickness after challenge and reduced the period of nasal virus 5 shedding with 50%.

Lam gE⁻ and Lam gE⁻, TK⁻ BHV-1 mutant strains are safe and efficacious for use as a vaccine in cattle against BHV-1 infections.

10 3) Prokaryotic expression of gE

For the prokaryotic expression of the BHV-1 glycoprotein gE-gene, so far use has been made of pGEX expression vectors (D.B. Smith and K.S. Johnson, Gene 67 (1988) 31-40). pGEX vectors code for the carrier protein glutathione S-transferase (GST) from *Schistosoma japonicum* which is under the influence of the tac promoter which can be induced to expression by Isopropylthiogalactoside (IPTG). An example of a GST-gE fusion protein is the product of construct pGEX-2T600s3 (Fig. 8A). In this construct, using standard molecular-biological techniques (Sambrook et al. 1989), a 600 bp SmaI fragment which codes for an N-terminal region of 200 amino acids of the gE protein was ligated behind the GST gene. This construct was designed in triplicate, with each time a different reading frame of the 600 bp fragment being ligated to the GST. All three constructs were introduced into *Escherichia coli* strain DH5 α , induced with IPTG and the proteins formed were transferred to nitrocellulose after polyacrylamide gel electrophoresis by means of Western blotting. Immunological detection with anti-GST antibodies demonstrated that only the proper reading frame (No. 3) which codes for the gE protein area leads to the expression of a prominent fusion protein of the predicted size of 27k (GST) + 20k (gE) = 47k. Three of the Mabs isolated by us that do not react with Difivac-1 recognize the 47 kD GST-gE fusion protein in a Western blot; see figure 8B.

4) Eukaryotic expression of the glycoprotein gE-gene
For the eukaryotic expression of the glycoprotein
gE-gene, heretofore *inter alia* the vector pEVHis has been
chosen. The pEVHis vector has, as eukaryotic marker, the HisD
5 gene coding for the histidinol dehydrogenase [EC 1.1.1.23]
(C. Hartmann and R. Mulligan, 1988, Proc. Natl. Acad. Sci. USA
85, 8047-8051) which causes cells to survive the toxic
concentration of 2.5 mM histidinol. The vector moreover
comprises the promoter region of the immediate early gene of
10 the human cytomegalovirus (HCMV), with unique restriction
enzyme sites located behind it. For the construction of a
vector comprising the entire coding region of the glycoprotein
gE-gene. It starts on the AluI site 55 bp before the
15 postulated open reading frame of gE and ends 133 bp behind it.
This region was cloned behind the HCMV promoter of the pEVHis
vector, whereby the construct pEVHis/gE was formed (Fig. 9).
The pEVHis/gE was amplified in E.coli DH5 α cells and purified
by means of a cesium chloride gradient (Sambrook et al.,
20 1989). This purified DNA was transfected to Balb/C-3T3 cells
according to the method of Graham and Van der Eb. Transformed
cells were selected with histidinol, whereafter twenty
histidinol resistant colonies could be isolated. These
colonies were examined with Mab 81 by means of an Immuno
25 Peroxidase Monolayer Assay (IPMA). Four colonies proved to
express the gE protein. Of these four colonies, 3T3 gE clone 9
was used to isolate a subclone having a high gE expression.
The clone isolated by this method (called 3T3gE 9.5) was used
for characterizing candidate anti-gE monoclonal antibodies.
30

5) Eukaryotic expression of both the BHV-1 glycoprotein gE
and the BHV-1 glycoprotein gI in the same cell
To express the BHV-1 glycoprotein gI in the same cell as
the BHV-1 glycoprotein gE we first determined the putative
35 position of the BHV-1 gI gene. Because the herpes simplex
virus glycoprotein gI gene is located just upstream of the

glycoprotein gE gene, it was inferred that the BHV-1 gI gene would be located on a corresponding position. To test this, the sequence has been determined of a region of 283 nucleotides, located about 1 kb upstream of the start of the 5 BHV-1 gE gene. Conceptual translation of this region showed that the second reading frame codes for a 94 amino acids sequence that is homologous to the herpes simplex virus glycoprotein gI (figures 13 and 14). Because the homologous segment is about 80 amino acids from the start codon the 10 putative start of the open reading frame of the BHV-1 gI gene is estimated about 250 nt upstream from the sequenced region. From this it was inferred that the 1.7 kb SmaI fragment that starts 400 nt upstream from the sequenced region and ends 15 within the gE gene should contain the complete coding region of the BHV-1 gI gene. This 1.7 kb SmaI fragment has been cloned into the eukaryotic vector MSV-neo (See figure 15). This vector contains the strong Murine Sarcoma Virus promoter and the selector gene neo that codes for the resistance against the antibiotic G-418 sulphate Geneticin. The resulting 20 construct MSVneoGI has been amplified in E. coli DH5 α cells and has been transfected into 3T3gE 9.5 cells using the method of Graham and Van der Eb. The transfected cells were selected with 400 μ g Geneticin/ml culture medium and the resistant colonies have been isolated and tested with candidate anti-gE 25 Mabs that failed to react with 3T3gE 9.5 cells. From this we selected the 3T3gE/gI R20 clone that reacted with e.g. Mab 66 as well as wild type BHV-1 does.

6) Characterization of candidate anti-gE Mabs
30 Mabs were produced against wild-type BHV-1 and selected for their inability to react with Difivac-1 infected embryonic bovine trachea (Ebtr) cells. These Mabs are examined for their reactivity with
a) the Lam gE⁻ deletion mutant;
35 b) the above described prokaryotic expression product in a Western blot;

- c) the above described gE-expressing Balb/c-3T3 cells;
- d) cells mentioned under c) and infected with Difivac-1, and
- e) Balb/c-3T3 cells expressing the gE/gI complex.

For reactivity testing under a, c, d and e an immuno-peroxidase monolayer assay (IPMA) was used. The results in 5 Table 2 show that we have produced Mabs that are directed against gE (nrs. 2, 3, 4, 52, 66, 68, 72 and 81) and Mabs (nrs. 1, 51, 53, 67, 75 and 78) that may be directed against conformational antigenic domains on the gE/gI complex. A 10 competition IPMA to map the antigenic domains recognized by the various Mabs indicated that at least 4 antigenic domains are present on glycoprotein gE and that one domain probably is formed by the gE/gI complex (Table 2).

15 Detection of anti-gE antibodies in cattle infected by BHV-1

To examine whether in serum of infected cattle antibodies against gE are present an indirect blocking IPMA was performed with the 16 candidate gE-Mabs and the following 8 selected sera:

- 20 - 2 sera of bovines vaccinated with Difivac-1 and challenged with the virulent Iowa strain, that were collected 14 days after challenge;
- 2 sera of bovines experimentally infected with BHV-1 subtype 1 virus, that were collected 20 months after infection. One of 25 the bovines was infected by contact exposure;
- 2 sera of bovines experimentally infected with BHV-1 subtype 2b virus, that were collected 20 months after infection. One of the bovines was infected by contact exposure;
- a serum of a specific pathogen free calf vaccinated with a 30 ts mutant vaccine and challenged 3 weeks later with BHV-1 subtype 2b virus, that was collected 7 weeks after challenge;
- a serum of a gnotobiotic calf vaccinated with a ts mutant vaccine and challenged 3 weeks later with BHV-1 subtype 2b virus, that was collected 7 weeks after challenge.

35 Table 2 shows that all these sera contained antibodies against the antigenic domains III and IV on gE, and against

antigenic domain I that is probably located on the gE/gI complex. We may conclude that gE appears to be a suitable serological marker to distinguish between BHV-1-infected and vaccinated cattle.

5

7) Detection of BHV-1 nucleic acids by means of the PCR procedure using BHV-1 gE-specific primers

Starting from the determined nucleotide sequence of the BHV-1 gE gene, a primer pair suitable for the PCR was selected, using the primer selection program by Lowe et al. (T. Lowe, J. Sharefkin, S. Qi Yang and C.W. Dieffenbach, 1990, Nucleic Acids Res. 18, 1757-1761). These primers were called P₃ and P₄ and are shown in Fig. 10. The primers are located 159 nt apart and lead to the amplification of a fragment of 200 nt. Using primers P₃ and P₄ and isolated BHV-1 DNA, the conditions for the PCR procedure were optimized. This involved in particular the variation of the MgCl₂ concentration, the glycerol concentration and the cycling conditions. The optimum buffer found for the use of P₃ and P₄ for the amplification of BHV-1 DNA is 10 mM Tris pH 8.0, 50 mM KCl, 0.01% gelatin, 2.6 mM MgCl₂ and 20% glycerol. The optimum cyclic conditions found (Perkin Elmer Cetus DNA Thermal Cycler) are for cycli 1-5: 1 min. 98°C, 30 sec. 55°C and 45 sec. 72°C and for cycli 6-35: 30 sec. 96°C, 30 sec. 55°C and 45 sec. 72°C. After the PCR amplification, the 200 nt DNA fragment obtained was electrophoresed on a 2% agarose gel, blotted on nitrocellulose and subsequently subjected to Southern blot analysis. The ³²P dCTP labeled probe used for the Southern blot analysis is the 137 bp TaqI fragment which is located between the primer binding sites (Fig. 10). After autoradiography of the hybridized filters, a 200 bp band can be observed. Via this route, amplification of only 10 BHV-1 genomes (approx. 1.5 x 10⁻¹⁵ µg DNA) still leads to a properly detectable signal (result not shown). In a comparable manner, a PCR procedure was developed using primers which are based on the coding sequence of the BHV-1 glycoprotein gIII (D.R. Fitzpatrick,

L.A. Babiuk and T. Zamb, 1989, *Virology* 173, 46-57). To enable a distinction to be made between wild-type BHV-1 DNA and a gE deletion mutant vaccine, DNA samples were subjected both to the gE-specific PCR and to gIII-specific PCR analysis. In such 5 a test, a Difivac-1 DNA preparation was found to be gIII positive and gE negative.

Because the detection of BHV-1 DNA in bovine semen will be an important use of the BHV-1 specific PCR procedure, it was attempted to perform the gE-specific PCR on bovine semen 10 infected with BHV-1. However, unknown components in the semen have a strongly inhibitory effect on the polymerase chain reaction. Therefore, a protocol was developed to isolate the BHV-1 DNA from bovine semen. To isolate the DNA from bovine semen, 30 μ l of semen is incubated with 1 mg/ml proteinase K 15 (pK) in a total volume of 300 μ l 0.15M NaCl, 0.5% Na-Sarkosyl and 40 mM DTT, at 60°C. After 1 hour the sample is allowed to cool down to room temperature and 300 μ l 6M NaI is added and incubated for 5 min. From this mixture DNA is isolated with a standard chloroform/isoamylethanol extraction and precipitated 20 with 1 volume isopropanol. The precipitate is washed with 2.5 M NH₄Ac/70% ethanol and resuspended in 10 mM Tris pH7.4, 1mM EDTA, 0.5% Tween 80 and 0.1 mg/ml pK for a second incubation for 1 hour at 60°C. This DNA preparation can be directly submitted to the Polymerase Chain Reaction.

25

DESCRIPTION OF THE DRAWINGS

Figure 1

Southern blot analysis of BHV-1 strains Difivac-1 and Iowa

A. Drawing of an autoradiogram of a Southern blot of 30 Difivac-1 and Iowa genomic DNA. In lanes 1 and 3, Difivac-1 DNA was applied after restriction enzyme digestion with HindIII and PstI, respectively. In lanes 2 and 4, Iowa DNA was applied after restriction enzyme digestion with HindIII and PstI, respectively. The size of the fragments is indicated in 35 kilobase (kb).

Viral DNA was isolated by centrifuging the culture medium (70 ml/roller bottle of ca. 450 cm²) with virus infected Ebtr cells for 2 h through a 25% (w/w) sucrose cushion, in 10 mM Tris pH 7.4, 150 mM NaCl and 1 mM EDTA at 20 krpm in the SW27 5 rotor of the Beckman L5-65 ultracentrifuge. From the virus pellet so obtained, DNA was isolated according to standard methods (J. Sambrook, E.F. Fritsch and T. Maniatis, 1989, Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York). On this DNA, restriction 10 enzyme digestions were performed with enzymes from Boehringer Mannheim in the SuRE/cut buffers supplied by the manufacturer.

After separation on a 0.7% agarose gel for horizontal electrophoresis and blotting on a nitrocellulose filter (Schleicher & Schuell, Inc.) the filter was prehybridized for 15 6 h at 42°C in 50% formamide, 3x SSC (1x SSC = 0.15M NaCl and 0.015 M Na-citrate, pH 7.4), 50 µl denatured salmon sperm DNA (Sigma)/ml and 0.02% bovine serum albumin, 0.02% polyvinyl pyrrolidone and 0.02% ficoll and 0.1% Na-dodecylsulphate (SDS). Then, hybridization was performed by adding to the same 20 solution the ³²P dCTP (Amersham) labeled HindIII K fragment (The choice of the HindIII K fragment is based on: Cloning and cleavage site mapping of DNA from bovine herpesvirus 1 (Cooper strain), John F. Mayfield, Peter J. Good, Holly J. VanOort, Alphonso R. Campbell and David A. Reed, Journal of Virology 25 (1983) 259-264). After 12-14 h hybridization, the filter was washed for 2 h in 0.1% SDS and 0.1 x SSC at 60°C. The HindIII K fragment was cloned into the pUC18 vector according to standard cloning procedures (J. Sambrook, E.F. Fritsch and T. Maniatis, 1989, Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York). After 30 HindIII digestion of the pUC/8.4 HindIIIK clone the pUC18 vector was separated from the 8.4 kb HindIII K fragment again by electrophoresis on a 0.7% Low Melting Point Agarose (BRL, Life Technologies, Inc.) gel, and isolated from the agarose by 35 standard phenol extraction and ethanol precipitation. The isolated HindIII K fragment was labeled with the Random Primed

DNA labeling Kit 1004.760 from Boehringer Mannheim. Autoradiography of the hybridized filters was carried out through 36 h exposition of a Kodak XAR film at -70°C, using a reflecting screen.

5 B. Physical maps of the 8.4 kb HindIII K fragment of Iowa and of the 7.4 kb HindIII fragment of Difivac-1. In view of the comigration of the 6 kb PstI fragments and the absence of the 1.8 kb PstI fragment in Difivac-1, the deletion is postulated in the hatched area.

10

Figure 2

Subcloning of wild-type BHV-1 fragments around the region lacking in Difivac-1

15 In A the components of the BHV-1 genome are shown: The Unique Long (UL) region; the Unique Short (Us) region and the two repeats (Ir and Tr). This map is based on the published analysis of the Cooper strain (John F. Mayfield, Peter J. Good, Holly J. VanOort, Alphonso R. Campbell and David A. Reed, Journal of Virology (1983) 259-264).

20 In B the fragments are shown from the Us region which have been cloned into prokaryotic vectors: A 15.2 kb EcoRI fragment in pACYC, an 8.4 kb HindIII fragment in pUC18 and a 2.7 kb and a 4.1 kb EcoRI-HindIII fragment in pBR322. The isolation of the viral DNA fragments was carried out according 25 to the procedures which are mentioned in the legends of Fig. 1A. The cloning of these fragments into the various vectors was carried out according to standard procedures (J. Sambrook, E.F. Fritsch and T. Maniatis, 1989, Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory 30 Press, New York).

In C a physical map is shown of the region where the postulated deletion in Difivac-1 is localized.

35 In D some subclones of this region are indicated, which were used for further analysis. The two PstI fragments were cloned into pKUN19 and the remaining fragments into pUC18.

Figure 3

A: Nucleotide sequence of 2027 nucleotides from the Us region of BHV-1 strain Lam around the postulated location which has been deleted in Difivac-1, as indicated in Fig. 2C 5 [from the AluI recognition site on the extreme left to the HincII recognition site on the extreme right]. The nucleotide sequence in the inserts of the subclones shown in Fig. 2D was determined by analyzing on the two strands using the dideoxy sequence method of Sanger et al. (F. Sanger, S. Nicklen and 10 A.R. Coulson, 1977, Proc.Natl. Acad. Sci. USA 74, 5463-5467). To that end, the T7 sequence kit of Pharmacia was used according to the procedure specified by the manufacturer. For the radioactive labeling, [³⁵S] dATP (Amersham) was used. The sequence analysis of the GC rich regions with compression 15 artefacts was repeated with the 7-deaza-dGTP variant of the Pharmacia kit. Indicated beneath the nucleotide sequence is, in the three-letter code, the amino acid (aa) sequence of the open reading frame of 575 aa residues, which was found after conceptual translation of the nucleotide sequence. This 20 translation is based on the universal code and was determined using the PC/gene computer program (PC/gene version 1.03, November 1987). This open reading frame of 575 aa starts with the methionine at nt 168 and ends with the stop codon at nucleotide 1893.

