Nakajima et al.

[45] **Dec. 16, 1975**

[54]		S AND PROCESS FOR NG THE SAME	[56]		deferences Cited DISTATES PATENTS			
[75]		Eiichi Nakajima; Tadashi Morioka;	3,518,345	6/1970	Dines et al 252/11			
į, oj	miremore.	Kozo Kurihara; Takashi Kobayashi, all of Tokyo, Japan	3,518,346 3,719,599	6/1970 3/1973	Cox			
[73]	Ianan		Primary Ex Assistant E		Delbert E. Gantz -I. Vaughn			
[22]	Filed:	July 29, 1974		Firm—Flynn & Frishauf				
[21]	Appl. No.:	: 492,786	[57]		ABSTRACT			
	Relat	ted U.S. Application Data		didonto h				
[63] Continuation of Ser. No. 336,372, Feb. 27, 1973, abandoned.		Improved glidants having excellent gliding properties i.e., improving or eliminating those disadvantages encountered in the prior art, for example, capping of the						
[30]	Foreig	n Application Priority Data			ical preparations, delayed disintened pharmaceutical preparations,			
	Mar. 27, 19	970 Japan 45-25756	lowering of	the disso	lution-out rate of the active ingre- hich comprises certain known gli-			
[52]			dants wet-	treated w	with a surface active agent, said g selected from higher fatty acids,			
	2.	424/22; 424/44			eof and hydrogenated vegetable			
[51]			oils. The present glidants are prepared by subject					
[58]	Field of Se	earch 424/14, 22, 44; 252/11,	the known tive agent.	gnoants t	o wet treatment with a surface ac-			
		252/39, 33, 56 R, 56 S, 52	u. c agenti	0.00	. N. D			
				9 Cla	aims, No Drawings			

1

GLIDANTS AND PROCESS FOR PREPARING THE SAME

This is a continuation of application Ser. No. 336,372, filed Feb. 27, 1973, and now abandoned.

This invention relates to improved glidants and a process for preparing the same.

More particularly, it is concerned with improved glidants comprising a glidant substance wherein said glidant substance is subjected to wet treatment with a surface active agent, said glidant substance being selected from the group consisting of higher fatty acids, the metal salts thereof and hydrogenated vegetable oils and with a process for the preparation of such improved glidant.

It is well-known in the art that a certain type of adjuvants or glidants which have been widely employed for the production of various pharmaceutical preparations, e.g., powders, capsules, tablets and the like have troublesome disadvantages that they show such undesirable 20 characteristics as poor disintegration of the finished pharmaceutical preparation, prolonged dissolution-out rate of the active ingredient, especially they have a pronounced tendency to cause capping when used in making tablets. In some cases, other types of glidants 25 such as boric acid, sodium benzoate, sodium chloride, leucine, Carbowax (Registered Trade Mark), sodium stearate and the like have been also utilized in the pharmaceutical preparations, especially those required for hydrophilic property, e.g., water-soluble tablets, but 30 these glidant substances were known to exert a poor glidant effect as well as toxicity and hygroscopicity so that they were kept away from general utilizability.

As a result of our extensive studies to develop a new and improved glidant having no disadvantages as seen in the prior art glidants, it has been unexpectedly found that a certain type of the known glidant substances, i.e., those selected from the group consisting of higher fatty acids, the metal salts thereof and hydrogenated vegetable oils exhibit a highly excellent glidant effect when they are subjected to wet treatment with a surface active agent.

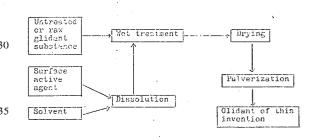
The above finding is quite surprising because it has been generally understood in the art that a glidant exhibits its glidant effect due to its surface properties and thus, when treated with a substance having no gliding property per se, such a glidant should lose its inherent glidant property.

However, in contrary to the above-depicted prejudice, the improved glidant of this invention can hold inherent glidant effects such as the improvement in fluidity, the lowering of the excluding force from punches upon making tablets, the increase in bulk density, the prevention of anchoring and the like and simultaneously perform almost complete elimination of the disadvantages accompanied with the prior art glidants, e.g., poor disintegration, lower dissolution-out rate and the like, as compared with the prior art glidants. Still more surprisingly, in the case of making tablets the improved glidant of this invention can effectively prevent the low tablet hardness and the development of capping, which are believed inherent in the prior art glidant.

It is, therefore, a primary object of this invention to provide an improved glidant which shows highly excellent glidant ability without the disadvantages inherent in the prior art, expecially capping, delayed disintegration and low dissolution-out rate.

2

It is another object of this invention to provide a process for the preparation of an improved glidant having desirable characteristics.