25 Structural analysis of the open reading frame of 575 aa residues was also performed with the PC/gene computer program. The first 26 aa form a eukaryotic export signal indicated in the figure by "signal peptide". With a score of 6.2, the cleavage of this signal sequence is predicted between aa 26 30 and aa 27. The sequence of 575 aa has 3 possible N-bound glycosylation sites (NXT/S) indicated by a line under the amino acid residues. According to the Rao and Argos method there is a transmembrane region between aa 423 and aa 450 indicated in the figure by "transmembrane helix". Recognition 35 sequences (sites) for the restriction enzymes AsuII, SmaI,

HindIII and EcoNI are underlined. The calculated molecular weight of this polypeptide is 61212.

B: Schematic representation of the structural characteristics of the above mentioned 575 aa open reading frame.

5

Figure 4

Amino acid comparison of the amino acid sequence of the BHV-1 gE gene with the amino acid sequence of the herpes simplex virus (HSV) gE gene and other gE homologous genes [pseudorabies virus (PRV) gI and varicella-zoster (VZV) gPI]

The sequences used for this comparison come from the following publications; HSV: Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. D.J. McGeoch, A. Dolan, S. Donald 15 and F.J. Rixon (1985) Journal Mol. Biol. 181, 1-13. VZV: DNA sequence of the Us component of the varicella-zoster virus genome. A.J. Davidson (1983), EMBO Journal 2, 2203-2209. PRV: Use of λ gt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and 20 varicella-zoster virus glycoproteins. E.A. Petrovskis, J.G. Timmins and L.E. Post (1986) Journal of Virology 60, 185-193]. These sequences were compared using the sequence analysis program Multalin (F. Corpet, 1988, Nucl. Acids Res. 16, 10881-10890).

25 In A a diagram is shown in which all four amino acid sequences are shown schematically. Here, the predicted transmembrane parts (TM) are shown below each other. In addition to the predicted export signal sequences (SP) and the possible N-bound glycosylation sites (I), two conserved areas 30 are shown, in which the relative position of the cysteine residues is often unchanged (C C C).

In B the results are shown of the Multalin comparison of the centrally located cysteine rich region of the four gE versions. Asterisks indicate identical amino acids and colons 35 analogous amino acids.

Figure 5

Drawing of photographs obtained in a Southern blot analysis of Difivac-1 and Iowa

Panel A: Genomic DNA of Difivac-1 and Iowa restriction
5 enzyme digestions with BstI (1,2), EcoRI (3,4) and HindIII
(5,6) separated on a 0.7% agarose gel, blotted on nitro-
cellulose and hybridized with ^{32}P labeled HindIII K fragment of
BHV-1 strain Lam according to the procedures specified in the
legends of Fig. 1A.

10 Panel B: Nitrocellulose blot of the same gel as in A
hybridized with the BHV-1 gE-specific probe p318. This probe
comprises the entire AluI-HincII region indicated in Fig. 2C.

Figure 6

15 Construction of gE deletion fragment BHV-1

In A the position of the gE gene and the clones used is shown. The components of the BHV-1 genome are: The Unique Long (UL) region; the Unique Short (Us) region and the two repeats (IR and TR). To obtain the region located on the 5' side of
20 the gE gene, the 1.4 kb PstI-SmaI fragment from the 8.4 kb HindIII K fragment of BHV-1 strain Lam was subcloned into the SmaI and PstI site of plasmid pUC18. This clone was called p515 and is shown in B. The EcoNI-SmaI fragment located on the 3' side of gE, coming from the 4.1 kb HindIII-EcoRI clone was
25 cloned into the unique AsuII site of p515. To enable the ligation of the EcoNI rest to the AsuII rest, clone p515 was digested with AsuII, then treated with Klenow enzyme (Boehringer Mannheim) and dCTP to provide one cytosine residue in the AsuII rest according to standard methods (Sambrook et
30 al., 1989). This additional cytosine is indicated by an asterisk in D. Then, p515 was also digested with the SmaI enzyme, whereafter the EcoNI fragment could be ligated into this vector. The clone thus constructed was called p519.

Figure 7

A. Drawing of a photograph obtained in Southern blot analysis of DNA preparations of 1B7, 1B8 and 2H10. DNA isolation, restriction enzyme digestions, blotting and hybridization were performed according to the procedures described in the legends of Fig. 1A. After PstI-DraI double digestion of the DNA preparations 1B7, 1B8 and 2H10, the fragments were separated on a 0.7% agarose gel and subsequently blotted on a nitrocellulose filter. This filter was hybridized with the ^{32}P dCTP labeled 2.3 kb PstI-DraI deletion fragment as probe. In lanes 1 through 3, the samples 1B7, 1B8 and 2H10 were separated, respectively. In lane 4, wild-type BHV-1 DNA of the Lam strain was applied and in lane 5 the 2.3 kb deletion fragment.

B. Physical map of the 15.2 kb EcoRI fragment of BHV-1 strain Lam. The map shows the position of the PstI, DraI and HindIII recognition sites and the position of the hybridization probe mentioned in 7A.

Figure 8

Prokaryotic expression of BHV-1 gE

For the prokaryotic expression of BHV-1 gE, the 600 bp SmaI fragment of the gE gene was fused in three reading frames to the coding region of the glutathione-S-transferase gene from *Schistosoma japonicum* in the vector pGEX-2T (D.B. Smith and K.S. Johnson, Gene 67 (1988) 31-40). Recombinant molecules with the proper (syn) orientation of the SmaI fragment were identified by means of restriction enzyme analysis using standard methods. *E. coli* DH5 α clones with this fusion construct were called pGEX-2T600s1, pGEX-2T600s2 and pGEX-2T600s3.

A. Diagram of one of the pGEX-2T600s constructs. Located on the NH₂ side of the region which codes for GST-gE fusion product is the Isopropylthiogalactoside (IPTG) inducible tac promoter region.

B. Drawing of photographs obtained in Western blot analysis of total protein preparations of DH5 α cells transformed with pGEX-2T600s. Overnight cultures of DH5 α cells transfected with the constructs pGEX-2T600s1, pGEX-2T600s2 and pGEX-2T600s3 were continued 1/10 in Luria-Bertani (LB) medium with 50 μ g/ml ampicillin and after 1 h growth induced with IPTG for 5 h. These induced cultures were centrifuged for 5 min at 6,000 x g and incorporated in 1 x layermix (2% SDS, 10% Glycerol, 5% mercaptoethanol and 0.01% bromophenol blue) [1.5 ml culture is incorporated in 500 μ l layermix] and heated at 95°C for 5 min. Then 50 μ l per lane was separated on a vertical 12.5% polyacrylamide gel according to standard procedures and subsequently Semi-dry blotted to a nitrocellulose filter using the LKB-multiphor II Nova Blot system under the conditions specified by the manufacturer.

In lanes M, prestained marker protein was applied (BRL Life Technologies, Inc. 236k, 112k, 71k, 44k, 28k, 18k and 15k) and in lanes 1, 2 and 3 the total protein preparations of DH5 α cells transfected with the three respective frames: pGEX-2T600s1, pGEX-2T600s2 and pGEX-2T600s3.

In panel A, the result can be seen of the western blot analysis with anti-GST serum. To that end, the filter was incubated according to standard procedures (E. Harlow and D. Lane, 1988, Antibodies: a laboratory manual, Cold Spring Harbor Laboratory, New York) in blocking buffer (PBS + 2% milk powder and 0.05% Tween 20) and subsequently with polyclonal anti-GST rabbit serum. Then the filter was washed and incubated with horse radish peroxidase (HRPO) conjugated goat-anti-rabbit immunoglobulin serum. Then the bound goat antibodies were immunochemically detected with chromogen (diaminobenzidine, chloronaphthol and H₂O₂). The GST fusion product which is indicated by an arrow has the predicted size of approx. 47 k only in frame 3.

In panel B, the result can be seen of the western blot analysis with monoclonal antibody Mab 4, which recognizes the gE protein. To that end, a duplo filter as in panel A was

blocked, incubated with Mab, washed, and incubated with HRPO conjugated rabbit-anti-mouse serum. Then, the bound rabbit antibodies were immunochemically detected with chromogen. The band which is visible in lane 3 (frame 3) is 47k in size and 5 is indicated by an arrow.

Figure 9

Construction of the pEVHisgE plasmid for the eukaryotic expression of the BHV-1 gE gene

10 For the eukaryotic expression of the gE gene, the entire gE coding region was cloned in the proper orientation behind the HCMV promoter region of the expression vector pEVHis using standard procedures (Sambrook et al. 1989). To that end, the 394 bp AluI fragment which starts 55 bp before the open 15 reading frame of the gE was cloned into pUC18 and called p201. Then, after HincII digestion of p201, the 1740 bp HincII fragment, which comprises the greater part of the gE gene, was cloned into p201. This resulted in the plasmid p318 which in the polylinker of pUC18 comprises the entire gE coding area 20 from the AluI site 55 bp before the start codon of gE to the HincII site 133 bp behind the stop codon of gE. Using the restriction enzyme sites in the polylinker of the vector, this fragment was cut from p 318 with the enzymes BamHI and SphI. First, p318 was digested with SphI and then the SphI site was 25 filled in using Klenow polymerase and dNTP's. After the digestion with BamHI, the 1.9 kb insert was separated from the pUC18 vector in Low Melting Point Agarose and ligated in the pEVHis vector which had been digested with BamHI and EcoRV to that end. The plasmid so formed was called pEVHis/gE.

30

Figure 10

Position of the gE-specific primers and probe for the PCR procedure for detecting BHV-1 DNA

35 Shown in the figure is the nucleic acid sequence of the BHV-1 glycoprotein gE gene from nucleotide 1272 to 2027 [the sequence has been taken over from Fig. 3]. The primers used

for the gE-specific PCR procedure were called P₃ and P₄. The primer binding sites for P₃ and P₄ are underlined. The nucleotide sequence of P₃ is 5'-ACG-TGG-TGG-TGC-CAG-TTA-GC-3' (SEQ ID NO:2). The nucleotide sequence of P₄ is (complementary 5 to the primer binding sequence specified above) 5'-ACC-AAA-CTT-TGA-ACC-CAG-AGC-G-3' (SEQ ID NO:3). The probe which was used for the Southern blot hybridization for the detection of the PCR amplified DNA, is the 137 bp TaqI fragment located between the primer binding sites, the ends of this fragment 10 being indicated. For comparison with Fig. 3, the HindIII and the EcoNI sites are also indicated.

Figure 11

Mapping of the gE deletion of Difivac-1

15 A shows the physical map of the 15.5 kb EcoRI fragment of the wild type BHV-1 strain Lam. B shows the physical map of the 14.5 kb EcoRI fragment of Difivac-1. Both EcoRI fragments cover the complete Unique short regions of the genomes of the respective viruses. The position of the gE gene and the 20 putative position of the gI gene have been indicated by open boxes. Maps A and B are positioned in such a way, that the 6 kb PstI fragments within each map are aligned. In both maps the internal repeat and the terminal repeat sequences have been indicated by hatched boxes. The arrows beneath the 25 repeats indicate the orientation of these sequences.

In A the part of the U_s region that is missing in the Difivac-1 strain has been indicated.

30 C shows the position of the cloned Difivac-1 fragments used to map the gE deletion and to obtain the physical map shown in B. The arrows beneath the inserts of clones p728, p737 and p754 indicate the regions that have been sequenced to determine the recombination point.

Abbreviations:

35 A = AluI, E = EcoRI, P = PstI, H = HindIII, r = recombination point, IR = internal repeat, TR = terminal repeat.

Figure 12

Determination of the exact recombination point in the U_s region of Difivac-1

To determine the exact borders of the gE deletion found
5 in the Difivac-1 strain, clone p754 and the ends of clones
p728 and p737 have been sequenced. The inserts of these clones
have been indicated in figure 11. The sequence procedures used
have been described in the legends of figure 3.

In A the sequence of most of the AluI - PstI fragment has
10 been shown. This sequence starts in the promoter region of the
gE gene. A putative TATA box has been underlined. At point r
(= recombination point) this promoter region is fused to a
sequence also found at the opposite site of the U_s region,
named: inverted repeat. The exact recombination point has been
15 determined by comparing the repeat found at the gE promoter
region with the copy of the repeat found at the opposite site
of the U_s region. The point where these sequences diverge has
been indicated in B (under I) with 'r'. A similar comparison
has been made with the gE promoter sequence found in Difivac-1
20 and the gE promoter found in wild type strain Lam. The point
where these sequences diverge has been shown in B (under II)
and also indicated with 'r'. The recombination points found
are the same.

25 **Figure 13**

Partial sequence analysis of the BHV-1 gI gene

Using the 1.8 kb PstI clone of BHV1 strain Lam, that
reaches into both the BHV-1 gI and gE gene (See figure 11),
the sequence of 284 nucleotides within the coding region of
30 BHV-1 gI was determined. The sequence procedures used have
been described in the legends of figure 3. The sequence has
been translated based on the universal code by the PC/gene
computer program version 1.03 (Nov. 1987). The amino acid
sequence encoded by the second reading frame is given in the
35 one letter code beneath the nucleotide sequence. This amino

acid sequence is homologous to the coding region of other herpes virus gI homologs (See figure 14).

Figure 14

5 Amino acid comparison of the partial amino acid sequence of the putative BHV-1 gI gene with the corresponding parts of the coding regions of the herpes simplex virus (HSV1) gI gene, the pseudorabies virus (PRV) gp63 gene and the varicella-zoster virus (VZV) gPIV gene.

10 The PRV sequence starts at amino acid 82, the HSV1 sequence starts at aa 80 and the VZV sequence starts at aa 76 of their respective coding regions. The sequences used were published in the papers mentioned in the legends of figure 4. The comparison was performed using the Multalin computer

15 program. Asterisks indicate identical amino acids and colons indicate analogous amino acids.

Figure 15

Construction of the MSVneoGI plasmid for the eukaryotic expression of the BHV-1 gI gene

Based on the amino acid comparison of the partial sequence of the BHV-1 gI gene, the putative position of the BHV-1 gI gene has been estimated. Based on this estimation it was inferred that the 1.7 kb SmaI fragment should contain the complete coding region of the BHV-1 gE gene. The position of this 1.7 kb SmaI fragment has been indicated in A. To the blunt ends of this 1.7 kb SmaI fragment, BamHI linkers have been ligated, using standard procedures. The resulting product was digested with BamHI and ligated into the eukaryotic expression vector MSV-neo. The MSV-neo vector has a unique BamHI site behind the MSV-LTR, which has a strong promoter activity. This vector has been described in Rijsewijk et al., 1987 EMBO J. 6, 127-131.

Figure 16**Construction of a BHV-1 gI/gE double deletion fragment**

The position of the glycoprotein gE gene and the putative position of the glycoprotein gI gene in the U_s region of BHV-1 are depicted in diagram A. The hatched blocks indicate the repeats that border the U_s region. B shows the physical map of some essential restriction enzyme sites with respect to the position of both genes. To construct the gI/gE deletion fragment clone p1.7-SmaI/o containing the 1.7 kb SmaI fragment that embraces the gI gene will be digested with PstI. The PstI site of the remaining 350 bp SmaI-PstI insert will be made blunt ended using standard molecular biological procedures. The EcoNI-SmaI fragment (see Figure 6B), isolated from the 4.1 kb HindIII-EcoRI fragment described in Figure 6A, will also be made blunt ended and ligated to the modified PstI site. This is diagrammed in C and D. From the resulting clone pΔIE the 1.4 kb SmaI-DraI fragment can be isolated to recombine with wild type BHV-1 DNA.

Abbreviations:

E = EcoRI, H = HindIII, S = SmaI, P = PstI, ENI = EcoNI, D = DraI, kb = kilobase and U_s = unique short.

Figure 17**Mean nasal virus shedding from calves after vaccination**

• = vaccinated with Difivac-1, 0 = unvaccinated control.

Figure 18**Mean daily clinical score of calves after challenge with a virulent BHV-1 strain, key as in fig. 17.**

30

Figure 19**Mean rectal temperature of calves challenge with a virulent BHV-1 strain, key as in fig. 17.**

Figure 20

Mean growth of calves after challenge with a virulent BHV-1 strain, key as in fig. 17.

5 Figure 21

Mean nasal virus shedding from calves after challenge with a virulent BHV-1 strain, key as in fig. 17.

Figure 22

10 Mean rectal temperature of calves after challenge with a virulent BHV-1 strain

• = vaccinated with Lam gE⁻, 0 = vaccinated with Lam gE⁻/TK⁻,
x = unvaccinated control.

15 Figure 23

Mean growth of calves after challenge with a virulent BHV-1 strain, key as in fig. 22.

Figure 24

20 Mean daily clinical score of calves after challenge with a virulent BHV-1 strain, key as in fig. 22.

TABLE 1

Nasal virus shedding of calves after vaccination with Lam gE- or Lam gE-/TK- and after challenge with a virulent BHV-1 strain of these vaccinated and control calves

5

<u>Average number of days of nasal virus shedding</u>		
Group	After vaccination	After challenge
Control	0	10.33 ± 1.51
Lam gE-	7.00 ± 0.89	4.83 ± 1.17
Lam gE-/TK-	7.17 ± 1.33	5.17 ± 0.98

TABLE 2

15 Characterization of gE-Mabs

20	Mab	REACTIVITY OF CANDIDATE gE-Mabs WITH							
		Difi-vac-1	Lam gE-	Prok.	3T3 gE	3T3 gE	3T3 gE/gI	Ag group	Ab cattle
25	1	-	-	nd	-	+	?	I	+
	2	-	-	-	+	+	+	II	-
	3	-	-	+	+	+	+	?	-
	4	-	-	+	+	+	+	?	-
	42	-	-	nd	-	-	?	V?	±
30	51	-	-	nd	-	+	+	III	+
	52	-	-	+	+	+	+	?	-
	53	-	-	nd	-	+	+	III	+
	59	-	-	nd	-	-	+	III	+
	66	-	-	nd	+	+	+	III	+
35	67	-	-	nd	-	+	+	III	+
	68	-	-	-	+	+	+	IV	+
	72	-	-	-	+	+	+	V	±
	75	-	-	nd	-	+	?	I	+
	78	-	-	nd	-	+	?	nd	-
40	81	-	-	-	+	+	+	II?	-

+ : All 8 tested sera score a blocking percentage of > 50% in an indirect blocking IPMA.

± : Sera score a blocking percentage of ± 50%.

45 - : Sera score a blocking percentage of < 50%.

SEQUENCE LISTING

SEQ ID NO:1
 LENGTH: 2027 nucleotides, 575 amino acids
 5 TYPE: nucleotide and amino acid
 STRANDEDNESS: single

10 AGGGCGGAGC GTTGAGCGGC CCGACCGCCG CCGGGTTGTT AAATGGGTCT CGCGCGGCTC 60
 10 |-----> deleted in Difivac1
 GTGGTTCCAC ACCGCCGGAG AACCAAGCGCG AGCTTCGCTG CGTGTGTCCC GCGAGCTGCG 120

15 TTCCGGGGAA CGGCGCACGC GAGAGGGTTC GAAAAGGGCA TTTGGCA 167

20 ATG CAA CCC ACC GCG CCG CCC CGG CGG CGG TTG CTG CCG CTG CTG CTG 215
 Met Gln Pro Thr Ala Pro Pro Arg Arg Arg Leu Leu Pro Leu Leu Leu
 1 5 10 15

20 ----- SIGNAL PEPTIDE -----

25 CCG CAG TTA TTG CTT TTC GGG CTG ATG GCC GAG GCC AAG CCC GCG ACC 263
 25 Pro Gln Leu Leu Leu Phe Gly Leu Met Ala Glu Ala Lys Pro Ala Thr
 20 25 30

30 GAA ACC CCG GGC TCG GCT TCG GTC GAC ACG GTC TTC ACG GCG CGC GCT 311
 30 Glu Thr Pro Gly Ser Ala Ser Val Asp Thr Val Phe Thr Ala Arg Ala
 35 40 45

35 GGC GCG CCC GTC TTT CTC CCA GGG CCC GCG GCG CGC CCG GAC GTG CGC 359
 35 Gly Ala Pro Val Phe Leu Pro Gly Pro Ala Ala Arg Pro Asp Val Arg
 50 55 60

40 GCC GTT CGC GGC TGG AGC GTC CTC GCG GGC GCC TGC TCG CCG CCC GTG 407
 40 Ala Val Arg Gly Trp Ser Val Leu Ala Gly Ala Cys Ser Pro Pro Val
 65 70 75 80

45 CCG GAG CCC GTC CTC GAC GAC CGC GAG TGC TTC ACC GAC GTG GCC 455
 45 Pro Glu Pro Val Cys Leu Asp Asp Arg Glu Cys Phe Thr Asp Val Ala
 85 90 95

50 CTG GAC GCG GCC TGC CTG CGA ACC GCC CGC GTG GCC CCG CTG GCC ATC 503
 50 Leu Asp Ala Ala Cys Leu Arg Thr Ala Arg Val Ala Pro Leu Ala Ile
 100 105 110

55 GCG GAG CTC GCC GAG CGG CCC GAC TCA ACG GGC GAC AAA GAG TTT GTT 551
 55 Ala Glu Leu Ala Glu Arg Pro Asp Ser Thr Gly Asp Lys Glu Phe Val
 115 120 125

			PvuII														
5	CTC	GCC	GAC	CCG	CAC	GTC	TCG	GCG	<u>CAG</u>	<u>CTG</u>	GGT	CCG	AAC	GCG	ACC	GGG	599
	Leu	Ala	Asp	Pro	His	Val	Ser	Ala	Gln	Leu	Gly	Arg	<u>Asn</u>	<u>Ala</u>	<u>Thr</u>	Gly	
	130					135						140					
10	GTG	CTG	ATC	GCG	GCC	GCA	GCC	GAG	GAG	GAC	GGC	GGC	GTG	TAC	TTC	CTG	647
	Val	Leu	Ile	Ala	Ala	Ala	Ala	Glu	Glu	Asp	Gly	Gly	Val	Tyr	Phe	Leu	
	145					150						155				160	
15	TAC	GAC	CGG	CTC	ATC	GGC	GAC	GCC	GAG	GAG	ACG	CAG	TTG	GCG			695
	Tyr	Asp	Arg	Leu	Ile	Gly	Asp	Ala	Gly	Asp	Glu	Glu	Thr	Gln	Leu	Ala	
	165					170						175					
20	CTG	ACG	CTG	CAG	GTC	GCG	ACG	GCC	GGC	GCG	CAG	GGC	GCC	GCG	CGG	GAC	743
	Leu	Thr	Leu	Gln	Val	Ala	Thr	Ala	Gly	Ala	Gln	Gly	Ala	Ala	Arg	Asp	
	180					185						190					
25	GAG	GAG	AGG	GAA	CCA	GCG	ACC	GGG	CCC	ACC	CCC	GGC	CCG	CCG	CCC	CAC	791
	Glu	Glu	Arg	Glu	Pro	Ala	Thr	Gly	Pro	Thr	Pro	Gly	Pro	Pro	Pro	His	
	195					200						205					
30	CGC	ACG	ACG	ACA	CGC	GCG	CCC	CCG	CGG	CAC	GGC	GCG	CGC	TTC	CGC		839
	Arg	Thr	Thr	Thr	Arg	Ala	Pro	Pro	Arg	Arg	His	Gly	Ala	Arg	Phe	Arg	
	210					215						220					
35	GTG	CTG	CCG	TAC	CAC	TCC	CAC	GTA	TAC	ACC	<u>CCG</u>	GGC	GAT	TCC	TTT	CTG	887
	Val	Leu	Pro	Tyr	His	Ser	His	Val	Tyr	Thr	Pro	Gly	Asp	Ser	Phe	Leu	
	225					230						235				240	
40	CTA	TCG	GTG	CGT	CTG	CAG	TCT	GAG	TTT	TTC	GAC	GAG	GCT	CCC	TTC	TCG	935
	Leu	Ser	Val	Arg	Leu	Gln	Ser	Glu	Phe	Phe	Asp	Glu	Ala	Pro	Phe	Ser	
	245					250						255					
45	GCC	AGC	ATC	GAC	TGG	TAC	TTC	CTG	CGG	ACG	GCC	GGC	GAC	TGC	GCG	CTC	983
	Ala	Ser	Ile	Asp	Trp	Tyr	Phe	Leu	Arg	Thr	Ala	Gly	Asp	Cys	Ala	Leu	
	260					265						270					
50	ATC	CGC	ATA	TAC	GAG	ACG	TGC	ATC	TTC	CAC	CCC	GAG	GCA	CCG	GCC	TGC	1031
	Ile	Arg	Ile	Tyr	Glu	Thr	Cys	Ile	Phe	His	Pro	Glu	Ala	Pro	Ala	Cys	
	275					280						285					
55	CTG	CAC	CCC	GCC	GAC	GCG	CAG	TGC	AGC	TTC	GCG	TCG	CCG	TAC	CGC	TCC	1079
	Leu	His	Pro	Ala	Asp	Ala	Gln	Cys	Ser	Phe	Ala	Ser	Pro	Tyr	Arg	Ser	
	290					295						300					
60	GAG	ACC	GTG	TAC	AGC	CGG	CTG	TAC	GAG	CAG	TGC	CGC	CCG	GAC	CCT	GCC	1127
	Glu	Thr	Val	Tyr	Ser	Arg	Leu	Tyr	Glu	Gln	Cys	Arg	Pro	Asp	Pro	Ala	
	305					310						315				320	

GGT CGC TGG CCG CAC GAG TGC GAG GGC GCC GCG TAC GCG GCG CCC GTT 1175
 Gly Arg Trp Pro His Glu Cys Glu Gly Ala Ala Tyr Ala Ala Pro Val
 325 330 335

5

GCG CAC CTG CGT CCC GCC AAT AAC AGC GTA GAC CTG GTC TTT GAC GAC 1223
 Ala His Leu Arg Pro Ala Asn Asn Ser Val Asp Leu Val Phe Asp Asp
 340 345 350

10

GCG CCG GCT GCG GCC TCC GGG CTT TAC GTC TTT GTG CTG CAG TAC AAC 1271
 Ala Pro Ala Ala Ser Gly Leu Tyr Val Phe Val Leu Gln Tyr Asn
 355 360 365

15 HindIII 1319
 GGC CAC GTG GAA GCT TGG GAC TAC AGC CTA GTC GTT ACT TCG GAC CGT
 Gly His Val Glu Ala Trp Asp Tyr Ser Leu Val Val Thr Ser Asp Arg
 370 375 380

20

TTG GTG CGC GCG GTC ACC GAC CAC ACG CGC CCC GAG GCC GCA GCC GCC 1367
 Leu Val Arg Ala Val Thr Asp His Thr Arg Pro Glu Ala Ala Ala Ala
 385 390 395 400

25

GAC GCT CCC GAG CCA GGC CCA CCG CTC ACC AGC GAG CCG GCG GGC GCG 1415
 Asp Ala Pro Glu Pro Gly Pro Pro Leu Thr Ser Glu Pro Ala Gly Ala
 405 410 415

30

CCC ACC GGG CCC GCG CCC TGG CTT GTG GTG CTG GTG GGC GCG CTT GGA 1463
 Pro Thr Gly Pro Ala Pro Trp Leu Val Val Leu Val Gly Ala Leu Gly
 420 425 430

35 ----- TRANSMEMBRANE HELIX -----

40

CTC GCG GGA CTG GTG GGC ATC GCA GCC CTC GCC GTT CGG GTG TGC GCG 1511
 Leu Ala Gly Leu Val Gly Ile Ala Ala Val Arg Val Cys Ala
 435 440 445

45

CGC CGC GCA AGC CAG AAG CGC ACC TAC GAC ATC CTC AAC CCC TTC GGG 1559
 Arg Arg Ala Ser Gln Lys Arg Thr Tyr Asp Ile Leu Asn Pro Phe Gly
 450 455 460

50

CCC GTA TAC ACC AGC TTG CCG ACC AAC GAG CCG CTC GAC GTG GTG GTG 1607
 Pro Val Tyr Thr Ser Leu Pro Thr Asn Glu Pro Leu Asp Val Val Val
 465 470 475 480

55

CCA GTT AGC GAC GAC GAA TTT TCC CTC GAC GAA GAC TCT TTT GCG GAT 1655
 Pro Val Ser Asp Asp Glu Phe Ser Leu Asp Glu Asp Ser Phe Ala Asp
 485 490 495

5	GAC GAC AGC GAC GAT GAC GGG CCC GCT AGC AAC CCC CCT GCG GAT GCC Asp Asp Ser Asp Asp Asp Gly Pro Ala Ser Asn Pro Pro Ala Asp Ala 500 505 510	1703
10	TAC GAC CTC GCC GGC GCC CCA GAG CCA ACT AGC GGG TTT GCG CGA GCC Tyr Asp Leu Ala Gly Ala Pro Glu Pro Thr Ser Gly Phe Ala Arg Ala 515 520 525	1751
15	CCC GCC AAC GGC ACG CGC TCG AGT CGC TCT GGG TTC AAA GTT TGG TTT Pro Ala Asn Gly Thr Arg Ser Ser Arg Ser Gly Phe Lys Val Trp Phe 530 535 540	1799
20	AGG GAC CCG CTT GAA GAC GAT GCC GCG CCA GCG CGG ACC CCG GCC GCA Arg Asp Pro Leu Glu Asp Asp Ala Ala Pro Ala Arg Thr Pro Ala Ala 545 550 555 560	1847
25	CCA GAT TAC ACC GTG GTA GCA GCG CGA CTC AAG TCC ATC <u>CTC CGC TAG</u> Pro Asp Tyr Thr Val Val Ala Ala Arg Leu Lys Ser Ile Leu Arg * 565 570 575	EcoNI 1895
30	SEQ ID NO:2 LENGTH: 20 nucleotides TYPE: nucleotide STRANDEDNESS: single	
35	ACGTGGTGGT GCCAGTTAGC	20
40	SEQ ID NO:3 LENGTH: 22 nucleotides TYPE: nucleotide STRANDEDNESS: single	
	ACCAAACTTT GAACCCAGAG CG	22

CLAIMS

1. A deletion mutant of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene.
2. A deletion mutant of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene, which deletion has 5 been caused by an attenuation procedure.
3. Deletion mutant Difivac-1 of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene, which deletion has been caused by an attenuation procedure.
4. A deletion mutant of bovine herpesvirus type 1 which has 10 a deletion in the glycoprotein gE-gene, which deletion has been constructed by recombinant DNA techniques.
5. Deletion mutant 1B7 or 1B8 of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene, which deletion has been constructed by recombinant DNA techniques.
- 15 6. A deletion mutant of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene and a deletion in the thymidine kinase gene.
7. A deletion mutant of bovine herpesvirus type 1 which has 20 a deletion in the glycoprotein gE-gene and a deletion in the glycoprotein gI-gene.
8. A deletion mutant of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene, a deletion in the thymidine kinase gene and a deletion in the glycoprotein gI-gene.
- 25 9. A mutant of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene and contains a heterologous gene introduced by recombinant DNA techniques.
10. A mutant of bovine herpesvirus type 1 which, at the 30 location of the glycoprotein gE-gene, contains a heterologous gene introduced by recombinant DNA techniques, which heterologous gene is under the control of regulatory sequences, e.g. of the gE gene or a heterologous gene, and is optionally attached to the part of the gE gene that codes for a signal peptide.

11. A mutant of bovine herpesvirus type 1 which, in addition to a deletion in the glycoprotein gE-gene, has a deletion in the thymidine kinase gene, a deletion in the glycoprotein gI-gene, or both, and contains a heterologous gene introduced by 5 recombinant DNA techniques at the location of at least one of said deletions.
12. A mutant of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene and contains a heterologous gene which has been introduced by recombinant DNA 10 techniques and codes for an immunogenic protein or peptide of another pathogen or codes for a cytokine.
13. A composition comprising a recombinant nucleic acid containing the glycoprotein gE-gene of bovine herpesvirus type 1, a part of this glycoprotein gE-gene or a nucleotide 15 sequence derived from this glycoprotein gE-gene.
14. A composition comprising a cloning or expression vector having therein an insertion of a recombinant nucleic acid containing the glycoprotein gE-gene of bovine herpesvirus type 1, a part of this glycoprotein gE-gene or a nucleotide 20 sequence derived from this glycoprotein gE-gene.
15. A composition comprising glycoprotein gE of bovine herpesvirus type 1, a part of this glycoprotein gE, a peptide derived from this glycoprotein gE, or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI.
- 25 16. A composition comprising an antibody which is specific for glycoprotein gE of bovine herpesvirus type 1, a part of this glycoprotein gE, a peptide derived from this glycoprotein gE, or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI.
- 30 17. A composition comprising a monoclonal antibody that is specific for glycoprotein gE of bovine herpesvirus type 1, a part of this glycoprotein gE, a peptide derived from this glycoprotein gE, or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI.
- 35 18. A composition comprising a polyclonal antibody which is specific for glycoprotein gE of bovine herpesvirus type 1, a

part of this glycoprotein gE, a peptide derived from this glycoprotein gE, or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI.