These objects and the advantages of this invention will be apparent to those skilled in the art from the detailed description below.

The glidant of this invention, as explained above, has an essential feature that it comprises a glidant substance known per se, said substance being selected from the group consisting of higher fatty acids, the metal salts thereof and hydrogenated vegetable oils, which substance is subjected to wet treatment (or treatment under a wetting condition) with a surface active agent.

The term "wet treatment" as used herein is contemplated to include kneading procedure and other procedures commonly employed for absorption between solid phase and liquid phase.

In another aspect of this invention, the process of this invention comprises subjecting the selected glidant substance to wet treatment with a surface active agent.

In effecting the process of this invention, the preferred embodiment can be carried out according to the flow sheet as illustrated below.

In the above-mentioned embodiment, the wet treatment may be effected as set forth above. The drying may be suitably effected by a conventional drying procedure, e.g. hot air drying, aeration drying, vacuum drying and the like. The pulverization may be suitably effected by means of a conventional grinder, e.g., impact grinder, pneumatic grinder and the like. It is desirable that the particle size of the ground glidant be in the range of 10 μ or less, but larger particle size may also be favourably employed. Examples of the glidant substances to be treated according to the process of this invention include stearic acid, magnesium stearate, calcium stearate and hydrogenated castor oil [e.g. "Lubriwax" (trade name, available from Freund Industrial Company, Japan) and "Sterotex" (trade name, available from Capital City Products Company, U.S.A)]. If desired, any combination of the above-illustrated glidant substances may also be employed in this invention. The surface active agents which may be employed in this invention may be of any type of non-ionic, anionic and cationic type surface active agents. Of these surface active agents are preferable polyoxyethylenepolyoxypropylene block polymers, e.g., those having the structure

HO(C_2 H₄O)a(C_3 H₆O)b(C_2 H₄O)cH wherein either the sum of a and c is 30 – 35 and b is 25 – 30 or the sum of a and c is 140 – 150 and b is 25 – 30 and a molecular weight of either ca. 3,000 or ca. 8,000, respectively [e.g. "Pluronic F-68" and "Pluronic L-64"

3

(trade names, available from Asahi Denka Kogyo K.K., Japan or from Wyandotte Chemical Co., U.S.A.)]; polyoxyethylene sorbitan fatty acid esters, e.g., polyoxyethylene monostearate, monolaurate, monopalmitate, monooleate and trioleate; alkyl sulfate salts, e.g., sodium lauryl sulfate; and the like. The amount of the surface active agent to be employed is not critical, but it is usual and effective to employ the surfactant at 20 % by weight or less, preferably at 4 - 5 % by weight, based upon the total weight of the untreated glidant substance. The solvent which may be employed in the above wet treatment may be any of those that could dissolve the surfactant and not the untreated glidant substance. Examples of the solvents which may be chloroform and the like.

The following Examples are given for the purpose of illustrating of the advantages and embodiments of this invention, but they should not be construed to be limiting the scope of this invention. All parts and percent-20 ages are given by weight.

4 Table I

	Surface active agent	Solvent	
5	Polyoxyethylene sorbitan monolaurate	A (Ethanol)	
	Polyoxyethylene sorbitan	B (Ethanol)	
	Sorbitan monolaurate	C (Ethanol)	
	Sorbitan monooleate	D (Ethanol)	
	Pluronic L-64	E (Water)	
	Pluronic F-68	F (Water)	
10	Sodium lauryl sulfate	G (Water)	

Separately, 100 parts of magnesium stearate (hereinafter referred to as "StMg") was placed into a mortar employed include water, methanol, ethanol, acetone, 15 and then 80 parts of each of the above-depicted surfactant solutions was added thereto. After being well kneaded, the mass was dried in vacuum and ball-milled. The lactose samples having incorporated therein 0.5 % or 2 % respectively of the surfactant-treated StMg and the untreated StMg were determined for their physical properties as shown below with the results which are summarized in the following Table II.

Table II

Specific volume	Specific extruding force*	Angle of falling**	Disintegration time of molded product (min.)			
0.5%	0.5%	0.5%	2%			
1.81	1.00	52	1			
1.28	0.11	44	23			
1.28	0.15	48	8			
1.29	0.11	47	5			
1.26	0.10	43	9			
1.27	0.11	42	9			
1.30	0.25	43	6			
1.27	0.15	43	6			
1.29	0.15	42	3			
	0.5% 1.81 1.28 1.28 1.29 1.26 1.27	volume extruding force* 0.5% 0.5% 1.81 1.00 1.28 0.11 1.29 0.11 1.26 0.10 1.27 0.11 1.30 0.25 1.27 0.15	volume extruding force* falling** 0.5% 0.5% 0.5% 1.81 1.00 52 1.28 0.11 44 1.29 0.11 47 1.26 0.10 43 1.27 0.11 42 1.30 0.25 43 1.27 0.15 43			

^{*}Extruding force from the cylinder upon the pressure-molded product (Kg/cm)

EXAMPLE 1

The surface active agents indicated in the Table I below were respectively dissolved in the solvents indicated in the Table I to form the 5 % solutions thereof. $_{45}$

It will be seen from the above Table II that the glidants of this invention exhibit excellent properties.