19. A vaccine composition for a vaccination of animals, in particular mammals, more in particular bovines, to protect them against bovine herpesvirus type 1, comprising a mutant of bovine herpesvirus type 1 according to any one of claims 1-12, and a suitable carrier or adjuvant.

20. A vaccine composition for a vaccination of animals, in particular mammals, more in particular bovines, to protect them against a pathogen, comprising a mutant of bovine herpesvirus type 1 which has a deletion in the glycoprotein gE-gene and contains a heterologous gene which has been introduced by recombinant DNA techniques and codes for an immunogenic protein or peptide of the pathogen, and a suitable carrier or adjuvant.

21. A diagnostic kit for detecting nucleic acid of bovine herpesvirus type 1 in a sample, in particular a biological sample such as blood or blood serum, blood cells, milk, bodily fluids such as tears, lung lavage fluid, nasal fluid, sperm, in particular seminal fluid, saliva, sputum or tissue, in particular nervous tissue, coming from an animal, in particular a mammal, more in particular a bovine, comprising a nucleic acid probe or primer with a nucleotide sequence derived from the glycoprotein gE-gene of bovine herpesvirus type 1, and a detection means suitable for a nucleic acid detection assay.

22. A diagnostic kit for detecting antibodies which are specific for bovine herpesvirus type 1, in a sample, in particular a biological sample such as blood or blood serum, saliva, sputum, bodily fluid such as tears, lung lavage fluid, nasal fluid, milk or tissue, coming from an animal, in particular a mammal, more in particular a bovine, comprising glycoprotein gE of bovine herpesvirus type 1, a part of this glycoprotein gE, a peptide derived from this glycoprotein gE, or a complex of the bovine herpesvirus type 1 glycoproteins gE

and gI, and a detection means suitable for an antibody detection assay.

23. A diagnostic kit according to claim 22, which further comprises one or more antibodies which are specific for 5 glycoprotein gE of bovine herpesvirus type 1, or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI.

24. A diagnostic kit for detecting protein of bovine herpesvirus type 1 in a sample, in particular a biological sample such as blood or blood serum, blood cells, milk, bodily 10 fluids such as tears, lung lavage fluid, nasal fluid, sperm, in particular seminal fluid, saliva, sputum or tissue, in particular nervous tissue, coming from an animal, in particular a mammal, more in particular a bovine, comprising an antibody which is specific for glycoprotein gE of bovine 15 herpesvirus type 1, or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI, and a detection means suitable for a protein detection assay.

25. A method of determining bovine herpesvirus type 1 infection of an animal, in particular a mammal, more in 20 particular a bovine, comprising examining a sample coming from the animal, in particular a biological sample such as blood or blood serum, blood cells, sperm, in particular seminal fluid, saliva, sputum, bodily fluid such as tears, lung lavage fluid, nasal fluid, milk or tissue, in particular nervous tissue, for 25 the presence of nucleic acid comprising the glycoprotein gE-gene of bovine herpesvirus type 1 or the presence of the glycoprotein gE of bovine herpesvirus type 1 or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI, or the presence of antibodies which are specific for the glycoprotein 30 gE of bovine herpesvirus type 1 or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI.

26. A method of determining bovine herpesvirus type 1 infection of an animal, in particular a mammal, more in 35 particular a bovine, comprising examining a sample coming from the animal, in particular a biological sample such as blood or blood serum, blood cells, sperm, in particular seminal fluid,

saliva, sputum, bodily fluid such as tears, lung lavage fluid, nasal fluid, milk, or tissue, in particular nervous tissue, for the presence of nucleic acid comprising the glycoprotein gE-gene of bovine herpesvirus type 1, or the presence of the 5 glycoprotein gE-gene of bovine herpesvirus type 1 or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI, or the presence of antibodies which are specific for the glycoprotein gE of bovine herpesvirus type 1 or a complex of the bovine herpesvirus type 1 glycoproteins gE and gI, the 10 sample to be examined coming from an animal which has been vaccinated with a vaccine preparation according to claim 19.

H P
D I D I

8,4 kb - - -
7,2 kb - - - - 6 kb

1 2 3 4

FIG.1A

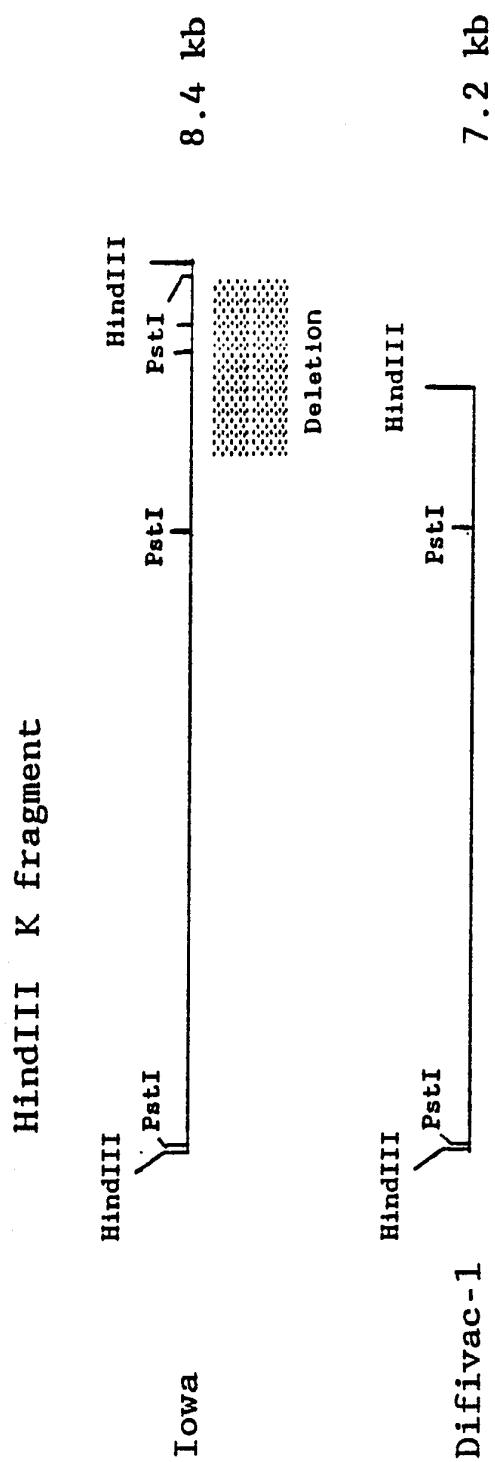


FIG. 1B

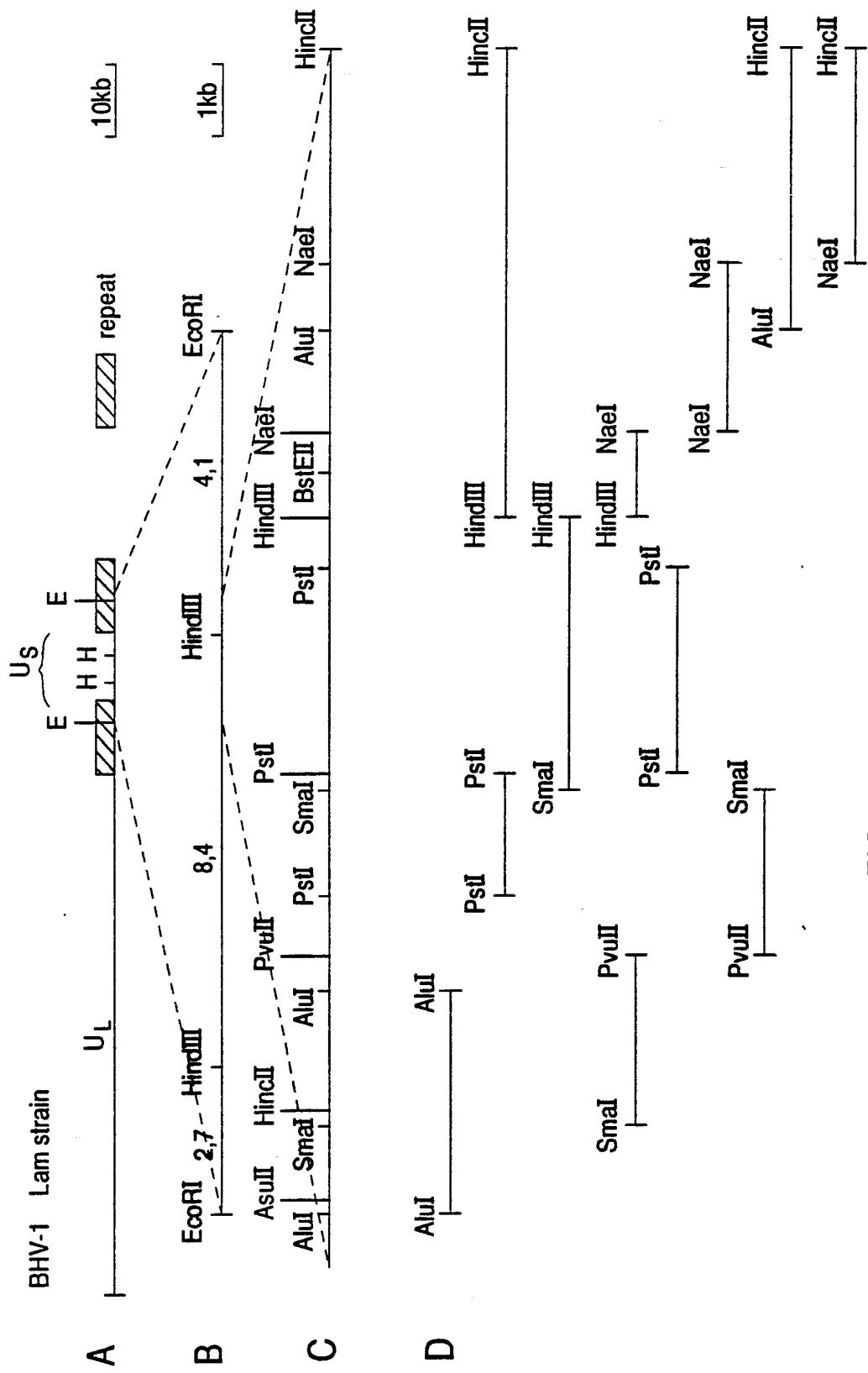


FIG. 2

AGGGGGAGC GTTGAGCGGC CCGACCGGCC CGGGGTTGTT AAATGGGTCT CGCGGGCTC 60
 GTGGTTCCAC ACCGCCGGAG AACCAAGCGCG AGCTTCGCTG CGTGTGTCCC GCGAGCTGCG 120
 AsuII
 TTCCGGGAA CGGGCACGC GAGAGGGTTC GAAAAGGGCA TTTGGCA 167

ATG CAA CCC ACC GCG CCG CCC CGG CGG TTT CTG CCG CTG CTG CTG CTG
 Met Gln Pro Thr Ala Pro Pro Arg Arg Arg Arg Leu Leu Pro Leu Leu Leu 215
 1 5 10 15
 ===== SIGNAL PEPTIDE =====

CCG CAG TTA TTG CTT TTC GGG CTG ATG GCC GAG GCC AAG CCC GCG ACC 263
 Pro Gln Leu Leu Phe Gly Leu Met Ala Glu Ala Lys Pro Ala Thr 30
 20 25
 =====

SmaI
 GAA ACC CCG GGC TCG GCT TCG GAC ACG GTC TTC ACG GCG CGC GCT 311
 Glu Thr Pro Gly Ser Ala Ser Val Asp Thr Val Phe Thr Ala Arg Ala 45
 35 40 55
 =====

GGC GCG CCC GTC TTT CTC CCA GGG CCC GCG CGC CGC GAC GTG CGC 359
 Gly Ala Pro Val Phe Leu Pro Gly Pro Ala Ala Arg Pro Asp Val Arg 60
 50
 =====

GGC GTT CGC GGC TGG AGC GTC CTC GCG GCC TGC TCG CCG CCC GTG 407
 Ala Val Arg Gly Trp Ser Val Leu Ala Gly Ala Cys Ser Pro Pro Val 75
 65 70 80
 =====

FIG. 3A

CCG GAG CCC GTC TGC CTC GAC GCG CGC GAG TGC TTG ACC GAC GTG GCC	455
Pro Glu Pro Val Cys Leu Asp Asp Arg Glu Cys Phe Thr Asp Val Ala	85
90	95
CTG GAC GCG GCC TGC CTG CGA ACC GCC CGC GTG GCC CCG CTG GCC ATC	503
Leu Asp Ala Ala Cys Leu Arg Thr Ala Arg Val Ala Pro Leu Ala Ile	100
105	110
GCG GAG CTC GCC GAG CGG CCC GAC TCA ACG GGC GAC AAA GAG TTT GTT	551
Ala Glu Leu Ala Glu Arg Pro Asp Ser Thr G1y Asp Lys Glu Phe Val	115
120	125
CTC GCC GAC CCG CAC GTC TCG GCG <u>CAG</u> <u>CTG</u> GGT CGC AAC GCG ACC GGG	599
Leu Ala Asp Pro His Val Ser Ala Gln Leu Gly Arg Asn <u>Ala</u> Thr Gly	130
135	140
GTG CTG ATC GCG GCC GCA GCC GAG GAC GGC GGC GTG TAC TTC CTG	647
Val Leu Ile Ala Ala Ala Glu Glu Asp G1y G1y Val Tyr Phe Leu	145
150	155
TAC GAC CGG CTC ATC GGC GAC GCC GGC GAC GAG ACG CAG TTG GCG	695
Tyr Asp Arg Leu Ile G1y Asp Ala G1y Asp Glu Glu Thr Gln Leu Ala	165
170	175
CTG ACG CTG CAG GTC GCG ACG GCC GGC GCG CAG GGC GCC GCG CGG GAC	743
Leu Thr Leu Gln Val Ala Thr Ala G1y Ala Gln Gly Ala Ala Arg Asp	180
185	190

FIG. 3A

GAG	GAG	AGG	GAA	CCA	GCG	ACG	GGG	CCC	ACC	CCC	GGC	CCC	CCG	CCC	CAC	791
Gl <u>u</u>	Gl <u>u</u>	Arg	Gl <u>u</u>	Pro	Al <u>a</u>	Thr	Gl <u>y</u>	Pro	Thr	Pro	Gl <u>y</u>	Pro	Pro	Pro	His	
195							200				205					
CGC	ACG	ACG	ACA	CGC	GCG	CCC	CGG	CGG	CAC	GGC	GGG	CGC	TTC	CGC	839	
Arg	Thr	Thr	Thr	Arg	Al <u>a</u>	Pro	Pro	Arg	Arg	His	Gl <u>y</u>	Al <u>a</u>	Arg	Phe	Arg	
210						215				220						
GTG	CTG	CCG	TAC	CAC	CAC	GTA	TAC	ACC	CCG	GGC	GAT	TCC	TTC	CTG	887	
Val	Leu	Pro	Tyr	His	Ser	His	Val	Tyr	Thr	Pro	Gly	Asp	Ser	Phe	Leu	
225						230				235					240	
CTA	TCG	GTG	CGT	CTG	CAG	TCT	GAG	TTC	GAC	GAG	GCT	CCC	TTC	CTG	935	
Leu	Ser	Val	Arg	Leu	Gln	Ser	Glu	Phe	Phe	Asp	Glu	Al <u>a</u>	Pro	Phe	Ser	
						245				250					255	
GCC	AGC	ATC	GAC	TGG	TAC	TTC	CTG	CGG	ACG	GCC	GGC	GAC	TGC	GCG	CTC	983
Al <u>a</u>	Ser	Ile	Asp	Trp	Tyr	Phe	Leu	Arg	Thr	Al <u>a</u>	Gly	Asp	Cys	Al <u>a</u>	Leu	
						260				265					270	
ATC	CGC	ATA	TAC	GAG	ACG	TGC	ATC	TTC	CAC	CCC	GAG	GCA	CCG	GCC	TGC	1031
Ile	Arg	Ile	Tyr	Glu	Thr	Cys	Ile	Phe	His	Pro	Glu	Al <u>a</u>	Pro	Al <u>a</u>	Cys	
						275				280					285	
CTG	CAC	CCC	GCC	GAC	GCG	CAG	TGC	AGC	TTC	GCG	TGC	CCG	TAC	CGC	TCC	1079
Leu	His	Pro	Al <u>a</u>	Asp	Al <u>a</u>	Gln	Cys	Ser	Phe	Al <u>a</u>	Ser	Pro	Tyr	Arg	Ser	
						295				295					300	

GAG ACC GTG TAC AGC CGG CTG TAC GAG CAG TGC CGC CCG GAC CCT GCC 1127
 Glu Thr Val Tyr Ser Arg Leu Tyr Glu Gln Cys Arg Pro Asp Pro Ala 320
 305 310 315 320

GGT CGC TGG CCG CAC GAG TGC GAG GGC GCC GCG TAC GCG GCG CCC GTC 1175
 Gly Arg Trp Pro His Glu Cys Glu Gly Ala Ala Tyr Ala Ala Pro Val 335
 325 330 335

GCG CAC CTG CGT CCC GCC AAT AAC AGC GTA GAC CTG GTC TTT GAC GAC 1223
 Ala His Leu Arg Pro Ala Asn Asn Ser Val Asp Leu Val Phe Asp Asp 350
 340 345 350

GCG CCG GCT GCG GCC TCC GGG CTT TAC GTC TTT GTG CTG CAG TAC AAC 1271
 Ala Pro Ala Ala Ser Gly Leu Tyr Val Phe Val Leu Gln Tyr Asn 365
 355 360 365

GCG CAC GTG GAA GCT TGG GAC TAC AGC CTA GTC GTT ACT TCG GAC CGT 1319
 Gly His Val Glu Ala Trp Asp Tyr Ser Leu Val Val Thr Ser Asp Arg 380
 370 375 380

TTC GTG CGC GCG GTC ACC GAC CAC ACG CGC CCC GAG GCC GCA GCC GCC 1367
 Leu Val Arg Ala Val Thr Asp His Thr Arg Pro Glu Ala Ala Ala Ala 400
 385 390 395 400

GAC GCT CCC GAG CCA GGC CCA CCG CTC ACC AGC GAG CCG GCG GCG GCG 1415
 Asp Ala Pro Glu Pro Pro Gly Pro Pro Leu Thr Ser Glu Pro Ala Gly Ala 415
 405 410 415

FIG. 3A

CCC ACC GGG CCC GCG CCC TGG CTT GTG GTG CTC GGC GCG CTT GGA	1463
Pro Thr Gly Pro Ala Pro Trp Leu Val Val Leu Val Gly Ala Leu Gly	
420 425	
===== TRANSMEMBRANE HELIX =====	
CTC GCG GGA CTG GTG GGC ATC GCA GCC CTC GCC GTT CGG GTG TGC GCG	1511
Leu Ala Gly Leu Val Gly Ile Ala Ala Leu Ala Val Arg Val Cys Ala	
435 440 445	
=====	
CGC CGC GCA AGC CAG AAG CGC ACC TAC GAC ATC CTC AAC CCC TTC GGG	1559
Arg Arg Ala Ser Gln Lys Arg Thr Tyr Asp Ile Leu Asn Pro Phe Gly	
450 455 460	
=====	
CCC GTA TAC ACC AGC TTG CCG ACC AAC GAG CCG CTC GAC GTG GTG GTG	1607
Pro Val Tyr Thr Ser Leu Pro Thr Asn Glu Pro Leu Asp Val Val Val	
465 470 475 480	
=====	
CCA GTT AGC GAC GAA TTT TCC CTC GAC GAA GAC TCT TTT GCG GAT	1655
Pro Val Ser Asp Asp Glu Phe Ser Leu Asp Glu Asp Ser Phe Ala Asp	
485 490 495	
=====	
GAC GAC AGC GAC GAT GAC GGG CCC GCT AGC AAC CCC CCT GCG GAT GCC	1703
Asp Asp Ser Asp Asp Asp Asp Ser Ala Ser Asn Pro Pro Ala Asp Ala	
500 505 510	

FIG. 3A

TAC GAC CTC GCC GCC CCA GAG CCA ACT AGC GGG TTT GCG CGA GCC
 Tyr Asp Leu Ala Gly Ala Pro Glu Pro Thr Ser Gly Phe Ala Arg Ala
 515 520 525

CCC GCC AAC GGC ACG CGC TCG AGT CGC TCT GGG TTC AAA GTT TGG TTT
Pro Ala Asn Gly Thr Arg Ser Ser Arg Ser Gly Phe Lys Val Trp Phe
 530 535 540

AGG GAC CCG CTT GAA GAC GAT GCC GCG CCA GCG CGG ACC CCG GCC GCA
Arg Asp Pro Leu Glu Asp Asp Ala Ala Pro Ala Pro Ala Arg Thr Pro Ala
 545 550 555 560

CCA GAT TAC ACC GTG GTA GCA GCG CGA CTC AAG TCC ATC CTC CGC TAG
Pro Asp Tyr Thr Val Val Ala Ala Arg Leu Lys Ser Ile Leu Arg *
 565 570 575

ECONI
 GCGCCCCCCC CCCCCCGCGC GCTGGCCGT CTGACGGAAA GCACCCGGT GTAGGGCTGC
ATATAAATGG AGGGCTCACAA CAAAGCCTCG TCGGGCTGCT TCGAAGGCAT GGAGAGTCCA
 CGCAGGGTCG TC
 2027

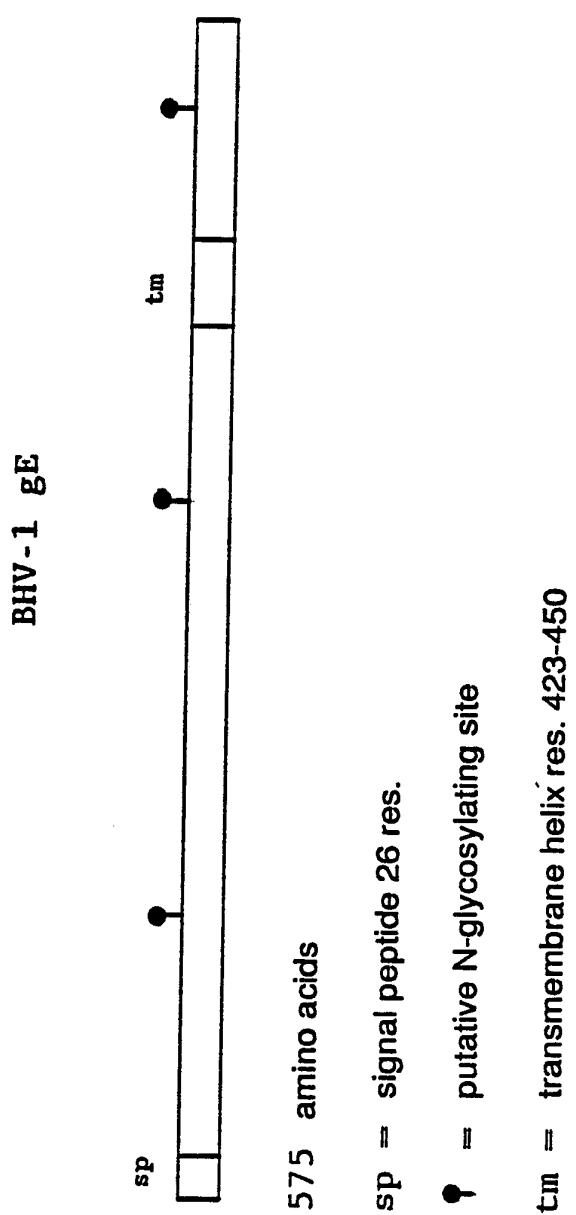


FIG. 3B

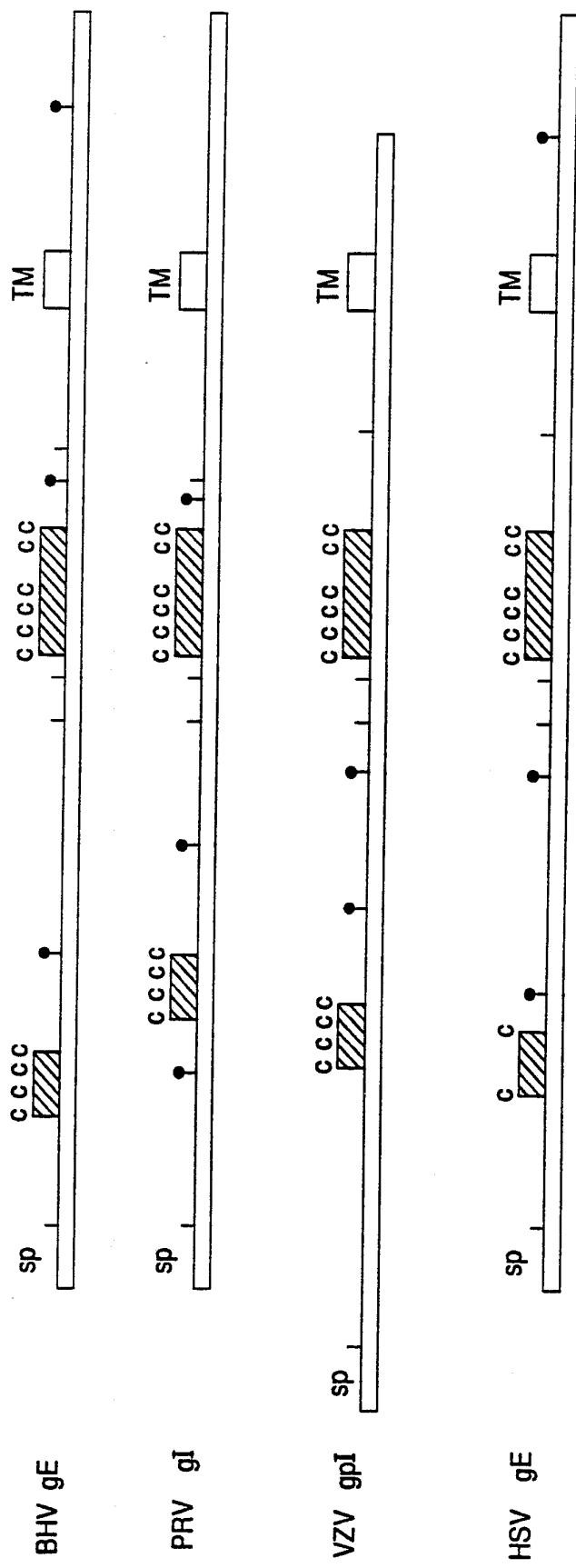


FIG.4A

symbol comparison table :		DAYHOFF.DAT;	gap penalty :	8
1	10	20	30	40
PRV	HSQLFSPGDTFDLMPRVVSDMGDSRENTFTATLDWYYARAPPRCLLYYYEPCIYHPRAP			50
VZV	HSHVFSVGDTFSLAMHLYQKI.H..EAPFDLLEWLYVPIDPTCQPMRLYSTCLYHPNAP			60
BHV	HSHVYTPGDSFLLSVRLQSEFFD..EAPFSASIDDWYFLRTAGDCALIRIYETCIEHPEAP			
HSV	EAILFSPGETESTNVSIHAIHD..DQTYSMDDVWLRFLDVPPTSACEMRIYESCLYHPQLP			
	1 10 20 30 40 50			
PRV	ECLRPVDPACCSFTSPARAALVARRAYASCSPLLGDRWLTAACPFDAGFEEVH.....	70	80	90
VZV	QCLSHMNNSGGTFTSPHLAQRVASTVYQNC..EHADNYTAYCLGISHMEPSFGLILHDGGT			100
BHV	ACLHPADAQCTFASPYRSETVYSRILYEQCRPDPAGRMPHECEGAAAYAAPVAHILRPANNSV			110
HSV	ECLSPADAPC..AASTWTSRILAVRSYAGCSRTNP...PPRCSAEAMHEPVPGVLAQAAASV	60 70	80 90	100 110
PRVTNATADESGLYVLMTHNGHVATWDYTLVAT	120	130	140
VZV	TLKFVDTPESSLGILYEVYIFNGHVEAVAYTVVST			
BHV	DLVFDDAPAAASGLYVFLQYNGHVEAWDYSLVVT			
HSV	NLEFRDASPQHSGSLYLCVYYVNDHIHAWGHITIST	120 130	140 148	