EXAMPLE 2

The molded products from the formulations indicated in the following Table III and the No. 1 capsules filled with the same formulations were tested for their physical properties as below with the results which are summarized in the Table IV below.

Table III

Sample N	o.						
•	1	2	3	4	5	6	7
Chloramphenicol (parts)	100	100	100	100	100	100	100
Lactose (parts)	40	39.3	39.3	39.3	37.2	37.2	37.2
Untreated StMg (parts)	_	_	0.7		_	2.8	2.66
Sodium lauryl sulfate							
(powder, less than 10μ, parts)		0.7			_	_	0.14
StMg treated with sodium							
lauryl sulfate* (less than	. —	_		0.7	2.8	_	
$10 \ \mu$, parts)							
Total (parts)	140	140	140	140	140	140	140

^{*100} parts of StMg was subjected to wet treatment with an 5% aqueous solution of sodium lauryl sulfate, dried and then pulverized

Table IV

		140	10 1 1						
	Compound No.	1	2	3	4	5	6	7	-
Specific extruding for	ce (kg/cm)	1.50	1.05	0.48	0.49		_	0.50	-

^{**}Angle of repose of the powder flowed out of the funnel.

Table IV-continued

								-
Compound No.	ı	. 2	. 3	4	5	6	7	_
Disintegration time of capsule(min)	8	8	11	8	8	25	18	

It will be seen from the above Table IV that the incorporation of the surfactant alone does not provide so much appreciable glidant effect (Sample No. 2), the incorporation of the StMg alone provides a good gli-10 dant effect but poor disintegration ability (Sample Nos. 3 and 6) and the incorporation of a simple mixture of the surfactant and the StMg gives an insufficient period of disintegration time (Sample No. 7), whereas the glidants treated with the surfactant solution according 15 to this invention exert the desired effect (Sample Nos. 4 and 5).

EXAMPLE 3

Table V were formed by utilizing the treated StMg prepared in the above Example 1 and filled into No. 0 capsules, which were then subjected to a dissolutionout test.

The results are summarized in the Table VI below.

Table VII

raor			
Sample No.			
	13	14	15
Lactose granules (parts)	2000	2000	2000
Untreated StMg (parts)	15		
StMg treated with sodium fauryl sulfate* (parts)		15	
Total (parts)	2015	2015	2000

^{*}The same as in the above Example 2

Five hundred mg. of the granule sample as obtained The powdery formulations shown in the following 20 above was molded under pressure of 1 ton by means of a conventional compression tester equipped with flat punches of 11 mm. diameter, whereupon the excluding force from the punch was determined with a load cell.

The results are summarized in the following Table 25 VIII.

Table V

	Sample No.	0	y.	10	11	12
		. 8	9	10	11	
Chloramphenicol	(parts)	500	500	500	500	500
Lactose	(parts)	150	120	120	120	120
Untreated StMg	(parts)	_	30	_	_	_
(B)*	(parts)		_	3()	-	_
(F)*	(parts)	_	_	-	30	_
(G)*	(parts)		_			30
Total (parts)		650	650	650	650	650

^{*}The same as in the above Table I.

Table VI

Amount of the active ingredient eluted (%)						
Dissolution-out time	10 min.	20 min.	30 min.			
Sample No.				_		
8	81	95	98			
9	5	14	23			
10	1.5	45	76	4		
11	10	45	78			
12	91	99	100			

It will be seen from the above Table VI that, when such a large amount of the glidant is formulated, the formulation containing the conventional or untreated StMg (Sample No. 9) shows much lower dissolutionout rate as compared with that containing no glidant 55 formulas as indicated in the following Table IX. (Sample No. 8), whereas the formulations containing the StMg treated according to this invention (Sample Nos. 10, 11 and 12) undergo little influence with such factors and show a good dissolution-out rate.

EXAMPLE 4

An appropriate amount of lactose was granulated with a 4 % starch paste and then dried. To the so obtained granules was incorporated the glidant indicated 65 in the following Table VII. The resulting granules were molded and tested as follows.

Table VIII

Sample No.	Excluding force from the punch(kg.)	
13	19	
14	19	
15	92	

It will be seen from the above Table VIII that the formulation containing the StMg treated with the surfactant (Sample No. 14) has a reducing action against the force excluding the tablets from the punch, i.e., a glidant action as the formulation containing the untreated StMg (Sample No. 13) has.