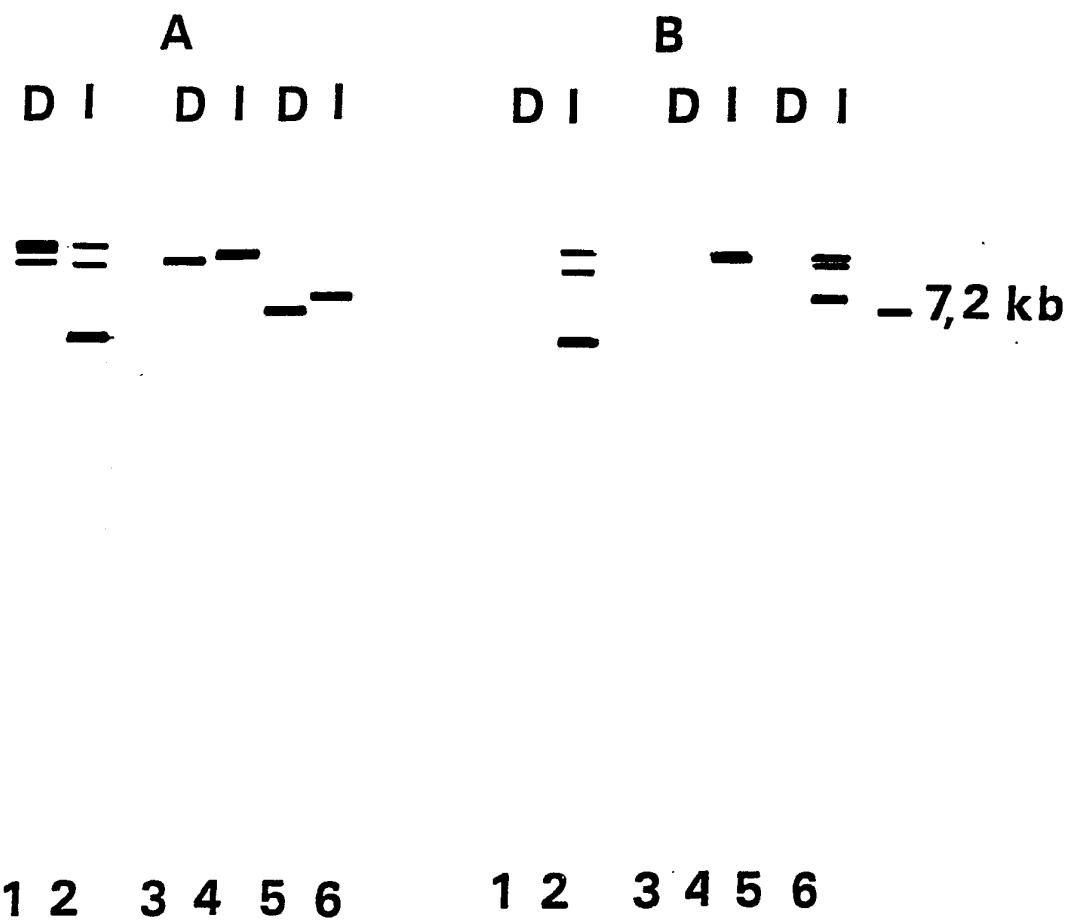


FIG. 5

SUBSTITUTE SHEET

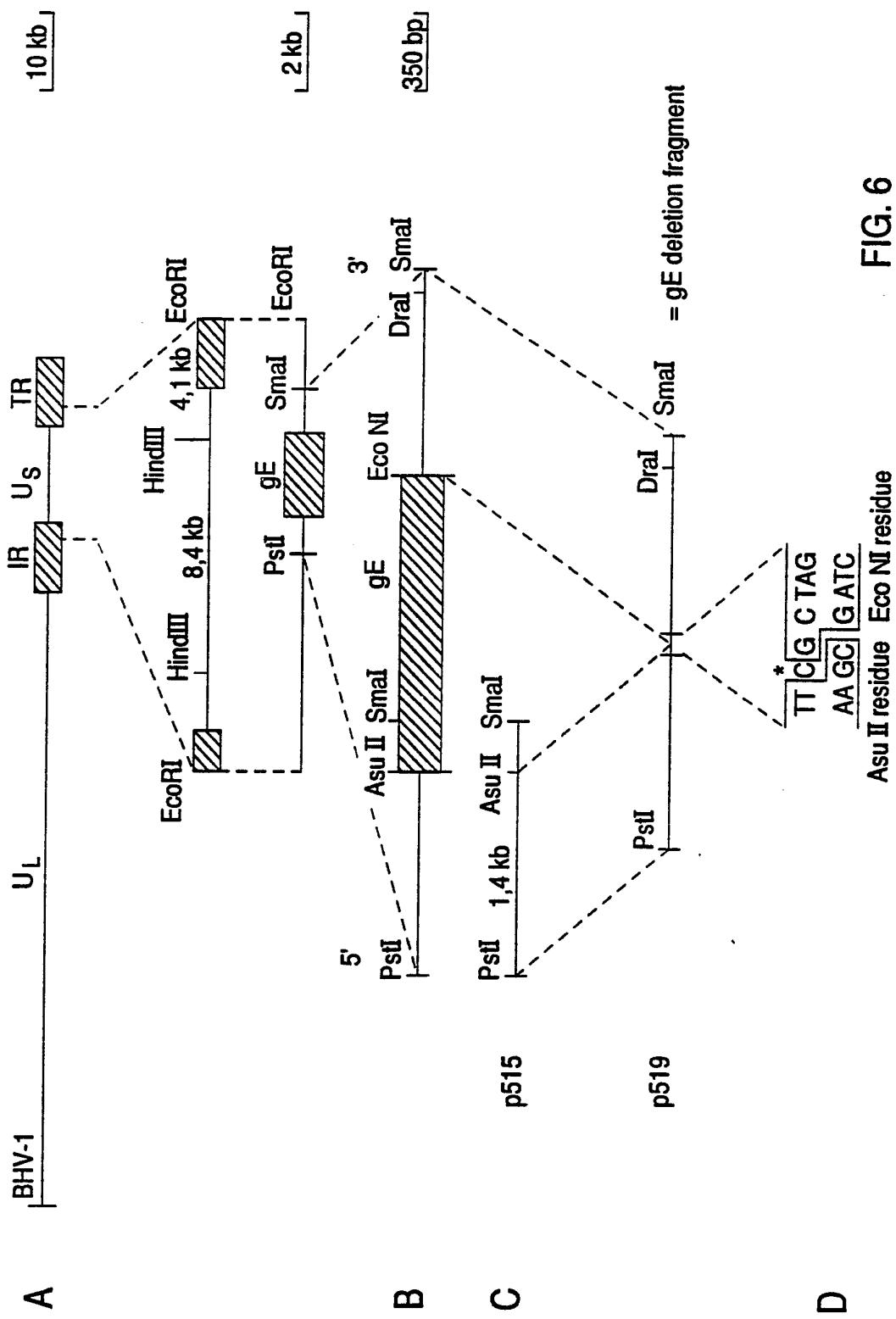


FIG. 6

2,3 kb - - - - -
= =
- -
1 2 3 4 5

FIG.7A

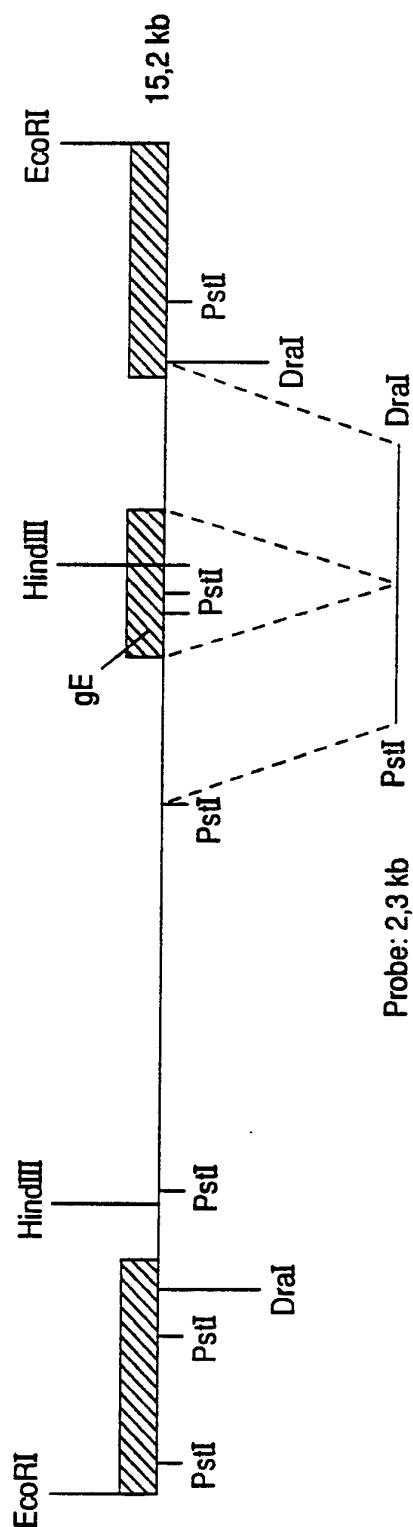


FIG. 7B

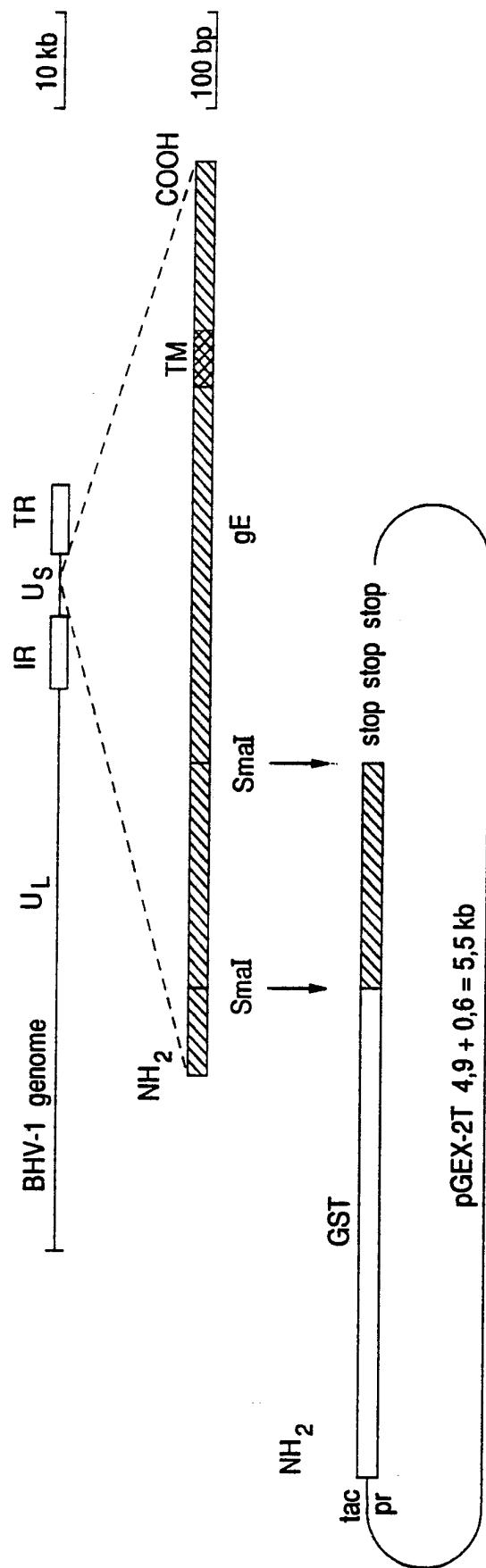


FIG. 8A

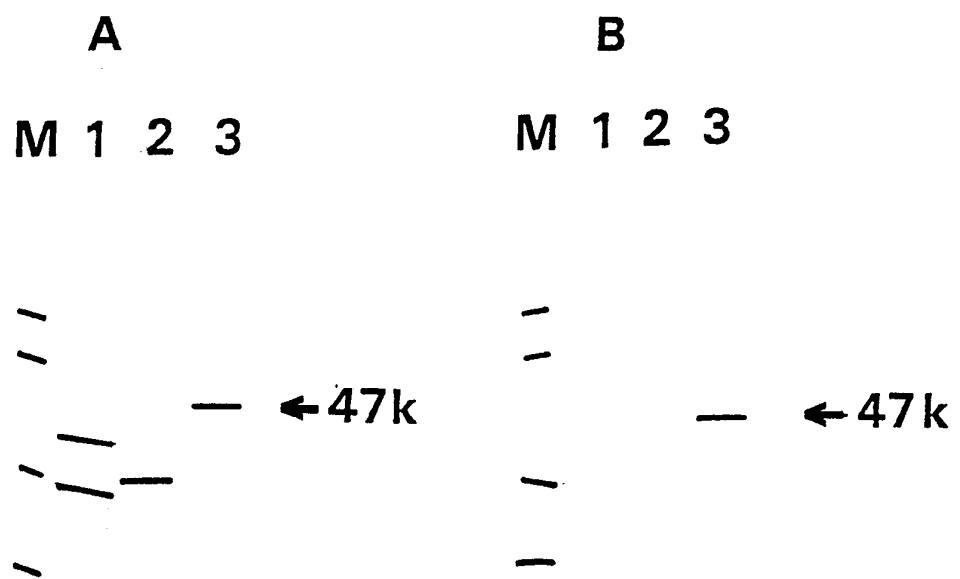


FIG.8B

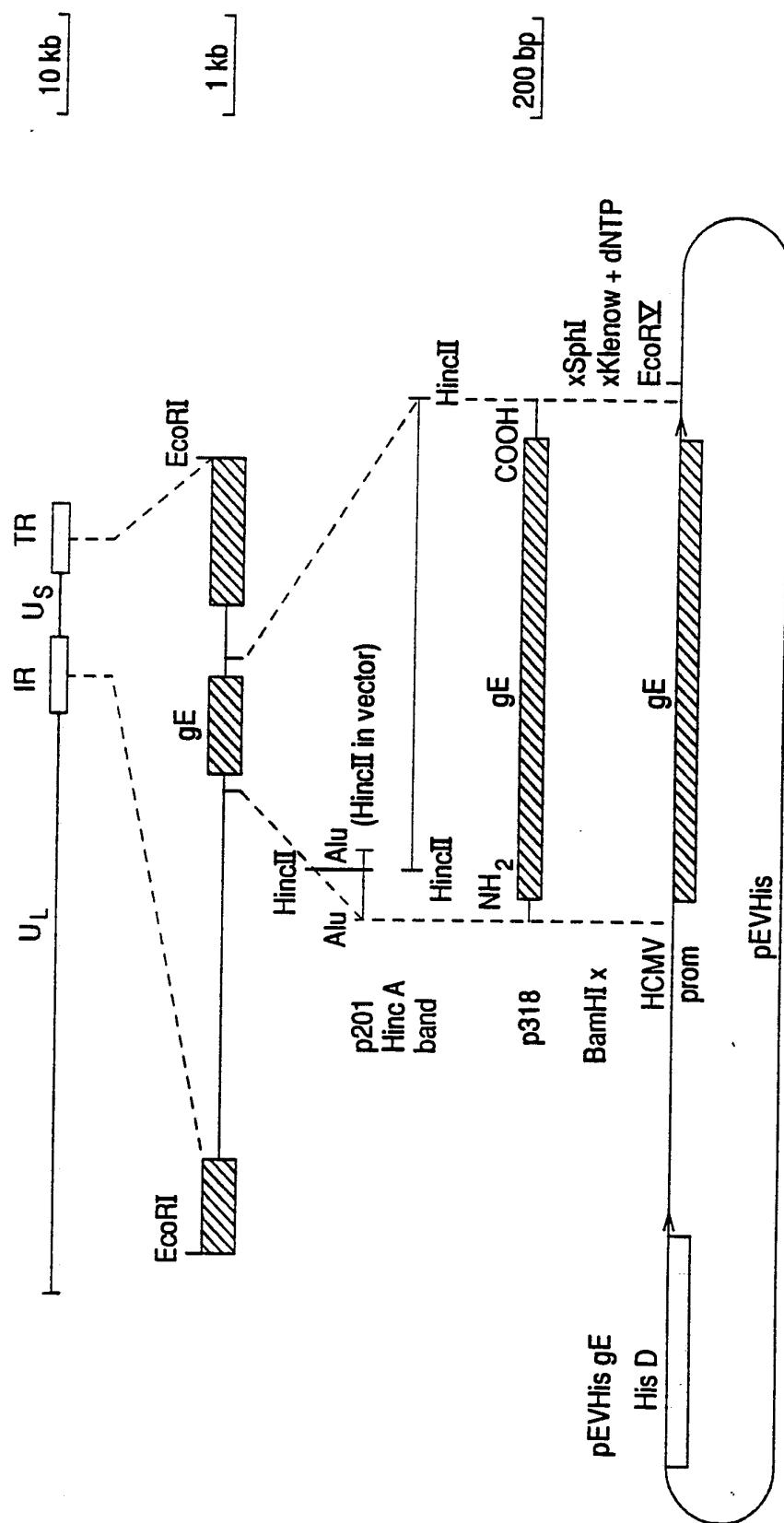


FIG. 9

SUBSTITUTE SHEET

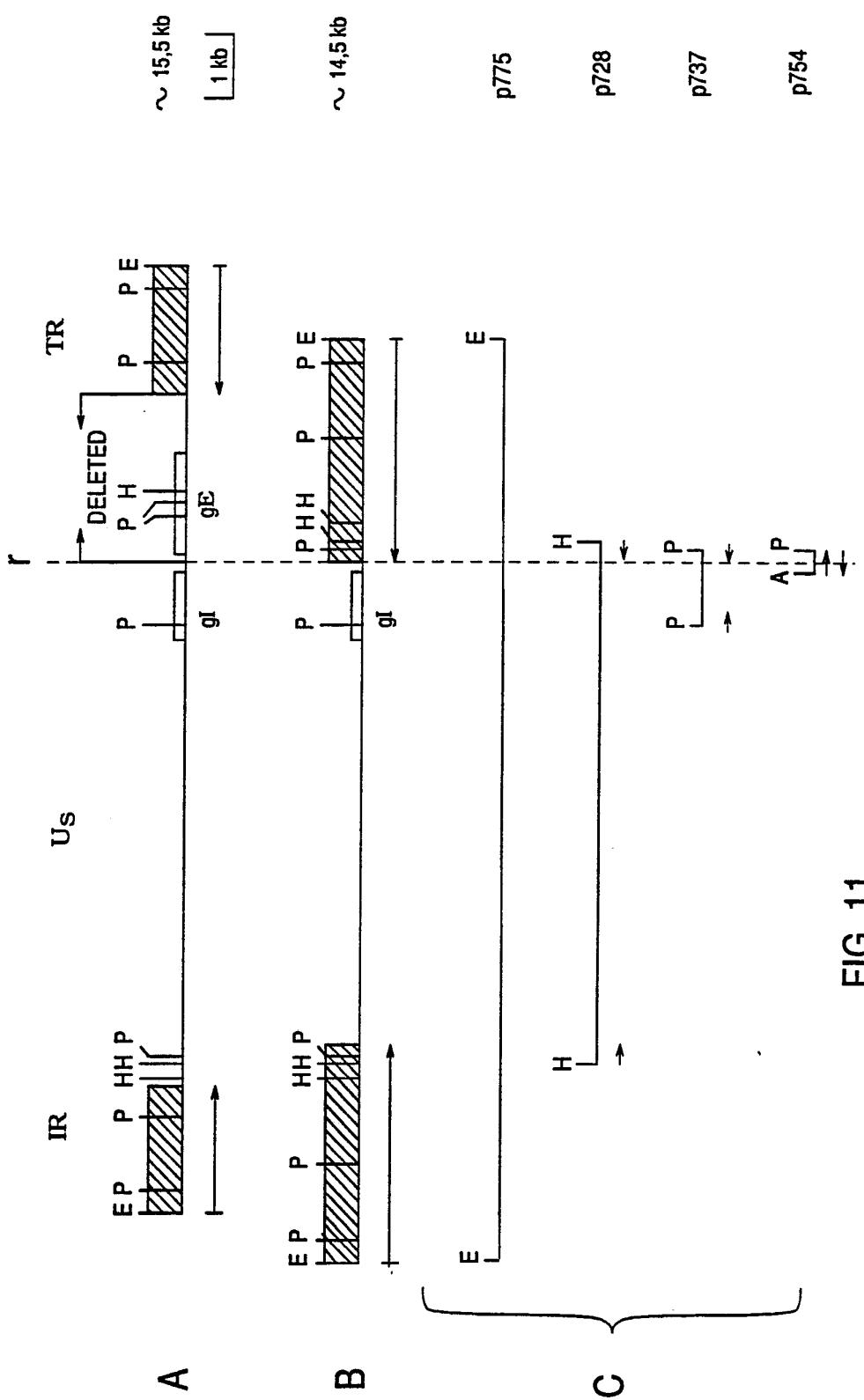


FIG. 11

A

-----> gE PROMOTER REGION ----->
 5' GAGCGGGCCCACCGCCGGGGTTGTAAATGGGTCTCGCGGGCTCGTGGTTCCACACCGCCGGAGAA
 r
 ----->|<----- INVERTED REPEAT <-----
 CCAGCGC|TGCGAGGGGGGGCTTGGTGGCTGGCGACTCTTAAGGCGTGCCGCCACGAGCAAGAAGACGGC
 |
 <----- INVERTED REPEAT <-----
 CTGTATGCTATGCTCCCGCCGGACTATTTCCGGTGGTGCCCTCGTCCAAGCCCCCTGCTGGTGAAGTT 3'