EXAMPLE 5

The powdery formulations were prepared having the

Table IX

Sample No	16	17	18
Ground sugar (parts)	1070	1058	1058
0 Methyl cellulose (50 c.p.s.,	10	10	10
parts)	120	120	120
Tale (parts) Untreated Lubriwax (parts)	-	12	
Lubriwax treated with sorbitan monolaurate*	_		12
monoiaurace			
5 Total (parts)	1200	1200	1200

*50 parts of an 10% ethanolic solution of sorbitan monolaurate was mixed and kneaded with 100 parts of Lubriwax, dried in vacuum and then pulverized.

One thousand and two hundred mg. of the sample as obtained above was molded under pressure of 3.3 tons by means of a conventional compression tester equipped with flat punches of 16 mm. diameter, whereupon the excluding force from the punch was determined with a load cell.

Table X

Sample No.	Excluding force from the punch (kg.)
16	58
17	40
18	33

It will be seen from the above Table X that the formulation containing the Lubriwax treated with sorbitan monolaurate (Sample No. 18) exhibits a superior glidant power to that of the formulation containing the untreated Lubriwax (Sample No. 17).

EXAMPLE 6

The granules were prepared by incorporating a 4 % starch paste to an appropriate amount of lactose and then granulating. The so otained granules were 25 punched to the tablets having an uniform tablet height according to the formulae indicated in the Table XI below.

Table XI

Sample No.				
Lactose granule (parts)	987.5	987.5	987.5	
Untreated StMg (parts)	12.5	_	_	
StMg treated with sodium lauryl sulfate * (parts)	_	12.5	_	
StMg treated with polyoxy-** ethylene sorbitan tristearate (parts)	-	—	12.5	
Total (parts)	1000	1000	1000	

^{*}The same as in the above Example 2.

The test results of the tablets thus prepared are summarized in the following Table XII.

Table XII

Sample No			
	19	20	21
Strength of tablet (kg.)	3.2	5.5	5.2
Capping number*	12/20 -	0/20	0/20
Disintegration time (min.)	25	11	14

^{*}Webster-Abbe abrasion tester, in 2 minutes.

It will be seen from the above Table XII that the tablets containing the glidants treated with a surfactant (Sample Nos. 20 and 21) have no capping, a high strength and a satisfactory disintegration time.

What is claimed is:

1. A glidant comprising a major amount of a glidant substance selected from the group consisting of a higher fatty acid, a calcium salt thereof, a magnesium salt thereof, and a solid hydrogenated vegetable oil, treated with a solvent solution containing a surface active agent in an amount sufficient to improve dissolution of the glidant substance, said solvent being a solvent for said surface active agent and a non-solvent for said glidant substance, followed by drying and pulverisation.

2. The glidant according to claim 1 wherein said glidant substance is stearic acid, magnesium stearate, calcium stearate or hydrogenated castor oil.

3. The glidant according to claim 1 wherein said 20 surface active agent is a non-ionic, anionic or cationic surface active agent.

4. The glidant according to claim 1 wherein said surface active agent is a polyoxyethylene-polyoxypropylene block polymer, a polyoxyethylene sorbitan fatty acid ester or an alkyl sulfate salt.

5. The glidant according to claim 1 wherein said surface active agent is a polyoxyethylene-polyoxypropylene block polymer having the structure

wherein either the sum of a and c is 30 – 35 35 and b is 25 – 30 or the sum of a and c is 140 – 150 and b is 25 – 30 and having a molecular weight of either about 3,000 or about 8,000; a polyoxyethylene sorbitan mono- or tri-fatty acid ester having 12 – 18 carbon atoms in the fatty acid moiety; or sodium lauryl sulfate.

6. The glidant according to claim 1 wherein said surface active agent is employed in an amount of up to 20% by weight, based upon the total weight of said glidant substance.

7. The glidant according to claim 1 wherein said glidant substance is magnesium stearate and said surface active agent is sodium lauryl sulfate.

8. The glidant according to claim 1 wherein said glidant substance is magnesium stearate and said surface active agent is a polyoxyethylene-polyoxypropy
45 lene block polymer having the structure HO(C₂H₄O)a(C₃H₆O)b(C₂H₄O)cH

wherein either the sum of a and c is 30 - 35 and b is 25 - 30 or the sum of a and c is 140 - 150 and b is 25 - 30 and having a molecular weight of either about 3,000 or a about 8,000.

9. The glidant according to claim 1 wherein the solvent is water methanol, ethanol, acetone or chloroform.

60

^{**}Prepared by the same procedure as that of the just above (*).