B(I)

Unique short | inverted repeat
 Opposite repeat border : GGCACCGGTCCCGGA|TGCGAGGGGGGGCTTGG
 (inversed sequence) * * |*****
 Recombined region : CCGGAGAACCAAGCGC|TGCGAGGGGGGGCTTGG

B(II)

Recombined region : CCGGAGAACCAAGCGC|TGCGAGGGGGGGCTTGG
 *****| * * * *
 Wildtype gE region : CCGGAGAACCAAGCGC|GAGCTTCGCTGGGTGTG
 | gE leader --->

FIG.12

SUBSTITUTE SHEET

10 20 30 40 50 60
CTACCACGCCGCCGGCGACTGCTTCGTTATGCTGCAGACGACCGCGTTGCCCTCCTGCC
Y H A A G A C F V M L Q T T A F A S C P
70 80 90 100 110 120
GCGCGTCGCGAACGACGCCCTTCGCTCCTGCCTGCACGCCGACACGCGCCCCGCTCGCAG
R V A N D A F R S C L H A D T R P A R S
130 140 150 160 170 180
CGAGCGGCCGCGCGAGCGCCGCCGGTCGAAAACCACGTGCTCTTCTCCATGCCCATCCGCG
E R R A S A A V E N H V L F S I A H P R
190 200 210 220 230 240
CCCAATAGACTCAGGGCTCTACTTCTGCGCGTCGGCATCTACGGCGGCACCGCGGGCAG
P I D S G L Y F L R V G I Y G G T A G S
250 260 270 280
CGAGCGCCGCCGAGACGTCTTCCCTGGCCGCCGTTGTACACA
E R R R D V F P L A A F V H

FIG. 13

symbol comparison table : DAYHOFF.DAT; gap penalty : 8

	1	10	20	30	40	50
BHV1	YHAAGD.CFVMLQTTAFASCPRVAN.AFRSCLHADTRP.ARSERRASA *: : **** : *** *: : : ***** : *: :					
PRV	RLDPKRA.CYTREYAAEYDLCPRVHAEFRGCLR...KR.EPLARRASA : * *** ** * : * : * : ** *:					
HSV1	YPMGHK.CPRVVHVVTVTACPRRPAVAFALCRATDSTH.SPAYPTLELN * * * * : *** ** * * * : : *: :					
VZV	YADTVAFCFRSVQVIRYDGCPRTSAFISCRYKHSWHYGNSTDRI 1 10 20 30 40 50					
	60	70	80	90	93	
BHV1	HPRPIDSGLYFLR VGIYGG.TAGSER RDVFPLAAFVH : * * * * * : * * : * *:					
PRV	RPAPPDAGSYVLRVR..NG.TTDLFVLTALVPPRGRPHU * ** * * * : : *** : *:					
HSV1	RATRDYAGVYVLRVWVGADPNASLFVLGMAIAAEG : : * * * * * : : * : *:					
VZV	KPGINDAGVYVLLVRLDHRSSTDGFILGVNVYTAG 70 80 90 94					

FIG. 14

SUBSTITUTE SHEET

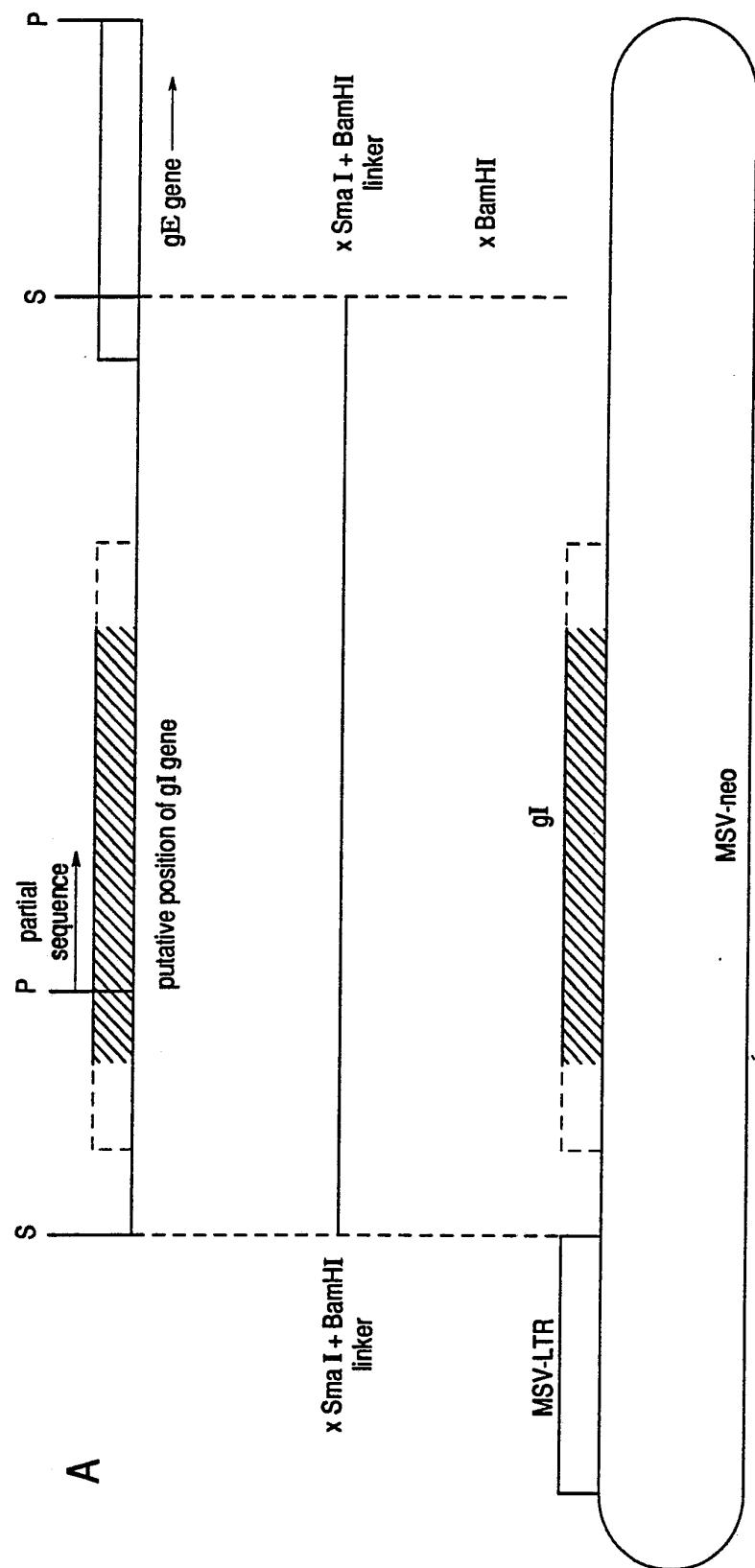


FIG. 15

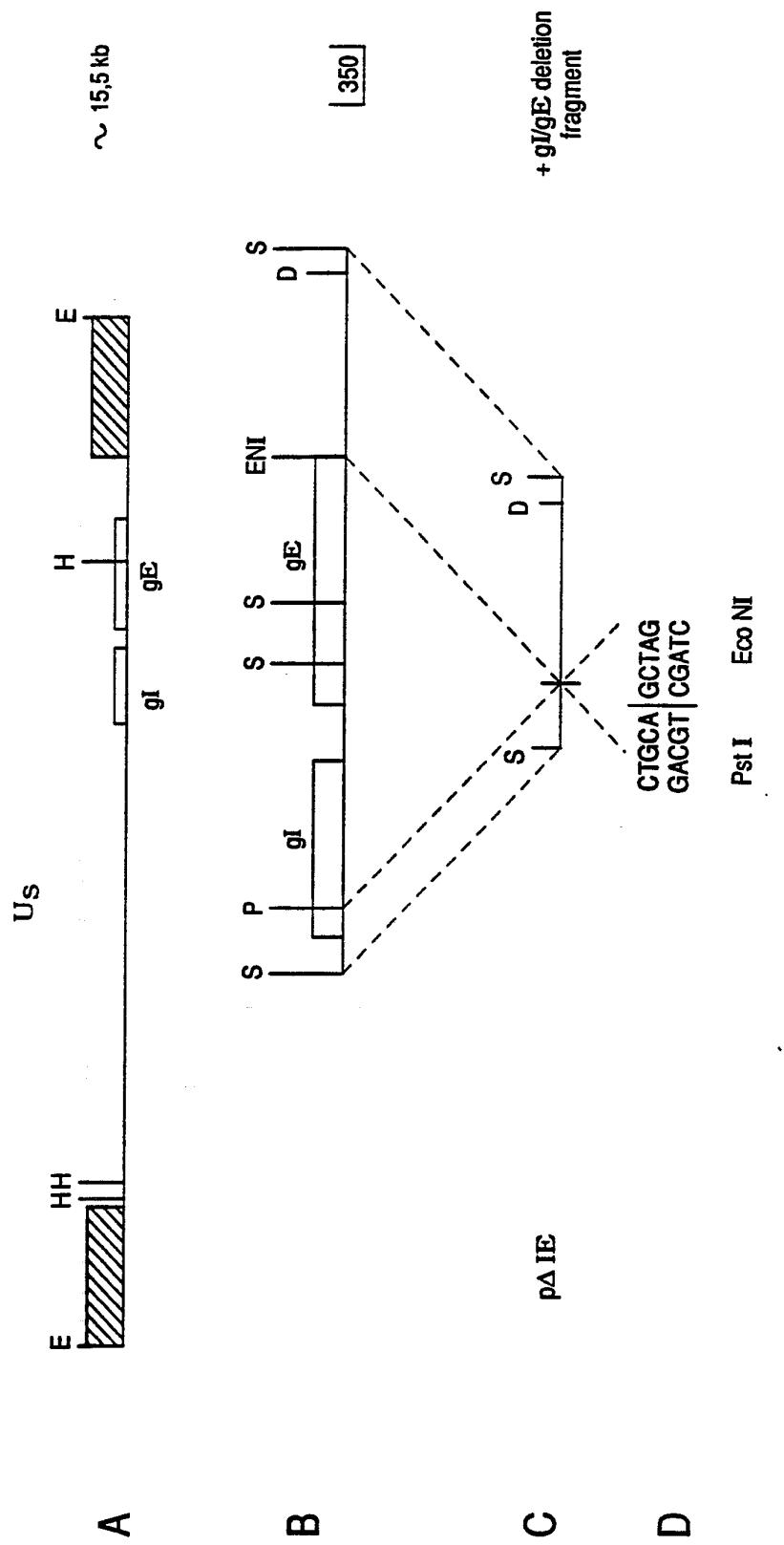


FIG. 16

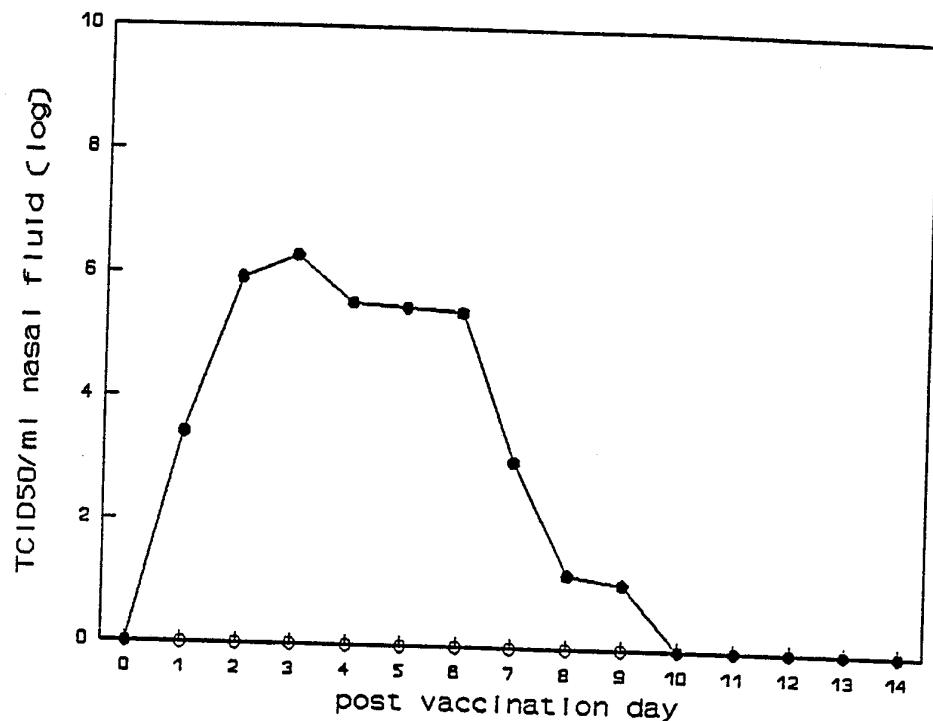


FIG.17

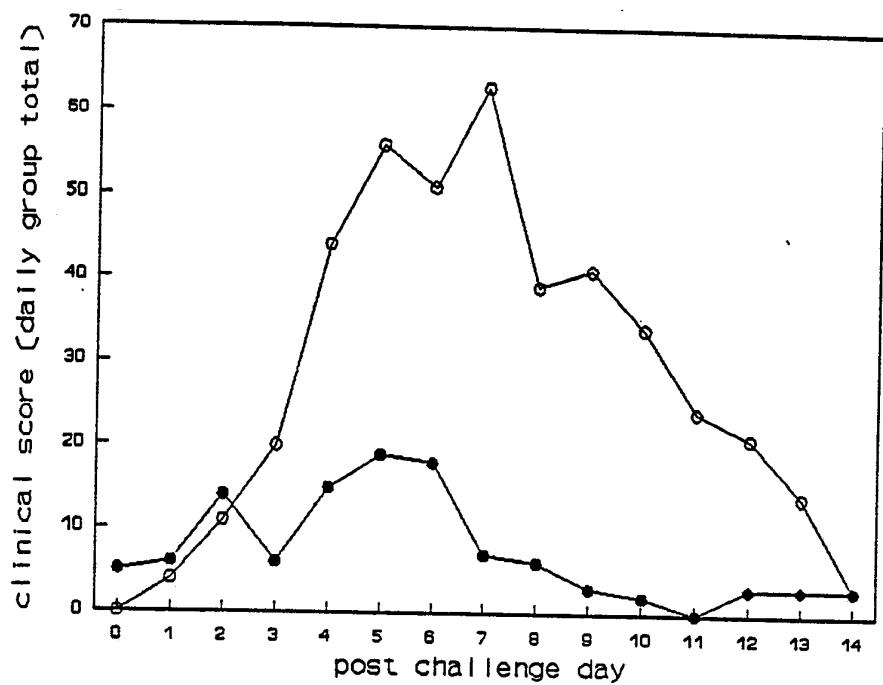


FIG.18

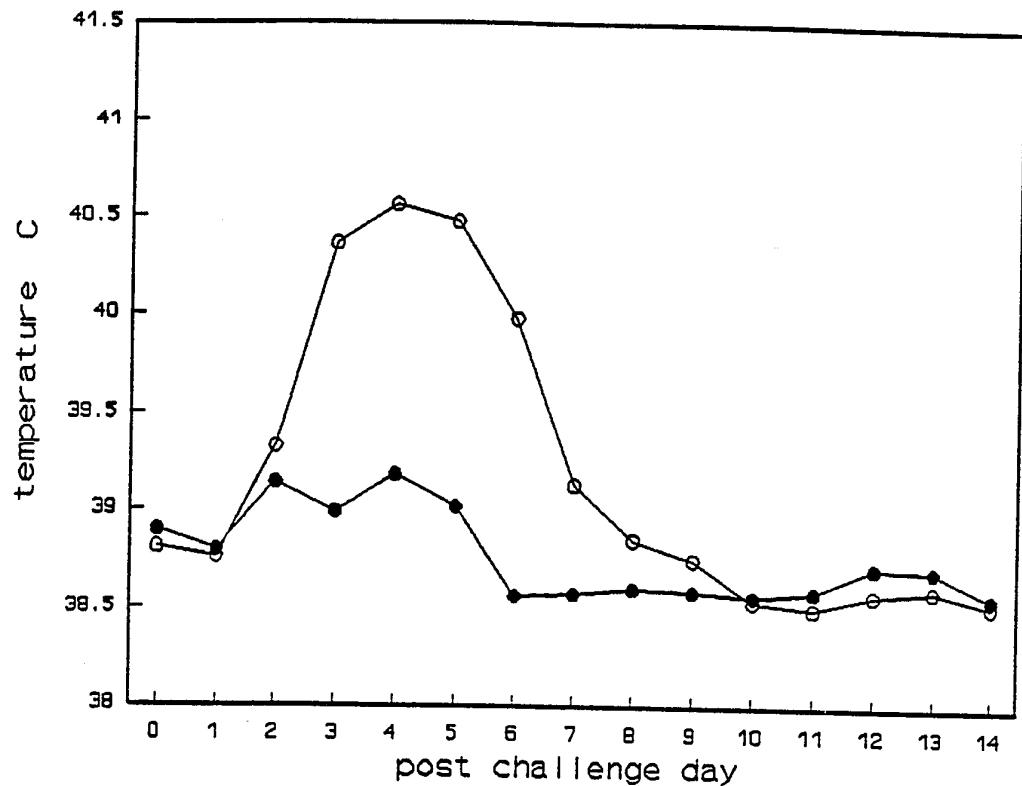


FIG.19

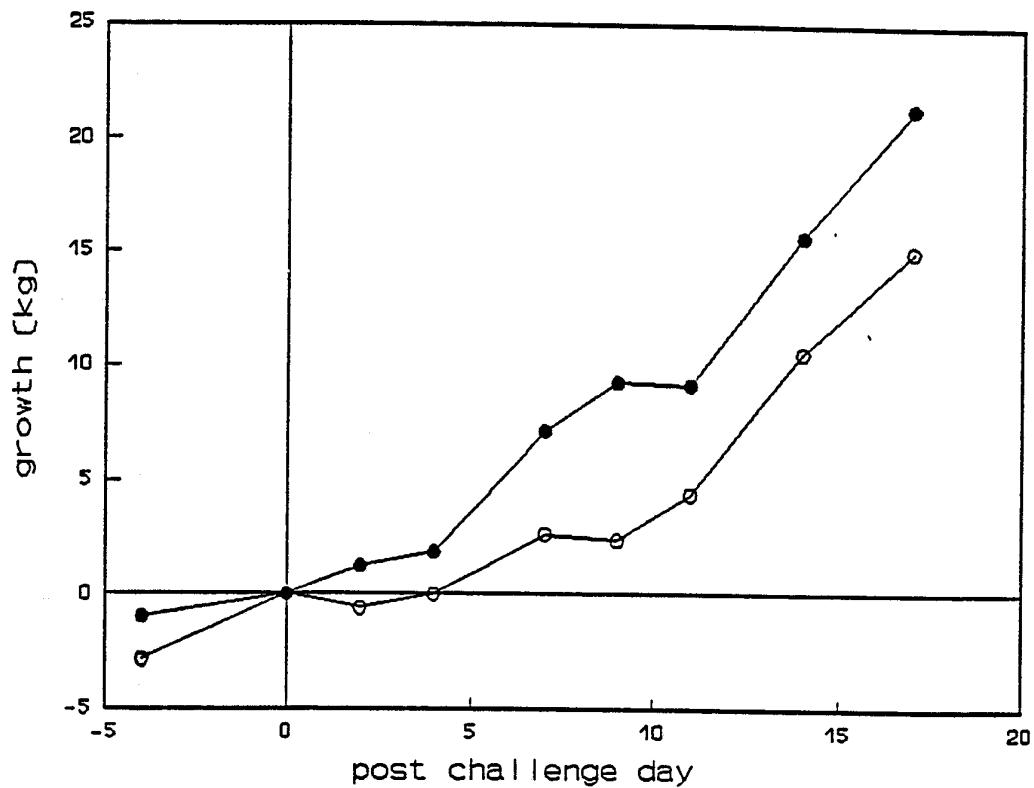


FIG.20

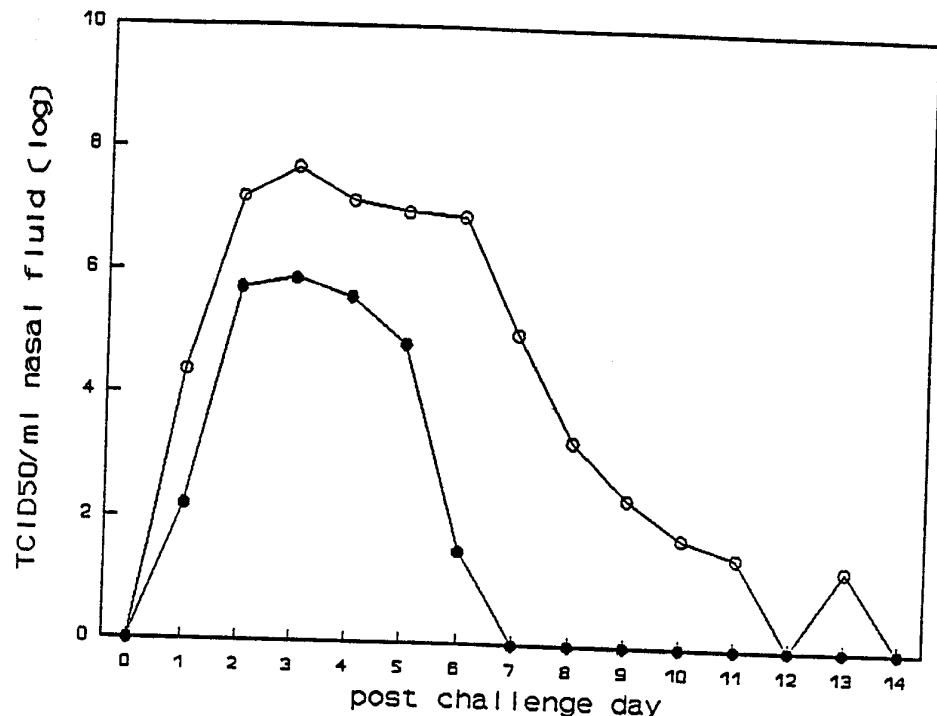


FIG. 21

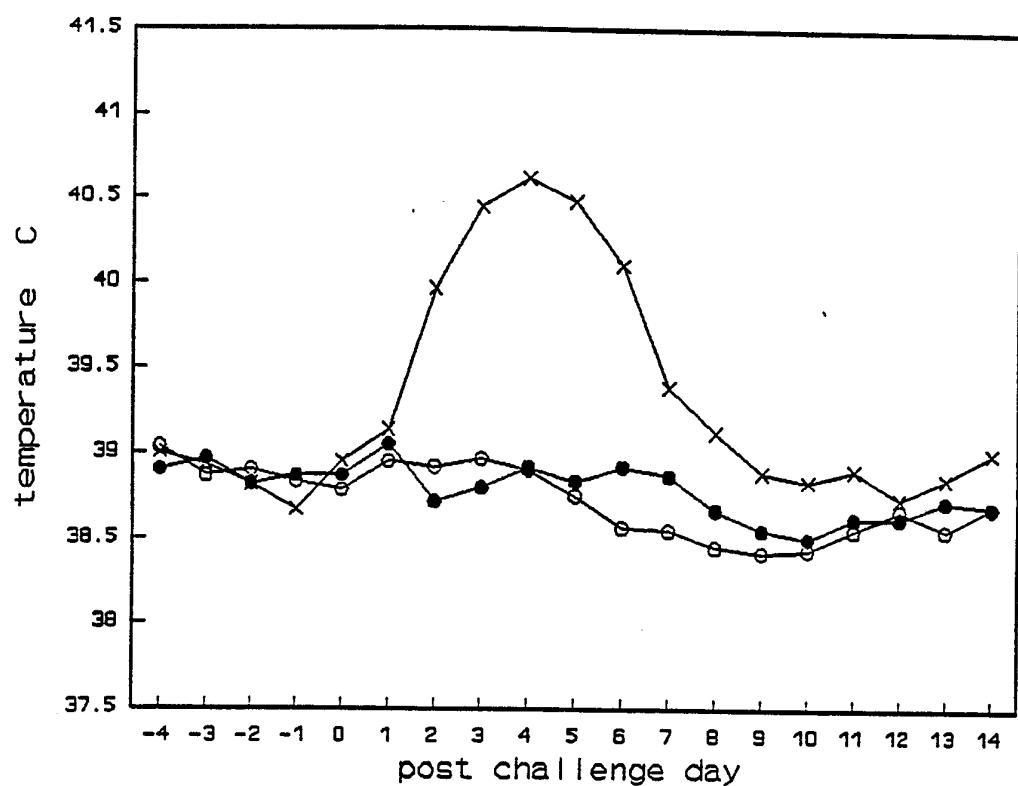


FIG. 22

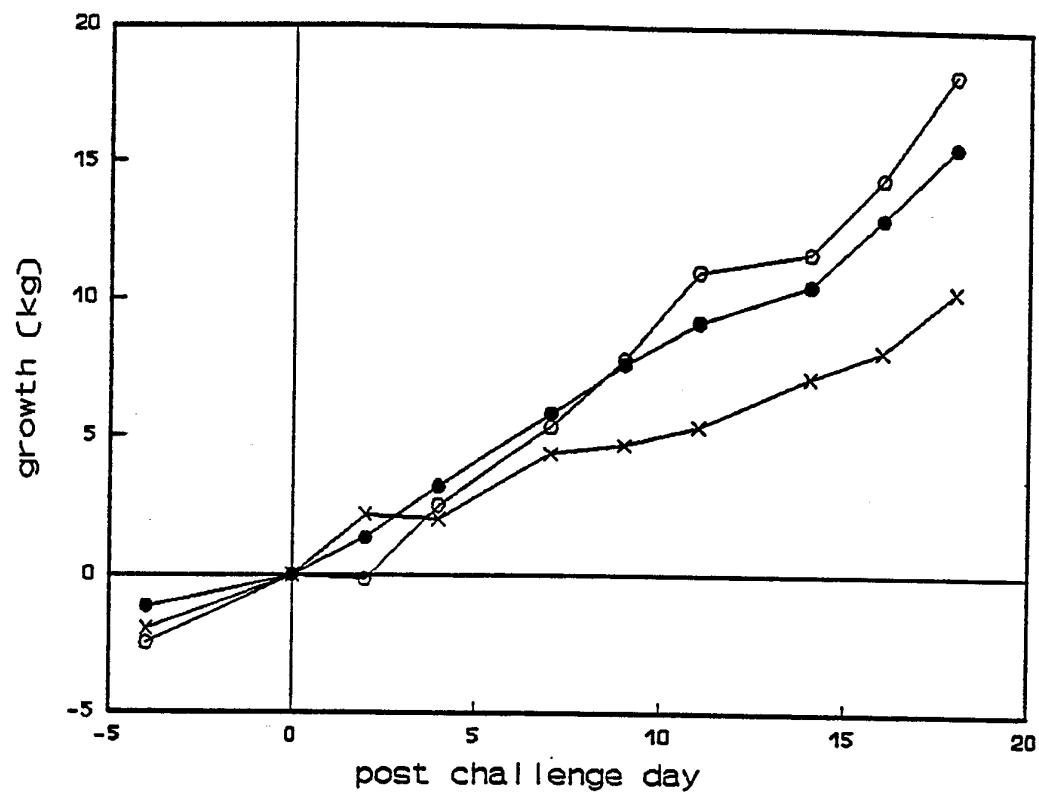


FIG. 23

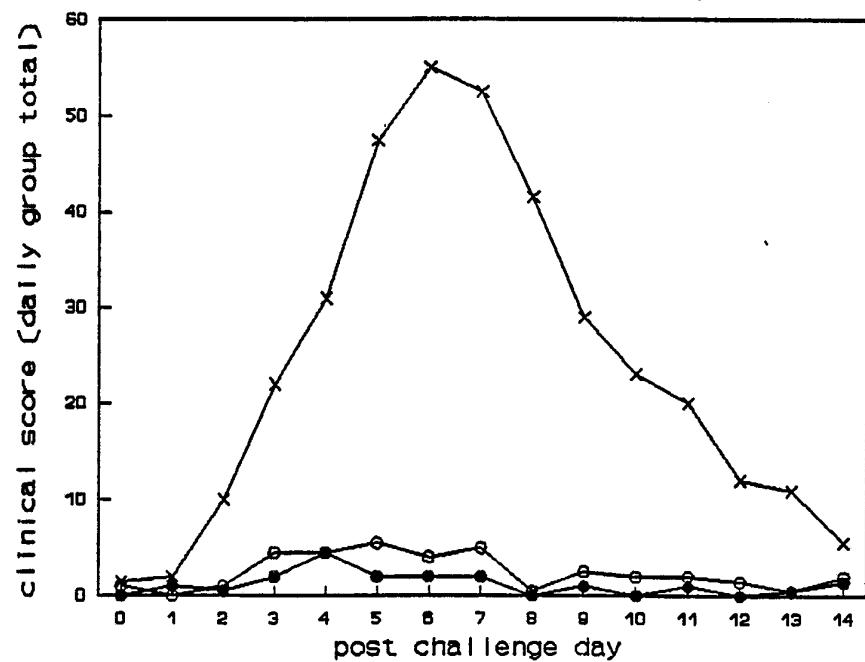


FIG. 24

INTERNATIONAL SEARCH REPORT

International Application No

PCT/NL 92/00097

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.C1. 5 C12N15/00;	C12N15/38;	A61K39/265;	C12P21/08
A61K39/395;	C12Q1/70;	G01N33/569;	C12N7/00

II. FIELDS SEARCHED

Minimum Documentation Searched⁷

Classification System	Classification Symbols		
Int.C1. 5	C07K ; C12Q ;	A61K ; G01N	C12N ; C12P

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched⁸III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
Y	EP,A,0 326 127 (NOVAGENE, INC.) 2 August 1989 see the whole document ---	1-12, 19-26
Y	JOURNAL OF GENERAL VIROLOGY vol. 70, no. 8, 1 August 1989, pages 2157 - 2162 S. CHATTERJEE ET AL. 'A role for herpes simplex virus type 1 glycoprotein E in induction of cell fusion' see the whole document ---	1-12, 19-26
Y	WO,A,8 910 965 (THE UPJOHN COMPANY) 16 November 1989 see example 2 ---	13-26
		-/-

⁶ Special categories of cited documents :¹⁰

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 05 OCTOBER 1992	Date of Mailing of this International Search Report 21. 10. 92
International Searching Authority EUROPEAN PATENT OFFICE	Signature of Authorized Officer CUPIDO M.

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
Y	<p>THE JOURNAL OF VIROLOGY vol. 61, no. 2, 1 February 1987, pages 600 - 603 H. NEIDHARDT ET AL. 'Herpes simplex virus type 1 glycoprotein is not indispensable for viral activity' see the whole document</p> <p>---</p>	13-26
A	<p>EP,A,0 316 658 (NOVAGENE, INC.) 24 May 1989 see the whole document</p> <p>-----</p>	1-9

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. NL 9200097
SA 61596

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 05/10/92

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0326127	02-08-89	AU-A-	2888089	27-07-89
		JP-A-	2035079	05-02-90
-----	-----	-----	-----	-----
WO-A-8910965	16-11-89	AU-A-	3579089	29-11-89
-----	-----	-----	-----	-----
EP-A-0316658	24-05-89	US-A-	4992051	12-02-91
		AU-A-	2403188	01-06-89
		JP-A-	2000431	05-01-90
		US-A-	5128129	07-07-92
-----	-----	-----	-----	-----